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Abstract—An FPGA implementation of Model Predictive Di-
rect Current Control (MPDCC) is reported in this paper. A
central scheduler enumerates switching sequences and assigns
these to several explorer units, which predict the system response
and compute their associated cost. The proposed FPGA design is
scalable, modular and requires little hardware resources. A five-
level active neutral point clamped inverter with a medium-voltage
induction machine is considered. The MPDCC scheme controls
the machine’s stator currents, the neutral point potential and the
inverter’s phase capacitor voltages at a low switching frequency.

I. INTRODUCTION

Model predictive control (MPC) has received considerable
attention from academic and industrial researchers in the
past decades [1], [2], [3]. Despite its performance advantages
for constrained multiple-input multiple-output systems, the
requirement for solving an optimization problem in real time
has traditionally restricted its application scope to systems with
slow dynamics, such as process control plants.

In recent years, the development of fast optimization al-
gorithms and the increasing availability of inexpensive and
powerful computational platforms has opened the possibility
of using MPC also for applications with fast dynamics. This
includes power electronics systems, for which the optimiza-
tion problem typically needs to be solved within several
microseconds [4]. Due to their relatively low cost and high
computational performance, field programmable gate arrays
(FPGAs) are an attractive choice to serve as control hardware
for such MPC algorithms [5].

In direct MPC, a common approach is to enumerate candi-
date switching sequences, to predict the system response and
the corresponding value of a cost function, and to choose
the switching sequence that minimizes this value. The cost
function typically reflects the deviation of the controlled
variables from their references and the switching effort. The
FPGA implementation of such MPC schemes is reported in
[6], [7], [8] for current controllers and in [9] for a torque
and flux magnitude controller. A quasi centralized controller
is described in [10] for a back-to-back converter system. To
make the optimization problem computationally tractable, a
prediction horizon of one step is widely adopted.

In an alternative direct MPC formulation, upper and lower
bounds are imposed on the controlled variables and the cost
function penalizes the switching effort [11]. For example,
bounds can be imposed on the three-phase stator currents
of an induction machine, giving rise to model predictive
direct current control (MPDCC) [12]. Thanks to the use
of extrapolation techniques, long prediction horizons with a

modest computational burden can be achieved, yielding low
current distortions at low switching frequencies [13]. This
makes MPDCC particularly attractive for medium voltage
(MV) applications, where the switching frequencies are typi-
cally limited to a few hundred Hertz.

In this paper, we propose an FPGA implementation of the
MPDCC algorithm that is tailored to a small FPGA. Several
computational units are operated in parallel to efficiently
compute the cost of one candidate switching sequence. A
central scheduler unit enumerates the candidate sequences
and distributes them among the available computational units.
The number of computational units can be adjusted according
to the available resources on the FPGA. This approach was
successfully implemented and tested on a Spartan 3 FPGA
for a five-level active neutral point clamped (ANPC) inverter
feeding an MV induction motor [14].

As such, the contribution of this paper is twofold. It is the
first one to consider MPDCC for a five-level inverter drive
system. More importantly, this is the first paper to report
an implementation of MPDCC. The previous implementation
of a related method, model predictive direct torque control
(MPDTC), was done on a digital signal processor (DSP) [15].

The remainder of this article is structured as follows.
After introducing the physical models of the five-level ANPC
inverter and induction motor in Section II, Section III reviews
and summarizes the MPDCC concept. Section IV describes
the controller architecture and the choices made to ensure that
the design fits into the FPGA. Section V and VI describe in
more detail the major parts of the implemented solution. A
comparison between the results obtained using hardware-in-
the-loop and computer simulations is presented in VII. VIII
concludes the paper.

II. DRIVE SYSTEM MODEL

The vector ξabc = [ξa ξb ξc]
T in the three-phase abc system

can be transformed to ξαβ = [ξα ξβ ]T in the stationary
orthogonal αβ coordinate system through ξαβ = K ξabc with
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K−1 is the pseudo-inverse of K. Throughout the paper, we
adopt the per unit system.

A. Inverter Model

Consider the five-level ANPC inverter drive [14] depicted
in Fig. 1. The inverter has four internal voltages—the neutral
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Fig. 1: Equivalent representation of the five-level active neutral point clamped
(ANPC) voltage source inverter

point potential vn and the three phase capacitor voltages vph,a,
vph,b and vph,c. These voltages form the inverter state vector
xinv = [vn vph,a vph,b vph,c]

T . The continuous-time state-space
equations are derived in [16].

Using the forward Euler discretization method, the discrete-
time inverter model is obtained as

xinv(k + 1) = xinv(k) + TsBinv(sabc(k))is,abc(k) . (2)

Ts denotes the sampling interval, k ∈ N is the discrete
time step, is,abc is the three-phase stator current and sabc =
[sa sb sc]

T is the three-phase switch position, where sa, sb,
sc ∈ {0, 1, . . . , 7}. The stator currents are assumed to be
constant between the two successive discrete time instants kTs
and (k + 1)Ts. Binv is a matrix that depends on the switch
position sabc, see [16].

The inverter variables will be controlled to remain within
acceptable bounds. For instance, for a minimum phase capac-
itor voltage vph and a maximum phase capacitor voltage vph,
we have vph ≤ vph,a, vph,b, vph,c ≤ vph .

B. Machine Model

When modelling the squirrel-cage induction machine in the
stationary orthogonal (αβ) reference frame, we choose the
stator current vector is,αβ and the rotor flux linkage vector
ψr,αβ as the machine state vector xm = [isα isβ ψrα ψrβ ]T .
The three-phase inverter voltage vabc(sabc) is the input to the
machine model, which is a function of the dc-link voltage Vdc,
the phase capacitor voltages vph,abc and the switch position
sabc, see [16]. The rotor’s angular velocity ωr is a parameter.

Using the forward Euler discretization method, the state-
space model

xm(k + 1) = Axm(k) +Bvabc(sabc(k)) (3)

TABLE I: Machine parameters in the per unit system
Parameter Symbol
Stator resistance Rs

Rotor resistance Rr

Stator leakage reactance Xls

Rotor leakage reactance Xlr

Magnetizing reactance Xm

Stator self reactance Xs = Xls +Xm

Rotor self reactance Xr = Xlr +Xm

Determinant D = XsXr −X2
m

Transient stator time constant τs = XrD
RsX2

r+RrX2
m

Rotor time constant τr = Xr
Rr

Model correction factor p = 0.21096

is obtained with the matrices

A = I4 + Ts


− 1
τs

0 Xm

Dτr
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2
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
(4)

B =

[
Ts

Xr

D K

02×2

]
. (5)

In (3), vabc(s) is the three-phase converter output voltage
when the switch position s is used.

The corresponding parameters are summarized in Table I.
The correction term Tspω

2
r is added to compensate the error

introduced by the forward Euler method. The term has been
numerically derived by comparing the forward Euler with the
exact Euler discretization. Forward Euler has been chosen as a
discretization method because it provides sufficient accuracy
and avoids the computationally expensive exponentiation of
the system matrix.

III. MODEL PREDICTIVE DIRECT CURRENT CONTROL

MPDCC manipulates the inverter switch positions such that
the three-phase stator currents of the machine are kept within
symmetrical bounds around their references. Furthermore, the
neutral point potential and the three phase capacitor voltages
are kept within upper and lower bounds. A third control
objective of MPDCC is the minimization of the switching
frequency.

The latter objective is captured by a cost function that is
minimized subject to the predicted evolution of the drive con-
troller model and the upper and lower constraints, which are
imposed on the controlled variables. This problem formulation
gives rise to an integer optimization problem, which is solved
in real time.

A. Controller Model

The state vector of the drive system is defined as the con-
catenation of the machine and inverter states x = [xTm x

T
inv]T .

The output vector y = [iTs,abc vn v
T
ph,abc]

T constitutes the
controlled variable. The input vector is the three-phase switch
position sabc, which is the manipulated variable. To simplify
the notation in the remainder of this article, we will use s
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instead of sabc. We treat the stator and rotor angular speeds
ωs and ωr as time-varying parameters, which are assumed to
be constant within the prediction horizon. The discrete-time
dynamical equations of the controller model are given by (2)
and (3).

B. Optimization Problem

Define the candidate switching sequence S(k) =
[sT (k) sT (k + 1) . . . sT (k +N − 1)]T of length N . Define
the function fs(s1, s2, is,abc) as the number of switching
transitions from the switch position s1 to s2 when the machine
stator currents are is,abc.

The optimization problem underlying MPDCC at time step
k is

Jopt =min
S(k)

1

NTs

k+N−1∑
l=k

fs(s(l − 1), s(l), is,abc(l)) (6a)

+ λn(vn(k +N))2

subj. to xm(l + 1) = Axm(l) +Bvabc(s(l)) (6b)
xinv(l + 1) = xinv(l) + TsBinv(s(l))is,abc(l) (6c)
y(l) = Cx(l) (6d)
|y∗(l)− y(l)| ≤ ybnd (6e)

s(l) ∈ S(l) ⊂ {0, 1, . . . , 7}3 (6f)
∀l = k, . . . , k +N − 1 ,

where

C =

[
K−1 03×6
04×4 I4

]
. (7)

The cost function captures the short-term switching fre-
quency of the (candidate) switching sequence S(k) over the
prediction horizon N . The short-term switching frequency
is proportional to the sum of the switching transitions fs(·)
over the prediction horizon N divided by the length of the
prediction interval in time. The second term in the cost
function adds a terminal weight on the neutral point potential
with the penalty λn. As shown in [17], this penalty reduces the
likelihood of infeasibilities, in which no switching sequence
S(k) exists that meets (8e). We refer to these infeasibilities
as deadlocks.

The cost function is minimized subject to the following
constraints. The first two equality constraints predict the
dynamical evolution of the machine and inverter states. The
third constraint provides the output vector y, using the matrix
C. The output vector is constrained by symmetrical upper and
lower bounds around the time-varying output reference y∗.
For example, symmetrical bounds are imposed on the phase
a stator current ripple |i∗sa(l) − isa(l)| ≤ δi. Similar bounds
are imposed on the phase b and c currents, the neutral point
potential and the phase capacitor voltages. These bounds form
the bound vector ybnd. The current bound width δi is a tuning
parameter to adjust the total harmonic distortion (THD) of the
stator current.

The fifth constraint restricts the set of switch positions S(l)
the inverter may switch to at time step l. This set follows
from the inverter switching constraints, which are detailed in

[16]. Switching is restricted to one phase level up or down.
By adopting the sampling interval Ts = 50µs, the dynamic
clamping constraints are always met and don’t need to be
explicitly imposed.

C. Main Concepts

To ensure that the optimization problem (6) is computa-
tionally tractable for long prediction horizons, heuristics are
added that drastically reduce the computational burden without
significantly affecting the closed-loop performance [12]. These
techniques include the lazy evaluation, switching horizon and
extrapolation.

1) Lazy Evaluation: If the output vector is within its bounds
at time step k, we repeat the previous switch position and set
s(k) := s(k − 1). This lazy evaluation heuristic reduces the
switching frequency by delaying switching transitions until an
output variable is about to violate its bound.

2) Switching Horizon: The switching horizon consists of
“E” (extension) and “S” (switching) steps [11]. The extension
step maintains the previous switch position until a bound is
predicted to be violated. When a bound is hit, the controller
proceeds to a switching step and enumerates the admissible
switching transitions from the no longer feasible switch posi-
tion to new switch positions. For the switching horizon “SE”,
for example, the controller first enumerates all valid switch
positions s(k) and then extends the corresponding output
trajectories until they hit a bound. The notion of the switching
horizon drastically reduces the size of the solution space by
limiting the number of switching transitions to be considered
per candidate switching sequence.

3) Extrapolation with Interpolation: Instead of predicting
the system evolution by incrementally evaluating the system
model at each time step for a given switch position, we
evaluate the system model at the time steps k+1 and k+l, with
l� 1. The system response can then be obtained through lin-
ear interpolation [18]. This method is computationally simple
and sufficiently accurate for the prediction horizons typically
observed.

IV. CONTROLLER ARCHITECTURE

The FPGA implementation of MPDCC was guided by the
requirement that the design must not exceed the number of
available logic blocks, multipliers and static RAM. The worst
case execution time should be below 30µs, i.e. below 1200
clock cycles when assuming a clock frequency of 40 MHz.
The controller architecture should be simple, scalable and
modular to facilitate future design modifications and to take
advantage of larger FPGAs. This section describes the design
trade-offs and proposes an FPGA architecture that meets the
requirements stated above.

To achieve a simple and scalable design, the controller
architecture is based on dynamic scheduling. As shown in
Fig. 2, the controller uses a central scheduler that samples
the system state x(k), writes it into registers, enumerates the
feasible switch positions and generates candidate switching se-
quences. The system state together with a switching sequence
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Fig. 2: FPGA controller architecture of the MPDCC algorithm. A central
scheduler manages and distributes computation tasks to explorer units.

constitutes a node in the solution space. The scheduler assigns
the exploration of nodes to explorer units.

The explorer units evaluate these nodes by computing the
corresponding output trajectories through an extension step
and evaluating the objective function. This information is
returned to the scheduler, which stores the switching sequence
of the node with the lowest cost Jopt. At the end of the
enumeration and evaluation process, the scheduler returns the
optimal switch position sopt(k) as the solution.

In the following, we consider the switching horizon “SE”.
At time step k, the scheduler enumerates the feasible switch
positions, and the explorer units perform the extension step.
The controller architecture is designed to allow for longer
switching horizons in the future.

A. Optimization Problem Revisited

When the heuristics described in Section III-C are applied,
a new optimization problem arises. Let L∗(s,x) be the maxi-
mum number of time steps such that the error of all monitored
outputs y remains below the threshold defined by ybnd when
the initial state vector is given by x and the switch position s

is held. That is,

L∗(s,x) = max
l∈{0,1,2,··· }

l (8a)

subj. to xm(l) = A(l)x+ lBvabc(s) (8b)
xinv(l) = xinv + lTsBinv(s)is,abc (8c)
y(l) = Cx(l) (8d)
|y∗(l)− y(l)| ≤ ybnd , (8e)

with

A(l) = I4 + lTs


− 1
τs

0 Xm

Dτr
+ lã Xm

D ωr

0 − 1
τs

−Xm

D ωr
Xm

Dτr
+ lã

Xm

τr
0 − 1

τr
−ωr

0 Xm

τr
ωr − 1

τr

 (9a)

ã = Tspω
2
r . (9b)

Notice that if L∗(s,x) = 0, then selecting the switch position
s will result in a violation of the maximum admissible error
in the next time step.

The new optimization problem to be solved online at time
k is given by

sopt(k) = arg min
s∈S(s(k−1))

J(s(k − 1),x(k), s) (10)

+ λn (vn(k + L∗(s,x(k))))
2
, (11)

with

J(·) =

{
fs(s(k−1),s,is,abc(k))

L∗(s,x(k)) , L∗(s,x(k)) > 0

+∞, L∗(s,x(k)) = 0.
(12)

Notice from (8) and (9) that the state evolution is computed
using forward Euler discretization with time step lTs. A further
simplification can be used to reduce even more the amount of
computation required. For a constant L ∈ N, consider the
following linear interpolation:

x(k + l) = x(k) +
l

L
(x(k + L)− x(k)) , (13)

with the state vector at time k + L computed using (8b)
and (8c).

The following two sections describe the central scheduler
and explorer modules in detail.

V. CENTRAL SCHEDULER

The central scheduler evaluates whether the previous switch
position s(k−1) can be used again at time k with the resulting
error of the monitored variables y(k + 1) is still acceptable.
That is, it checks if |y∗(k + 1) − y(k + 1)| ≤ ybnd when
s(k) = s(k − 1). If no error exceeds its maximum value, the
switch position s(k−1) is kept at time k. Otherwise, if at least
one of the monitored variables y(k+1) is predicted to violate
the maximum error, the search for a new switch position is
triggered. In this case, the central scheduler computes the
set of candidate switch positions S(s(k − 1)) taking into
account the previous switch position s(k− 1) and the current
stator currents is,abc(k). It then delegates the evaluation of the
objective function corresponding to each candidate solution to
an available explorer unit. Finally, the scheduler collects the
results of all candidate solutions and selects the one with the
lowest cost.
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A. Computation of Common Terms

In addition to coordinating the search for a new switch
position, the scheduler also computes some terms that are
common to all candidate solutions. The objective is to reduce
the overall computation time required; this is achieved by
eliminating the need to compute the same terms several times
in each of the explorers. For instance, the natural response
A(L)x(k) and the future motor current reference i∗s,αβ(k+L)
do not depend on the switch position s(k).

The stator current and its reference at instant k + L are
computed in the αβ reference frame:

is,αβ(k + L) = [A1 A2]x(k) +
Xr

D
LTsKvabc(s(k))

(14a)
i∗s,αβ(k + L) = A0i

∗
s,αβ(k) (14b)

where

A0 = I2 +

[
0 −1

1 0

]
ωsLTs, A1 =

(
1− 1

τs
LTs

)
I2,

A2 =

[
1
τr

ωr

−ωr 1
τr

]
Xm

D
LTs + p(LTsωr)

2I2

The stator current reference i∗s,αβ(k) is rotated forward with
the stator frequency ωs.

The term [A1 A2]x(k) in (14a) and the current refer-
ence (14b) are computed by the central scheduler and passed
as arguments to the explorers.

B. Deadlock Resolution

It is possible that for a given state vector x(k) and switch
position s(k−1), all candidate solutions s ∈ S(s(k−1)) result
in a violation of the maximum error among the monitored
variables in the next time step. That is, L∗(s,x(k)) = 0 for
all s ∈ S(s(k − 1)). This situation is called a deadlock, and
the central scheduler will select the switch position s(k) that
results in the minimum error among the controlled variables
at time step k+1. To be specific, define the objective function

Jdl(s(k−1),x(k), s) = max{|y∗(k + 1)− y(k + 1)| − ybnd}
(15)

where the maximization is taken among the elements of
the vector |y∗(k + 1)− y(k + 1)| − ybnd. Notice that the
deadlock resolution mechanism is only used when there is no
switch position s in S(s(k − 1)) such that L∗(s,x(k)) > 0.
In this case, the switch position to be used is given by

s(k) = argmin
s∈S(s(k−1))

Jdl(s(k − 1),x(k), s). (16)

A further improvement in the central scheduler monitors
if a switch position s that results in L∗(s,x(k)) > 0 has
been found “so far”. If such sequence is known to exist, the
central scheduler informs the explorers that there is no need
to evaluate the deadlock cost Jdl, thus reducing the processing
time required by the explorers.

C. Microarchitecture

Multiplications and additions are the operations that require
the most FPGA resources in this design. In order to reduce
the number of multipliers and adders used, the computational
block depicted in Figure 3 is used throughout the design.
The three-stage pipeline helps the FPGA timing constraints
to be met. The multiplexers at the operands of the multiplier
and adder are controlled by finite state machines (FSM),
which in turn control the flow of the algorithm. The design
implementation uses four of the computational blocks shown
in Figure 3 and it can perform the computation of common
terms described in Section V-A in 12 clock cycles.

Ai

X

0 1 2 3 0 1 2 3

ai bi

mi

Ci

+

0 1 2 3

ci di

Di

0 1 2 3

Bi

si

...

Stage 1

Stage 2

Stage 3

Fig. 3: Model pre-computation data-path. This pipelined data-path is divided
into 3 stages. Stage 1: input multiplexers Ai and Bi for the multiplier; Stage
2: dedicated 16 bit integer multiplier with operands ai and bi; Stage 3: input
multiplexers Ci, Di feeding a 16 bit integer adder with operand ci and
di. This circuit can be replicated depending on the number of operations
to perform simultaneously.

D. Summary of Central Scheduler Operation

The operation of the central scheduler is summarized in
Algorithm 1, executed at each time step k.

Algorithm 1 Scheduler Operation
1: if |y∗(k + 1)− y(k + 1)| ≤ ybnd when s(k) = s(k − 1)

then
2: s(k)← s(k − 1)
3: else
4: compute common terms as described in Section V-A
5: create the set of candidate switch positions S(s(k−1))
6: for s in S(s(k − 1)) do
7: delegate computation of J(s) and Jcl(s) to an avail-

able explorer
8: end for
9: if ∃ s such that L∗(s) > 0 then

10: s(k)← argmin J(s)
11: else
12: s(k)← argmin Jdl(s)
13: end if
14: end if
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VI. EXPLORER UNIT

The explorer units are responsible for evaluating the ob-
jective functions J(·) and Jdl(·) presented in (12) and (15).
Several explorer units can be instantiated within the FPGA
design. The design choice of how many explorer units to
use is guided by the tradeoff between the available hardware
resources and the total computation time. A higher number of
explorer units can reduce the total time required to perform
the model predictive direct current control algorithm at the
expense of an increased number of multipliers and logic blocks
to be used in the FPGA.

A. Linear Interpolation and Extrapolation
For a given candidate switch position s and state vector

x(k), an explorer unit computes L∗(s,x(k)), i.e., the maxi-
mum number of time steps that the switch position s can be
applied to the system with initial conditions given by x(k)
without violating the maximum error in any of the controlled
variables y.

In a first step, the explorer unit predicts the value of the error
of the controlled values at time k + L. The design parameter
L ∈ N determines the time instant corresponding to when the
prediction is performed. For implementation, it is convenient
to choose L as a power of two, as multiplications and divisions
by L can be performed by bit shifting. Recall that the first
three entries of the vector of monitored y are the machine
currents in the abc frame. The error between the machine
current reference and prediction is given by

ĩs,abc(k + L) =i∗s,abc(k + L)− is,abc(k + L) (17a)

=K−1
(
i∗s,αβ(k + L)− is,αβ(k + L)

)
(17b)

=K−1
(
A0i

∗
s,αβ(k)− [A1 A2]x(k)

)
−K−1

(
Xr

D
LTsKvabc(s)

)
. (17c)

Recall that the explorer only has to compute the second parcel
of (17c), since the first parcel does not depend on s and has
already been computed by the central scheduler. Simmilarly,
the error of the internal inverter voltages at time k+L can be
predicted using (8c).

x̃inv(k + L) =x∗inv − xinv(k + L) (18a)
=x∗inv − xinv(k)− LTsBinv(s)is,abc(k).

(18b)

Combining (17c) and (18b), the error of the controlled vari-
ables is given by

ỹ(k + L) =

[
ĩs,abc(k + L)

x̃inv(k + L)

]
. (19)

In a second step, the explorer unit uses linear interpolation
to approximate the error at time k + l.

ỹ(k + l) = ỹ(k) +
l

L
(ỹ(k + l)− ỹ(k)) (20)

Denote the j-th entry of a vector by the superscript (j).
Equation (20) presents a set of seven equations affine in l
that can be written as

ỹ(j)(k + l) = aj + lbj (21)

for some scalars aj and bj . The problem of finding
L∗(s,x(k)) can be expressed as

L∗(s,x(k)) = min{l1, · · · , l7}, (22)

where lj is the largest nonnegative integer that satisfies

|aj + ljbj | ≤ y(j)
bnd. (23)

lj can be explicitly computed as

lj =



0, |aj | > y(j)
bnd

+∞, |aj | ≤ y(j)
bnd and bj = 0

floor

(
y
(j)
bnd

|bj |

)
, aj = 0 and bj 6= 0

floor

(
y
(j)
bnd+|aj |
|bj |

)
, |aj | ≤ y(j)

bnd and ajbj < 0

floor

(
y
(j)
bnd−|aj |
|bj |

)
, |aj | ≤ y(j)

bnd and ajbj > 0,

(24)
where floor(x) is the largest integer less than or equal to x.

B. Binary Search

The implementation of division operations in FPGAs is
often avoided when possible since many clock cycles are
required to perform the calculation. Notice that the explicit
computation of lj in (24) for the non-trivial cases requires a
division by |bj |. The implementation reported in this paper
explores the fact that lj is an integer and that upper and lower
bounds (L and L, respectively) can be imposed on lj . For
instance, using L = N , will limit lj to the prediction horizon
of the MPC problem. Also, if a different candidate switch
position s̃ is known to have cost J(s̃), then there exists L
such that if lj < L, then J(s) > J(s̃). In these cases, an exact
computation of lj is not required, and the computation time
can be shortened. For appropriate positive scalars xj , yj > 0,
the problem can be reformulated as

lj = max
L≤l≤L

l (25a)

subj. to xj l ≤ yj . (25b)

Algorithm 2 is used to find lj . Denote the m-th bit of lj
by lj [m], with lj [1] as the least significant bit. Let M be
the smallest integer such that M ≥ log2(N). The auxiliary
scalar variables a, b are used as bounds above and below lj ,
respectively. The auxiliary scalar variable c is used to store
the value of Lxj

2i on the i-th iteration.
Figure 4 shows an example of execution of Algorithm 2.

VII. RESULTS

The MPDCC controller was coded in VHDL for the switch-
ing horizon “SE”, using the controller architecture outlined in
the Section IV. Two aspects will be discussed in the following:
the computation time versus the required hardware resources,
and the closed-loop performance of the controller in terms of
the current distortions and the average switching frequency.
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Algorithm 2 Binary Search
1: lj ← 0
2: b← 0
3: c← Lxj
4: if c ≤ yj then
5: return indicating that lj = L
6: end if
7: a← L− 1
8: for m = M, · · · , 1 do
9: c← c/2

10: if b+ c < yj then
11: b← b+ c
12: lj [m]← 1
13: else
14: a[m]← 0
15: if a < L then
16: return indicating that @ l ≥ L : xj l ≤ yj
17: end if
18: end if
19: end for

L L

Lxj

yj

1

3

2

Fig. 4: Example of binary search execution with L = 8, L = 2, xj = 0.25,
and yj = 1.3. The circles show the three steps used by the iterative search.
After the 3rd step, it is found that lj = 5.

A. Computation Time versus Hardware Resources

The number of clock cycles required to compute the optimal
switch position can be derived using the simulation software
package Modelsim HDL. For n explorer units and the switch-
ing horizon “SE”, the number of clock cycles amounts, in
the worst case, to 47 + 2′176/n cycles. In order to meet the
requirement of computing the switch position in less than
1’200 clock cycles, n = 2 explorer units suffice, as can be
seen in Table II. The use of two explorer units also represents
an excellent trade-off between computation time and hardware
usage. By adopting two (instead of one) explorer units, the
worst case number of clock cycles is almost halved, while
only 7’900 FPGA slices and 14 multipliers are required.

Fig. 5: Switching frequency and current THD as a function of the bound
width δi imposed on the stator currents for the Matlab (dash-dotted line) and
FPGA (solid line) implementation.

B. Controller Performance: Idealized Matlab versus FPGA
Implementation

To assess the closed-loop control performance of the FPGA
implementation, closed-loop simulations were run for various
widths of the stator current bounds, δi. The resulting average
switching frequency per semiconductor and the THD of the
stator currents are shown in Figure 5 as solid lines. The
neutral point potential and the phase capacitor voltages are
kept well within their bounds. We also benchmarked the FPGA
implementation with an idealized Matlab implementation of
MPDCC. The latter uses a 64 bit floating point representation,
the system model is discretized using exact Euler discretiza-
tion, and the output trajectories are extended using the discrete-
time system model (rather than extrapolation). The bounds on
the output vector and the cost function parameters are the same
as for the FPGA implementation.

A difference in the switching decisions was observed at
2.5% of the time steps. These differences are a result of the
fairly coarse 16 bit fixed point representation on the FPGA
and the linear extrapolation with interpolation method. An
analysis revealed that the FPGA implementation sometimes
suffers from an error of one time step on the predicted length
of the switching sequence. Moreover, the value of the cost
function also differs slightly due to numerical truncations. As
can be observed in Figure 5, for the different bound widths
δi, the switching frequencies and the current distortions are
nevertheless similar for both implementations. The differences
in the switching frequency and the current distortions are
below 8% and 2%, respectively.

VIII. CONCLUSIONS

This paper proposed an implementation of MPDCC that
is suitable for a low-cost FPGA. The proposed controller
architecture is simple, scalable and modular, allowing for
future extensions such as longer switching horizons. The
performance results suggest that the MPDCC concept can be
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TABLE II: Number of clock cycles and hardware usage as a function of the number of explorers units n

Number of explorer units 1 2 3 4 5 6
Number of clock cycles (worst case) 2’223 1’135 772 591 482 410
Speedup factor (of number of clock cycles) 1.00 1.96 2.88 3.76 4.61 5.42
Number of FPGA slices 4’700 7’900 11’200 14’400 17’700 20’900
Number of multipliers 10 14 18 22 26 30

sufficiently simplified to make it suitable for a low-cost FPGA,
while providing a promising closed-loop performance.
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