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Abstract—This work focuses on a Finite Control Set Model
Predictive Control (FCS-MPC) method for controlling the output
voltage of a two-level three-phase power converter with an
output LC filter. This type of control has been proven to be a
suitable strategy for uninterruptible power supply (UPS) systems,
capable of achieving a high quality output voltage with fast
dynamic response. In contrast to previously proposed FCS-MPC
strategies, the control problem will be formulated and solved
in the synchronous dq-frame. Parameters like the output voltage
total harmonic distortion (THD) and the root mean square (RMS)
error when tracking the reference voltage will be the focus of
the analysis when comparing the output quality.

I. INTRODUCTION

Two-level Voltage Source Inverter (VSI) based applications
require high levels of harmonic quality for the voltages, as
for example Uninterruptible Power Supplies (UPS) [1]. UPS
systems have been extensively studied in academic works and
applied in industry for a continuous, reliable supply of critical
loads, such as medical equipment, telecommunication systems
and computers [2].

Several techniques have been proposed and utilized to
eliminate or reduce harmonic content in the output voltage.
For example, resonant or repetitive control have been proposed
to suppress certain harmonics [3], [4]. Other solutions rely on
output LC filters. For this configuration, predictive control,
and Finite Control Set Model Predictive Control (FCS-MPC)
in particular, are a fertile field in research due to their fast
dynamic response and inherent flexibility to consider different
control targets, system constraints and nonlinearities [5]–[7].

The application of FCS-MPC for UPS requires an accurate
model of the VSI and the output filter in order to predict
the evolution of certain system variables up to predetermined
horizon length. This model has been previously developed
using the stationary αβ frame [8], [9]. In these works, a
FCS-MPC strategy was developed with the addition of an
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Fig. 1. Three-phase inverter with output LC filter diagram

output current observer that allows the enhancement of the
proposed control without increasing the cost of the system
with additional sensors. The feasibility of this control strategy
was demonstrated through simulation and experimental results.

In this paper, FCS-MPC for UPS application is proposed
in a synchronous dq reference frame (dq-SRF). An Extended
State Observer (ESO) is also used to estimate the output cur-
rents of the system. We will compare the control performance
of this FCS-MPC strategy when working in a synchronous
dq-frame against a stationary αβ frame.

Derivation of the system model in dq-frame and the observer
are presented in Sections II and III, respectively. In Section IV,
the MPC algorithm is formulated. Section V focuses on the
pole placement problem to accomplish the tuning of the design
parameters. Simulation results are presented and analyzed in
Section VI. Computational costs comparison is performed in
Section VII.

II. SYSTEM MODEL

In a FCS-MPC strategy, the controller needs to make
predictions of future state variables so that a cost function
can be evaluated. Depending on this cost function, the next



TABLE I
SYSTEM VARIABLES AND PARAMETERS

Variable Description

vi,dq VSI output voltage in dq-SRF
vo,dq Output filter capacitor voltage in dq-SRF
if,dq Output filter inductor current in dq-SRF
io,dq Output load current in dq-SRF
Lf Output filter inductor
Cf Output filter capacitance
vdc DC-link voltage
ω Angular frequency of the output reference voltage

switching state is chosen. The predictions of the system are
based on a mathematical model that describes the behavior of
the electric circuit of the inverter and the LC filter, which is
represented in Fig. 1. We will Model the inverter as a system
with a finite number of states. The system variables for the
inverter can be found in Table I.

Based on the equations in [8], the system dynamic equations
in the synchronous dq-frame can be derived:

Lf
dif,dq
dt

= −J ω Lf if,dq + vi,dq − vo,dq (1)

Cf
dvo,dq
dt

= −J ω Cf vo,dq + ii,dq − io,dq (2)

where J =

[
0 −1
1 0

]
, and vi,dq, vo,dq, if,dq, io,dq ∈ R2.

Additionally, vi,dq = vdc Sdq , where Sdq ∈ R2 is the
switching state of the inverter, expressed in the synchronous
dq-frame.

In state-space representation, this model can be summarized
with the dynamical equation:

dx

dt
= Ax+Bu (3)

y = x (4)

where:

x = y =

[
if,dq
vo,dq

]
, u =

[
vi,dq
io,dq

]
, A =

[
−Jω − 1

Lf
I2

1
Cf
I2 −Jω

]
,

B =

[
1
Lf
I2 O2

O2 − 1
Cf
I2

]
with being I2 the identity matrix and O2 a null matrix, both
are of 2× 2 dimension.

III. EXTENDED-STATE OBSERVER

As seen in Section II, the output currents are part of the
input of the system in its state-space representation, so their
values are needed. Instead of using their measured values,
which would require the addition of sensors, an Extended
State Observer (ESO) will be used to obtain estimated values
of the output currents. Considering linear output loads that
consume sinusoidal currents, and working in a dq-SRF, the
output currents can be assumed constant in steady-state. This

is one of the main differences that arise when using the dq-SRF
representation of the system model, since system variables in
the stationary αβ frame are sinusoidal waveforms.

Also, due to this fact, the dynamic behavior of the output
currents can be expressed by the differential equation:

dio
dt

= 0 (5)

In contrast to [8], this equation is not just an approximation,
since system variables are constant quantities in a dq-SRF.
In relation to this fact, a sinusoidal output load model was
considered in [9] for the αβ frame. Due to these differences,
the performance of the observer and the control scheme will
be analyzed to check how the output voltage quality is affected
by these changes.

Considering (5) for the output currents, the system state can
be extended to: xdq =

[
iTf,dq vTo,dq iTo,dq

]T
. The extended

system in the dq-SRF is then given by:

dxdq
dt

=

−Jω − 1
Lf
I2 O2

1
Cf
I2 −Jω − 1

Cf
I2

O2 O2 O2

xdq +
 1
Lf
I2

O2

O2

 vi,dq (6)

The output currents are now included in the state vector, so
the output of the system is:

ydq =

[
if,dq
vo,dq

]
= Cdqxdq (7)

with the matrix:

Cdq =

[
I2 O2 O2

O2 I2 O2

]
(8)

Adding a correcting term based on the measured output to
the extended model, an observer can be used to estimate the
state vector xdq . The estimated state vector is the variable

x̂dq =
[̂
iTf,dq v̂To,dq îTo,dq

]T
. Consequently, the observer

system is:

dx̂dq
dt

= Ae,dq x̂dq +Be,dq vi,dq +Gdq (ydq − Cdqx̂dq) (9)

where:

Ae,dq =

−Jω − 1
Lf
I2 O2

1
Cf
I2 −Jω − 1

Cf
I2

O2 O2 O2

, Be,dq =

 1
Lf
I2

O2

O2

.

In this equation, Gdq ∈ R6×4 is the observer gain matrix,
which defines the performance of the observer.

The measured values if,dq and vo,dq can be considered
together with vi,dq as an input, resulting in:

dx̂dq
dt

= [Ae,dq −Gdq Cdq] x̂dq + [Be,dq Gdq]

vi,dqif,dq
vo,dq

 (10)

or
dx̂dq
dt

= Aobs,dqx̂dq +Bobs,dq uobs,dq (11)



where: Aobs,dq =
[
Ae,dq −GdqCdq

]
and Bobs,dq =[

Be,dq Gdq
]
.

The gain matrix Gdq will have an important influence on
the performance of the FCS-MPC controller. Generally, lower
values for this matrix will cause a less noisy output, but a
slower dynamic response, so a trade-off must be achieved
when tuning these parameters. The values of this matrix are
chosen using pole placement of the observer system such that
a fast dynamic response is achieved while keeping the noise
limited.

IV. CONTROL ALGORITHM

Using the models as basis, and in a similar way to [8],
the control algorithm first calculates the estimates of the
output currents in the dq-SRF based on the previous values
of the estimated and measured variables. Then, a prediction
for the next sampling interval (k + 1) is calculated from
the current switching state, the measured variables and the
estimated currents. This prediction is made to compensate the
digital delay [10], [11]. In order to choose the next switching
state, a cost function that calculates the squared error between
the output voltage and the voltage reference in the sampling
interval (k + 2) is minimized. This cost function is:

g = ‖v∗o,dq(k + 2)− vo,dq(k + 2)‖22 (12)

To achieve this, all the possible voltages corresponding to
the different switching states are calculated using an Exhaus-
tive Searching Algorithm (ESA). For the two-level converter,
7 different states must be evaluated. The state that minimized
the cost function will be applied in the next interval of the
control algorithm (k + 1).

It must be noted that in order to perform this algorithm the
continuous-time models introduced in Sections II and III must
be discretized for the sampling interval Ts.

V. POLE PLACEMENT

One of the main characteristics of the proposed FCS-MPC
is the absence of tuning parameters that modify the behavior of
the controller. The selection of the cost function determines
the behavior of the control algorithm and which state will
be chosen as the optimal one depending on the values of
the system variables. In this case, an observer for the output
currents was considered, whose dynamics are defined by the
matrix gain Gdq . As the estimated output currents are one of
the inputs to the system, changing the behavior of the observer
will affect the general performance of the controller and the
quality of the resulting output voltages. Therefore, the gain
matrix of the observer becomes the main design parameter for
the system. Basically, choosing this gain matrix becomes a
pole placement problem where Gdq can be calculated through
placing the poles of the matrix Aobs =

[
Ae,dq −GdqCdq

]
in

order to achieve the preferred performance. In [8], the poles of
the observer are simply chosen in a way that ensures a faster
dynamic response than the open-loop system (no observer),
which can be achieved by looking at the pole-zero map with
both the poles of the original system and the poles of the

Fig. 2. Pole-Zero map for both systems. Black squares indicate only one pole
is in that position. Blue circles indicate that two poles are placed in that spot.
Total number of poles for both systems must be 6 (dimension of the system).

observer and ensuring that the observer poles are shifted by a
certain amount to the left in the real axis (in the continuous-
time system). A similar strategy is followed in [9].

Hereafter, we compare the αβ formulation with the dq case.
Note that their poles are not placed in the same position in
the s-plane, as can be seen in Fig. 2.

First, the expression of the system in the αβ frame is
obtained from [9]. It can be noticed that this is the system
where the dynamic of the load is approximated by a sinusoidal
behavior, which was proven to be a more robust model than
the constant model in [8], allowing one to tune the gain matrix
for a wider range of load values:

dxαβ
dt

=

 O2 − 1
Lf
I2 O2

1
Cf
I2 O2 − 1

Cf
I2

O2 O2 Jω

xαβ +

 1
Lf
I2

O2

O2

 vi,αβ
(13)

yαβ = Cαβxαβ (14)

Similarly to the dq case, the observer system is:

dx̂αβ
dt

= [Ae,αβ −Gαβ Cαβ ]︸ ︷︷ ︸
Aobs,αβ

x̂αβ + [Be,αβ Gαβ ]︸ ︷︷ ︸
Bobs,αβ

vi,αβif,αβ
vo,αβ


︸ ︷︷ ︸
uobs,αβ

.

(15)
We transform the system in (15) to the dq-SRF by means of

the rotation matrix R =

[
cos(θ) sin(θ)
−sin(θ) cos(θ)

]
, where θ corre-

sponds to the phase of the output voltage reference. Assuming
that ω is constant, θ can be expressed as: θ = ωt+ θ0. Then,
the system variables in dq can be expressed as:if,dqvo,dq

io,dq

 =

R O2 O2

O2 R O2

O2 O2 R


︸ ︷︷ ︸

R3

if,αβvo,αβ
io,αβ

 . (16)



This allows us to write

x̂dq = R3 x̂αβ , (17)

x̂αβ = R−1
3 x̂dq, (18)

uobs,αβ = R−1
3 uobs,dq, (19)

where R−1
3 =

R−1 O2 O2

O2 R−1 O2

O2 O2 R−1

 .
Applying (18) and (19) to (15) and left-multiplying it by

R3, leads to the following expression:

R3

d
(
R−1

3 x̂dq
)

dt
= R3Aobs,αβR

−1
3 x̂dq+R3Bobs,αβR

−1
3 uobs,dq

(20)
Applying the chain rule, the left side of (20) can be rewritten

as:

ω

 J O2 O2

O2 J O2

O2 O2 J


︸ ︷︷ ︸

J3

x̂dq +
dx̂dq
dt

= ωJ3x̂dq +
dx̂dq
dt

=

= R3Aobs,αβR
−1
3 x̂dq +R3Bobs,αβR

−1
3 uobs,dq (21)

In order to simplify the right side of the equation, the
following result must be considered:

R

[
a b
−b a

]
R−1 =

[
a b
−b a

]
(22)

Note that Ae,αβ , Be,αβ and Cαβ consist of submatrices of
the type as in (22). To use (22), the gain matrix Gαβ should
have the following structure:

Gαβ =

G1 G2

G3 G4

G5 G6

 =


ag1 bg1 ag2 bg2
−bg1 ag1 −bg2 ag2
ag3 bg3 ag4 bg4
−bg3 ag3 −bg4 ag4
ag5 bg5 ag6 bg6
−bg5 ag5 −bg6 ag6

 . (23)

If Gαβ has indeed the structure in (23), (21) can be applied,
resulting in:

ωJ3x̂dq +
dx̂dq
dt

= Aobs,αβ x̂dq +Bobs,αβuobs,dq, (24)

which is equivalent to:

dx̂dq
dt

= [Aobs,αβ − wJ3]x̂dq +Bobs,αβuobs,dq. (25)

To ensure that both closed-loop systems achieve the same
behavior, we equate (25) with the dq-SRF observer system in
(10). This leads to:

Aobs,αβ − wJ3 = Aobs,dq, (26)

Bobs,αβ = Bobs,dq. (27)

Equation (26) can be rewritten as:

Ae,αβ −Gαβ Cαβ − wJ3 = Ae,dq −Gdq Cdq (28)

Taking into account that Cαβ and Cdq are the same matrix,
and the fact that as it can be noticed from (9) and (13), Ae,αβ−
wJ3 = Ae,dq , we obtain the condition:

Gαβ = Gdq (29)

The same condition can be obtained from (27). Conse-
quently, if the gain matrix is tuned to have the structure
proposed in (23), it can be established that the gain matrices
for both systems will be the same, and indeed both observer
systems will have identical expressions. What is willing is pole
placement strategy to achieve a gain matrix with the structure
in (23).

Searching for different methods and strategies in order to
accomplish this, it was found that a dead-beat strategy [12]
provides a gain matrix with such a structure. A dead-beat
response ensures the stabilization of the observer’s estimates
in a number of sampling intervals equal to the dimension of
the system. A response of this type can be achieved if the poles
of the observer’s discrete-time system matrix Aobs are placed
in the origin of the Z-plane. Dead-beat response is usually
regarded as too aggressive in the literature. Indeed, a noisy
estimate of the currents is expected with these parameters.
Tuning strategies with better noise rejection can be found
individually for each controller, but differences in the reference
tracking of the output voltage are small. This is due to
inherent inaccuracies in the prediction model that doesn’t
consider parasitic elements in the circuit or power losses in
the semiconductors. Thus, noisier estimates of the currents
will not directly translate into a worse control performance up
to a certain level of noise. Plus, this strategy is well suited
to comparing both controllers by fulfilling the requirement in
(23).

Knowing the location for the poles of the observer system,
the calculation of the gain matrix Gdq is reduced to a pole
placement problem that can be solved with different methods.

VI. SIMULATION RESULTS

In this section, the performance for both controllers will be
assessed through simulations with Matlab-Simulink. Parame-
ters for the system can be found in Table II.

Output voltage regulation is shown in the abc-frame in
Fig. 3. To check the transient response, the load is connected
at 130 milliseconds in simulation time, so the effect in voltage
regulation can be seen. It can be noticed that the output voltage
is regulated to its given reference. Also, real output currents are
compared with the observed currents estimated by the observer
in Fig. 4. As expected, the output of the observer presents
noticeable noise because of the dead-beat tuning. The RMS
error in the output voltage tracking, and the current estimation
is compared in Fig. 5 for both cases. Finally, the harmonic



TABLE II
PARAMETERS FOR SIMULATIONS

Parameters Value
DC-Link Voltage [V] 700

Reference Phase Voltage Amplitude [Vph-n] 200

Filter Capacitor [µF] 50

Filter Inductor [mH] 2

Load Resistance [Ω] 15

Load Inductor [mH] 20

Sampling Interval [µs] 40

Fig. 3. Output voltages with their references in abc-frame. Top: dq. Bottom:
αβ.

Fig. 4. Real and observed output currents in abc-frame. Top: dq. Bottom:
αβ.

Fig. 5. RMS error for voltage reference tracking (top) and current estimation
(bottom) for variables corresponding to phase a.

spectra of the output voltages are shown in Fig. 6. While the
tracking error for the output voltages stays at around the same
level, a small reduction in the THD is achieved in the dq-case.

Fig. 6. Harmonic analysis of the output voltage up to 7500 Hz.
THD = 1.61 % for dq (left graph) and THD = 1.70 % for αβ (right graph).

TABLE III
NUMBER OF OPERATIONS

Parameters Sums Multiplications

dq 290 330

αβ 183 232

VII. COMPUTATIONAL COSTS

Besides the control performance of both methods, the com-
putational burden may also be an important characteristic that
can affect the decision of using one reference frame or the
other. As far as the computational costs of the algorithm are
concerned, more operations have to be made when computing
the algorithm in the dq-frame. This is due to the extra
transformation of the model variables to the dq-frame. The
number of operations for both strategies is summarized in
Table III

Regarding memory resources, dq formulation presents the
advantage of being able to work with a constant reference,
while in αβ a sinusoidal reference must be generated or
tabulated. On the other hand, sine and cosine values have to be
calculated or tabulated in dq in order to transform variables,
so memory consumption is similar in both cases.

VIII. CONCLUSION

In this paper, a revised FCS-MPC controller for UPS
applications, which was originally proposed in [8], [9] in
a stationary αβ frame, was designed in the dq-synchronous
reference frame. Models for the three-phase two-level VSI
with output LC filter and the output current observer were
derived in dq-SRF in order to obtain the system equations
needed for the controller.

An analysis of the pole placement of the observer was
accomplished, in order to obtain values of the gain matrices
that allow a fair comparison of the controllers in both reference
systems. In particular, a dead-beat tuning for the observer was
found to be a good option in order to carry out this comparison.

Comparative results between αβ with sinusoidal output load
model and dq controllers were obtained by simulation. Output
current estimation and voltage tracking performed in dq-SRF
achieve a fast dynamic response when a load is connected
to the system, with very similar performance to the αβ case,
when the load is approximated with a sinusoidal behavior.



Reference tracking error and estimation error evolve at around
the same level for both cases. THD presents a small reduction
in the dq-case, decreasing from 1.70 % in αβ to 1.61 % in
dq.

Last, the computational cost was compared, by showing the
number of operations in each case. The case αβ proved to
have a smaller computational burden because of the absence
of the Park transformation.
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