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Abstract—This paper presents a direct model predictive control
(MPC) method for drive systems with superior steady-state and
dynamic performance. Specifically, the discussed MPC algorithm
achieves a steady-state behavior that is similar or better than
that of a linear controller with a dedicated modulator, and fast
transient responses that characterize direct controllers. Moreover,
it ensures a fixed switching frequency by allowing for one switch-
ing transition per phase and sampling interval. Furthermore,
the controller utilizes the stator current gradient to predict the
evolution of the drive system within the prediction horizon.
To find the optimal switching time instants—and thus ensure
favorable performance—the control and modulation problems
are formulated in one computational stage as a constrained
quadratic program (QP). To solve the latter within a few
microseconds, a computationally efficient QP solver based on
a gradient method is proposed that enables the real-time imple-
mentation of the presented algorithm. To further alleviate the
computational demands of the proposed method, a mechanism
that can identify suboptimal switching sequences at the very early
stages of the optimization process is proposed. The effectiveness of
the proposed control scheme is experimentally verified on a 3 kW
drive system consisting of a two-level inverter and an induction
machine.

Index Terms—AC drives, model predictive control (MPC),
direct control, quadratic programming, power electronic systems.

I. INTRODUCTION

F INITE control set model predictive control (FCS-MPC)

is a control method for power electronics that has gained

popularity in the last decade [1], [2]. A direct control strategy,

FCS-MPC exploits the discrete nature of power converters by

considering the control inputs from a finite set for which the

future behavior of the power electronic system is predicted. To

compute the optimal control input, i.e., the converter switch

position, that results in the most desirable system behavior, as

quantified by a performance criterion (or criteria), the output

reference tracking and modulation problems are formulated

in one computational stage [3]. This control scheme can

achieve fast transient responses, but also suffers from several
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drawbacks, such as variable switching frequency and spread

harmonic spectra with increased harmonic energy, especially

when poorly designed [4]. When electric drives are of interest,

such harmonic current distortions can lead to increased iron

and copper losses [5].

Considering the above-mentioned drawbacks of FCS-MPC,

some methods have been presented that aim to address

them. For example, a frequency-weighted MPC scheme was

proposed in [6], where a band-stop filter was included in

the controller so that the underlying optimization problem

accounted for the current spectral properties. However, even

though the current harmonic spectra can be shaped to some

extent, the switching frequency cannot be made constant.

In [7] and [8], direct MPC schemes were combined with a

separate modulator to ensure a constant converter switching

frequency. By doing so, however, the inherent fast dynamics

of direct control schemes are compromised due to the presence

of a modulator. Other works, such as [9]–[17], propose direct

MPC algorithms with an implicit modulator, i.e., the switch

position is not limited to change only at the discrete time

instants—as with conventional FCS-MPC—but it can change

at any time instant within the sampling interval. Such MPC

schemes compute not only the optimal switch positions, but

also the associated time instants within the sampling interval

they have to be applied to the converter, such that the ripples

of the controlled variables, e.g., stator current, electromagnetic

torque, stator flux magnitude, etc., are reduced. However,

methods such as [11]–[14], [16]–[18] do not guarantee global

optimality, whereas the algorithms in [10], [15] do not ensure

a fixed switching frequency. Moreover, it is worth mentioning

that the techniques in [9], [12], [14], [17], [18], while operat-

ing the converter at a constant switching frequency, produce

nondiscrete harmonic spectra due to the fact that the computed

switching patterns are not repetitive.

An alternative approach to tackle both problems of variable

switching frequency and nondiscrete harmonic spectra in direct

MPC schemes is to use the so-called pre-computed switch-

ing sequences [19]–[22]. These control schemes compute

the optimal switching time of specific switching sequences.

To this aim, the optimization problem is formulated as an

unconstrained quadratic program (QP) which allows for an

analytical solution. As a result, the computational complexity

of the MPC problem is greatly reduced, thus addressing the

inherent disadvantage of FCS-MPC that relates to its high

computational requirements [4]. Nevertheless, due to the un-

constrained nature of the optimization problem, such methods



do not always guarantee optimality or symmetrical switching

sequences, and thus discrete harmonic spectra. Moreover,

although [23] imposes constraints on the applications times,

it is limited to simple single-output systems, such as dc-dc

converters.

Motivated by the shortcomings of the aforementioned MPC

algorithms and the associated challenges, [24] presented a di-

rect MPC method with a fixed switching frequency for variable

speed drive systems. This control technique manages to both

minimize the stator current distortions and operate the drive

at the desired (constant) switching frequency. The former is

fulfilled by capturing an approximate value of the rms current

ripple in the objective function. To achieve the latter, [24]

ensures that each of the three converter phase legs switches

within the sampling interval in a specific chronological order

and only once, introducing, in essence, a fixed modulation

half-cycle, similar to carrier-based pulsewidth modulation

(CB-PWM) or space vector modulation (SVM) [25]. In doing

so, repetitive, symmetrical switching sequences are applied to

the converter, which result in discrete stator current harmonic

spectra, with harmonic energy located only at odd nontriplen

multiples of the fundamental frequency. Moreover, given that

the optimization problem underlying direct MPC is formulated

as a constrained QP, optimality is guaranteed, thus the best

possible behavior of the drive is ensured for the whole range

of operating conditions. To achieve this, nevertheless, [24] has

to solve six constrained QPs (one for each possible switching

sequence) in real time before concluding to the global optimal

solution, i.e., the optimal sequence of switch positions and

the corresponding switching time instants. Consequently, the

associated computational burden hindered the real-time imple-

mentation, and thus experimental validation, of the method.

To significantly reduce the computational complexity of the

direct MPC method in [24], this paper presents a computation-

ally efficient solution of the underlying MPC problem, thus

rendering its real-time implementation possible. To this end,

this paper tackles the challenges of the real-time implementa-

tion, which are twofold. First, although several open-source

and commercial QP solvers are available [2, Section IV],

they are commonly designed for general QP problems. Con-

sequently, they may not be able to solve the MPC problem

of interest in real time within a few hundred, or even tens, of

microseconds, since they do not exploit its structure. Indeed,

the execution time greatly depends on various factors of the

optimization problem, such as the size of the state and input

vectors, the number of the constraints and the geometry of

the feasible region, see [26] for a comprehensive assessment

of different QP solvers. Therefore, to facilitate the real-time

implementation of the direct MPC algorithm, an efficient and

highly reliable gradient-based QP solver is developed in this

paper. This algorithm exploits the properties of the QP problem

at hand and achieves a fast and reliable convergence.

To further reduce the computational demands of the MPC

algorithm, a method is introduced to deal with the second

challenge of the real-time implementation, namely the need to

solve a unique constrained QP for each one of the six possible

switching sequences within each sampling interval. Since not

all switching sequences are good candidate solutions at any
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Fig. 1: Two-level three-phase voltage source inverter driving an IM.

given instant of the problem, the corresponding QPs may be

ill-posed, leading to poor convergence rates and thus longer

solving times. To tackle this issue, a mechanism is proposed

that can detect the unsuited switching sequences with only a

few computations. Thanks to this, only one or two QPs need

to be solved at each sampling interval, while still guaranteeing

global optimality. As a result, the direct MPC scheme becomes

computationally tractable, without sacrificing its performance.

To show this, the controller is experimentally evaluated with

a drive system consisting of a three-phase two-level voltage

source inverter and an induction machine (IM).

This paper is structured as follows. Section II introduces

the mathematical model of the case study of this paper. The

direct MPC scheme is presented in Section III. In Section IV,

the proposed gradient-based QP algorithm is explained along

with the detection mechanism of the unsuited switching se-

quences. The performance of the proposed control scheme is

experimentally evaluated in Section V. Finally, conclusions are

drawn in Section VI.

II. MATHEMATICAL MODEL OF THE SYSTEM

The examined system consists of a three-phase two-level

voltage source inverter and an IM, as shown in Fig. 1.

The dc-link voltage is assumed to be constant and equal

to its nominal value Vdc. The modeling of the system as

well as the formulation of the control problem are done in

the stationary orthogonal αβ reference frame. Therefore, the

Clarke transformation matrix

K =
2

3

[

1 − 1
2 − 1

2

0
√
3
2

√
3
2

]

(1)

is employed to map a variable ξabc = [ξa ξb ξc]
T in the abc-

plane into a variable ξαβ = [ξα ξβ ]
T in the αβ-plane.1

Let uabc = [ua ub uc]
T denote the three-phase switch

position of the two-level inverter, where ux ∈ U = {−1, 1},

with x ∈ {a, b, c}, is the single-phase switch position. In each

phase, the values −1 and 1 correspond to the phase voltages

−Vdc

2 and Vdc

2 , respectively. Thus, the voltage applied to the

machine terminals vs is

vs =
Vdc
2
u =

Vdc
2
Kuabc . (2)

The dynamics of the squirrel-cage IM can be fully described

by the differential equations that involve the stator current is,

1In the sequel of the paper, the subscript αβ used to denote variables in
the αβ-plane is omitted to simplify the notation.



the rotor flux ψr, and the angular speed of the rotor ωr. This

leads to [27]

dis
dt

= −
1

τs
is +

(

1

τr
I2 − ωr

[

0 −1

1 0

])

Xm

D
ψr +

Xr

D
vs

(3a)

dψr
dt

=
Xm

τr
is −

1

τr
ψr + ωr

[

0 −1

1 0

]

ψr (3b)

dωr

dt
=

1

Θ
(Te − Tℓ) , (3c)

where Rs (Rr) is the stator (rotor) resistance, Xls (Xrs) the

stator (rotor) leakage reactance, and Xm the mutual reactance.

Moreover, τs = XrD/(RsX
2
r + RrX

2
m) and τr = Xr/Rr

are the transient stator and rotor time constants, respectively,

where the constant D is defined as D = XsXr −X2
m, with

Xs = Xls + Xm and Xr = Xlr + Xm. Finally, Θ is the

moment of inertia, while Te and Tℓ are the electromagnetic

and load torque, respectively.

Based on (2) and (3), the model of the drive system in

continuous-time state-space representation is written as

dx(t)

dt
= Fx(t) +GKuabc(t) (4a)

y(t) = Cx(t) , (4b)

where the state vector is x = [isα isβ ψrα ψrβ ]
T ,2 while

the three-phase switch position and the stator current are the

system input and output, respectively, i.e., uabc = [ua ub uc]
T

and y = [isα isβ]
T . Moreover, matrices F , G, and C are the

system, input and output matrices, respectively, and they can

be easily derived from (3) [3, Appendix 5.A].

Finally, by using forward Euler discretization the discrete-

time state-space model of the system is derived as

x(k + 1) = Ax(k) +BKuabc(k) (5a)

y(k) = Cx(k) , (5b)

with k ∈ N, A = I + FTs, and B = GTs, where I is the

identity matrix of appropriate dimensions, and Ts the sampling

interval.

III. DIRECT MPC WITH FIXED SWITCHING FREQUENCY

The discussed MPC algorithm was initially proposed in [24]

and refined in [28]. In the sequel of this section, the main

principles and characteristics of the controller are presented.

A. Control Problem

The main objective of the controller is to minimize the

stator current ripple and keep the switching frequency of the

converter constant. To do so, each phase of the converter is

allowed to switch once within the sampling intervals Ts, as

exemplified in Fig. 2(a).

Let ti, i ∈ {1, 2, 3}, denote the switching instants that are

placed in an ascending order within one sampling interval

2Note that due to the slower mechanical dynamics, the angular speed of
the rotor ωr is treated as a (relatively slowly) varying parameter rather than
as a state variable.
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(a) Three-phase switch position.

t
t0 ≡ 0 Ts 2Ts

t1(k) t2(k) t3(k) t1(k+1) t2(k+1)t3(k+1)

isα

is,ref,α

(b) Stator current (α-component).

Fig. 2: Example of the evolution of isα over two sampling intervals by
applying the depicted switching sequence.

Ts, i.e., 0 ≤ t1 ≤ t2 ≤ t3 ≤ Ts. Thus, each sampling

interval is divided into four sub-intervals [0, t1), [t1, t2),
[t2, t3) and [t3, Ts), which are the application times of four

switch positions. Specifically, at the beginning of the current

sampling t0 ≡ 0, and until t1, the last switch position applied

in the previous Ts is applied, i.e., uabc(t0) = uabc(t
−
0 ). At

time instant t1, a switching transition is performed in one of

the three phases, implying that the switch position uabc(t1)
is applied. Following, at time instant t2, the switch position

uabc(t2) is applied such that one of the two thus far inactive

phases is switched. Finally, the only inactive phase left is

forced to switch at time instant t3 by applying switch position

uabc(t3). As can be understood, by following this principle,

the three phases of the system can switch in six possible

combinations, see the left-hand side of Table I. For example,

phase a may switch first, followed by consecutive changes in

phases b and c, or vice versa, etc.

The above concept can be extended to longer prediction

horizons, which are adopted in this work due to the im-

provements they bring in the steady-state performance [29].

However, as shown in [28], to keep the number of possible

switching sequences constant and equal to six—instead of

increasing it exponentially with the horizon steps Np, i.e.,

6Np—the switching sequences are mirrored with respect to

the discrete time steps in a consecutive fashion, similar to,

e.g., the SVM switching pattern [25]. Considering that a two-

step horizon (Np = 2) is implemented in this work, this means



TABLE I: Possible switching sequences for a two-step horizon.

Number Phase with the switching transition

of 1st sampling interval 2nd sampling interval

sequence First Second Third First Second Third

1 a b c c b a

2 a c b b c a

3 b a c c a b

4 b c a a c b

5 c a b b a c

6 c b a a b c

that the switching sequence in the second prediction interval

mirrors that of the first prediction interval with respect to Ts,

as illustrated in Fig. 2(a). Table I summarizes all possible

switching sequences over a two-step prediction.

To describe the above, the vector of switching time instants t

and the vector of switch positions (i.e., the switching sequence)

U are introduced. These are defined as

t =
[

tT (k) tT (k + 1)
]T

(6a)

U =
[

UT (k) UT (k + 1)
]T

, (6b)

where

t(ℓ) =
[

t1(ℓ) t2(ℓ) t3(ℓ)
]T

(7a)

U(ℓ) =
[

uT
abc(t0(ℓ)) u

T
abc(t1(ℓ)) u

T
abc(t2(ℓ)) u

T
abc(t3(ℓ))

]T

.

(7b)

with ℓ ∈ {k, k + 1}. It is important to point out that,

as explained above, it is implied that U(k + 1) =
[uT

abc(t3(k)) uT
abc(t2(k)) uT

abc(t1(k)) uT
abc(t0(k))]

T , i.e.,

uabc(t0(k+1)) = uabc(t3(k)), uabc(t1(k+1)) = uabc(t2(k)),
uabc(t2(k + 1)) = uabc(t1(k)), and uabc(t3(k + 1)) =
uabc(t0(k)). Note, however, that the switching times may

be asymmetric, thus t1(k) is not necessarily equal to

2Ts − t3(k + 1), etc.

B. Control Method

The main control objective is the minimization of the (ap-

proximate) rms stator current error, since this corresponds to

the minimization of the stator current total harmonic distortion

(THD) [30, Appendix A]. As explained in [24] and [28], this

goal can be mapped into the objective function

J =

k+1
∑

ℓ=k

( 3
∑

i=1

‖is,ref(ti(ℓ))− is(ti(ℓ))‖
2
2

+
∥

∥Λ
(

is,ref(Ts(ℓ))− is(Ts(ℓ))
)∥

∥

2

2

)

,

(8)

where the current tracking error is penalized at the switching

instants and at the discrete time steps. Note that the diagonal,

positive definite matrix Λ ≻ 0 ∈ R
2×2 is introduced to

penalize more heavily the tracking error at the discrete time

steps. As explained in [28, Section III], by doing so, symmetry

in the applied switching sequences is enforced, which enables

the elimination of undesired low-frequency harmonics.

To find the optimal switching time instants t∗, the current

error, as quantified by (8), needs to be computed for all

six possible switching sequences U , as mentioned in Sec-

tion III-A. To do so, the evolution of the stator current is
within all the subintervals of the prediction horizon needs to

be computed for eachU . Given that the sampling interval Ts is

much smaller than the fundamental period T1, i.e., Ts ≪ T1,

it is assumed that the derivative of the stator current when

applying a switching transition is constant within Ts. Such an

assumption implies that the stator current trajectories within

the subintervals of the horizon can be described by their

corresponding gradients, i.e.,

m(ti(ℓ)) =
dis(ti(ℓ))

dt
= C(Fx(t0(k)) +GKuabc(ti(ℓ))) ,

(9)

where i ∈ {0, 1, 2, 3} and ℓ = k, k + 1. Note that because of

the assumption of constant gradients within Ts, (9) computes

the gradients at the switching instants t1(ℓ), t2(ℓ), and t3(ℓ)
based on the measured/estimated state, i.e., x(t0(k)).

Utilizing the gradients provided by (9), the stator current at

the switching instants and discrete time steps can be calculated

as

is(ti(ℓ)) = is(ti−1(ℓ)) +m(ti−1(ℓ))(ti(ℓ)− ti−1(ℓ)) , (10)

with i ∈ {1, 2, 3, 4} and t4 = Ts.

On the same principle, the current reference is assumed to

evolve in a piecewise linear fashion within the horizon, with

a constant gradient for each prediction step, given by

mref(ℓ) =
is,ref(ℓ + 1)− is,ref(ℓ)

Ts
. (11)

Hence, the current reference over the horizon is

is,ref(t) = is,ref(ℓ) +mref(ℓ) t . (12)

An example of the stator current evolution and the correspond-

ing reference on the α-axis is shown in Fig. 2(b).

Finally, based on expressions (9) to (12), and after some

algebraic manipulations, function (8) can be written in vector

form as

J = ‖r −Mt‖22 , (13)

where the vector r ∈ R
8Np and matrix M ∈ R

8Np×3Np , with

Np = 2, are given in the appendix.

C. Control Algorithm

Taking into account the control principles developed in Sec-

tions III-A and III-B, the direct MPC algorithm is summarized

in the following.

In a first step, the seven unique stator current gradients are

computed based on the measured/estimated state vector x(t0)
and the possible eight switch positions uabc, i.e.,

mw = C(Fx(t0) +Guw) , (14)

where w ∈ {0, 1, . . . , 6}. Note that in (14), uw = Kuabc,w

stands for the unique voltage vectors in the αβ-plane (six

active and one zero vector), see Fig. 3, where uj , j ∈
{1, 2, . . . , 6}, are the active vectors, and u0/u7 the zero

vector.
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Fig. 3: Two-level inverter switch positions in the stationary (αβ) plane.

Subsequently, the controller enumerates the six possible

switching sequences Uz , z ∈ {1, 2, . . . , 6}, shown in Table I.

For each one of them, an optimization problem of the form

minimize
t∈R6

‖r −Mt‖22

subject to 0 ≤ t1(k) ≤ t2(k) ≤ t3(k) ≤ Ts

≤ t1(k + 1) ≤ t2(k + 1) ≤ t3(k + 1) ≤ 2Ts
(15)

is formulated. According to [24] and [28], the QP (15) has to

be solved six times—once for each Uz—based on an off-the-

self QP solver [2, Section IV] to yield tz and the associated

cost Jz . However, in this work, (15) is efficiently solved by

the QP solver proposed in Section IV. Moreover, as explained

in that section, the developed solver can detect unsuited Uz

with a simple one-step projection method, meaning that at

most two QPs (15) need to be solved in real time. As a result,

the computational burden of the direct MPC algorithm is kept

modest, thus facilitating its real-time implementation.

In a last step, the pair of switching sequence and time

instants that is globally optimal, i.e., {U∗, t∗}, is chosen by

solving the following trivial optimization problem

minimize
z∈{1,2,...,6}

Jz . (16)

According to the receding horizon policy [3], only the switch

positions that correspond to the first Ts are applied to the

converter at the corresponding time instants, i.e.,

U∗(k)=
[

u∗T
abc(t0(k)) u

∗T
abc(t

∗
1(k)) u

∗T
abc(t

∗
2(k)) u

∗T
abc(t

∗
3(k))

]T

t∗(k)=
[

t∗1(k) t∗2(k) t∗3(k)
]T

.

The block diagram of the proposed direct MPC scheme is

shown in Fig. 4, and the pseudocode is provided in Algo-

rithm 1.

D. Observer

MPC, being in essence a proportional controller, can be

susceptible to steady-state tracking errors due to model un-

certainties and variations, measurement noise, system non-

idealities, such as dead-time effects, etc. [2]. To tackle this,

dc link

≈

=Minimization of

objective function

Calculation of

current gradient

Observer

z−1

IM

is,ref (t∗ , U∗)

u∗

abc(t3)

Encoder

is

ωr

ψ̂r

îs

Fig. 4: Fixed switching frequency direct MPC for a two-level three-phase
voltage source inverter driving an IM.

Algorithm 1 Fixed Switching Frequency Direct MPC

Given uabc(t
−
0 ), is,ref(t0) and x(t0)

1: Compute the corresponding gradient vectors mw, w ∈
{0, 1, . . . , 6}

2: Enumerate the possible switching sequences Uz , z ∈
{1, 2, . . . , 6}, based on uabc(t

−
0 )

3: For each Uz :

Detect if Uz is unsuited;

If not, solve the QP (15). This yields tz and Jz .

4: Solve optimization problem (16). This yields t∗ and U∗.

Return t∗(k) and U∗(k).

an observer, such as a Kalman filter (KF), can enhance the

robustness of MPC schemes to parameter mismatches and

other disturbances, see, e.g., [31], [32]. To achieve a high

degree of robustness as well as to obtain the rotor flux, a

KF is implemented in this work. Based on the discrete-time

state-space model (5), the KF equations are [33]

x̂(k + 1|k) = Ax̂(k) +Buabc(k)

P (k + 1|k) = AP (k|k)AT +Q

L(k + 1) = P (k + 1|k)CT (CP (k + 1|k)CT +R)−1

x̂(k + 1|k + 1) = x̂(k + 1|k)

+L(k + 1)(y(k + 1)−Cx̂(k + 1|k))

P (k + 1|k + 1) = P (k + 1|k)−L(k + 1)CP (k + 1|k) ,
(17)

where L is the Kalman gain matrix, x̂ is the estimated state, P

is the error covariance matrix, while Q and R are the system

noise and measurement covariance matrices, respectively.

IV. GRADIENT METHODS FOR DIRECT MPC

Gradient projection methods have shown to be very ef-

ficient for QPs, especially when the constraints are simple.

In particular, they have been widely used for QPs where

the variables of interest are only box-constrained [34]. For

general QPs, projecting the variables onto the feasible region

may require significant computations. However, the constraints
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mw = C(Fx(t0) +Guw), w ∈ {0, 1, ..., 6}

z = 0, J∗ = +∞
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Fig. 5: Flowchart of the proposed fixed switching frequency direct MPC
scheme.

in many MPC problems for power electronic systems are

simple and regular (i.e., global), thus the projection onto the

problem-specific feasible region can be efficiently performed

by fully exploiting its geometry. In this section, we propose

a computationally efficient projection method for the QP

problem of the direct MPC discussed in Section III. The

flowchart that summarizes the proposed gradient-based direct

MPC scheme and the QP solver is shown in Fig. 5.

A. Reformulation of the Feasible Set

The feasible set of the QP problem (15) is a so-called

truncated monotone cone. The projection of a variable onto

a truncated monotone cone is complicated, see [35] and

references therein. Although some algorithms exist, they rely

on complex approaches, such as multiparametric program-

ming [35], or involve computationally intensive operations,

such as the computation of pseudo-inverses of matrices [36].

To address this and to achieve a computationally efficient

projection, the feasible set is first reformulated by introducing

the new variables t̃i = ti − ti−1, with i ∈ {1, 2, 3, 4} and

t4 = Ts. Note that t̃i is essentially the application time of the

switch position uabc(ti−1). In doing so, the feasible set can

be described by simple bound constraints and one equality

constraint, i.e., t̃i ≥ 0, and
∑4

i=1 t̃i = Ts. This concept can

be applied to all variables involved in the long-horizon direct

MPC problem.

Based on the above, the vector of application times is

defined as

t̃ =
[

t̃T (k) t̃T (k + 1)
]T

(18)

where

t̃(ℓ) =
[

t̃1(ℓ) t̃2(ℓ) t̃3(ℓ) t̃4(ℓ)
]T

. (19)

With (18), function (13) is rewritten as

J = ‖r̃ − M̃t̃‖22 , (20)

where the vector r̃ and matrix M̃ are provided in the ap-

pendix. After expanding (20) as

J = t̃TM̃TM̃t̃− 2r̃TM̃ t̃+ r̃T r̃ (21)

and by omitting the constant term r̃T r̃, the reformulated

optimization problem can be stated as

minimize
t̃∈R8

1

2
t̃THt̃− fT t̃

subject to t̃ � 0

4
∑

i=1

t̃i(ℓ) = Ts, ∀ℓ = k, k + 1 ,

(22)

where H = 2M̃TM̃ is a symmetric, positive (semi)definite

matrix, f = 2M̃T r̃, 0 is a zero vector of appropriate

dimensions, and � denotes componentwise inequality. Note

that after the QP problem (22) has been solved, the switching

time instants t can be simply calculated as

t = T t̃ , (23)

where the transformation matrix T is provided in the appendix.

B. Projection onto the Feasible Region

An important step in gradient methods for constrained QP

problems is the projection of the variables of interest onto the

feasible region. Let the feasible region of (22) be defined as

Ω := {t̃ | t̃ � 0,

4
∑

i=1

t̃i =

8
∑

i=5

t̃i = Ts, t̃ ∈ R
8} .

The projection of any vector z onto Ω is the minimizer of the

problem

minimize
τ̃ ∈Ω

‖τ̃ − z‖22 . (24)

The proposed projection algorithm is based on constructing

the associated Lagrangian of (24), i.e.,

L(τ̃ , λ1, λ2,µ) =

1

2
τ̃T τ̃ − zT τ̃ − λ1(a

T
1 τ̃ − Ts)− λ2(a

T
2 τ̃ − Ts)− µ

T τ̃ ,

(25)

where λ1, λ2 ∈ R and µ ∈ R
8 are the so-called Lagrangian

multipliers. Moreover, a1 = [1T
4 0

T
4 ]

T and a2 = [0T
4 1

T
4 ]

T



are the vectors of the equality constraints, where 0 and 1 are

vectors with all components being zero and one, respectively,

and of dimension indicated by their subscript. The first-order

necessary conditions, which are known as the Karush-Kuhn-

Tucker (KKT) conditions, state that if τ̃ ∗, i.e., the projection

point, is a local solution of (24), then there is a set of

Lagrangian multipliers {µ∗, λ∗1, λ∗2}, such that the following

conditions are satisfied at (τ̃ ∗, λ∗1, λ∗2, µ∗) [34]

τ̃ ∗ − z − λ∗1a1 − λ∗2a2 − µ
∗ = 0 , (26a)

τ̃ ∗ � 0, µ∗ � 0 , (26b)

τ̃ ∗ ⊙ µ∗ = 0 , (26c)

aT
1 τ̃

∗ = Ts, a
T
2 τ̃

∗ = Ts , (26d)

where ⊙ denotes the componentwise product. For the convex

QP (24) satisfaction of the KKT conditions (26) suffices for

τ̃ ∗ to be a global solution [37]. In the following, it is shown

how τ̃ ∗ can be found by solving the KKT conditions (26).

First, it is noted that (26) can be split into two decoupled

sets of equations3

τ̃ ∗
(4ζ−3:4ζ) − z(4ζ−3:4ζ) − λ∗ζ14 − µ

∗
(4ζ−3:4ζ) = 0 , (27a)

τ̃ ∗
(4ζ−3:4ζ) � 0, µ∗

(4ζ−3:4ζ) � 0 , (27b)

τ̃ ∗
(4ζ−3:4ζ) ⊙ µ

∗
(4ζ−3:4ζ) = 0 , (27c)

4ζ
∑

i=4ζ−3

τ̃∗i = Ts , (27d)

where the value of ζ ∈ {1, 2} indicates the prediction horizon

step. Therefore, the two equation sets (27) can be solved

separately. By taking ζ = 1 as an example, (27a) can be

expanded to four scalar equations as

τ̃i = zi + λ1 + µi, i ∈ {1, 2, 3, 4} . (28)

Combining (28) with (27b) and (27c), it yields

(τ̃i, µi) =

{

(0, − λ1 − zi) if λ1 < −zi

(zi + λ1, 0) otherwise .
(29)

If there exists λ1 such that
∑4

i=1 τ̃
∗
i = Ts—denoted as λ∗1—

it follows that the KKT conditions (26) with ζ = 1 are

satisfied. As a result, the solution τ̃ ∗
(1:4) can be obtained

directly from (29). Specifically, based on (29),
∑4

i=1 τ̃i can

be written as a piecewise linear continuous function of λ1

f(λ1) =

4
∑

i=1

τ̃i =



































0 if λ1 < −z̃1

z̃1 + λ1 if − z̃1 ≤ λ1 < −z̃2
...
4
∑

i=1

z̃i + 4λ1 if − z̃4 ≤ λ1 ,

(30)

where z̃ includes the elements of z sorted in a descending or-

der. Since f(λ1) is either constant or increasing monotonically

and linearly with λ1, λ∗1 can be found by examining the value

3The notation τ̃∗

(4ζ−3:4ζ)
, z(4ζ−3:4ζ) , and µ∗

(4ζ−3:4ζ)
indicates the

entries from 4ζ − 3 up to 4ζ of τ̃∗, z, and µ∗, respectively.

Algorithm 2 Projection onto Ω

1: function τ̃ ∗ = PΩ(z)

2: for ζ = 1, 2 do

3: z̃ = sort(z(4ζ−3:4ζ), descend)

4: λ̃ = −z̃
5: f(λ̃1) = 0
6: for j = 2 to 4 do

7: f(λ̃j) =
∑j

i=1 z̃i + jλ̃j
8: if f(λ̃j) ≥ Ts then

9: λ∗ζ = λ̃j−1 + (λ̃j − λ̃j−1)
(Ts−f(λ̃j−1))

(f(λ̃j)−f(λ̃j−1))

10: break
11: else

12: if j = 4 then

13: λ∗ζ = (Ts −
∑4

i=1 z̃i)/4
14: break
15: end if

16: end if

17: end for

18: τ̃ ∗
(4ζ−3:4ζ) = max{04, z(4ζ−3:4ζ) + λ∗ζ14}

19: end for

20: return τ̃ ∗

21: end function

of f(λ1) at its breakpoints λ̃i. From (30), it is evident that

f(λ1) has four breakpoints, i.e., λ̃i = −z̃i for i ∈ {1, 2, 3, 4}.

Once a λ̃j is found such that f(λ̃j−1) ≤ Ts and f(λ̃j) ≥ Ts,

then λ∗1 is in the interval [λ̃j−1, λ̃j ] and can be obtained by

linear interpolation. If λ∗1 is not found after all the breakpoints

are examined, then λ∗1 is located in the interval [λ̃4,+∞) and

it is equal to λ∗1 = (Ts −
∑4

i=1 z̃i)/4.

Once λ∗1 and τ̃ ∗
(1:4) are obtained, λ∗2 and τ̃ ∗

(5:8) can be found

by setting ζ = 2 and following the same procedure. The

proposed projection algorithm is summarized in Algorithm 2.

C. Gradient Projection Method for Direct MPC

To find the solution t̃∗ of problem (22), the proposed

gradient projection method searches along the steepest descent

direction from the current point t̃κ, i.e.,

t̃κ+1 = t̃κ − ακgκ , (31)

where gκ = Ht̃κ − f is the gradient vector at t̃κ, ακ ∈ R
+

is the step size, and κ ∈ N denotes the κth step of the solution

process. Following, t̃κ+1 is projected onto the feasible region

Ω by invoking Algorithm 2, i.e., τ̃ ∗
κ+1 = PΩ(t̃κ+1), where

PΩ refers to the projection function provided in Algorithm 2.

Subsequently, the process continues from point τ̃ ∗
κ+1 by con-

sidering it as the next starting point in (31), i.e., t̃κ+1 ≡ τ̃ ∗
κ+1.

As can be understood, an important factor that affects the

rate of convergence of the gradient method is the step size ακ.

In the classic steepest descent method this is chosen by exact

line search, i.e., by searching for the optimal point along the

steepest descent direction. However, it has been shown that

the rate of convergence of the classical method is slow and

it gets worse as the QP problem becomes ill-posed. As an

alternative, Barzilai and Borwein proposed a strategy—known

as the BB method—for choosing the step size [38], which



Algorithm 3 QP Algorithm for Direct MPC

1: function t̃∗ = GRADPROJ(H ,f , t̃0, α0, tol)
2: g0 =Ht̃0 − f
3: for κ = 0, 1, . . . do

4: if ‖PΩ(t̃κ − gκ)− t̃κ‖ ≤ tol then

5: t̃∗ = t̃κ
6: break
7: end if

8: τ̃ ∗
κ+1 = PΩ(tκ − ακgκ)

9: t̃κ+1 = τ̃ ∗
κ+1

10: gκ+1 =Ht̃κ+1 − f
11: ακ+1 = (∆t̃Tκ∆t̃κ)/(∆t̃

T
κ∆gκ)

12: end for

13: return t̃∗

14: end function

offers several advantages over the classical method, such as

less computational effort, fast convergence, and less sensitivity

to ill conditioning [39], [40]. According to the BB step [38],

the step size in (31) is chosen as

ακ+1 =
∆t̃Tκ∆t̃κ

∆t̃Tκ∆gκ
, (32)

where ∆t̃κ = t̃κ+1 − t̃κ and ∆gκ = gκ+1 − gκ. With (31)

and (32), the algorithm continuous in an iterative manner until

it fulfills an optimization criterion. Specifically, the process

terminates when ‖PΩ(t̃κ−gκ)− t̃κ‖ is within a predetermined

tolerance.

Based on the above, the complete algorithm for solving (22)

is summarized in Algorithm 3. The arguments of the algorithm

are the Hessian matrix H , and the vector f , as defined

in (22) as well as the initial point t̃0 ∈ Ω, the initial step

α0, and the value of the tolerance tol. The initial point can

be chosen according to a warm-start strategy, e.g., based

on the previously computed solution t̃∗(k + 1). Moreover,

in this work, as shown in Section IV-D, t̃0 is also utilized

for detecting unsuited switching sequences U . As for the

initial step size α0, it marginally affects the convergence of

the algorithm, since it is updated in every iteration of the

search process according to (32). On the other hand, the

tolerance tol can considerably affect the rate of convergence,

since a very small value can result in a slow convergence.

However, the exact solution is not necessary since the model

itself is not ideal. Hence, in this work, tol is set to 10−6,

which means that the optimal switching application times t̃∗

are acceptable within a tolerance of 1 µs. Considering that

the sampling interval for the examined case study is a few

hundreds of microseconds, a solution with 1 µs tolerance is

accurate enough.

Finally, it is worth mentioning that the BB methods are

inherently non-monotonic, which means that the value of the

objective function may increase at some iterations. To tackle

this, a line search is required to prove the convergence, and

some studies, e.g., [41], have reported some cases that the BB

methods without line search fail to converge. However, this

happens rarely and only in large-scale problems. For small-

scale QPs, as the one presented in (22), the employed BB

method always converges efficiently without requiring a line

search. For more details about the line search strategy, see [39]

and references therein.

D. Detection of Unsuited Switching Sequences

As explained in Section III, the gradient-based direct MPC

scheme enumerates the feasible switching sequences and se-

lects the one that minimizes (16). According to the control

principle presented in Section III-A, each switching sequence

in one sampling interval Ts consists of four switch positions;

two of them correspond to zero vectors in the αβ-plane—

applied at the beginning and end of Ts—and the other two

to adjacent active vectors—applied in between, see Fig. 2(a).

However, not all active vectors positively affect the track-

ing of the stator current reference. Such active vectors, and

consequently the corresponding switching sequences, can be

detected quickly by the proposed gradient projection method,

as explained below.4

To do so, consider one-step MPC and let the initial point be

t̃0 = [Ts/2 0 0 Ts/2]. The steepest descent direction can be

obtained by calculating its gradient vector g0 = Ht̃0 − f . If

this direction points to the region where t̃ has negative duration

time for an active vector, i.e., the second and third entries of

t̃, it can be concluded that this active vector will adversely

affect the system performance if applied to the inverter, thus

the associated switching sequence is suboptimal.

To allow the gradient projection to reach the region where

t̃i < 0, the bound constraints are neglected so that the relaxed

feasible region is defined as

Ω0 := {t̃ |

4
∑

i=1

t̃i = Ts, t̃ ∈ R
4} .

Then, one step is taken from the initial point t̃0 in the steepest

descent direction and projected onto the relaxed region, i.e.,

t̃1 = PΩ0
(t̃0−g0), where PΩ0

(z) is the function that projects

any vector z onto Ω0. If the duration of an active vector in

t̃1 is negative, the associated switching sequence is discarded.

The projection PΩ0
(z), is computed as

minimize
τ̃ ∈Ω0

‖τ̃ − z‖22 , (33)

which can be easily solved by exploring its KKT conditions,

i.e.,

τ̃ ∗ − z − λ∗14 = 0 , (34a)

4
∑

i=1

τ̃∗i = Ts . (34b)

Specifically, since (34a) can be written as τ̃∗i = zi + λ∗,

i ∈ {1, 2, 3, 4}, by inserting it into (34b), the solution of (33)

is given by λ∗ = (Ts−
∑4

i=1 zi)/4 and τ̃ ∗ = λ∗14+z. Hence,

t̃1 can be found with a simple one-step projection, enabling a

fast and accurate detection of unsuited switching sequences.

4An alternative to determine the “suitable” switching sequence is to utilize
the deadbeat solution of the control problem, i.e., the modulating signal that
a deadbeat controller would use. In doing so, the triangular sector in which
the modulating signal lies would provide the desired switching sequence,
see Fig. 3. However, such an approach can lead to suboptimal solutions [4,
Section VII], thus the proposed method is preferred since it guarantees
optimality.
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(b) Transient operation.

Fig. 6: Switching sequences selected by the detection method (blue circles)
and the globally optimal switching sequence (red cross).

The validity of the described method is examined in sim-

ulation for both steady-state and transient operation for the

drive system shown in Fig. 1 with the parameters given in

Tables II and III. Fig. 6(a) shows for one fundamental period

the switching sequences Uz , z ∈ {1, 2, . . . , 6}, (see Table I)

considered as candidate solutions (shown as blue circles) by

the aforementioned method in steady-state operation. In the

same figure, the optimal switching sequence U∗ found after

solving all six QPs for all possible switching sequences is

also indicated (shown with a red cross). Moreover, the same

data are depicted in Fig. 6(b) for transient operation, namely

for a torque reference step-down—from Te,ref = 1 to 0 per

unit (p.u.)—and step-up—from Te,ref = 0 to 1 p.u.—change

at t = 4ms and t = 13ms, respectively. As can be seen, the

detection method selects one or two “suitable” switching se-

quences, with the globally optimal sequence always included.

V. PERFORMANCE EVALUATION

The performance of the proposed direct MPC scheme

is examined in the laboratory with a three-phase two-level

inverter driving an IM, as shown in Fig. 1. The inverter is

supplied by a stiff dc source. The real-time control platform

is a dSPACE SCALEXIO system, consisting of a 4GHz Intel

XEON processor and a Xilinx Kintex-7 field-programmable

gate array (FPGA). Two three-phase two-level SEW MDX

inverters are used to control the IM and the load machine. The

experimental setup is shown in Fig. 7. The rated values of the

IM and the parameters of the system are given in Tables II

and III, respectively. Note that all results are shown in the p.u.

system.

A. Steady-State Operation

The steady-state performance of the drive system controlled

by the direct MPC scheme is examined while the IM is

A B C

D

E

F G

Fig. 7: Experimental setup of the electrical drive test bench. A: SEW inverter
for induction machine (IM), B: SEW inverter for load permanent magnet
synchronous machine (PMSM), C: dSPACE SCALEXIO real-time control
system, D: Interface, E: Oscilloscope, F: IM, G: PMSM.

TABLE II: Rated values of the induction machine.

Parameter Symbol SI Value

Rated voltage VR 380V

Rated current IR 5.73A

Rated stator frequency fsR 50Hz

Rated rotor speed ωmR 2880 rpm

Rated power PR 3 kW

TABLE III: System parameters in the SI and the p.u. system.

Parameter SI (p.u.) symbol SI (p.u.) value

Stator resistance Rs (Rs) 1.509Ω (0.0394)

Rotor resistance Rr (Rr) 1.235Ω (0.0323)

Stator leakage inductance Lls (Xls) 7.0mH (0.0574)

Rotor leakage inductance Llr (Xlr) 7.0mH (0.0574)

Mutual inductance Lm (Xm) 232.5 mH (1.9077)

Number of pole pairs p 1

Dc-link voltage Vdc (Vdc) 650 V (2.0950)

operating at rated torque and nominal speed, i.e., the fun-

damental frequency is f1 = 50Hz, and the electromagnetic

torque reference is set equal to Te,ref = 1 p.u., as shown in

Fig. 8. Considering that the relationship between the switching

frequency fsw and the sampling interval Ts is given by

fsw =
1

2Ts
, (35)

the sampling interval is chosen as Ts = 123.4 µs so that a

switching frequency fsw of 4050Hz results. Fig. 8(a) shows

the three phase stator current measured by the oscilloscope

with a sampling frequency of 50 kHz, while its harmonic

spectrum is shown in Fig. 8(b). The current THD is 5.80%,

relatively low considering the small total leakage reactance

of 0.11 p.u. The current harmonics are mainly the sideband

harmonics caused by the switching nature of the converter.

Besides, some pronounced harmonics can be observed at low

frequencies, especially around 1000Hz, i.e., the 17th and
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(b) Stator current harmonic spectrum. The THD is 5.80%.
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(d) Electromagnetic torque Te.

Fig. 8: Experimental results of direct MPC at steady-state operation, fsw =

4050Hz.
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(b) Stator current harmonic spectrum. The THD is 6.18%.
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(d) Electromagnetic torque Te.

Fig. 9: Experimental results of FOC at steady-state operation, fsw =

4050 Hz.

19th harmonic. Such harmonics are mainly caused by the

slotting and saturation effects in the IM [42]. Finally, Figs. 8(c)

and 8(d) show the stator flux magnitude and electromagnetic

torque, respectively. These values are estimated in dSPACE,

based on the machine model and the observer discussed in

Section III-D.

For comparison purposes, field-oriented control (FOC) with

proportional-integral (PI) controllers and SVM is also imple-

mented. The operating conditions and switching frequency are

the same as those of direct MPC, while the PI parameters are

tuned according to the modulus optimum method. As can be

seen in Fig. 9(a), the stator current is very similar to that of

the direct MPC scheme, but with a slightly higher ripple. This

is reflected in the harmonic spectrum (see Fig. 9(b)), where

higher current distortions can be observed, with the current

THD being equal to 6.19%. This is mainly due to fact that

the harmonics caused by the slotting and saturation effects

are more pronounced with FOC. This can be explained by

the fact that the PI-based FOC has less control bandwidth

so it cannot effectively remove these relatively high-order

harmonics. Conversely, MPC can suppress—to some extent—

those harmonics caused by the nonlinearities of the IM.

Furthermore, to gain more insight into how the direct

MPC scheme manipulates the converter switch positions, the

notion of the three-phase equivalent modulating signal dabc is

introduced. To this end, the single-phase equivalent modulating

signal is defined as dx = Ton,x/Ts, with x ∈ {a, b, c}, where

Ton,x is the time interval within one Ts that ux = 1. The three-

phase equivalent modulating signal is shown in Fig. 10 for

the proposed MPC scheme. In the same figure the modulating

signal of FOC with SVM is depicted. As can be observed in

Fig. 10, the direct MPC scheme, although it does not employ

a modulator, achieves a very similar equivalent modulating

signal.

Finally, to further elucidate the performance of the proposed

controller, Fig. 11 depicts the current THD for switching

frequencies in the range fsw ∈ [750, 5250]Hz. As before,

the current THD produced by FOC is also shown. Moreover,
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(b) FOC.

Fig. 10: Three phase equivalent modulating signal of direct MPC and
modulating signal of FOC at nominal steady-state operation, fsw = 4050 Hz.

I T
H
D

[%
]

fsw [kHz]

0.6 1.2 1.8 2.4 3 3.6 4.2 4.8 5.4
4

8

12

16

20

24

Fig. 11: Trade-off between current THD and switching frequency for the
proposed direct MPC (blue, solid line), FOC (black, dashed line), FCS-MPC1
(green, dotted line), and FCS-MPC2 (red, dash-dotted line).

to clearly highlight the benefits of the proposed direct MPC

strategy, the current THD achieved with two conventional

FCS-MPC methods is also reported. Specifically, the first FCS-

MPC method (referred to as FCS-MPC1) has the objective

function

J = ‖is,ref(k + 1)− is(k + 1)‖1 ,

i.e., it does not penalize the control action and uses the ℓ1-

norm, while the switching frequency is adjusted by modifying

the sampling interval Ts. The objective function of the second

FCS-MPC method (FCS-MPC2) is based on the ℓ2-norm,

penalizes the control effort, and uses the sampling interval

Ts = 50 µs, i.e.,5

J = ‖is,ref(k + 1)− is(k + 1)‖22 + λu‖∆uabc(k)‖
2
2 .

As can be seen, Fig. 11 clearly shows the superior steady-

state performance of the proposed direct MPC scheme since

it achieves the lowest values of current THD ITHD over the

whole range of the examined switching frequencies.

B. Transient Behavior

While operating at the same switching frequency as before

(i.e., fsw = 4050Hz), the transient behavior of the examined

5The reader is referred to [4] for insights into the discussed designs of
FCS-MPC.
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(b) Electromagnetic torque Te.

Fig. 12: Experimental results of direct MPC during a torque reference step-
down transient.
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(b) Electromagnetic torque Te.

Fig. 13: Experimental results of direct MPC during a torque reference step-up
transient.

direct MPC scheme is tested during torque reference steps

from Te,ref = 1 to 0 p.u. as well as from Te,ref = 0 to 1 p.u..

These cases are shown in Figs. 12 and 13, respectively. As a

comparison, Figs. 14 and 15 show the performance of FOC

for the same scenarios. For the torque reference step-down

case, the proposed direct MPC scheme smoothly regulates

the current—and thus the torque—to the new reference within

two sampling intervals, without any over- and/or undershoots,

see Fig. 12. FOC, on the other hand, suffers from a visible

undershoot in the torque, see Fig. 14. As for the torque

reference step-up case, the proposed direct MPC strategy

achieves a significantly faster settling time of about 2ms as

compared to the 3ms required by FOC, see Figs. 13 and 15,

respectively.

For more insight into the dynamic behavior of the presented

direct MPC algorithm, Fig. 16 shows the equivalent modulat-

ing signal during the torque reference step changes in detail.
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(b) Electromagnetic torque Te.

Fig. 14: Experimental results of FOC during a torque reference step-down
transient.
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(b) Electromagnetic torque Te.

Fig. 15: Experimental results of FOC during a torque reference step-up
transient.

In a same fashion, Fig. 17 depicts the modulating signal with

FOC. At the torque reference step-down case, the direct MPC

method instantly pushes the application times of the switch

positions close to their limits and reverses the polarity of

the equivalent modulating signal, see Fig. 16(a), so that the

converter applies the switch positions that result in as fast a

response as possible for the optimal amount of time. As for

the torque step-up case, the MPC strategy fully utilizes the

available dc-link voltage (see Fig. 16(b)) so that the settling

time is only limited by the physical limits of the system. We

conclude that the proposed direct MPC algorithm inherits the

favorable dynamic behavior that characterizes direct control

schemes. As for the PI-based FOC, it also tries to reverse

the polarity of the modulating signal during the step-down

scenario, but it does not manage to do it as aggressively as

MPC, see Fig. 17(a). Moreover, during the step-up case, shown

in Fig. 17(b), FOC tries to fully utilize the available dc-link
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(a) Step-down case.
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(b) Step-up case.

Fig. 16: Three-phase equivalent modulating signal of direct MPC at torque
reference steps.
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(b) Step-up case.

Fig. 17: Three-phase modulating signals of FOC at torque step reference steps.

voltage. In doing so, the modulating signal is saturated due to

the employed anti-windup mechanism with saturation, but in

a less aggressive manner due to the integrating element of the

controller. Moreover, due to the fact that the controller (i.e.,

FOC) and modulator (i.e., SVM) are two decoupled entities

that act independently from each other, the best possible

dynamic performance is not guaranteed because the voltage

synthesized by SVM is different from the voltage commanded

by FOC [43]. As a result, the dynamics of FOC are slower,

as also shown in Fig. 15.

Another scenario for evaluating the transient behavior of a

controller is operation under speed changes. Since the focus

of this work is on the inner current control loop designed in

the framework of MPC, the load machine is used to impose

a speed ramp of around 0.85 p.u., while keeping the current

reference of the IM constant. As shown in Figs. 18 and 19,

the MPC algorithm achieves good reference current tracking

during these speed ramps.
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Fig. 18: Speed reference ramp (from 1 to 0.15 p.u.) with direct MPC.

Time [ms]
0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

(a) Electrical speed ωs.

Time [ms]
0 20 40 60 80 100

−1

−0.5

0

0.5

1

(b) Three-phase stator current is,abc.

Fig. 19: Speed reference ramp (from 0.15 to 1 p.u.) with direct MPC.

C. Computational Burden

The main computational burden of the direct MPC scheme

relates to the solution of the QP problem(s). Table IV sum-

marizes the average and maximum number of iterations nit

required by the proposed QP algorithm to conclude to the

optimal solution of one QP, along with the corresponding

turnaround time tta,QP on dSPACE. In the same table, the

turnaround time of the whole control scheme tta,tot is also

shown. This time includes, besides the time required to solve

the QP(s), the time needed for the analog-to-digital conversion

(ADC), the uplink and downlink communication as well as the

generation of the gating signals. As can be seen, the average

number of iterations to solve one QP is 39.7 and the maximum

98. Considering that the optimization variable t̃ of each QP

problem is eight-dimensional, while eight boundary conditions

exist along with two equality constrains, the required number

of iterations is modest. Moreover, since each iteration of the

proposed QP algorithm requires little computational effort, the

TABLE IV: Number of iterations required by the QP algorithm and the
turnaround times on dSPACE, where tta,QP corresponds to solving one QP,
and tta,tot to executing the whole control algorithm.

Number of Turnaround time Turnaround time

iterations nit tta,QP (µs) tta,tot (µs)

Average 39.7 16.9 28.7

Maximum 98 42.6 71.3

P
ro

b
ab

il
it

y
[%

]

Number of iterations nit

0 10 20 30 40 50 60 70 80 90 100
0

2.5

5

7.5

10

Fig. 20: Probability distribution of the number of iteration steps required by
the QP algorithm. The average number of iterations is indicated by the solid
vertical line. The 95, 98, and 99 percentiles are shown as dashed, dashed-
dotted, and dotted vertical lines, respectively.
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Fig. 21: Probability distribution of the turnaround time tta,tot . The average
turnaround time is indicated by the solid vertical line. The 95, 98, and 99

percentiles are shown as dashed, dashed-dotted, and dotted vertical lines,
respectively.

TABLE V: The maximum turnaround time tta,max of the four discussed
control algorithms running on dSPACE.

FOC FCS-MPC1 FCS-MPC2 Direct MPC

Turnaround time
16.6 16.9 17.1 71.3

tta,max (µs)

maximum turnaround time of the proposed QP algorithm, i.e.,

tta,QP, is as little as 42.6 µs. Furthermore, since the unsuited

switching sequences can be effectively detected with only a

few computations, the maximum turnaround time of the whole

control scheme, i.e., tta,tot, is only 71.3 µs. In addition, the

probability distribution of the number of iterations nit and the

turnaround time tta,tot are shown in Figs. 20 and 21, respec-

tively. As shown, in more than 98% cases, the turnaround time

tta,tot is less than 50 µs. This indicates that the proposed QP

solver manages to solve the necessary number of QPs in real

time very quickly and within the available time, as defined

by the chosen sampling interval of Ts = 123.4 µs, thanks

the fast projection algorithm and the BB method discussed

in Section IV.

Finally, the maximum (i.e., worst-case scenario) turnaround

times tta,max of the four discussed control algorithms, i.e.,

the proposed direct MPC scheme, FOC, FCS-MPC1 and

FCS-MPC2, are summarized in Table V. As can be seen,

the superior performance of the proposed algorithm comes

at a cost of increased computational demands. It is worth



mentioning, however, that, if needed, the turnaround time of

the proposed control scheme can be significantly reduced, e.g.,

by decreasing the horizon to one step and/or by manipulating

the maximum number of iteration steps, as can be deduced

from Fig. 20. Nevertheless, such a reduction in the computa-

tional cost would occur at the expense of performance, i.e., a

somewhat increased stator current THD.

VI. CONCLUSIONS

This paper proposed a computationally efficient QP solver

that enabled the real-time implementation—and subsequent

experimental evaluation—of the direct MPC scheme initially

proposed in [24]. The proposed QP solver, by exploiting the

specific feasible set of the QP problem underlying MPC,

performs the projection onto it very quickly, which allows

one to find the optimal solution with a relatively few number

of iterations. Moreover, the proposed algorithm can exclude

suboptimal solutions at a very early stage of the optimization

process, thus greatly alleviating the associated computational

effort.

In contrast to conventional FOC, the discussed direct MPC

scheme directly manipulates the converter switch positions so

that it can achieve short settling times during transients, on

par with deadbeat control. However, thanks to the adopted

control principles, and despite the absence of a modulator, the

proposed direct MPC algorithm manages to achieve a constant

switching frequency with a discrete harmonic spectrum. As a

result, low current distortions are produced during steady-state

operation. As shown for a two-level inverter driving an IM,

the proposed direct MPC strategy achieves both lower current

THD at steady-state operation and better dynamic behavior

during transients than a conventional linear controller with a

modulator, namely FOC with SVM.

APPENDIX

The vector r and matrix M in (13) are

r =































is,ref(t0)− is(t0)

is,ref(t0)− is(t0)

is,ref(t0)− is(t0)

Λ(is,ref(Ts)− is(t0)−m(t3(k))Ts)

is,ref(Ts)− is(t0)

is,ref(Ts)− is(t0)

is,ref(Ts)− is(t0)

Λ(is,ref(2Ts)− is(t0)−m(t3(k + 1))2Ts)































and

M =































mt0 02 02 02 02 02

m0 mt1 02 02 02 02

m0 m1 mt2 02 02 02

Λm0 Λm1 Λm2 02 02 02

m0 m1 m2 mt̄0 02 02

m0 m1 m2 m0̄ mt̄1 02

m0 m1 m2 m0̄ m1̄ mt̄2

Λm0 Λm1 Λm2 Λm0̄ Λm1̄ Λm2̄































with

mti =m(ti(k)) −mref(k)

mt̄i =m(ti(k + 1))−mref(k + 1)

mi =m(ti(k)) −m(ti+1(k))

mī =m(ti(k + 1))−m(ti+1(k + 1))

where i ∈ {0, 1, 2} and t0(k + 1) = Ts.

The vector r̃ and matrix M̃ in (20) are

r̃ =































is,ref(t0)− is(t0)

is,ref(t0)− is(t0)

is,ref(t0)− is(t0)

Λ(is,ref(t0)− is(t0))

is,ref(t0)− is(t0)

is,ref(t0)− is(t0)

is,ref(t0)− is(t0)

Λ(is,ref(t0)− is(t0))































and

M̃ =






























m̃0 02 02 02 02 02 02 02

m̃0 m̃1 02 02 02 02 02 02

m̃0 m̃1 m̃2 02 02 02 02 02

m̃0Λ m̃1Λ m̃2Λ m̃3Λ 02 02 02 02

m̃0 m̃1 m̃2 m̃3 m̃0 02 02 02

m̃0 m̃1 m̃2 m̃3 m̃0̄ m̃1̄ 02 02

m̃0 m̃1 m̃2 m̃3 m̃0̄ m̃1̄ m̃2̄ 02

m̃0Λ m̃1Λ m̃2Λ m̃3Λ m̃0̄Λ m̃1̄Λ m̃2̄Λ m̃3̄Λ































with

m̃i =m(ti(k))−mref(k))

m̃iΛ = Λm̃i

m̃ī =m(ti(k + 1))−mref(k + 1))

m̃īΛ = Λm̃ī

where i ∈ {0, 1, 2, 3}.

The matrix T in (23) is

T =

[

Ĩ 03 03×3 03

03×3 03 Ĩ 03

]

,

where Ĩ is

Ĩ =







1 0 0

1 1 0

1 1 1






.
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“Stator-current spectrum signature of healthy cage rotor induction ma-
chines,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 4025–4033, Sep.
2013.

[43] J.-K. Seok, J.-S. Kim, and S.-K. Sul, “Overmodulation strategy for
high-performance torque control,” IEEE Trans. Power Electron., vol. 13,
no. 4, pp. 786–792, Jul. 1998.

Qifan Yang was born in Anhui, China, in 1995. He
received the B.Eng. degree in electrical engineering
Xi’an Jiaotong University, Xi’an, Shannxi, China,
in 2016, and the M.Sc. degree in electrical power
engineering from Technical University of Munich,
Munich, Germany, in 2019. Since 2019, he has
been pursuing the Ph.D. degree at the Chair of
Electrical Drive Systems and Power Electronics,
Technical University of Munich (TUM), Germany.
His research interest include optimal control, power
electronics and electrical drives.



Petros Karamanakos (S’10 – M’14 – SM’19)
received the Diploma and Ph.D. degrees in electrical
and computer engineering from the National Techni-
cal University of Athens (NTUA), Athens, Greece,
in 2007, and 2013, respectively.

From 2010 to 2011 he was with the ABB Corpo-
rate Research Center, Baden-Dättwil, Switzerland,
where he worked on model predictive control strate-
gies for medium-voltage drives. From 2013 to 2016
he was a PostDoc Research Associate in the Chair
of Electrical Drive Systems and Power Electronics,

Technische Universität München, Munich, Germany. Since September 2016,
he has been an Assistant Professor in the Faculty of Information Technology
and Communication Sciences, Tampere University, Tampere, Finland. His
main research interests lie at the intersection of optimal control, mathematical
programming and power electronics, including model predictive control and
optimal modulation for power electronic converters and ac variable speed
drives.

Dr. Karamanakos received the 2014 Third Best Paper Award of the
IEEE Transactions on Industry Applications and two Prize Paper Awards at
conferences. He serves as an Associate Editor of the IEEE Transactions on
Industry Applications and of the IEEE Open Journal of Industry Applications.

Wei Tian was born in Taizhou, Jiangsu, China, in
1989. He received the B.Eng. degree in electrical
engineering and automation from Central South Uni-
versity (CSU), Changsha, China, in 2012 and the
M.Sc. degree in electrical power engineering from
RWTH Aachen University, Aachen, Germany, in
2015. Since 2016, he has been pursuing the Ph.D.
degree at the Chair of Electrical Drive Systems and
Power Electronics, Technical University of Munich
(TUM), Munich, Germany. His research interests in-
clude power electronics and electrical drives, model

predictive control, and modular multilevel converter.

Xiaonan Gao (S’18-M’21) was born in Liaoning,
China, in 1990. He received the B.S. and M.S.
degrees in electrical engineering from the Dalian
University of Technology, Dalian, China, in 2013
and 2016, respectively.

He is currently working toward the Ph.D. degree
with the Institute for Electrical Drive Systems and
Power Electronics, Technical University of Munich,
Germany. His research interests include power elec-
tronics and electrical drives, predictive control, and
multilevel converters.

Xinyue Li was born in Yunnan, China, in 1991. She
received her B.S. degree in electrical engineering
from Tsinghua University, Beijing, China, in 2013,
and the M.S. degree in electrical engineering, infor-
mation technology and computer engineering from
the RWTH Aachen University, Aachen, Germany,
in 2017. She is currently working toward the Dr.
Ing (Ph.D.) degree with the Institute for Electrical
Drive Systems and Power Electronics, Technical
University of Munich, Munich, Germany.

Since 2017, she has been with the research and
Development Department, Bosch Rexroth AG, Germany. Her research in-
terests include parameter identification, robust and optimal control of ac
machines.

Tobias Geyer (M’08 – SM’10) received the Dipl.-
Ing. and Ph.D. degrees in electrical engineering from
ETH Zurich, Zurich, Switzerland, in 2000 and 2005,
respectively, and the Habilitation degree in power
electronics from ETH Zurich, Zurich, Switzerland,
in 2017.

After his Ph.D., he spent three years at GE Global
Research, Munich, Germany, three years at the Uni-
versity of Auckland, Auckland, New Zealand, and
eight years at ABB’s Corporate Research Centre,
Baden-Dättwil, Switzerland. There, in 2016, he be-

came a Senior Principal Scientist for power conversion control. He was ap-
pointed as an extraordinary Professor at Stellenbosch University, Stellenbosch,
South Africa, from 2017 to 2023. In 2020, he joined ABB’s medium-voltage
drives business as R&D platform manager of the ACS6080.

He is the author of 35 patent families and the book “Model predictive
control of high power converters and industrial drives” (Wiley, 2016). He
teaches a regular course on model predictive control at ETH Zurich. His
research interests include medium-voltage and low-voltage drives, utility-scale
power converters, optimized pulse patterns and model predictive control.

Dr. Geyer received the Semikron Innovation Award and the Nagamori
Award, both in 2021. He is also the recipient of the 2017 First Place Prize
Paper Award in the Transactions on Power Electronics, the 2014 Third Place
Prize Paper Award in the Transactions on Industry Applications, and of
two Prize Paper Awards at conferences. He is a former Associate Editor
for the Transactions on Industry Applications (from 2011 until 2014) and
the Transactions on Power Electronics (from 2013 until 2019). He was
an international program committee vice chair of the IFAC conference on
Nonlinear Model Predictive Control in Madison, WI, USA, in 2018. Dr. Geyer
is a Distinguished Lecturer of the Power Electronics Society in the years 2020
and 2021.

Ralph Kennel (M’89-SM’96) was born in Kaiser-
slautern, Germany, in 1955. He received the Diploma
and Dr. Ing. (Ph.D.) degrees in electrical engineer-
ing from the University of Kaiserslautern, Kaiser-
slautern, Germany, in 1979 and 1984, respectively.

From 1983 to 1999, he worked on several posi-
tions with Robert BOSCH GmbH (Germany). Until
1997, he was responsible for the development of
servo drives. From 1994 to 1999, he was a Visiting
Professor with the University of Newcastle-upon-
Tyne, Newcastle-upon-Tyne, U.K. From 1999 to

2008, he was a Professor of electrical machines and drives with Wuppertal
University, Wuppertal, Germany. Since 2008, he has been a Professor of
electrical drive systems and power electronics with Technical University of
Munich, Munich, Germany. His current main interests include renewable
energy systems, sensorless control of ac drives, predictive control of power
electronics, and hardware-in-the-loop systems.

Dr. Kennel is a Fellow of the IEE and a Chartered Engineer in the U.K.
within IEEE, he is a Treasurer of the Germany Section as well as ECCE
Global Partnership Chair of the Power Electronics society. He is an Associate
Editor for the IEEE TRANSACTIONS ON POWER ELECTRONICS.


