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Abstract—This paper focuses on model predictive direct torque
control (MPDTC), which is a recent control scheme for three-
phase ac electric drives combining the notions of model predictive
control (MPC) and direct torque control (DTC). Using a dynamic
model of the drive, MPDTC predicts several future switch
transitions, extends the outputs and chooses the inverter switch
positions that minimize the switching frequency or the switching
losses. The performance of MPDTC depends on the accuracy of
the predictions. However, MPTDC schemes with very accurate
predictions are computationally demanding necessitating very
fast controller hardware. New methods for extending the output
trajectories are proposed that yield fast yet accurate predictions
giving rise to a computationally efficient MPDTC scheme. The
advantages of the proposed methods are shown in terms of the
associated computational complexity and the accuracy of the
predictions.

I. INTRODUCTION

The idea underlying MPDTC [1]–[3] is to replace the
switching table in conventional DTC [4], [5] with a con-
strained optimal controller with a receding horizon policy [6]–
[9]. It is shown in [1]–[3], [10]–[12] that MPDTC significantly
improves the performance of DTC by reducing the switching
frequency of the inverter device. The control objectives are to
keep the machine’s electromagnetic torque and the stator flux
magnitude within predefined hysteresis bounds. With 3-level
neutral point clamped inverters [13], it is also necessary to
balance the neutral point potential.

The switching horizon [10] is composed of switching events
’S’ and extension events ’E’. During the ’S’ event, all admissi-
ble1 switching transitions are enumerated. For each switching
transition, the outputs (i.e. the electromagnetic torque, the
stator flux magnitude and the inverter neutral point potential)
are predicted using a discrete-time model of the drive sampled
with the sampling interval Ts = 25µs. To achieve a long
prediction horizon Np, the predicted output trajectories are
extended during the ’E’ event. Only the candidate sequences
are considered, which are the sequences, whose associated

This work was performed while the first author was at Chalmers University
of Technology, Sweden.

1Not all switching transitions are possible due to physical constraints on
the inverter.

outputs are either feasible, or pointing in the proper direction2

at any intermediate step during the switching horizon. For
each candidate sequence, Np is given by the time duration
for which the extended predicted outputs remain within their
bounds. The average switching frequency is calculated as
the total number of switching transitions in the switching
sequence divided by the prediction horizon length. The optimal
switching sequence is obtained by minimizing the average
switching frequency over all switching sequences. According
to the receding horizon policy, only the first input of the
optimal sequence is applied to the drive and this procedure
is repeated at the next controller sampling time (k + 1)Ts
with new measurements.

The most accurate way of extending the output trajectories
is to use the internal model of the drive in an open-loop
simulation [10]. Even though this requires excessive computa-
tional power making this approach impractical, this method is
regarded as a benchmark to evaluate the performance of other
extension methods against. In [1], [2] linear and quadratic
extrapolation were proposed to extend the output trajectories.
The computational burden involved can be handled with the
currently available controller hardware. Particularly the linear
extrapolation method was successfully implemented on the
existing DTC hardware [2]. As will be shown in this paper
the accuracy of the predictions can be further increased, with-
out introducing much additional computational effort, by the
following proposed methods. (i) prediction with interpolation,
(ii) iterative prediction with interpolation and (iii) an analytical
approach, where a simplified model of the drive is used to
extend the output trajectories analytically.

II. DRIVE MODEL

Throughout the paper a three-level neutral point clamped
inverter driving an induction machine is used as an illustrative
example for an ac drive system, as shown in Fig. 1. Assuming
that the induction motor is three-phase symmetrical and its
magnetic core is linear with a negligible core loss, (1a)-(1d)

2A trajectory points in the proper direction if the magnitude of the bound
violation is strictly decreasing over time.
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Figure 1: Three-level neutral point clamped VSI inverter
driving an induction motor.

describe the dynamical model of the induction machine in the
αβ reference frame. ψsα, ψsβ , ψrα and ψrβ are the α− and
β−components of the stator and the rotor flux linkages, and vα
and vβ are the stator voltages in the stationary reference frame
[14]. The model parameters are the electrical angular velocity
of the rotor ωr, the stator and the rotor winding resistances
rs and rr, and the stator, the rotor and the mutual reactances
xls, xlr and xm.

ψ̇sα = −rsxrr
D
ψsα + rs

xm
D
ψrα + vα (1a)

ψ̇sβ = −rsxrr
D
ψsβ + rs

xm
D
ψrβ + vβ (1b)

ψ̇rα = rr
xm
D
ψsα − rr xss

D
ψrα − ωrψrβ (1c)

ψ̇rβ = rr
xm
D
ψsβ + ωrψrα − rr xss

D
ψrβ (1d)

In the above, we introduced xss = xls + xm, xrr = xlr + xm
and D = xrrxss − x2

m.
The torque is defined as

Te =
xm
D

(ψsβψrα − ψsαψrβ) (2)

and the length of the stator flux is given by

Ψs =
√
ψ2
sα + ψ2

sβ (3)

Please note that all rotor variables and parameters are referred
to the stator side. Throughout this paper, we assume that we
are using normalized quantities.

The switch position of the three-level inverter is denoted as
uabc = [ua ub uc]T, where ua, ub, uc ∈ {−1, 0, 1} represent
the switch position of each inverter phase leg. The inverter’s
neutral point potential vn is described by [1], [3]

v̇n = 1
2xC
|uabc|T P−1is,αβ0, (4)

where

P =
2
3

 1 − 1
2 − 1

2

0
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3
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√
3

2
1
2

1
2

1
2

 (5)

is the three phase to αβ0 transformation matrix. xC is one
of the two dc-link capacitors, and |uabc| = [|ua| , |ub| , |uc|]T
is the component-wise absolute value of the inverter switch
position. is,αβ0 is the stator current in the stationary reference
frame. The α- and β-components of is,αβ0 are related to the
stator and the rotor flux components according to (6) while
the 0 component is always zero [1], [3].

is,αβ0 =
1
D

[
xrrψsα − xmψrα xrrψsβ − xmψrβ 0

]T
(6)

The stator voltages in the stationary reference frame, vα and
vβ , are given by

vαβ0 = Vdc
2 Puabc, (7)

where Vdc is the dc-link voltage of the inverter.

III. EXTENSION METHODS

For the methods described in this section, the model in-
troduced in Sect. II is discretized with the sampling-time Ts.
The resulting discrete-time model can be found in [1], [3]. In
accordance with the prediction model introduced in [1], [3],
the following notation is defined.
• x = [ ψsα ψsβ ψrα ψrβ vn ]T is the state vector.

The i-th element of this vector is denoted by xi.
• y = [ Te Ψs vn ]T is the output vector. The i-th

element of this vector is denoted by yi.
• u = uabc denotes the input vector.
• f(.) is the drive’s state update equation discretized with

the sampling interval Ts.
• fd(.) is the drive’s state update equation discretized with

the coarse sampling interval dTs.
• g(.) is the drive’s output equation.

In deriving the formulae for the different extension methods,
for the sake of simplicity, we limit ourselves to the switching
horizon ’SE’, which means a switching action at time-step
k is followed by an extension event. It is straightforward to
generalize the results to an arbitrary switching horizon.

A. Open-Loop Simulation (OL)

The switch position at time-step k, u(k), is applied to the
discrete-time model of the drive to compute the outputs from
time-instant k on. The trajectories are extended until one of
the outputs hits a bound, which determines the length of the
predicted trajectory, or equivalently, the prediction horizon
length Np. The extended trajectories are described from time-
step k + 1 to k +Np according to

x(k + n) = f (x(k + n− 1),u(k)) (8)
y(k + n) = g (x(k + n)) ,

where 0 ≤ n ≤ Np. For an example, see Fig. 2a. More details
about this method can be found in [3] and in [10].
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Figure 2: Examples of predicted torque trajectories between their bounds and the associated switch positions for the switching
horizon ’SE’. The ’S’ event happens at time-step k. (a) Comparison between the OL (dash-dotted line) and LE (solid line)
methods and the associated prediction horizon lengths (bi-directional arrows). The points (bold dots) used for the LE method
are shown as well. (b) Comparison between the QE (dashed), PQI (dotted) and IPQI (solid) methods and their prediction
horizon lengths. The QE method uses the points at time-instants k, k + 1 and k + 2. The PQI method uses the points at
time-instants k, k + d and k + 2d. The IPQI method uses the additional point at time-step k + 3d.

B. Linear Extrapolation (LE)

The switch position u(k) is applied to the discrete-time
model of the drive once to obtain the output at time-instant
k + 1 according to

x(k + 1) = f (x(k),u(k)) (9)
y(k + 1) = g (x(k + 1)) .

The output trajectories are then extrapolated from time-step
k+ 1 on linearly using the samples at time-steps k and k+ 1
until an output variable hits a bound. The extended trajectories
from time-step k + 1 to k +Np are given by

y(k + n) = (y(k + 1)− y(k))n+ y(k), (10)

where 0 ≤ n ≤ Np. The time-instant when the i-th output
variable crosses a bound is easily calculated and denoted as
ni. The length of the predicted trajectory, Np, is given by

Np = min
i
{ni} (11)

This method is discussed in detail in [1], [3] and was
successfully implemented and tested on ABB’s ACS6000
medium-voltage drive [2]. See Fig. 2a for an example.

C. Quadratic Extrapolation (QE)

As discussed in [1] and [3], the machine’s output trajectories
can be better approximated by quadratic curves rather than
straight lines. The switch position u(k) is applied twice to

the drive model to obtain the outputs at time-instants k + 1
and k + 2 according to

x(k + 1) = f (x(k + n− 1),u(k)) , n = 1, 2 (12)
y(k + 1) = g (x(k + n)) , n = 1, 2

Using the output samples at time-instants k, k+ 1 and k+
2 the output trajectories are extrapolated quadratically from
time-step k + 2 on until the first of the three output variables
leaves a bound. The extended trajectories from time-step k to
k +Np are given by

y(k + n) = an2 + bn+ c, 0 ≤ n ≤ Np (13)

where the quadratic coefficient vectors a, b and c are obtained
from

y(k) = c (14a)
y(k + 1) = a+ b+ c (14b)
y(k + 2) = 4a+ 2b+ c, (14c)

which yields

a =
1
2
y(k)− y(k + 1) +

1
2
y(k + 2) (15a)

b = −3
2
y(k) + 2y(k + 1)− 1

2
y(k + 2) (15b)

c = y(k) (15c)

It is trivial to calculate where the i-th output variable hits
its bounds. The length of the prediction horizon is given by



(11). Fig. 2b provides an example of how the trajectories are
extended using this method.

D. Prediction with Quadratic Interpolation (PQI)

Predicting the output samples far ahead in the future and
then interpolating between them yields extended trajectories
with better accuracy than QE. The algorithm uses the switch
position u(k) to compute the output samples at time-instants
k + d and k + 2d according to

x(k + nd) = fd (x(k + (n− 1)d),u(k)) , n = 1, 2 (16)
y(k + nd) = g (x(k + nd)) , n = 1, 2

Interpolating between outputs at time-instants k, k + d and
k + 2d quadratically yields the extended trajectories. The
trajectories are extended until the first out of the three output
variables becomes infeasible. The extended trajectories from
time-step k to k +Np are given by (13) with

[
aT

bT

]
=
[
d2 d
4d2 2d

]−1 [
yT (k + d)− yT (k)
yT (k + 2d)− yT (k)

]
c = y(k),

or equivalently by

a =
1

2d2
y(k)− 1

d2
y(k + d) +

1
2d2

y(k + 2d) (17)

b = − 3
2d
y(k) +

2
d
y(k + d)− 1

2d
y(k + 2d)

c = y(k)

Again, the time-step when the i-th output variable hits its
bound can be easily calculated. The length of the prediction
horizon is given by (11). The performance of this method
heavily depends on the choice of d. It should be chosen such
that 2d covers the prediction horizon with a high probability.
See Fig. 2b for more details.

E. Iterative Prediction with Quadratic Interpolation (IPQI)

Particularly for long prediction horizons, the extrapolation
(interpolation) based on few predicted output samples can give
rise to large errors with respect to the open-loop simulation
method. If required, the IPQI method uses additional predicted
output samples to refine the extrapolation as the length of
the extended trajectories increases. As for the PQI method,
a quadratic curve is interpolated between the output samples
at time-instants k, k + d and k + 2d. If no output bound is
violated in the [k k+2d] interval, the time is shifted forward by
d time-steps and the outputs at time instant k+3d are predicted
using (16). A new quadratic curve is interpolated between the
output samples at time-instants k+d, k+2d and k+3d. This
procedure is continued until a bound violation is detected.
The extended trajectories associated with the IPQI method
are composed of m segments. Each segment is characterized
by a second order polynomial. The number of segments is
calculated from
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Figure 3: Trajectories of the stator flux α-component for
some initial conditions and uk = [0 0 0]T.For thezero voltage
vectors, the approximated flux trajectory associated with the
rs = 0 case (dash-dotted line) is constant while the dashed line
(rs 6= 0) approximates the flux components more accurately.

m =

(l
Np
d

m
− 1 Np ≥ 2d

1 Np < 2d
, (18)

where d.e denotes the ceiling function.

IV. THE ANALYTICAL APPROACH (ANL)

The methods discussed so far are based on (iterative) ex-
trapolation and interpolation. In this section we will introduce
an analytical method to extend the output trajectories. We will
simplify the continuous-time model of the machine given by
(1a)-(1d) enabling us to express the outputs (i.e. the torque, the
stator flux and the neutral point’s potential) by polynomials of
degree three or less and to solve for Np analytically3.

A. Approximating the Stator Flux

In (1a) and (1b), the −rs xrrD terms account for the losses
in the stator whereas the rs

xm
D terms are the positive con-

tributions from the the rotor flux to the stator flux. For
medium-voltage induction machines, the losses in the stator
are almost offset by the positive contributions from the rotor
flux. Moreover, as rs is typically very small, these terms
become negligible. We shall consider two cases. (i) neglecting
the effect of rs (i.e. rs = 0) and (ii) taking the effect of rs
into account.

1) Stator flux trajectories when rs = 0: In this case the
stator flux is only moved by the voltage vectors and the stator
flux dynamics given by (1a) and (1b) are reduced to

ψ̇s =
[

0 0
0 0

]
ψs +

[
vα
vβ

]
(19)

It follows that

3Polynomials of higher degree or other nonlinear functions will necessitate
the use of a numerical root finding algorithm.
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ψs(t) = ψs(0) + tv, (20)

where ψs(0) is the initial condition and t is the time.
2) Taking the effect of rs into account : Including the effect

of the stator resistance, rs, allows us to predict the stator
flux trajectories more accurately. For this purpose, we shall
solve the system of linear differential equations expressed by
(1a)-(1d), and consider only the most dominant terms in the
solution that account for the stator losses. Then, by using first
order Taylor expansions, those terms are approximated about
a nominal time tp yielding

ψsα(t) = α1t+ β1 (21a)
ψsβ(t) = α2t+ β2, (21b)

where αi and βi are constants. For expressions describing αi
and βi and their derivation please refer to [15]. Fig. 3 depicts
the effect of rs on the approximated stator flux components.

B. Approximating the Rotor Flux

In (1c) and (1d), the ωr terms correspond to the rotation
of the rotor flux vector with constant magnitude, whereas
the −rr xssD terms account for the losses due to rr that
reduce the length of the rotor flux. The rr xmD terms are the
positive contributions from the stator flux due to the mutual
inductance xm. The losses in the rotor flux are almost offset
by the positive contribution from the stator flux. Moreover,
rr and consequently −rr xssD and rr

xm
D are typically very

small compared to ωr. These observations allow us to omit
the −rr xssD and rr xmD terms, which yields

ψ̇r =
[

0 −ωr
ωr 0

]
ψr (22)

(22) is a system rotating with a fixed speed and a constant
magnitude. The solution of (22) is

ψrα(t) = Ψr cos(ωrt+ Θ) (23a)
ψrβ(t) = Ψr sin(ωrt+ Θ), (23b)

where Ψr =
√
ψ2
rα (0) + ψ2

rβ (0) and Θ = arcsin
(
ψrβ(0)

Ψr

)
are the length and the initial angle of the rotor flux, respec-
tively. Fig. 4 illustrates that the rotor flux can be seen as
a rotating vector with constant speed and length over the
prediction horizon. We use second order Taylor expansions
to approximate (23a) and (23b) around a nominal time tp, to
express the rotor flux components in polynomials of degree
two.

ψrα(t) = a1t
2 + b1t+ c1 (24a)

ψrβ(t) = a2t
2 + b2t+ c2 (24b)

Please refer to [15] for explicit expressions of ai, bi and ci.

C. Approximating the Outputs

Using the stator flux and the rotor flux polynomials, we can
express the machine’s outputs by polynomials of degree three
or less, which allows us to solve for Np analytically.

1) The length of the stator flux: Using (21a) and (21b)
in (3), and squaring the result, the length of the stator flux
(squared) is expressed as a polynomial of degree 2.

Ψ2
s(t) = (α1t+ β1)2 + (α2t+ β2)2

=
(
α2

1 + β2
2

)
t2 + 2 (α1β1 + α2β2) t

+β2
1 + β2

2 (25)

2) The torque: The polynomial form of the torque is
obtained by substituting (21) and (24) in (2).
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Te(t) =
xm
D

(
(α2a1 − α1a2)t3

+ (α2b1 + β2a1 − α1b2 − β1a2)t2

+(α2c1 + β2b1 − α1c2 − β1b2)t+ β2c1 − β1c2) (26)

3) The inverter’s neutral point potential: The neutral point
potential (4) can be expressed as

v̇n = γ1is,α + γ2is,β , (27)

where
[
γ1 γ2 γ3

]
= 1

2xC
|uabc|T P−1 are constant co-

efficients. Substituting is,α and is,β with (6), using (21) and
(23) and integrating, (27) becomes

vn(t) = vn(0)− xm γ1

D

Ψr

ωr
(sin (ωrt+ Θ)− sin (Θ))

+ xm
γ2

D

Ψr

ωr
(cos (ωrt+ Θ)− cos (Θ))

+ xrr
γ1

D

(α1

2
t2 + β1t

)
+ xrr

γ2

D

(α2

2
t2 + β2t

)
(28)

Substituting Ψr cos (ωrt+ Θ) and Ψr sin (ωrt+ Θ) with
(24a) and (24b), (28) becomes a polynomial of degree two

vn(t) = z1t
2 + z2t+ z3, (29)

where the coefficients zi are provided in the Appendix.

V. PERFORMANCE EVALUATION

The computational complexity associated with each method
is given in Table I. Fig. 5 shows the required number of

calculations for the OL and IPQI methods as a function of
the trajectory length Np.

Based on simulation runs for 1.5 sec. using a 3-level voltage
source inverter with a 2.5 MVA induction machine [10], the
accuracy of the different extension methods is compared with
the one of the open-loop simulation method. For this purpose,
we define the relative trajectory length error as

Nrel
p =

Nol
p −Np
Nol
p

, (30)

where Np and Nol
p are the predicted trajectory lengths of the

method under consideration and of the open-loop simulation
method, respectively. The relative error histogram associated
with each method is depicted in Fig. 6. Table II compares the
closed-loop performance of the proposed methods.

The flattest histogram is associated with the LE method,
as this approach yields the least accurate predictions. The
difference between the histograms in Fig. 6.e and Fig. 6.f
shows that the accuracy of the predictions associated with the
analytical method can be improved by taking the effect of
rs into account. The QE method and the analytical method
(rs 6= 0) are of comparable accuracy. The probability density
of the relative error for the IPQI method is highly concentrated
about zero highlighting its accuracy.

The closed-loop simulation results suggest that for the short
switching horizon ’SE’, all methods exhibit performances
similar to the one of the OL method. The state vector is
needed in the switching step to build the output samples
used for extending the output trajectories. For the OL method
and the analytical method, the state vector is automatically
obtained as a part of the extension step. For other methods,
the state trajectories can be extended in the same way as the
output trajectories. For the LE method, however, due to its low
accuracy, the correspondence between the extended output and
state vector is lost making this method not applicable for long
switching horizons such as ’SESE’.

As can be seen for the open-loop simulation method, with
respect to MPDTC with the switching horizon ’SE’, MPDTC
with the switching horizon ’SSESE’ reduces the switching
frequency by about 28%. At the same time, the THDs are
reduced. The QE, the PQI and the IPQI methods exhibit almost
the same performance as the open-loop simulation method as
the switching horizon is increased. For the analytical method,
with respect to MPDTC with the switching horizon ’SE’,
MPDTC with the switching horizon ’SSESE’ reduces the
switching frequency by almost 25%. This inferior performance
improvement as compared to the performance of the PQI and
IPQI methods, is partly due to the fact that the output equations
are not approximated about the correct value of tp.

VI. CONCLUSIONS

In this paper, several different methods to extend the out-
put trajectories were proposed, and their performance was
compared with respect to their accuracy and the associated
computational cost. These methods include open-loop simu-
lation (OL), linear extrapolation (LE), quadratic extrapolation



Table I: The number of basic operations associated with each extension method

extension method OL LE QE PQI IPQI ANL
solution approach sequential analytical analytical analytical sequential analytical

total number of calc. 131Np 149 373 373

(
242

l
Np
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m
− 111 Np > 2d
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246

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Nrel
p

pr
ob

ab
ilit

y 
 d

en
sit

y 

a) LE

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Nrel
p

pr
ob

ab
ilit

y 
 d

en
sit

y 

b) QE

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Nrel
p

pr
ob

ab
ilit

y 
 d

en
sit

y 

c) PQI, d = 14Ts

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Nrel
p

pr
ob

ab
ilit

y 
 d

en
sit

y 

d) IPQI, d = 7Ts

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Nrel
p

pr
ob

ab
ilit

y 
 d

en
sit

y 

e) ANL, rs = 0

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Nrel
p

pr
ob

ab
ilit

y 
 d

en
sit

y 

f) ANL, rs 6= 0

Figure 6: Histograms of the relative trajectory length errors obtained through simulation for the switching horizon ’SE’, at
Te = 1pu and ωe = 0.6pu, where Te and ωe are the electromagnetic torque and speed references, respectively.

Table II: Closed-loop simulation results. The table compares the average inverter switching frequency (Hz), the torque’s total
harmonic distortion (THD) and the stator current THD for different extension methods for the machine running at 100% torque
and 60% speed.

Switching Horizon Extension Method OL LE QE PQI
d = 14

IPQI
d = 7

ANL
tp = 7Ts

Freq. (Hz) 199 204 201 199 199 201
’SE’ Te,THD 6.60 6.71 6.76 6.61 6.61 6.61

ITHD 8.15 8.35 8.38 8.17 8.17 8.25
Freq. (Hz) 154 N/A 156 154 153 157

’SESE’ Te,THD 6.24 N/A 6.23 6.24 6.20 5.76
ITHD 7.65 N/A 7.65 7.66 7.66 7.24

Freq. (Hz) 143 N/A 146 143 143 150
’SSESE’ Te,THD 5.42 N/A 5.89 5.49 5.48 5.65

ITHD 7.01 N/A 7.40 7.09 7.07 7.17



(QE), prediction with quadratic interpolation (PQI), iterative
prediction with quadratic interpolation (IPQI) and an analytical
approach (ANL).

Linear extrapolation is computationally simple and it per-
forms fairly well for the switching horizon ’SE’. This method
has been successfully implemented and tested on ABB’s
ACS6000 medium-voltage drive [2]. However, it is not ap-
plicable to long switching horizons and the predictions are
inaccurate especially when the machine operates at high speed.
If the machine equations are approximated about the correct
time-instant tp, the proposed analytical approach can achieve
a performance comparable to the one of the QE method with
slightly less computational effort. However, finding the proper
value of tp is not trivial as it depends on the operating point
of the machine and on the switching horizon. With the same
computational burden, the PQI method is more accurate than
the QE method, and it outperforms the QE method in terms
of the switching frequency and the total harmonic distortions
for all switching horizons. The IPQI method achieves the best
performance with respect to the open-loop simulation method
even for very long switching horizons, but the associated
computational burden for the average prediction horizon is
almost twice as much as for the PQI method, as shown in
Table I.

It was shown in [10] that long prediction horizons sig-
nificantly improve the performance of MPDTC, but standard
extrapolation methods such as linear or quadratic extrapolation
tend to be too inaccurate to fully exploit the benefits of long
horizons such as ’SESESE’. By using the new extension meth-
ods proposed in this paper, this issue can be solved. Together
with the branch and bound method tailored to MPDTC in [12],
which reduces the computational burden of long switching
horizons by an order of magnitude, MPDTC is expected to be
soon implemented by industry also with very long switching
horizons. Moreover, these methods are equally applicable to
the current control derivative of MPDTC, model predictive
direct current control (MPDCC) [16], [17].

APPENDIX

The coefficients zi in (29) are given by

z1 =
γ1

D

(
xrr
2
α1 − xm

ωr
a2

)
+
γ2

D

(
xrr
2
α2 +

xm
ωr

a1

)
(31)

z2 =
γ1

D

(
xrrβ1 − xm

ωr
b2

)
+
γ2

D

(
xrrβ2 +

xm
ωr

b1

)
z3 = vn(0)− γ1

D

xm
ωr

(c2 − sin(Θ)) +
γ2

D

xm
ωr

(c1 − cos(Θ))
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