
IEEE TRANSACTIONS ON POWER ELECTRONICS 1

Prediction Model with Harmonic Load Current
Components for FCS-MPC of an Uninterruptible

Power Supply
Sergio Vazquez, Fellow, IEEE, Eduardo Zafra, Student Member, IEEE, Ricardo P. Aguilera, Member, IEEE,

Tobias Geyer, Senior Member, IEEE, Jose I. Leon, Fellow, IEEE, and Leopoldo G. Franquelo, Life Fellow, IEEE

Abstract—A finite control set model predictive control (FCS-
MPC) strategy consists of a prediction model, a cost function and
an optimization algorithm. Consequently, the performance of the
FCS-MPC depends on the proper design of these three elements.
This paper assesses the influence of the prediction model of an
uninterruptible power supply (UPS). Since the load connected to
the voltage source inverter (VSI) affects the dynamic of the system
state variables, the load dynamic should be included in the system
model. This makes the design of the prediction model a challenge
because the load connected to the VSI is generally unknown.
To deal with this uncertainty, this work proposes an augmented
prediction model based on a state observer that includes as many
harmonic components as necessary to accurately represent the
output current. The performance of the FCS-MPC for a UPS is
evaluated in a laboratory prototype using the proposed and the
conventional prediction models. Experimental results show that
the proposed solution provides a more accurate representation
of the output current, improving the system performance.

I. INTRODUCTION

F INITE control set model predictive control (FCS-MPC)
is a powerful control strategy that has extensively been

applied to power converters and drives in the last years [1]–
[3]. This technique is considered as an advanced control strat-
egy that provides several benefits compared to conventional
solutions [4]. One of the main reasons for the success of
the FCS-MPC is that the basics of the technique are easy
to understand. This allows one to do an intuitive FCS-MPC
design for any power conversion application [2]. In general,
the designed FCS-MPC will be robust enough and provide a
better system performance compared to conventional solutions
even if the design criteria used are not the best [5], [6].

An FCS-MPC algorithm consists of a prediction model, a
cost function and an optimization algorithm. The performance
of a system governed by an FCS-MPC algorithm depends on
the selected cost function, which defines the control targets, the
accuracy of the prediction model to compute the future state
variable values, and the ability of the optimization algorithm
to compute the optimal control input within a sampling period.

The cost function is related to the particular application
under consideration. Therefore, each application will use the
most appropriate cost function to define the desired behavior of
the state variables of interest. The cost function is composed
of several terms associated with the tracking error of these
state variables. A single cost function is required to control
them simultaneously. Therefore, weighting factors are used to
determine the relative importance of each control target [6],

[7]. The design of the most suitable cost function has been
investigated for many applications like motor drives, active
front ends, uninterruptible power supplies (UPSs), etc [2], [3],
[8].

The optimization algorithm does not depend on the par-
ticular application, but determines the computational burden
of the FCS-MPC algorithm. The computational cost is mainly
determined by the length of the prediction horizon, Np, used in
FCS-MPC formulation. The prediction horizon determines the
number of time steps the evolution of the state variables of in-
terest is forecast into the future [9]. In general, long prediction
horizons improve the system performance [6], [9]. The most
common optimization algorithm is the exhaustive searching
algorithm (ESA). The ESA evaluates the cost function for all
the elements in the input control set. Then, it determines by
direct comparison the one that minimizes the cost function.
Considering the current development of digital control hard-
ware platforms, this approach is suitable for short prediction
horizons, Np ∈ {1, 2}, [10]. However, a different strategy is
necessary for long prediction horizons, Np ≥ 3, because the
ESA is not computational feasible for such Np in a practical
application. Solutions for dealing with this problem draw on
branch and bound techniques to reduce the computational
burden [11]. Among them, the sphere decoding algorithm
(SDA) is a suitable solution for a practical implementation
[12], [13].

The prediction model is formed by the dynamic equation of
the state variables of interest. For a power conversion system,
it relies on the electric circuit connected to the output of
the power converter. As a consequence, it depends on the
particular application. In general, it is possible to have an
accurate prediction model for power conversion systems like
motor drives or active front ends. The dynamic equations of the
state variables for the former are related to the kind of machine
[14]–[18], whereas for the latter they depend on the connection
filter [19]–[22]. A common approach to deal with parameter
uncertainty problems in the prediction model is the use of
observer-based techniques [23]–[27]. A different approach is
the model-free predictive control that make predictions of the
state variable future values without using a system model. In
the literature two alternatives exist. On the one hand, a system
identification method, like artificial neural networks (ANN),
recursive least squares (RLS) algorithm, or ultra-local model,
are used to define the system behavior. Once the system is
identified, this information replaces the original system model
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to compute the state variable future values [28]–[30]. On the
other hand, a different approach uses the system properties
assuming a fast sampling period for the FCS-MPC to make the
predictions of the state variable future values without using any
model [31]–[33]. Although these techniques are promising, up
to the authors knowledge, they have not been applied to an
UPS application yet, so further research is required.

In general, model-free methods are good approaches when
little or no information about the system is available. In the
UPS application case, the system behavior is well represented
by the output filter dynamic equations and the output load
behavior. Compared to the model-free strategies, this work
proposes an observer-based approach that exploits an explicitly
given mathematical model of the system providing a simple
and straightforward implementation.

This paper focuses on the prediction model of FCS-MPC
for a UPS application. The definition of this prediction model
is challenging because the output load connected to the power
converter is unknown. However, the dynamic equations of the
state variables depend on the output load currents. Therefore,
to solve this issue, it is necessary to make some assumptions
about the current load behavior, which will affect the per-
formance of FCS-MPC. The most common approach to deal
with this uncertainty is to assume that the output load current
remains constant between two consecutive sampling steps
[34]. This assumption relies on the high sampling frequency
typically used for FCS-MPC and generally provides acceptable
results. To implement this solution, the output load current can
be measured, [35] or an observer can be designed to deal with
system uncertainties and avoid additional sensors [34], [36].

A more precise solution is to model the characteristics
of the load connected to the power converter [37]. This
method provides an accurate representation of the load since
no assumption about the load behavior is considered. However,
in the literature this option is limited to linear loads for UPS
systems [38], and for estimating the harmonics under distorted
grid voltage for a grid-connected application [39]. An alterna-
tive solution is to adopt the constant load current approach
and to modify the cost function to take into account the
error introduced by the prediction model [40]. This procedure
provides good results, especially when nonlinear loads are
connected to the power converter. However, it increases the
complexity of the cost function design.

The work at hands proposes a solution that takes into
account that the load current is a periodical signal, inde-
pendently whether the load is linear or not. Therefore, the
load current can be decomposed by the sum of several har-
monic components. More specifically, it is proposed to design
the prediction model by using an augmented state observer
that includes as many harmonic components as necessary to
accurately represent the output current. This avoids the use
of extra sensors, and allows the prediction model to deal
with system uncertainties and any kind of output load. The
augmented state observer is designed as a stationary Kalman
filter. In contrast to [39], this work provide guidelines to
set the values of the Kalman filter matrices, which is of
high value for practical engineering. In addition, the proposed
approach is also validated experimentally, including not only
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Fig. 1. Electric circuit of the UPS system under study.

TABLE I
SYSTEM VARIABLES AND PARAMETERS

Variable Description
Lf Output filter inductor

Cf Output filter capacitor

if,abc = [if,a if,b if,c]
T Output filter inductor current

vo,abc = [vo,a vo,b vo,c]
T Output filter capacitor voltage

vi,abc = [vi,a vi,b vi,c]
T VSI output voltage

vdc DC-link voltage

Sabc = [Sa Sb Sc]
T VSI switching state

io,abc = [io,a io,b io,c]
T Output load current

v∗o,abc = [v?o,a v
?
o,b v

?
o,c]

T Output filter capacitor reference voltage

ω Angular frequency of the reference voltage

fs Sampling frequency

the steady-state performance but also the close loop transient
response when the system perturbation changes, i.e, when the
load connected to the UPS output terminals is modified. In
Section II the system under investigation is presented and the
used FCS-MPC strategy is described. Section III provides the
prediction model design. The performance of FCS-MPC is
evaluated in a UPS laboratory prototype using the proposed
and the conventional prediction models in Section IV. The
accuracy of the two approaches is compared with the help
of experimental results, showing that the proposed prediction
model provides a more accurate representation of the output
current. In addition, the effect on the FCS-MPC performance
is assessed. Finally, conclusions are drawn in Section V.

II. SYSTEM DESCRIPTION AND FCS-MPC STRATEGY

The system under study consists of a three-phase two-level
voltage source inverter (VSI) with an output LC filter and
an unknown load connected to the filter. The corresponding
electric circuit is shown in Fig. 1. The main variables and
parameters that characterize the system are summarized in
Table I. In the proposed approach, the measured signals are
if,abc and vo,abc, while io,abc is estimated by the proposed
augmented state observer. The control objective is to produce
the desired sinusoidal output voltage v?o,abc, independently of
the harmonic content of the current drawn by the output load,
io,abc.

A. Original System Model

To analyze the system, the dynamic equations representing
the system behavior are expressed in the αβ stationary refer-
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TABLE II
SPACE STATE SYSTEM DESCRIPTION

State space

system

xk+1 = Axk+Buk + Eio,k +$k

yk =Cxk + νk

State variables xTk = [iTf,k v
T
o,k]

System input uk = vi,k = vdc,kT
αβ
abcSabc,k

System output yTk = [iTf,k v
T
o,k]

Discrete system

matrices

A=eAcTs Ac=

 O2 − 1
Lf
I2

1
Cf
I2 O2


B=

∫ Ts

0
eAc(Ts−τ)Bcdτ Bc=

 1
Lf
I2

O2


E=

∫ Ts

0
eAc(Ts−τ)Ecdτ Ec=

 O2

− 1
Cf
I2


C= I4

ence frame. The controller will be implemented in discrete-
time with the sampling frequency fs. To this end, at each sam-
pling instant k, any system variable χabc,k is transformed from
abc to the αβ frame as χk1 by using the well-known power-
invariant Clarke transformation. Therefore, χk = Tαβabcχabc,k,
where:

Tαβabc =

√
2

3

[
1 − 1

2 − 1
2

0
√
3
2 −

√
3
2

]
. (1)

The discrete-time state space model of the system in the
αβ frame is presented in Table II2. The state variables are
the filter inductor current and capacitor voltage if,k and vo,k,
respectively. The system input is the VSI output voltage vi,k.
In this representation, the system outputs are equal to the state
variables. Also, the so-called process and measurement noises
are incorporated into the state space model as $k and νk,
respectively. It should be noted that the load current io,k is
considered as an external disturbance. Finally, the discrete-
time system model matrices A, B, C and E can be obtained
when a zero order hold approach is applied to the continuous-
time plant described in state space form by the matrices Ac,
Bc, Cc and Ec [41].

In this system, the input vi,k can be computed as:

vi,k = vdc,kT
αβ
abcSabc,k, (2)

where vdc,k is the dc-link voltage and Sabc,k is the switching
state of the inverter at time step k, with Sj |j=a,b,c ∈ {0, 1}.
Therefore, there exists a finite number of VSI output voltage
values determined by the possible switching states of the
inverter [7]. This defines the system’s finite control set, which
motivates one to design an FCS-MPC strategy.

1Note that the subscript αβ is omitted to allow a more compact notation.
2In and On represent identity and zero matrices of dimension n × n,

respectively.

Fig. 2. General representation of the harmonic vector component ioh.

B. FCS-MPC Design

The FCS-MPC objective is to track the desired reference
output voltage v?o,k. To achieve this objective, the cost function
is designed as:

gk = ‖v?o,k+2 − vo,k+2‖22 + λ‖Sabc,k+1 − Sabc,k‖22. (3)

This cost function is composed of two terms. The former one
computes the output voltage tracking error at time step k+2.
This is necessary to avoid the effect of the digital delay, be-
cause the control algorithm at time step k computes the control
action to be applied at k+1. The second term is related to the
switching effort and penalizes the number of commutations
of the power semiconductors. The relative importance of both
terms in the cost function is determined by the weighting factor
λ. Higher values of λ increase the switching penalty over the
tracking error, resulting in a reduction of the average switching
frequency.

Note that according to the state space model in Table II,
the output voltage vo,k+2 depends on the control input at
time step k + 1, which can be computed using (2) moved
by one time step ahead. Therefore, the cost function value
only depends on the switching state applied at k+ 1, and the
optimal control problem consists of choosing the Sabc,k+1 that
minimizes (3). The optimization algorithm accomplishes this
task. In this work, a one-step prediction horizon Np = 1 is
considered. Thus, a standard ESA is chosen as the optimization
algorithm.

III. PREDICTION MODEL DESIGN

To complete the FCS-MPC design in Section II-B one needs
a prediction model to compute the future values of vo,k+2 as
a function of Sabc,k+1. If the state space model in Table II
is analyzed, the main problem is that the output load current
dynamic is unknown because it depends on the particular load
connected to the system. Therefore, to design the prediction
model some assumptions have to be made about the behavior
of the load.

As a general case, it could be considered that the output
current vector in the αβ frame consists of the sum of different
harmonic vector components ioh with h ∈ H ∈ Z. The vector
ioh rotates at the angular speed hω and can be represented
in a synchronous reference frame by Ioh ∈ R2 as shown in
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Fig. 2, which is a vector that characterizes the amplitude and
phase of the hth harmonic vector ioh. Thus, the output current
vector can be written as:

io =
∑
h∈H

ioh =
∑
h∈H

eJhωtIoh, (4)

where

J =

[
0 −1
1 0

]
, (5)

and

eJhωt =

[
cos(hωt) − sin(hωt)
sin(hωt) cos(hωt)

]
, (6)

is the rotation matrix [42]. Assuming that the components
of Ioh are unknown constant or slowly varying signals, it is
possible to compute the derivative with respect to time for
each individual harmonic component as:

dioh
dt

= JhωeJhωtIoh = Jhωioh. (7)

Expressions (4) and (7) allow one to define an augmented
state space model in the time domain that takes into account
the nature of the load. For instance, if one considers that the
load current is composed of the non triple odd harmonics
H={1,−5, . . . ,m}3 then, the augmented state vector, the
system input and output are defined as

xa = [iTf vTo iTo1 i
T
o5 . . . i

T
om]T , (8)

u = vi, y = [iTf vTo ]
T , (9)

respectively, leading to the following augmented state space
system:

dxa
dt

= Aacxa +Bacu+$ (10)

y = Cacxa + ν (11)

in which

Aac=



O2 − 1
Lf
I2 O2 O2 . . . O2

1
Cf
I2 O2 − 1

Cf
I2 − 1

Cf
I2 . . . − 1

Cf
I2

O2 O2 Jω O2 . . . O2

O2 O2 O2 −J5ω . . . O2

...
...

...
...

. . .
...

O2 O2 O2 O2 . . . Jmω


(12)

Bac=



1
Lf
I2

O2

O2

O2

...
O2


, Cac=

[
I2 O2 O2 O2 . . . O2

O2 I2 O2 O2 . . . O2

]
.

(13)
are the continuous time plant matrices, with I2 and O2

representing identity and zero matrices of dimension 2 × 2,
respectively.

3Note that each particular harmonic is a positive- or negative-sequence
vector [43]. For instance, the 5th harmonic component is a negative-sequence
vector rotating at −5ω, thus it is represented using h = −5.
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Fig. 3. Block diagram of the proposed control strategy.

This system can be discretized by using the exact Euler
discretization method and is proposed to be used as the new
prediction model for FCS-MPC as:

xa,k+1 = Aaxa,k +Bauk +$k (14)
yk = Caxa,k + νk, (15)

where Aa, Ba and Ca are the resulting matrices after applying
the exact Euler discretization method to the continuous-time
plant (10)-(11). However, to take full advantage of this model,
it is required to know all the harmonic components in the load
current ioh. Because these values cannot be directly measured,
an observer is designed to address this issue. The observer can
be formulated in the discrete domain as [44], [45]:

x̂a,k+1 = Aax̂a,k+Bauk +Gobs (yk − ŷk) (16)
ŷk =Cax̂a,k, (17)

where x̂a,k and x̂a,k+1 are the augmented state estimates
at time step k and k + 1, respectively, uk represents the
augmented system input at time step k and it is calculated
as in (2) and ŷk is the augmented system output estimate at
the time step k.

The last step is to design the observer gain matrix Gobs so
that the closed-loop observer matrix Aobs = Aa −GobsCa is
Schur stable4. This can be done considering the observer (16)-
(17) as a steady-state Kalman filter [41]. Thus, the matrix Gobs
can be computed as the following Riccati equation:

Gobs = AaPC
T
a

(
CaPC

T
a +Rf

)−1
(18a)

P = AaPA
T
a −GobsCaPAT

a +Qf , (18b)

where P is the steady-state estimate covariance matrix, and Rf
and Qf denote the measurement and process noise covariance
matrices. On one hand, the measurement noise covariance
matrix is related to the current and voltage sensor covariance.
It is reasonable to assume that all current sensors and voltage
sensors have the same covariance ri and rv , respectively.
These values depend on the experimental setup and can be
computed by recording a large number of measurements from
each sensor fed with a constant input value and computing the
covariance of the data set. Then, the matrix Rf can be defined
as:

Rf =

[
riI2 O2

O2 rvI2

]
. (19)

On the other hand, the process noise covariance matrix is
related to unmodeled or wrongly modeled state dynamics

4A square matrix A ∈ Rn×n is said to be Schur stable if all eigenvalues
of A have norm strictly less than one [46].
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(a) (b) (c) (d)

Fig. 4. Test bench: (a) VSI and LC filter,(b) LC filter and voltage and current sensors, (c) non-linear load and, (d) control hardware and user interface.
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Fig. 5. Output filter capacitor voltage, output load current and current estimation error in the steady-state when the proposed prediction model is used: (a)
From top to botton: Output voltage with H = {1}, H = {1,−5} and H = {1,−5, 7,−11, 13}, (b) from top to botton: Load current with H = {1},
H = {1,−5} and H = {1,−5, 7,−11, 13} and (c) from top to botton: Current estimation error ei,j=(io,j − îo,j)

∣∣∣
j=a,b,c

with H = {1}, H = {1,−5}
and H = {1,−5, 7,−11, 13}.

in the state space model. Since the electric model for this
circuit does reflect quite well the system dynamics, the process
covariance can be chosen as:

Qf = qfIn (20)

where, qf is a small positive scalar value and In is the identity
matrix with dimension n×n with n equal to the order of the
vector x̂a,k. Note that for a given measurement covariance
matrix Rf , smaller values of qf will imply that the system
model is almost perfect. Thus, the observer will tend to rely
more on predictions rather than measurements. Conversely,
larger values of qf will imply that the observer will rely more
on the output measurements. However, this will increase the
amount of noise coming from sensors that is transferred to the
estimated states. Consequently, this tuning parameter can be
used to choose the resulting observer bandwidth. Once Rf and
Qf are defined, inserting (18a) into (18b) allows one to com-
pute P as the solution to the discrete-time algebraic Riccati
equation [41]. Once P is computed, Gobs can be determined
from (18a). Note that P and Gobs are time-invariant matrices.

Therefore, they can be computed off-line avoiding the increase
of the computational burden during real time implementation,
e.g., using the idare function in MATLAB. Alternatively, an
autocovariance least-squares (ALS) method can be used to
tune the covariance matrices Qf and Rf ; see, e.g., [47], [48].
However, an ALS method requires extra calculations since
they need to be computed online at each sampling instant.

A block diagram for the proposed control and observer
structure is depicted in Fig. 3. At time step k the dc-link
voltage and the output filter voltage and current are measured.
The system output vector yk can be calculated by transforming
the variables vko,abc and ikf,abc to the αβ frame. The system
input uk is defined by the dc-link voltage measurement
vdc,k and the optimal switching state Sabc,k calculated in the
previous iteration of the algorithm which is applied in the
current sampling interval. This information is used to compute
the augmented state estimate x̂a,k+1 by using the proposed
augmented state observer (16)-(17). Finally, the FCS-MPC
determines the optimal control action Sabc,k+1 for the time
step k+1 by using the prediction model (14)-(15) to compute
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TABLE III
PARAMETERS FOR EXPERIMENTS

Parameters Value
Output filter inductor, Lf 2 mH
Output filter capacitor, Cf 50 µF
Rectifier filter inductor, Lr 2 mH

Rectifier output capacitor, Cr 2200 µF
DC load resistor 180 Ω

DC-link voltage, vdc 700 V
Voltage reference (phase to ground) 230 V

Fundamental frequency 50 Hz
Sampling frequency, fs 40 kHz

Weighting factor, λ 1.5
Kalman filter tuning parameter, qf 0.0001

the output filter voltage prediction values at time step k+2 for
each possible switching state and minimizing the cost function
(3).

IV. EXPERIMENTAL RESULTS

In this section, the effectiveness of the proposed prediction
model is verified in the test bench depicted in Fig. 4. Two
experimental tests are conducted. The first one investigates
the effect of considering a different number of harmonic
components in the prediction model when a nonlinear load
is connected to the UPS output. The second test compares the
system performance when the conventional prediction model
in [34] and the proposed one are used to control the output
voltage applied to a diode rectifier.

The proposed FCS-MPC is implemented on the Pynq-
Z1 evaluation board, which is a Xilinx system on a chip
Zynq-7000-based control hardware platform. The system pa-
rameters for the experiments are summarized in Table III.
The weighting factor λ value is chosen to limit the average
switching frequency produced by the FCS-MPC. The value
is set heuristically in the experiments in order to achieve an
average switching frequency of 5 kHz. In addition, the Kalman
filter tuning parameter qf is designed to provide an observer
bandwidth of roughly 1 kHz. Note that the observer bandwidth
is computed calculating the natural frequency of the slowest
pole of the resulting closed-loop observer matrix Aobs. Finally,
the output filter inductor current and capacitor voltage sensor
covariances are ri = 0.0009 and rv = 0.06, respectively.

A. Assessment of the Proposed Prediction Model Design

The first experimental test evaluates the influence of the
number of harmonics considered in the prediction model. The
output capacitor voltage, load current, output current estimate
waveform and current estimation error are presented in Fig. 5
for H = {1}, H = {1,−5} and H = {1,−5, 7,−11, 13}.
Increasing the number of harmonics in H provides a more
accurate output current estimate. Particularly, the phase shift
between the actual and the estimate current is removed,
allowing the observer to properly track the actual load current.
Improving the observer accuracy allows FCS-MPC to increase

THD 0.5%

THD 0.5%

THD 0.6%

THD 0.9%

THD 1.4%

Fig. 6. Output voltage harmonic spectrum for different number of harmonic
components in the prediction model.

its performance. This statement is confirmed when the total
harmonic distortion (THD) and the harmonic spectrum of
the output capacitor voltage are analyzed. Fig. 6 shows how
these characteristics change as the number of harmonics in
H increases. Clearly, FCS-MPC is able to compensate a
particular harmonic when such harmonic order is included
in the observer. Based on these results, it is also concluded
that low order harmonics have more influence on the observer
performance than high order ones. In addition, experiments
show that when a low order harmonic is included in the
observer not only this particular harmonic is compensated
but also the high order ones. For instance, Fig. 6 shows that
when H = {1,−5} the 11th and 13th harmonic content
are smaller compared to the case H = {1}. The additional
information about the low order harmonic content of the
output current provided by the observer reduces FCS-MPC
control effort needed to compensate its effect, allowing FCS-
MPC to focus on the higher order components. Therefore, as
higher order harmonic content is small in general, a limited
number of harmonics in H is enough to provide a good
closed-loop performance. This is particularly important to limit
the computational burden of the algorithm. It is important to
highlight that the average switching frequency is 5 kHz in all
the experiments independently of the number of harmonics in
H . Therefore, the system performance is improved without
increasing the switching losses.

B. Conventional vs Proposed Prediction Model

Once the performance of the proposed model is assessed,
it is convenient to compare its performance against the con-
ventional solution. The most common approach to estimate
the output load current is to assume that io,k+1 = io,k [34].
To assess the controller performance both the transient and
the steady-state responses are evaluated. Fig. 7 shows the
transient response for both prediction model approaches when
the load is suddenly connected to the UPS output terminals.
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Fig. 7. Output filter capacitor voltage, output load current and current estimation error. Top represents transient response when the conventional prediction
model [34] is used and, bottom shows transient result when the proposed prediction model is employed with H = {1,−5, 7,−11, 13}. (a) Output voltage,
(b) load current and (c) current estimation error.
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Fig. 8. Output filter capacitor voltage and output load current in the steady-state when the conventional prediction model [34] is used: (a) Output voltage,
(b) load current and (c) current estimation error.
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Fig. 9. Spectrum of the output voltage: (a) Conventional prediction model
[34] and (b) proposed prediction model H = {1,−5, 7,−11, 13}.

The comparison of both performances allows one to conclude
that the proposed observer maintains the dynamic response
compared to the conventional solution. Fig. 8 shows the output
capacitor voltage, load current, output current estimate and
current estimation error at steady-state for the conventional
solution. This observer provides a good estimate but the
phase shift between the actual and the estimated current
is noticeable. As a consequence, FCS-MPC is not able to
compensate the effect of the low order harmonic components
in the output current. This affects to the harmonic spectrum of
the output capacitor voltage, where these low order harmonics
are present in Fig. 9(a). Clearly, the harmonic spectrum in
Fig. 9(b) when the proposed prediction model is used with

H = {1,−5, 7,−11, 13} is better. In addition, the proposed
prediction model reduces the THD from 1.3 % to 0.5 %.
Finally, the computational cost for both controllers are mea-
sured in the control hardware. The conventional solution needs
12.62 µs to complete the algorithm computation while the
proposed approach takes 14.99 µs, which is not a significant
difference for the current state-of-the-art control hardware
platforms. Therefore, it can be concluded that the new proposal
performs better than the conventional solution.

V. CONCLUSION AND FUTURE WORK

This paper studies the influence an observer-based predic-
tion model has on the closed-loop performance of an FCS-
MPC strategy governing a UPS system. This problem is chal-
lenging due to the lack of information about the load connected
to the UPS output terminals. Conventional solution relies
on the fact that FCS-MPC uses a high sampling frequency,
assuming thus that the output current is almost constant from
one sampling instant to the next one. Experimental results
show that with this approach FCS-MPC only compensates
high order harmonic components in the load, but does not
properly take care of low order harmonics due to the lack
of this information in the prediction model. In contrast, in
this paper it is proposed to consider the fact that the load
current is a periodical signal, which is composed of the sum
of different harmonics, to design the prediction model. This
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key idea is used to develop a steady-state Kalman filter to
estimate the output current, providing the low order harmonic
content information of the output load to the prediction model.
Experimental results show that this new approach allows FCS-
MPC to compensate not only high but also low order harmonic
components in the load when they are included in the model.
These results also show that due to the ability of FCS-MPC to
compensate high order harmonic content, it is not necessary to
include a large number of harmonics in the prediction model to
achieve a high performance. This is particularly important to
limit the computational burden of the algorithm. In addition,
the proposed prediction model does not modify the average
switching frequency of FCS-MPC. Thus, performance is im-
proved while keeping the switching losses in the same range.
Finally, the comparative experimental results for the proposed
and conventional solutions allow one to conclude that the
proposed approach is more suitable for a UPS application than
the conventional one. Improving the accuracy of the output
load estimate increases the system performance by lowering
the THD of the generated output voltage, which is reduced
from 1.3 % to 0.5 %, i.e., by 61.5 %.

Future research direction should address the use of different
approaches to deal with parameter and load uncertainties,
like model-free FCS-MPC (MF-FCS-MPC) for UPS system.
MF-FCS-MPC based on system identification methods or
difference detection techniques have shown promising results
for other applications. Therefore, studies should investigate
both alternatives. Besides the controller design, robustness and
stability for this approach should be analyzed in detail for the
UPS application, where the resonant frequency of the output
LC filter can produce instabilities in the system.
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