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ABSTRACT Finite control set model predictive control (FCS-MPC) is a salient control method for power
conversion systems that has recently enjoyed remarkable popularity. Several studies highlight the performance
benefits that long prediction horizons achieve in terms of closed-loop stability, harmonic distortions, and
switching losses. However, the practical implementation is not straightforward due to its inherently high
computational burden. To overcome this obstacle, the control problem can be formulated as an integer least-
squares optimization problem, which is equivalent to the closest point search or closest vector problem in
lattices. Different techniques have been proposed in the literature to solve it, with the sphere decoding algorithm
(SDA) standing out as the most popular choice to address the long prediction horizon FCS-MPC. However, the
state-of-the-art in this field offers solutions beyond the conventional SDA that will be described in this article
alongside future trends and challenges in the topic.

INDEX TERMS Predictive control, power converters, optimization methods, parallel algorithms.

I. INTRODUCTION

THE control of power conversion systems is an important
research field, which is partly driven by the growth of

renewable energy sources and the need to integrate them into
the grid [1]–[3]. Power electronics and the control of power
converters are a crucial aspect to achieve the transition to
carbon-free power generation. Advances in control theory
translate to performance and efficiency improvements that
are key to further propel the growth of these technologies [4].

Within this paradigm, Model Predictive Control (MPC)
strategies are becoming a prominent research topic in the
field of power electronics [5], [6]. There are several elements
that explain this increase in popularity over more traditional
control techniques. First, MPC has a straightforward formu-
lation that provides an intuitive method of approaching the
control of complex systems. Through MPC techniques, it
is possible to consider multiple control objectives, system
nonlinearities and constraints simultaneously and intuitively.
For these reasons, research works propose different MPC

techniques for the control of power electronic systems, in-
cluding a wide range of power converter topologies and
applications [7], [8].

Among the different families of MPC methods, direct
MPC or finite control set MPC (FCS-MPC) enjoys greater
popularity as a result of its more natural formulation com-
pared to other alternatives. In FCS-MPC, the discrete nature
of the power converter is considered to formulate an integer
optimization problem where both control and modulation are
addressed in the same computational stage [9]. To this end,
the control inputs are restricted to the admissible switching
states of the power converter. This set of admissible inputs is
the so-called finite control set (FCS). In contrast to contin-
uous control set methods, the optimization problem of one-
step FCS-MPC can easily be solved, e.g., through exhaustive
enumeration. This method, also known as the exhaustive
search algorithm (ESA) is the most common optimization
algorithm in FCS-MPC applications. The ESA enumerates
every possible candidate in the FCS, predicts the future states
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for each control input and evaluates a cost function to select
the optimal switch position in terms of the selected control
criteria [5]. The shortcomings of this strategy are revealed
in the long prediction horizon problem due to its compu-
tational costs. The prediction horizon (Np) is the number
of time steps considered in the predictions. Enlarging Np

exponentially increases the amount of existing combinations
of switching states. Thus, an exhaustive enumeration be-
comes intractable. However, larger Np values imply a longer
prediction window that feeds the controller with additional
information. This feature is particularly relevant in more
complex systems such as second- or third-order systems
with one or more resonant frequencies [6]. Performance-
wise, a longer Np reduces the harmonic distortion and/or
the switching frequency, thus achieving a more efficient
operation of the power converter. An extract of [10] is shown
in Fig. 1 to illustrate the performance benefits of extending
Np in a medium-voltage drive. In this figure, FCS-MPC with
several Np is compared with space vector modulation (SVM)
and optimized pulse pattern (OPP), computed according to
advanced methods as described in [10]. The total demand
distortion (TDD) is used as a measure of the harmonic
quality. The current TDD ITDD (%) is computed as follows:

ITDD(%) =
1√
2Inom

√∑
n̸=1

(̂in)
2, (1)

where Inom is the nominal RMS value of the current and în is
the amplitude of harmonic components at frequency n times
the fundamental. Furthermore, since OPP can be considered
to present optimal steady-state behavior, the TDD of different
methods in Fig. 1 are shown in relative terms to the OPP
results, computing I rel

TDD(%) as:

I rel
TDD(%) =

ITDD − ITDD,OPP

ITDD,OPP
. (2)

As can be seen, FCS-MPC harmonic performance is im-
proved as a longer horizon is achieved, completely super-
seding SVM results for Np = 10 and getting closer to the
benchmark OPP.

To overcome the combinatorial explosion of FCS-MPC
with large Np, the optimization problem can be reformulated
as an integer least-squares (ILS) problem [9]. Mathemati-
cally, this formulation is equivalent to finding the closest
point vector in a given lattice. Several techniques have been
proposed to solve this problem. Among long prediction
horizon (LPH) FCS-MPC, a modified version of the sphere
decoding algorithm (SDA) enjoys great popularity in the lit-
erature. After this initial research, subsequent studies propose
modifications or improvements of the original works [11]–
[13]. This article presents an overview of the existing state-
of-the-art techniques to achieve long Np. The structure of this
paper is organized as follows. The LPH-FCS-MPC problem
is illustrated in Section II. The basic search algorithms to
solve the optimization problem are introduced in Section
III. Implementation techniques are presented in Section IV,

FIGURE 1: Harmonic performance of FCS-MPC with hori-
zon Np for medium-voltage drive with NPC inverter as a
function of the average switching frequency f̄sw (Hz).

highlighting some of the main practical challenges that have
been studied and solved in the literature. In Section V, the
main remaining challenges and future trends are described.
Finally, Section VI offers the conclusions of this paper.

II. FCS-MPC PROBLEM AND ILS TRANSFORMATION
FOR LONG PREDICTION HORIZONS
FCS-MPC relies on a receding horizon policy [14]; the
control algorithm is executed at discrete time steps at a rate
equal to the sampling frequency fs. At each time step, the
optimal control action calculated in the previous sampling
interval is applied to the power converter. This process is
repeated at every time step with new measurements from the
system. This characteristic is not altered by extending Np.
More time steps are considered in the predictions, but only
the first control input within the optimal sequence is applied
to the power converter.

To define an FCS-MPC strategy one needs three basic
elements: a prediction model, a cost function and an op-
timization algorithm. The prediction model computes the
evolution of the system state variables at future time steps for
given a initial state and a possible sequence of control inputs
that can be applied through the prediction horizon. The cost
function evaluates the suitability of each possible trajectory
and control inputs according to the control objectives. The
optimization algorithm minimizes the objective function and
selects the optimal sequence of control inputs.

This section focuses on the formulation and definition of
the FCS-MPC elements. This includes the necessary analysis
to transform and solve the LPH-FCS-MPC problem.

A. PREDICTION MODEL
The prediction model is a mathematical model of the phys-
ical system whose behavior is desired to be controlled to
meet specific requirements. For the generic case study of a
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power converter, the system is an electric circuit that can
be analyzed in terms of a finite number of variables through
fundamental electrical theory.

It is common practice to write the model in state-space
representation with a vector of state variables. The state
variables are physical system variables whose future values
depend on their present and past values and on the system
input values. Specifically, a state-space representation with
the minimum number of state variables is desirable. Thus,
state variables should be linearly independent. Also, due
to the use of digital controllers, a discrete-time state-space
representation is required:

xk+1 =Axk +Buk (3a)
yk = Cxk, (3b)

In (3), subindex k indicates the time step of each variable.
In general, vector x ∈ Rn contains the system state variables,
while y ∈ Rny is the system output and u ∈ Rnu the system
input. Generally, the output contains the variables to be con-
trolled in the application. For power converter systems, the
input is usually described by a vector of nu integer variables
representing the switching states of the power converter. As
an example, for the case of a three-phase power converter,
the input vector is given by u = [ua ub uc]. In this particular
case, nu = 3, as there is a control input or switch position
for each phase. The possible integer values for each element
depend on the power inverter topology. For the case of a two-
level inverter, ua, ub, uc ∈ {0, 1}, for the three-level case,
one has ua, ub, uc ∈ {−1, 0, 1}. For the general case, u
belongs to the FCS. This can be expressed as u ∈ Vnu , where
V ⊂ Z is the set of integer switch positions in a given phase.

Matrices A ∈ Rn x n, B ∈ Rn x nu , and C ∈ Rny x n

are the system, input and output matrices, respectively. For
simplicity they are considered to be time-invariant matrices.
However, it is possible under this formulation to consider also
time-variant matrices.

When considering long prediction horizons it is opportune
to define the input and output sequences. These sequences
are vectors that contain the corresponding input and output
values for a prediction horizon of length Np. For the input,
the switching sequence Uk ∈ RnuNp is defined as:

Uk =
[
(uk)

T (uk+1)
T ... (uk+Np−1)

T
]T

. (4)

Similarly, the output vector and output reference vector se-
quences, Yk,Y

⋆
k ∈ RnyNp , can be defined as:

Yk = [(yk+1)
T (yk+2)

T ...(yk+Np)
T ]T (5)

Y ∗
k = [(y⋆

k+1)
T (y⋆

k+2)
T ...(y⋆

k+Np
)T ]T , (6)

where y⋆
k is the discrete-time system output reference at time

step k. Finally, it is convenient to obtain the state vector
expression at a future sampling instant ℓ + 1. This can
be achieved by successively applying the state-space model
equation (3), resulting in the following equation:

xℓ+1 = Aℓ−k+1xk + [Aℓ−kB ...A0B]Uk. (7)

B. COST FUNCTION
The cost function maps the control objectives into a single
number. The lower the number the better the control objec-
tives are achieved.

As stated in Section I, one of the main advantages of FCS-
MPC is its simplicity with which different control objectives
can be addressed at once. To achieve this, different terms can
be added to the cost function. Each of these terms can address
the minimization of a tracking error, the penalization of
certain events or many other considerations. In the literature,
the usage of quadratic Euclidean norms is recommended to
penalize the tracking error between the system output and the
output reference [15]. Another commonly used term in MPC
is the penalization of the control effort. This term reduces
the average switching frequency f̄sw of the power converter
and, thus, the switching power losses. To define the relative
importance of each term, weighting factors are introduced.

To illustrate a standard FCS-MPC problem, a cost function
with two quadratic terms will be considered. One of them
evaluates the tracking error between the predicted system
output and the reference. The other term evaluates the control
effort. Weighting factor λ ≥ 0 is added to adjust the trade-off
between both terms. Higher values of λ emphasize the min-
imization of the switching effort over the tracking accuracy.
Thus, a standard cost function for the LPH-FCS-MPC can be
defined as:

gk =

k+Np−1∑
ℓ=k

∥yℓ+1 − y⋆
ℓ+1∥22 + λ∥uℓ − uℓ−1∥22, (8)

where k is the current time step. Thus, gk represents the
cost function values from time step k until the end of the
prediction horizon at time step k+Np. Note that the outputs
yℓ+1 are predicted based on (3b) and (7).

C. OPTIMIZATION ALGORITHM
The optimization algorithm determines the switching se-
quence Uk that provides the minimum value of gk. The
optimization problem can be defined as:

U opt
k =argmin

Uk

gk (9a)

s. t. Uk ∈ U (9b)
∥∆uℓ∥∞ ≤ 1, (9c)

where (9b) are the input constraints. They impose that mem-
bers of Uk belong to the FCS U. In Section II-A it was
stated that u ∈ Vnu . This is the constraint for the nu-
dimensional control input vector at one time step. For the
long prediction horizon problem, constraints are imposed in
the entire switching sequence through the considered Np

time steps. This is represented in the optimization problem
as Uk ∈ U, where:

U = VnuNp . (10)

For high-power multilevel converters, switching constraints
are also usually considered in the optimization problem as in
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FIGURE 2: FCS-MPC for power conversion system.

(9c). This is a voltage level transition constraint that avoids
solutions that lead to a high dv/dt or risk damaging the
converter (in case of a neutral-point clamped converter).

At the end of the optimization process, only the first ele-
ment of U opt

k is applied to the converter, i.e. uopt
k , according

to the receding horizon policy. As summary, a diagram of a
conventional FCS-MPC algorithm is shown in Fig. 2.

In practise, a non negligible computational delay exists
such that uopt

k cannot be applied exactly at time step k. The
mainstream solution to address this delay involves one extra
prediction step from time step k to time step k + 1 assuming
that the control input uk is maintained during the sampling
interval [16]. Then, the LPH-FCS-MPC is formulated start-
ing from time step k+1. The additional prediction step is not
a part of the horizon Np. For notation simplicity, the idealized
formulation of the algorithm disregarding computational de-
lays will be used in the rest of the paper.

In order to solve the optimization problem, different al-
gorithms can be considered. For short horizons such as
Np = {1, 2} it is feasible to apply an ESA. Nonetheless,
this method is impracticable for longer horizons. Therefore,
the optimization problem needs to be reformulated.

D. FCS-MPC REFORMULATION FOR THE LONG
PREDICTION HORIZON PROBLEM
The optimization problem in (9) can be rewritten as an
equivalent ILS-problem. This step is necessary to enable the
use of branch-and-bound techniques such as SDA to solve
the problem efficiently. Firstly, the predicted states (7) along
with the output equation (3b) are inserted in the cost function
expression. This allows one to write the cost function as a
quadratic function of Uk [9], [17]:

gk = (Uk)
TWUk + 2(Fk)

TUk + ϵk, (11)

where

W =(Υ)TΥ+ λSTS (12a)

Fk = (Υ)T (Γxk − Y ∗
k )− λSTEuk−1. (12b)

Expressions of matrices Υ, Γ, S and E can be found in
[9]. The term ϵk is time varying and a function of the state

xk and the initial input uk−1. However, it is independent of
Uk. Therefore, it is merely an offset to the cost function,
which does not influence the solution of the optimization
problem. It can, thus, be disregarded. By completing the
squares, expression (11) can be further simplified into:

gk = (Uk −U unc
k )TW (Uk −U unc

k ), (13)

where U unc
k is the unconstrained solution to the optimization

problem in (9), or equivalently:

U unc
k = argmin

Uk

gk = −W−1Fk, (14)

where the integer constraints in (9b) are not considered.
By definition, the matrix W is symmetric and positive

definite for λ > 0. Thus, Cholesky factorization can be
applied in order to obtain a nonsingular, lower triangular
matrix H such that: W = HTH [18]. In practical terms,
matrix H can be computed noting that its inverse H−1 is
also lower triangular and can be obtained by the Cholesky
decomposition of W−1: W−1 = H−1H−T . The cost
function in (13) can then be expressed in terms of the matrix
H . Therefore, the original problem (9) takes the form:

U opt
k = argmin

Uk

gk = argmin
Uk

∥HUk − Ū unc
k ∥22 (15a)

subj. to Uk ∈ U, (15b)
∥∆uℓ∥∞ ≤ 1 (15c)

where Ū unc
k = HU unc

k . Through the definition of the matrix
H and its triangular property, the problem is computationally
easy to solve. Geometrically, H is a lattice generator matrix
which forms a discrete space wherein the solution lies. Thus,
the optimization problem is now equivalent to finding the
optimal switching sequence Uk with the shortest distance to
Ū unc

k in the transformed space. This problem is known as the
closest vector problem or the closest point search [19].

E. CLOSEST VECTOR PROBLEM
The closest vector problem (CVP) or closest point search
was formally introduced in [19] as the post-office problem,
and has since been studied in depth in the fields of math-
ematics and computer science, where it is also known as
the box-constrained integer least squares (BILS) problem.
BILS is also a target of study in communication theory
for modulation and decoding applications [20]–[22]. In the
BILS problem one seeks to efficiently enumerate candidates
that fulfill the box-constrained condition in order to find
the solution. Within the LPH-FCS-MPC framework this is
equivalent to finding the optimal switching sequence U opt

k

that fulfills the switching constraints in (15b).
Suppose an initial candidate solution U ini

k of a switching
sequence is available. This initial candidate solution must
fulfill (15b). By definition, the candidate solution defines
a hypersphere S ini of radius ρini around the unconstrained
solution in the space created by the generator matrix H [23]:
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S ini =
{
U ini

k : (ρini
k )2 = ∥HU ini

k −Θk∥22
}
, (16)

where Θk = Ū unc
k is the hypersphere center. The optimal

solution U opt
k is, by definition, contained in the hypersphere,

thus it must fulfill:

∥HU opt
k − Ū unc

k ∥22 ≤ ∥HU ini
k − Ū unc

k ∥22. (17)

The selection procedure of the initial solution will be dis-
cussed in Section IV-B.

The main mathematical property that is fundamental to
solving the BILS problem is that only candidate integer so-
lutions within the hypersphere (centered at the unconstrained
solution Ū unc

k ) need to be considered. The integer solution
with the smallest (squared) distance to the unconstrained
solution is the optimal solution. Solutions outside of the
sphere are, by definition, suboptimal and do not need to be
further considered.

This property is crucial because it can be exploited to
address the computational complexity of the BILS problem,
which is NP-hard 1 [24], [25]. The squared distance can be
evaluated separately in each dimension. Each component of
Uk adds a partial cost that is sequentially calculated and
added in order to compute the cost of a complete switching
sequence Uk. Thus, for each one-dimensional component,
the partial squared distance is calculated as:

ρ2(i) = ∥H(i, 1 : i)Uk(1 : i)−Ū unc
k (i)∥22+ρ2(i−1), (18)

where H(i, 1 : i) is the partial vector formed by the first
i elements of the ith row of matrix H . In this case, i is
the considered component of the switching sequence Uk.
During the search strategy, it is desired to reach the last
component so that ρ2(i) yields the complete cost of the
evaluated candidate Uk. Then, the decision to update the
incumbent solution can be made, guaranteeing convergence
to the optimal solution during the process. Conveniently, it
is possible to stop exploring a candidate in an intermediate
component i if the partial cost exceeds that of the incumbent.
In this case, it can also be guaranteed that the subsequent
components will only increase the squared distance and, thus,
it can be pruned from the search space. In practical terms, this
allows one to remove possible candidates and progressively
reduce the FCS in a process that is known as bounding.

III. BASIC SEARCH ALGORITHMS
The search strategy is a crucial aspect to solve the optimiza-
tion problem. This section is dedicated to introduce the main
search methods that were proposed in the literature to solve
the BILS problem. The search starts with the first element
in the switching sequence at time step k and then proceeds
forward in time until time step k +Np.

1In NP problems, an algorithm that finds the solution in polynomial time
is not known, but tentative solutions can be verified in polynomial time.
NP hard problems are at least as difficult to solve as the most difficult NP
problems.

umin umax  

i=nuNp

i=1

umin umax

umin umin+1

umin

umax

umax

umaxumin-1

i=2

i=0

U(i)=

FIGURE 3: Search tree. The root node (white) is in layer
i = 0.

To illustrate the search process, a search tree with nuNp

levels, as shown in Fig. 3, is usually constructed with
the different candidates. Each level contains a fixed num-
ber of nodes that represent possible individual switching
sequences from the top level of the tree to the bottom
level i. These nodes are partial candidates Uk(1 : i) =[
Uk(1) Uk(2) ... Uk(i)

]T
. Efficient search of the dif-

ferent branches in the tree is paramount to conclude the
search process as fast as possible. To this end several search
algorithms have been proposed in the general BILS literature.

A. BACKGROUND OF SEARCH ALGORITHMS FOR BILS
An overview of the main conventional search algorithms for
the CVP can be found in [26]. Two techniques can be spe-
cially highlighted for their importance: The Pohst [27], [28]
and Kannan [29], [30] strategies. Their most fundamental
difference is that Pohst’s proposal examined lattice points
lying inside a hypersphere while Kannan used polytopes.
The vastly popular Schnorr-Euchner method provided a re-
finement of Pohst’s ideas with a more efficient enumeration
of points [31]. Methods based on the usage of hyperspheres
are collectively known as sphere decoders. One of the most
relevant topics for researchers is to seek further refinements
of these strategies to improve the efficiency of the sphere
decoder and solve increasingly complex problems [26] [32].

For LPH-FCS-MPC, seminal work [9] introduced the us-
age of the SDA to solve the problem. A modified sphere
decoder based on the Pohst method was proposed and
adapted to the power converter control problem. Since then,
and analogously to the CVP research, great attention has
been paid to the optimization algorithm design, as efficient
search was revealed to be a crucial aspect to unlock the
full performance potential of LPH-FCS-MPC. For instance,
computational variability is a relevant aspect of SDA as the
position of the unconstrained (or target) solution in relation
to the lattice points can greatly impact the required time
to obtain the optimal solution. Conveniently, many of the
concepts developed within the CVP theoretical framework
can be applied to the LPH-FCS-MPC problem. For example,
computational variability is also an undesirable feature in this
field. As a means to solve this issue, K-best SDA techniques
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have been proposed in the literature [33], [34]. The K-best
SDA also searches within a hypersphere, however, it presents
a different search strategy that fixes the amount of explored
lattice points, as will be discussed in Section III-C.

In the vast CVP literature, it is also possible to find other
algorithms differing further from sphere decoders. As ex-
amples, consider the Iterative Slicer [39] or the Micciancio-
Voulgaris [40] algorithm, which use the concept of Voronoi
cells to explore the lattice points in a different manner.
These methods reduce the variability in the computational
complexity but tend to incur a higher computational burden
when used for long prediction horizons [41].

For this reason, the discussion in this paper will focus
on the most relevant search strategies used for LPH-FCS-
MPC, namely the Conventional SDA and the K-best SDA.
A comparative summary of both algorithms is provided in
Table 1. Their search strategies are also depicted in Fig. 4
with a search tree for an FCS such that Uk ∈ {0, 1}3.

B. CONVENTIONAL SDA
The conventional SDA adopts a depth-first search strategy
by progressing as quickly as possible to the bottom layer
i = nuNp. For this, vertical advance from a parent to a
children node is prioritized (blue arrows). The partial cost
of each node is compared to the total cost of the current
incumbent candidate (yellow square). If this quantity exceeds
the incumbent’s total cost, it is guaranteed that the subsequent
nodes in this branch will not yield an optimal solution. Thus,
these children nodes do not need to be explored and can
be discarded. This is done by performing a sidetracking
movement (yellow arrows), for which a different switching
position Uk(i) is assessed at the current tree layer i. If all the
individual switch positions originating from a parent node
have been explored and none of them yielded a better candi-
date than the incumbent, the branch can be pruned (branches
in grey), effectively removing all the subsequent children
of red triangle nodes from the search space. This is done
by performing a backtracking movement (red arrows), by
moving one layer up, which corresponds to the parent node
(i − 1). Several backtracking movements may be performed
until an appropriate parent node is found with children nodes
remaining to be explored.

The SDA provides a certificate of optimality. This happens
when the optimal termination criterion is achieved during
the search stage. This criterion consists in backtracking to
the root node of the tree. At this point, the search process
can be stopped and the incumbent solution is guaranteed
to be optimal (green node) even if several branches have
been pruned. Therefore, the SDA typically achieves a sig-
nificant reduction in the computational burden compared
with exhaustive enumeration while nevertheless obtaining the
optimal solution to the problem. This feature has been a key
factor to enable practical application of LPH-FCS-MPC.

Despite this progress, there is still an important drawback
to the Conventional SDA method, namely its inherently high
computational variability. This feature is particularly criti-

cal in LPH-FCS-MPC applications because power converter
controllers operate with a hard timing constraint. For this
reason, it is necessary to introduce computational upper
bounds that limit the amount of explored nodes so that a
solution is made available within the given time, even if it is
suboptimal [42]. If the number of explored nodes reaches the
limit, the early termination criterion is triggered and the SDA
search ends prematurely. As a consequence, the certificate
of optimality is lost and a certain degree of suboptimality
is introduced [35]. This can degrade the performance of
LPH-FCS-MPC. Nevertheless, feasibility of the solution is
ensured, i.e., the solution meets the FCS integer constraint.

C. K-BEST SDA
The K-best SDA proposes a breadth-first strategy. In each
tree layer, a maximum number of 2Kb nodes are explored.
Following the breadth-first principle, horizontal assessment
of nodes is prioritized. Thus, in layer i, ni = min{nav

i , 2Kb}
nodes are evaluated. Here, nav

i is the number of existing
nodes in the current layer. Generally, ni = 2Kb due to the
exponential growth of nav

i . Once the ni partial costs have
been computed, nopt

i = min{ni,Kb} nodes are selected as
surviving nodes. These nodes are further extended to the next
layer i+ 1. Thus, the algorithm only advances in depth once
the search in one horizontal layer has been completed. When
the horizontal search of the last tree layer is finished, the best
solution at that point is selected.

As can be inferred, there is no optimality certificate in
this algorithm, as several branches can be discarded pre-
maturely. Nonetheless, the related literature highlights that
the likelihood of optimality rapidly increases as the value of
Kb is increased with noticeable practical success [43]. The
main advantage of the K-best strategy lies in its inherently
fixed computational costs. Also, it eliminates the need for the
selection of an initial candidate or the need for backtracking
to previous levels. Other works in the literature also cite
a better suitability for parallel hardware implementation in
comparison with the conventional SDA. However, it relies
on costly sorting operations [43]. Within the LPH-FCS-MPC
paradigm, K-best SDA has been first used in [38]. How-
ever, only simulation results and short prediction horizons
(Np = {1, 2}) were provided and implementation concerns
were not addressed. Latter, it was experimentally validated
for long prediction horizon in [36].

IV. LPH IMPLEMENTATION CHALLENGES AND
SOLUTIONS
FCS-MPC reformulation to a BILS problem, alongside the
definition of sphere decoding optimization methods was
the first step to enable the study of LPH-FCS-MPC. How-
ever, first LPH-FCS-MPC works were only simulation-based
[44]–[46]. This is because the problem is still inherently chal-
lenging in terms of implementation design and computational
burden. Consequently, beyond having an accurate prediction
model and properly selecting and tuning the cost function
[47], the optimization algorithm is also crucial in determining
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TABLE 1: Basic LPH-FCS-MPC Search Strategies

Algorithm Conventional SDA K-Best SDA
Search strategy Depth-first Breadth-first

Optimality certificate Yes, provided the algorithm terminated No
Initial candidate Required and crucial for good performance Not required

Computational cost Variable Fixed
Nodes comparison One comparison per node Sorting algorithm in each layer

Implementation Inherently sequential Easier to parallelize and pipeline
References [9], [13], [17], [35] [36]–[38]
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FIGURE 4: Three-layer search tree for Np = 1 and nu = 3. a) Conventional SDA. b) K-best SDA.

the overall controller performance. Thus, one must carefully
design and implement the search strategy.

This section provides an analysis of the main solutions
proposed in the literature to overcome several of the chal-
lenges that researchers face to implement an LPH-FCS-
MPC technique. These proposals can be classified in two
main groups that are studied in their respective subsections:
Implementation techniques and preconditioning techniques.
The former focus on improvements of the search stage for
efficient implementation while the latter attempt to introduce
modifications in the problem definition or in the search
prerequisites so that less nodes are explored.

A. IMPLEMENTATION TECHNIQUES
Regarding implementation of digital controllers for power
converters, microprocessors and digital signal processors
(DSP) are still the main protagonists in both industry and
academia. One can find inexpensive models that offer very
specialized computational capabilities and suitable peripher-
als for each application. Also, software design methods for
these platforms are usually preferred by practitioners in this
field. However, these platforms are computationally limited
and their usage is generally discouraged to achieve high
performance LPH-FCS-MPC.

To solve this, the concept of Field Programmable System
on Chip (FPSoC) has emerged with noticeable momentum.
In essence, an FPSoC is an embedded control platform that
provides several microprocessor cores and an FPGA fabric
on a single chip. This allows designers to combine existing
high-level software solutions with the powerful parallel com-
puting possibilities of FPGAs on a single chip with internal

and fast communication between the different computational
elements [48], [49]. There exists a wide range of product
families that are offered by various manufacturers at different
prices. Thus, it is possible to find very cost-competitive
solutions that nevertheless offer a performance that exceeds
that of a traditional DSP. Following this trend, different works
delve into FPSoC platforms to implement LPH-FCS-MPC.
By doing this, researchers have broadened the amount of
computational resources at their disposal and have accord-
ingly developed several advanced techniques that will be
described in the remainder of this subsection. A comparative
summary of these techniques is shown in Table 2.

1) Rapid Control Prototyping
First experimental validations of LPH-FCS-MPC were made
possible thanks to Rapid Control Prototyping (RCP) plat-
forms. In works such as [11], [17], a DSPACE system is used
to implement the controller, generally reaching Np = 4 and
sampling frequencies of 8 or 10 kHz. The employed search
strategy was the conventional SDA.

RCP platforms offer powerful hardware similar to FPSoC
platforms alongside high level software programming sup-
port. Most notably, these platforms can be programmed from
typical simulation software such as Matlab Simulink. Also,
manufacturers provide built-in and intuitive monitorization
tools that simplify many of the typically required tasks to
safely operate a power converter. Thus, translation from
simulation to experimental prototypes is very straightfor-
ward. The main drawback of these solutions is their high
cost, which renders RCP platforms generally unsuitable for
industrial and commercial application. Another concern is
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that by using high level programming, the potential to achieve
computationally efficient designs can be limited.

2) Nonrecursive SDA
The nonrecursive SDA provided a reformulation of the con-
ventional SDA of [9] that avoids recursion by introducing
pointers. This allows the implementation of the SDA on the
FPGA of an FPSoC [13] using the standard SDA search
strategy as in [9]. In the proposed implementation, several of
the matrix operations required in the algorithm’s preliminary
stages could be parallelized to increase performance. The
design achieved Np = 5 with sampling frequency of up to
40 kHz in a direct current control problem for a three-level
NPC converter. However, in this method, the search stage
is still performed sequentially. The design was implemented
in a low-cost Intel Altera platform and followed a Hardware
Description Language (HDL)-based design workflow.

3) HLS-based SDA
Some interesting proposals involve the usage of High Level
Synthesis (HLS) techniques. HLS is a family of automatic
hardware code generation tools that seek to facilitate the tran-
sition of software designers to hardware platforms. Funda-
mentally, HLS attempts to automatically transform software
code into firmware for the FPGA, avoiding the usage of HDL.
Discussion about automatic generation tools is still ongoing.
Manufacturers are investing in developing and improving
HLS to make FPGA devices more accessible to designers
[53]. Ideally, it would desirable to reduce the application
development time and effort close to RCP platforms levels
with costs that are reasonable for production and commer-
cialization. While HLS has vastly improved in recent years,
some drawbacks still persist. Design effort reduction is pal-
pable, but there is still progress to be made. Also, HLS cannot
generally match the efficiency of native hardware designs in
terms o timing and area consumption [54], [55]. This might
translate into higher requirements for the targeted FPSoC
platform, i.e. a low-cost device might not suffice.

An HLS-designed SDA is proposed in [50]. In this paper,
the nonrecursive SDA formulation is coded in software, then
transformed to FPGA code by means of Xilinx’s HLS tools.
Guidelines to accomplish this process are provided in the
paper alongside Hardware-in-the-Loop (HIL) verification.
The results indicate the validity of the proposal in terms of
execution time, reaching Np = 4 with sampling frequency of
up to 40 kHz. However, FPGA resource consumption is high,
leading to increased hardware requirements. In particular,
a Zynq Ultra-Scale+ platform is used in this work, which
belongs to the high cost family of Xilinx products.

4) Parallel SDA
In [35], a parallel SDA is proposed to achieve concurrent
search of the SDA tree. To this end, a parallelization method
that effectively decouples the evaluation of different regions
in the search space is described and implemented. Up to
this point, the literature in this field considered the SDA as

an iterative method where information from previous layers
is always needed to evaluate the current node. Thus, true
concurrent search was not considered [50]. The work in
[35] proposed to divide the search space in equally sized
regions that are explored by independent sphere decoders.
Internally, these sphere decoders follow the same search
pattern described in Section III. An important property of
parallelizing the tree structure is that in each region different
incumbent solutions will be found during the search stage.
This information is shared by the parallel sphere decoders
so that the global incumbent solution is used to decide if
branches are pruned. This allows one to further tighten the
incumbent hypersphere and accelerate the search process.
This technique is implemented on a Zynq-7000 board, which
belongs to the low-cost family of the Xilinx FPSoC portfolio.
Application to a two-level inverter with output LC filter and
voltage regulation control problem is achieved up to Np = 6.

5) K-best SDA

Some of the concepts developed for the implementation in
[35] are also applied in [36], where a parallel implementation
of the K-best SDA is proposed. In this work, the inherent
parallelization of K-best SDA is exploited by proposing a
design where the 2Kb explored nodes in each layer are com-
puted in parallel. The Uk partial candidates, alongside their
partial costs, are stored in a matrix. Sorting operations are
performed in this matrix in order to select the Kb survivors
that will be further developed to the next tree layer. To make
efficient use of the FPGA platform, the usage of bitonic
sorting networks was proposed. This is more advantageous
for hardware implementation as calculation times can be
greatly reduced with moderate FPGA area consumption. One
of the main conclusions of this work is that for equal number
of explored nodes the K-best SDA can reduce the proportion
of suboptimal solutions in comparison with the conventional
SDA even for a low number of parallel blocks.

B. PRECONDITIONING TECHNIQUES FOR SDA
Regardless of the selected search strategy, proper problem
conditioning is crucial to alleviate the computational burden.
Preconditioning techniques include methods to select the
initial candidate hypersphere and techniques that reformulate
or transform the optimization problem before starting the
search stage.

1) Standard SDA Initialization

As mentioned in Section II-E, depth-first SDA techniques
require to obtain an initial control input sequence candidate,
U ini

k . Geometrically, these two vectors U ini
k and U unc

k form
an initial sphere, S ini, as per (16). In order to reduce the
computational time required to obtain U opt

k , the initial sphere
S ini should be small enough containing as few candidate
solutions as possible, but should not be empty. In [9], it is
proposed to initialized the SDA by considering an educated-
guess initial vector, U eg

k , which is obtained by shifting the
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TABLE 2: LPH-FCS-MPC SDA implementation techniques

Parameter RCP Conventional SDA Nonrecursive SDA HLS-based SDA Parallel SDA K-best SDA
Type of Design Software (RCP) Hardware Software (HLS) Hardware Hardware
Search Strategy Depth-first sequential Depth-first sequential Depth-first sequential Depth-first concurrent Breadth-first concurrent

Design effort Low High Medium High High

Platform
DSPACE Intel Cyclone V Xilinx Ultra-Scale+ Xilinx Zynq 7000 Xilinx Zynq 7000
High cost Low cost Medium cost Low cost Low cost

Resource consumption High Low High Medium. Linear growth with parallelization.

Application
CHB / Three-level NPC Three-level NPC Three-level NPC Two-level Two-level

1st order system 1st order system 1st order system 2nd order system 2nd order system
Maximum Np 4 5 4 6 7

Sampling frequency 8 - 10 kHz 10 - 40 kHz 40 kHz 20 kHz 20 - 25 kHz
References [11], [17] [13] [50], [51] [35] [36], [52]

previous optimal solution, U opt
k−1, by one time-step and re-

peating the last optimal input, i.e.,:

U ini
k = U eg

k =


0 I 0 · · · 0

0 0 I · · ·
...

...
. . . . . . . . .

...
0 · · · 0 · · · I
0 · · · 0 · · · I

U opt
k−1. (19)

This initialization method, i.e., ρini
k = ρeg

k , is particularly
suitable for steady-state operations, since it exploits the MPC
receding horizon policy and U eg

k is feasible since satisfies the
constraints in (9b).

In [42], [45] the Babai estimate method is introduced and
assessed. The Babai estimate is obtained by rounding the
unconstrained solution to the closest integer vector:

U ini
k = U bab

k = ⌊U unc
k ⌉. (20)

In more recent works, the initial hypersphere is selected as
the minimum of both techniques [13]:

U ini
k = min

{
ρbab
k , ρeg

k

}
. (21)

These techniques are widespread in LPH-FCS-MPC works
as they generally provide a good initial sphere candidate.
However, several works in the literature have proposed alter-
native techniques to enhance the initial candidate selection.

2) SDA Initialization for Transient Operations
An illustration of the optimization process during a transient
operation is depicted in Fig. 5. This example is shown for an
FCS U of nine control input vectors (gray solid circles). Here,
CH represents the convex hull of the FCS U [56], i.e.,:

CH = Conv(U) (22)

which as per definition, CH is the smallest convex set in
which U ⊂ CH . Moreover, the ellipses centered in U unc

k rep-
resent the level sets of the original optimization problem (15).
The matrix H in (15) introduces a linear transformation that
generates a new transformed space in Fig. 5b. In this space,
the original ellipses are transformed into circles, S, (spheres

FIGURE 5: Graphical representation of the direct MPC prob-
lem (an FCS U of nine control input vectors) for transient
operation, where both the standard and the transient operation
SDA initialization are represented. (a) Original space, and (b)
transformed space generated by H .

for larger dimensions) centered in Θk = Ū unc
k = HU unc

k , as
per (16). In fact, this is space where the SDA operates.

During transients, the system output, yk might be far away
from its reference, y⋆

k. In this case, a large actuation is
required to lead it back to its reference. This can place U unc

k

far away from CH ; see, Fig. 5a. In this situation, no matter
what initial candidate U ini

k is chosen, a large initial radius
ρini will be always obtained. To overcome this problem, a
computationally efficient preconditioning approach for the
SDA during transient was proposed in [12], [17], [57]. This
approach consists of obtaining a new center Θk for SDA dur-
ing transients by projecting U unc

k onto the boundary of CH .
This is achieved by solving the following box-constrained
quadratic programming (QP) problem:

U bc
k = argmin

Uk

∥HUk − Ū unc
k ∥ (23a)

subj. to Uk ∈ CH (23b)
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This projection is depicted in Fig. 5a. Several algorithms
are available to solve this box-constrained QP problem [56].
Particularly in [57], an exterior point active set strategy was
used to practically implement this preconditioning method.
Based on this projection, a new ILS-problem can be written
as:

Ũ opt
k = argmin

Uk

∥HUk − Ū bc
k ∥ (24a)

subj. to Uk ∈ U (24b)
∥∆uℓ∥∞ ≤ 1, (24c)

where Ū bc
k = HU bc

k acts as a new sphere center for the SDA,
see Fig. 5b. Then, this vector U bc

k is sequentially quantized to
take into account the level constrain (9c), leading to:

U ini
k = U sq

k = qsqU(U
bc
k ). (25)

In this way, a new initial sphere during transients is obtained:

Ssq =
{
U sq

k : (ρsq
k )

2 = ∥HU sq
k − Ū bc

k ∥22
}
, (26)

Consequently, during transients, Ssq is considerably smaller
than other initial hyperspheres provided by standard meth-
ods. Moreover, Ssq is a non-empty set which provides at
least one feasible solution since HU sq ∈ Ssq. This situation
is depicted in Fig. 5b, where this transient preconditioning
approach provides a smaller initial circle during transients,
leading to a reduced computational burden. This initialization
approach has been experimentally validated in [57] for grid-
connected inverters and in [17] for electrical drives.

3) Lattice basis reduction
To minimize the number of nodes explored in the SDA
the lattice generator matrix H should be as orthogonal as
possible. This improves the so-called conditioning of the op-
timization problem (9) and reduces the time required to solve
it. To this end, the Lenstra-Lenstra-Lovasz algorithm [58] can
be applied, which is a lattice basis reduction method.

As proposed in [59] the Lenstra-Lenstra-Lovasz algorithm
transforms H to a new upper triangular matrix H̃ whose
diagonal entries are arranged in an ascending order and
whose off-diagonal entries are minimized. This improves the
conditioning of the optimization problem. The search tree is
built from the bottom to the top, with the one-dimensional
nodes being located at the bottom and the higher-dimensional
nodes located at the upper layers of the search tree. As a
result, the SDA operates from the bottom to the top. As
shown in [59] the number of nodes explored is reduced by
about 45% when compared to the original SDA without
lattice basis reduction. Because the Lenstra-Lenstra-Lovasz
algorithm requires only a few simple computations, the re-
duction in the computational burden is also close to 45%.

4) Hybrid SDA
The Hybrid SDA proposed in [37] combines the two basic
search strategies described in this manuscript in the same
search stage. The K-best SDA finds an initial solution. This

switching sequence is guaranteed to accomplish the problem
constraints and thanks to the K-best SDA efficiency it will
be a remarkably tight hypersphere, leaving a very reduced
number of lattice points inside. Then, a Conventional SDA
completes the optimization stage by searching in the nodes
remaining in the bounded search space. Thus, the Hybrid
SDA can be seen as an SDA initialization technique.

Results in [37] contrasted this initialization method against
standard SDA initialization and reported its superiority for
a wide range of operating points. In terms of performance
per FPGA resources, the Hybrid SDA concept is beneficial in
contrast to just using one technique as combining two differ-
ent search strategies can correct their inherent shortcomings
or biases when searching lattice points. Other schemes to
share the search task between depth-first and breadth-first
methods have been proposed in the general BILS literature
[60], [61].

C. PRACTICAL RESULTS
Table 3 presents a summary of the applications and power
converter topologies where LPH-FCS-MPC has been suc-
cessfully applied. For convenience, works providing ex-
perimental results have been marked as red, works with
Hardware-in-the-Loop based verification have been marked
as black and simulation-only works are highlighted as blue.
As can be seen, two-level and three-level voltage source
inverters (VSI) are the most popular topologies. Particularly,
medium-voltage motor drive applications have received great
attention in the LPH-FCS-MPC literature.

To represent the behavior of LPH-FCS-MPC, excerpts
from [13] and [52] are depicted in Fig. 6 and Fig. 7. The
interested reader is referred to works referenced in Table 3
for further validation of these strategies in other applications.
The selected figures can be considered as representative and
will be used as illustrative examples of the forthcoming
analysis. Several conclusions can be drawn from the surveyed
LPH-FCS-MPC works:

1) A remarkable improvement of the harmonic distortion
to switching frequency ratio can be achieved at steady-state
operation when selecting longer Np. This is noticeable in
the provided figures since harmonic distortion is equal to or
lower at equal f̄sw and higher Np.

2) Diminishing returns emerge as the performance benefits
become smaller with long Np. In both systems, it is notice-
able that increasing Np from 3 to 5 provides a lower THD
reduction than when increasing Np from 1 to 3.

3) In systems with order higher than one, performance
improvements are more noticeable as the extended Np allows
the controller to avoid switching sequences that excite the
resonances in the system. For the first-order system, Np = 5
can achieve a THD reduction of up to 20 % in comparison to
Np = 1. In the second-order system, the THD can be halved
by setting Np = 5 in contrast to Np = 1.

4) Performance can be degraded due to suboptimality. An
interesting observation can be made as Np is increased from
Np = 5 to 7. It can be seen that for higher switching frequency
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TABLE 3: Power converter topologies and applications of LPH-FCS-MPC

Application
RL Load Grid-forming Grid-connected Induction Machines (IM) PMSM 2 SynR 3

2-level [35]–[37], [52], [62] [63] [64]
3-level NPC [13] [44] [17] [50] [51] [65]–[69] [70] [71] [72] [75]

CHB [11] [57]
B2B [38], [73], [74] [38], [73], [74]

150 200 250 300 350 400

T
H

D
 i
o
 (

%
)

8

6

10

12

FIGURE 6: Experimental results for a 3-level NPC and first-
order system with current regulation. Output current THD in
terms of switching frequency f̄sw is shown for different Np.
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FIGURE 7: Experimental results for a 2-level grid-forming
VSI with second-order system and output voltage regulation.
The voltage THD in terms of Np is shown for different f̄sw.

values, performance can be degraded. This is related to the
observation that for the same setup, the switching weighting
factor has a strong influence on the search stage computa-
tional costs [35]. Particularly, higher weighting factor values
help the algorithm to discard a greater amount of nodes, i.e.
the optimization problem is harder to solve if f̄sw is higher.
For this reason, the controller selects suboptimal solutions in
more instances and performance can be degraded.

5) Regarding transient-state performance, the main conclu-
sion in the surveyed works is that the fast dynamic response
of one-step FCS-MPC is preserved for longer Np.

6) When setting Np the general rule of thumb is to choose
the longest Np that ensures that the computational burden
can be handled by the selected control platform, avoiding
any time overruns or control outcome degradation due to
suboptimality. To achieve the latter, a simulation model can
be used to assess suboptimality and performance degradation
under the computational limits that will be imposed in the

control hardware. This can deliver a good estimation of the
maximum Np value that can be selected in the real setup.

V. FUTURE TRENDS AND OPEN TOPICS
A. SAMPLING FREQUENCY, SWITCHING FREQUENCY
AND PREDICTION HORIZON
The choice of sampling frequency is also an important topic
that has a direct impact on the closed-loop performance. In
FCS-MPC, the absence of a modulator implies that switching
can only be performed at the discrete time instants. Thus,
increasing the sampling frequency improves not only the
discretization accuracy but also the granularity of switching
[6], [75]. For instance, in [6] it is recommended as a general
rule to select a sampling frequency two orders of magnitude
higher than the switching frequency and set the desired
f̄sw by tuning an adequate switching effort penalty. Even
though high sampling frequencies are considered beneficial
in FCS-MPC applications, achieving this is computationally
challenging as it requires low execution times of the control
algorithm. This is particularly difficult for long prediction
horizons. In this context, LPH-FCS-MPC for high-frequency
applications such as wide-bandgap (WBG)-based power con-
verters is not straightforward as switching frequencies rang-
ing from several tens to hundreds of kHz are typically desired
in newer SiC or GaN devices. Furthermore, considering
computational limitations, it would be necessary to set a
switching effort penalty equal to or close to zero, for which
extending Np offers small or zero performance improvement
[6]. MPC strategies with explicit modulators can be a more
desirable option in this case.

Besides the sampling interval, another crucial parameter
is the length in time of the prediction horizon, i.e., the
prediction window. This can be expressed as NpTs, which
depends on the number of prediction steps, Np, and the
sampling interval Ts. The impact of these two parameters
on the closed-loop performance of an induction machine
drive is explored in [44]. It can be seen that both influence
the closed-loop performance. This is particularly the case
for higher-order systems, i.e., systems with more than one
energy-storage element, such as systems with an LC filter.
For these, a long prediction horizon length in time is crucial
to allow the controller to predict any resonance effect and to
endow it with the capability to actively dampen it. As shown

2PMSM: Permanent Magnet Synchronous Machines.
3SynR: Synchronous Reluctance Machines.
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in [46], the prediction horizon length in time should cover a
significant fraction of the oscillation period of the resonance.
More details are also provided in [6].

Regarding the switching frequency, it is reported in works
such as [44] that long Np leads to a higher degree of repeti-
tiveness in the switching patterns. However, the characteristic
spread spectrum of FCS-MPC is still present in LPH-FCS-
MPC, even though it is less pronounced. This can be a
problematic feature for grid-connected applications where
ensuring a deterministic spectrum is important for an efficient
design of the passive elements. To overcome this issue, there
is an ongoing research effort to propose different techniques
to achieve a more discrete spectrum [76]–[79] or to shape the
harmonic spectrum according to harmonic grid codes [80].
The former are applied to one-step FCS-MPC and study of
their extension to the LPH-FCS-MPC problem is required.
The latter is formulated for LPH-FCS-MPC. The proposal
involves the introduction of the discrete fourier transform
alongside spectral penalties in the quadratic cost function
expression. While promising, experimental validation of the
proposed methods is required.

In conclusion, it is possible to find some general guidelines
to tune the switching and sampling frequencies. However,
discussion on the topic is limited and each application re-
quires a careful analysis to find the optimal trade-off between
granularity of switching and prediction window length [6].
Further studies are also necessary to include computational
limits in the trade-off analysis. This is because both the
sampling frequency and Np cannot be increased indefinitely
without excessive computational costs.

B. COMPLEX SYSTEMS AND ADVANCED
FORMULATIONS
An important challenge of LPH-FCS-MPC is the extension
of complex FCS-MPC formulations to the long prediction
horizon paradigm. Generally, FCS-MPC offers great flexi-
bility to address the control problem of complex systems,
including constraints, nonlinearities or multiple control ob-
jectives. However, translation to the BILS formulation is
generally not straightforward.

1) Multiobjective control
A standard cost function has so far been considered (8).
In this formulation, the control of a single output variable
(typically in stationary orthogonal coordinates) is expected.
For multivariable control, which requires the tuning of the
trade-off between different variables, a more general cost
function expression is required [46]:

gk =

k+Np−1∑
ℓ=k

∥yℓ+1 − y⋆
ℓ+1∥2Q + ∥uℓ − uℓ−1∥2R. (27)

In this cost function expression ∥ξ∥2Q = ξTQξ is a quadratic
term in the output vector error that is weighted with the

diagonal matrix Q ∈ Rq×q . The term involving R is sim-
ilarly defined, with R ∈ Rr×r. Recall that q and r are the
size of the output and input vectors, respectively. Through
this formulation, it is possible to consider an output vector
with several different variables that the controller will attempt
to regulate. The weighting matrix Q is typically diagonal,
and its terms define the different penalties for each output
variable. High penalties indicate to the controller to prioritize
the regulation of the variable in that specific component
over the remaining output variables. The switching effort
weighting matrix R can be expressed in its standard form by
choosing equal values for its diagonal entries so that R = λI .

An early example of a multiobjective problem was inves-
tigated in [46], which considered a three-level converter with
an LC filter and an induction machine. FCS-MPC with a long
prediction horizon of up to 20 steps was considered, albeit it
only in simulations. The case of a two-level four-leg grid-
connected inverter was studied in [63].

The interface with the grid consists in an LCL filter
which represents a challenging control problem due to the
system order and the several involved system variables. The
underlying multivariable control problem in this case study
was studied for Np = 1 in [81]. In this work, the different
state feedback control possibilities for the grid-connected
VSI with LCL filter are explored for standard FCS-MPC. The
paper in [63] extends this work to long prediction horizon.
In particular, results indicate great benefits of long prediction
horizon, particularly when attempting direct grid-side current
control. Long prediction horizons allow the controller to
detect switching sequences that will further excite the filter
resonances and avoid them.

2) Avoiding the tuning of weighting factors
As future work in this topic, the weighting factor tuning prob-
lem is highlighted. As can be deduced from (27), the different
penalties in Q and R are highly coupled and depend on other
parameters such as Np or fs. An approach that aims to solve
this issue is known as sequential MPC, proposed first in [82]
for the Np = 1 case and adapted to long prediction horizon in
[73]. In sequential MPC, the optimization problem is divided
into several subproblems, with each of them focusing one
term of the original cost function. The main control objective
is selected as the first optimization problem to solve. In
this first optimization stage, several local optimal candidates
are selected. These candidates enter the second optimization
stage, which seeks to optimize a secondary control objective.
This stage can be solved through exhaustive enumeration
as the set of control inputs has been reduced to the best
solutions from the first stage. The main benefit of these
technique is the elimination of weighting factors. However,
the selected solution at the end of the optimization chain is
often suboptimal as shown in [6].

Alternatively, it is sometimes possible to avoid the tuning
procedure altogether and to analytically compute the desired
weighting factors. This is the case when controlling the
electromagnetic torque and the stator flux magnitude in of
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an electrical machine. To minimize the current harmonics the
torque and flux error terms should be as close as possible
to that of predictive stator current control. Based on this
requirement a simple analytical equation can be derived that
determines the weighting factors in terms of the machine pa-
rameters [83]. In doing so the benefits of directly controlling
the torque and flux magnitude are combined with minimal
current distortions.

The weighting factor on the switching effort can be
avoided as well [84]. A state variable that captures the switch-
ing frequency is introduced and regulated along a switching
frequency reference. As a result, the switching frequency can
be explicitly set and tuning of the switching effort is avoided.

3) Nonlinear Systems
BILS transformation is generally performed under the as-
sumption that the plant is a linear system with integer inputs.
Thus, applicability of this theory to nonlinear systems is
limited and can be considered an open problem.

In the literature, there are several research works address-
ing this situation. A typical case study that incurs nonlinear
terms in the system model is that of a three-level NPC
inverter, for which the neutral-point (NP) potential is to be
balanced. This problem was first studied for LPH-FCS-MPC
in [65]. In this work, it is proposed to perform an a priori
restriction of the search space depending on the effect that the
different switching states have on the NP potential balancing.
In this method, an admissible error band for the NP potential
is defined in which the entire search space can be considered.
When it is detected that the NP potential exceeds the defined
threshold, only switching states that can potentially bring
the NP potential back into the desired band are considered
during the search. This proposal is intuitive and only requires
moderate algorithm modifications. However, the solution will
be inherently suboptimal in terms of achieving the control
goals due to the a priori restriction of the search space.

In [66], [67], linearization methods are proposed in order
to address the underlying nonlinear terms and apply the
BILS transformation of a multiobjective problem following
a formulation analogue to (27). Through this strategy, an
a priori restriction of the search space and the subsequent
suboptimality are avoided. However, linearization errors ap-
pear. Both the a priori restriction of the search space and the
linearization methods are extended and compared with each
other in [74] using as a case study a three-level NPC back-to-
back wind turbine system.

Future work in this direction should address the extension
of these techniques to a wider range of topologies that present
nonlinearities.

4) System Constraints
System constraints are limits imposed on the output or state
variables in order to ensure the safe operation of the system
and its protection against overcurrents and overvoltages. For
standard one-step prediction FCS-MPC, considering these
safety constraints is relatively straightforward. However,

solving the constrained optimization problem is challenging
when adopting long prediction horizon strategies. This is
because the translation of these constraints into a bounded
control input set is nontrivial.

Constrained LPH-FCS-MPC is studied in [85], [86]. In
these papers, the current is bounded at the next time step
k + 1 as a state constraint. It is proposed to define a new
hypersphere based on the feasible control set according to
the corresponding state constraints, i.e., the state or output
constraints are translated to input constraints to be considered
in the optimization problem.

The main challenge remaining in this topic is to constrain
state or output variables not only at time step k + 1 but
throughout the prediction horizon, and to experimentally
validate and analyze in a practical setup the proposed con-
strained LPH-FCS-MPC technique.

5) Parameter mismatches
Generally, the sensitivity of FCS-MPC to parameter uncer-
tainties is cited as one of its main caveats. FCS-MPC is
capable of achieving a superior performance if the prediction
model is an accurate representation of the system plant.
However, real equipment presents different tolerances and
measurement uncertainties. Also, several of the key param-
eters in the system can be dependant on several time-varying
factors such as temperature or the operating point. Objective
evaluation of FCS-MPC under parameter mismatch renders
the conclusion that if the parameter mismatch is sufficiently
large, accuracy of the prediction steps is noticeably lost,
especially at steady-state, leading to a higher ripple and a
steady-state error [87]. Due to this, robustness in FCS-MPC
is the focus of several research works that propose different
techniques to overcome this issue. Among these works, the
main trend is the usage of disturbance observers [88], [89]
or model-free predictive controllers (MFPC) [90], including
ultra-local model-based MFPC [91].

For LPH-FCS-MPC, research work [68] studies the effects
of parameter mismatches in an induction motor application.
A similar approach is followed in [70] for PMSM. These
papers propose the addition of an integrating element to
the control scheme. The proposal involves the usage of the
velocity model of the plant. In this form, the increments of the
system state, input and output variables are used rather than
their discrete instantaneous values. By using this alternative
formulation, the problem is still compatible with all the
theory and techniques developed for LPH-FCS-MPC, but it
also allows one to introduce an integrator term which can deal
with parameter uncertainties in the system.

However, this proposal faces an important drawback, as
the addition of the integrator term reportedly causes instabil-
ity issues for low switching penalty values, thus its general
use is not recommended. A more in-depth robustness study
for LPH-FCS-MPC is offered in [69]. In this paper, it is
proposed to perform an analysis of the main parameters
that have the greatest potential to degrade performance in a
motor drive if the parameter value deviates. Based on that,
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an estimation algorithm is defined that provides estimates
of the stator and rotor leakage reactances that allows one to
update the prediction model accordingly at a rate equal or
slower than the FCS-MPC algorithm. Results in [69] show
greatly improved robustness with modest added complexity
in terms of control formulation or computational cost. In
[71], a moving horizon estimator-based disturbance observer
is proposed to address all the unmodeled mismatches and
uncertainties.

As can be seen, while there are some promising results
regarding this topic, further work is necessary to fully de-
velop the framework of robust LPH-FCS-MPC. Particularly,
extension to a wider range of topologies and applications is
necessary.

C. ARTIFICIAL INTELLIGENCE

In recent years, the concept of Artificial Intelligence (AI) has
become a mainstream term that is receiving great attention
from academia, industry and the public. Thanks to the great
capacity of AI to find patterns in large datasets and imitate
complex functions, there is a vast number of fields studying
the application of AI-based approaches to solve problems
in a more efficient manner than analytical solutions [92]. In
power electronics, interest in these type of solutions is also
attracting the attention of researchers, particularly to address
some of the known open issues of FCS-MPC

[93]–[95], artificial neural networks (ANN) are used to
select the optimal weighting factors of the cost function.
It is also possible to find works that propose the usage of
ANN to imitate the control algorithm. In [96], an ANN-based
control strategy is proposed for the output voltage control
of an UPS. The ANN is trained with a conventional one-
step FCS-MPC. The design is validated only with simulation
results. In [72], an ANN is used to learn the LPH-FCS-MPC
problem up to Np = 5. However, experimental assessment
is not provided. In [97], an ANN is proposed to imitate the
behavior of conventional FCS-MPC up to Np = 3. However,
usage of the conventional FCS-MPC formulation limits the
achievable Np. Also, the control effort term is not considered
in the cost function. Thus, extending the Np should not render
an improved response in comparison to one-step FCS-MPC
[6]. Recently, an ANN-based sphere decoder was proposed
in [62]. This work maintains the LPH-FCS-MPC framework
as illustrated in this paper, but replaces the search strategy
with an ANN trained to learn the ideal SDA. This provides a
flexible method to solve the optimization problem with fixed
and low computational costs that can be implemented in a
modest microprocessor and achieve similar performance to
FPGA-based designs.

Beyond ANN, there are other AI related concepts with
promising potential to be applied to FCS-MPC. For instance,
[98] follows a fuzzy logic approach similar to ultra-local
MFPC, where the unknown, non-linear parts of the model are
approximated using an estimator based on fuzzy logic. Re-
sults report remarkable robustness improvements compared

to standard FCS-MPC. However, extension to LPH-FCS-
MPC is still an open topic.

VI. CONCLUSION
The availability of control hardware with high computational
power is allowing the successful application of LPH-FCS-
MPC. This paper provides a survey of the state-of-the-
art for this technology, describing the control problem, the
main methods, their implementations and future trends of
LPH-FCS-MPC. As a summary, this control approach can
provide an improved closed-loop performance with reduced
harmonic distortions and lower switching power losses.

Despite the benefits of the LPH-FCS-MPC for power
converters, some challenges and open research topics still
exist to support and facilitate the adoption of LPH-FCS-
MPC in industry. In particular, a deterministic and well-
defined switching frequency is required with deterministic
power converter losses. The need to tune weighting factors
by trial-and-error methods should be avoided. Instead, an-
alytical rules for weighting factors should be established,
and the switching frequency (or losses) should be constant
and a design parameter. Harmonic grid codes should be met,
which requires a deterministic harmonic spectrum; even-
and interharmonics should be minimized or even avoided.
State constraints are required to ensure the operation within
the safe operating area, particularly during large transients,
disturbances and faults. Very long prediction horizons (ex-
ceeding 10 steps) would help to maximize the closed-loop
performance. To achieve this, new computational methods
beyond the sphere decoder might be required, particularly to
address nonlinear systems.
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