
IEEE TRANSACTIONS ON POWER ELECTRONICS 1

High-Speed Finite Control Set Model Predictive
Control for Power Electronics

Bartolomeo Stellato, Student Member, IEEE, Tobias Geyer, Senior Member, IEEE
and Paul J. Goulart, Member, IEEE

Abstract—Common approaches for direct model predictive
control (MPC) for current reference tracking in power electronics
suffer from the high computational complexity encountered when
solving integer optimal control problems over long prediction
horizons. We propose an efficient alternative method based
on approximate dynamic programming, greatly reducing the
computational burden and enabling sampling times below 25µs.
Our approach is based on the offline estimation of an infinite
horizon value function which is then utilized as the tail cost of
an MPC problem. This allows us to reduce the controller horizon
to a very small number of stages while simultaneously improving
the overall controller performance. Our proposed algorithm was
implemented on a small size FPGA and validated on a variable
speed drive system with a three-level voltage source converter.
Time measurements showed that our algorithm requires only
5.76µs for horizon N = 1 and 17.27µs for N = 2, in both
cases outperforming state of the art approaches with much longer
horizons in terms of currents distortion and switching frequency.
To the authors’ knowledge, this is the first time direct MPC
for current control has been implemented on an FPGA solving
the integer optimization problem in real-time and achieving
comparable performance to formulations with long prediction
horizons.

Index Terms—Approximate dynamic programming, value
function approximation, drive systems, finite control set, model
predictive control (MPC).

I. INTRODUCTION

AMONG the control strategies adopted in power electron-
ics, model predictive control (MPC) [1] has recently

gained popularity due to its various advantages [2]. MPC
has been shown to outperform traditional control methods
mainly because of its ease in handling time-domain constraint
specifications that can be imposed by formulating the control
problem as a constrained optimization problem. Due to its
structure, MPC can be applied to a variety of power electronics
topologies and operating conditions providing a higher degree
of flexibility than traditional approaches.

With the recent advances in convex optimization tech-
niques [3], it has been possible to apply MPC to very fast con-
strained linear systems with continuous inputs by solving con-
vex quadratic optimization problems within microseconds [4].
However, when dealing with nonlinear systems or with integer
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inputs, the optimal control problems are no longer convex and
it is harder to find optimal solutions. Sequential quadratic
programming (SQP) [3] has gained popularity because of
its ease in iteratively approximating nonconvex continuous
control problems as convex quadratic programs, which can be
solved efficiently. Moreover, integrated perturbation analysis
(IPA) has been recently combined with SQP methods (IPA-
SQP) [5] and applied to power electronics [6] by solving
the approximated quadratic optimization problem at a given
time instant using a perturbed version of the problem at
the previous time instant, thereby reducing the number of
iterations required at each time step. However, there are still
two orders of magnitude difference in achievable computation
time compared to results obtained for linear systems [4] and
further advances are required to apply these methods to very
fast dynamical systems.

In power electronics, many conventional control strategies
applied in industry are based on proportional-plus-integral (PI)
controllers providing continuous input signals to a modulator
that manages conversion to discrete switch positions. Direct
MPC [7] instead combines the current control and the modu-
lation problem into a single computational problem, providing
a powerful alternative to conventional PI controllers. With
direct MPC, the manipulated variables are the switch positions,
which lie in a discrete and finite set, giving rise to a switched
system. Therefore, this approach does not require a modulator
and is often referred to as finite control set MPC.

Since the manipulated variables are restricted to be integer-
valued, the optimization problem underlying direct MPC is
provablyNP-hard [8]. In power electronics these optimization
problems are often solved by complete enumeration of all
the possible solutions, which grow exponentially with the
prediction horizon [9]. Since long horizons are required to
ensure stability and good closed-loop performance [10], direct
MPC quickly becomes intractable for real-time applications.
As a consequence, in cases when reference tracking of the
converter currents is considered, the controller horizon is
often restricted to one [2]. Recently, the IPA-SQP method has
been applied to a finite control set MPC [11] to efficiently
approximate the optimization problem in the case of nonlinear
systems. However, no particular attention is paid to reducing
the number of integer combinations that must be evaluated,
which is at the source of the most significant computational
issues. Despite attempts to overcome the computational burden
of integer programs in power electronics [12], the problem of
implementing these algorithms on embedded systems remains
open.
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A recent technique introduced in [13] and benchmarked
in [14] reduces the computational burden of direct MPC when
increasing the prediction horizon. In that work the optimization
problem was formulated as an integer least-squares (ILS) prob-
lem and solved using a tailored branch-and-bound algorithm,
described as sphere decoding [15], generating the optimal
switching sequence at each time step. Although this approach
appears promising relative to previous work, the computation
time required to perform the sphere decoding algorithm for
long horizons (i.e. N = 10), is still far slower than the sam-
pling time typically required, i.e. Ts = 25µs. In the very re-
cent literature, some approaches have been studied to improve
the computational efficiency of the sphere decoding algorithm.
In particular, in [16] a method based on a lattice reduction
algorithm decreased the average computational burden of the
sphere decoding. However, the worst case complexity of this
new reformulation is still exponential in the horizon length.
In [17], heuristic search strategies for the sphere decoding
algorithm are studied at the expense of suboptimal control
performance. Even though a floating point complexity analysis
of the algorithms is presented in these works, no execution
times and no details about fixed-point implementation are
provided. Furthermore, there currently exists no embedded
implementation of a direct MPC algorithm for current control
achieving comparable performance to formulations with long
prediction horizons.

This paper introduces a different method to deal with the
direct MPC problem. In contrast to common formulations [18]
where the switching frequency is controlled indirectly via
penalization of the input switches over the controller horizon,
in this work the system dynamics are augmented to directly
estimate the switching frequency. Our approach allows the
designer to set the desired switching frequency a priori by
penalizing its deviations from this estimate. Thus, the cost
function tuning can be performed more easily than with the
approach in [14] and [13], where a tuning parameter spans
the whole frequency range with no intuitive connection to
the desired frequency. To address the computational issues of
long prediction horizons, we formulate the tracking problem
as a regulation one by augmenting the state dynamics and
cast it in the framework of approximate dynamic program-
ming (ADP) [19]. The infinite horizon value function is
approximated using the approach in [20] and [21] by solving
a semidefinite program (SDP) [22] offline. This enables us to
shorten the controller horizon by applying the estimated tail
cost to the last stage to maintain good control performance.
In [23] the authors applied a similar approach to stochastic
systems with continuous inputs, denoting the control law as
the “iterated greedy policy”.

As a case study, our proposed approach is applied to a
variable-speed drive system consisting of a three-level neutral
point clamped voltage source inverter connected to a medium-
voltage induction machine. The plant is modelled as a linear
system with a switched three-phase input with equal switching
steps for all phases.

Closed loop simulations in MATLAB in steady state oper-
ation showed that with our method even very short prediction
horizons give better performance than the approach in [14]

and [13] with much longer planning horizons.
We have implemented our algorithm on a small size Xilinx

Zynq FPGA (xc7z020) in fixed-point arithmetic and verified
its performance with hardware in the loop (HIL) tests of both
steady-state and transient performance. The results achieve
almost identical performance to closed-loop simulations and
very fast computation times, allowing us to comfortably run
our controller within the 25µs sampling time.

The remainder of the paper is organized as follows. In
Section II we describe the drive system case study and derive
the physical model. In Section III the direct MPC problem is
derived by augmenting the state dynamics and approximating
the infinite horizon tail cost using ADP. Section IV describes
all of the physical parameters of the model used to verify
our approach. In Section V we present closed-loop simulation
results on the derived model in steady state operation to
characterize the achievable performance of our method. In
Section VI we describe the hardware setup, the algorithm and
all the FPGA implementation details. In Section VII HIL tests
are performed in steady-state and transient operation. Finally,
we provide conclusions in Section VIII.

In this work we use normalized quantities by adopting the
per unit system (pu). The time scale t is also normalized using
the base angular velocity ωb that in this case is 2π50 rad/s,
i.e. one time unit in the per unit system corresponds to
1/ωb s. Variables in the three-phase system (abc) are denoted
ξabc =

[
ξa ξb ξc

]>
. It is common practice to transform phase

variables to ξαβ in the stationary orthogonal αβ coordinates
by ξαβ = Pξabc. The inverse operation can be performed
as ξabc = P †ξαβ . The matrices P and P † are the Clarke
transform and its pseudoinverse respectively, i.e.
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II. DRIVE SYSTEM CASE STUDY

In this work we consider a variable-speed drive system as
shown in Figure 1, consisting of a three-level neutral point
clamped (NPC) voltage source inverter driving a medium-
voltage (MV) induction machine. The total dc-link voltage Vdc
is assumed constant and the neutral point potential N fixed.

In most modern approaches to control variable-speed drive
systems, the control is split into two cascaded loops. The outer
loop controls the machine speed by manipulating the torque
reference. The inner loop controls the torque and the fluxes
by manipulating the voltages applied to the stator windings
of the machine. Our approach focuses on the inner loop. The
reference torque is converted into stator currents references
that must be tracked and the controller manipulates the stator
voltages by applying different inverter switch positions.

A. Physical Model of the Inverter

The switch positions in the three phase legs can be described
by the integer input variables ua, ub, uc ∈ {−1, 0, 1}, leading
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cost is chosen as the optimal one. Enumeration is sometimes
perceived as an “easy” task; this is a misconception since enu-
meration is applicable only to MPC problems featuring a limited
number of switching sequences. Exhaustive enumeration is not
practical for problems with thousands of sequences, which arise
from MPC formulations with prediction horizons of four or
more.

Motivated by the observations made previously, this paper ex-
amines the use of prediction horizons longer than one for direct
MPC with reference tracking. To address computational issues,
our work exploits the geometrical structure of the underlying
optimization problem and presents an efficient optimization al-
gorithm. The algorithm uses elements of sphere decoding [35] to
provide optimal switching sequences, requiring only little com-
putational resources. This enables the use of long prediction
horizons in power electronics applications.

The proposed computational approach is derived for a linear
system with a switched three-phase input with equal switching
steps in all phases. Specifically, the present work focuses on a
variable speed drive system, consisting of a three-level neutral
point clamped voltage source inverter driving a medium-voltage
induction machine. Our results in the analysis part [34] show that
using prediction horizons larger than one does, in fact, provide
significant performance benefits. In particular, at steady-state
operation, the current distortions and/or the switching frequency
can be reduced considerably with respect to direct MPC with
a horizon of one. Indeed, in some cases, a steady-state perfor-
mance can be achieved that is similar to the one of optimized
pulse patterns [36].

In summary, the contribution of this paper and its analysis
part [34] is fourfold, by substantiating the following statements.
First, direct MPC problems with reference tracking and long
prediction horizons can be solved in a computationally efficient
way, by adopting sphere decoding and tailoring it to the problem
at hand. Second, long horizons provide at steady state a better
performance than the horizon one case. Third, long horizons
do not have an adverse impact on the transient performance.
Fourth, the computation time can be further reduced by using
a simple rounding scheme. The latter gives suboptimal results,
which are close to optimal when the switching effort is very
high.

The remainder of this paper is organized as follows. Section II
describes the drive system case study used throughout the two
papers. Section III states the model predictive current control
problem to be solved, which can be cast as an integer QP, as
shown in Section IV. By adopting the notion of sphere decoding,
the integer program can be solved efficiently, as described in
detail in Section V. Conclusions are provided in Section VI.

Throughout the paper, we use normalized quantities and adopt
the per unit (pu) system. Extending this to the time scale t,
one time unit corresponds to 1/ωb s, where ωb is the base
angular velocity. Additionally, we use ξ(t), t ∈ R, to denote
continuous-time variables, and ξ(k), k ∈ N, to denote discrete-
time variables with the sampling interval Ts . All variables
ξabc = [ξa ξb ξc ]

T in the three-phase system (abc) are trans-
formed to ξαβ = [ξα ξβ ]T in the stationary orthogonal αβ co-

Fig. 1. Three-level three-phase neutral point clamped voltage source inverter
driving an induction motor with a fixed neutral point potential.

ordinates through ξαβ = P ξabc , where
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II. DRIVE SYSTEM CASE STUDY

While the ideas of this study can be applied to general ac–dc,
dc–dc, dc–ac, and ac–ac topologies with linear loads, including
active front ends, inverters with RL loads and inverters with ac
machines, we focus our exposition on the setup described in the
sequel.

A. Physical Model of the Inverter

As an illustrative example of a medium-voltage power elec-
tronic system, consider a variable speed drive consisting of a
three-level neutral point clamped (NPC) voltage source inverter
(VSI) driving an induction machine (IM), as depicted in Fig. 1.
The total dc-link voltage Vdc is assumed to be constant and the
neutral point potential N is fixed.

Let the integer variables ua , ub , uc ∈ U denote the switch
positions in the three-phase legs, where for a three-level inverter
the constraint set is given by

U △
= {−1, 0, 1} . (2)

In each phase, the values −1, 0, 1 correspond to the phase volt-
ages −Vd c

2 , 0, Vd c

2 , respectively. Thus, the voltage applied to the
machine terminals in orthogonal coordinates is

vs,αβ =
1

2
Vdc uαβ =

1

2
Vdc P u (3)

with

u
△
= [ua ub uc ]

T . (4)

The voltage vectors are shown in Fig. 2.

B. Physical Model of the Machine

The state-space model of a squirrel-cage induction machine
in the stationary αβ reference frame is summarized hereafter.
For the current control problem at hand, it is convenient to
choose the stator currents isα and isβ as state variables. The

Fig. 1. Three-level three-phase neutral point clamped (NPC) voltage source
inverter driving an induction motor with a fixed neutral point potential.

to phase voltages {−Vdc

2 , 0, Vdc

2 }, respectively. Hence, the
output voltage of the inverter is given by

vαβ =
Vdc
2
uαβ =

Vdc
2
Pusw, (1)

where usw =
[
ua ub uc

]>
.

B. Physical Model of the Machine

Hereafter we derive the state-space model of the squirrel-
cage induction machine in the αβ plane. Since we are con-
sidering a current control problem, it is convenient to use the
stator current is,αβ and the rotor flux ψr,αβ as state variables.
The model input is the stator voltage vs,αβ which is equal to
the inverter output voltage in (1). The model parameters are:
the stator and rotor resistances Rs and Rr; the mutual, stator
and rotor reactances Xm, Xls and Xlr, respectively; the inertia
J ; and the mechanical load torque Tl. Given these quantities,
the continuous-time state equations [24], [25] are

dis
dt

= − 1

τs
is +

(
1

τr
I − ωr

[
0 −1
1 0

])
Xm

D
ψr +

Xr

D
vs

dψr
dt

=
Xm

τr
is −

1

τr
ψr + ωr

[
0 −1
1 0

]
ψr

dωr
dt

=
1

J
(Te − Tl) ,

(2)
where D := XsXr −X2

m with Xs := Xls + Xm and Xr :=
Xlr + Xm, and I represents the 2 × 2 identity matrix. To
simplify the notation, we have dropped the subscripts αβ from
all vectors in (2). Moreover, τs := XrD/

(
RsX

2
r +RrX

2
m

)

and τr := Xr/Rr are the transient stator and the rotor time
constants respectively. The electromagnetic torque is given by

T :=
Xm

Xr
(ψr × is) . (3)

The rotor speed ωr is assumed to be constant within the
prediction horizon. For prediction horizons in the order of a
few milliseconds this is a mild assumption.

C. Complete Model of the Physical System

Given the models of the drive and of the induction motor
in (1) and (2) respectively, the state-space model in the

continuous time domain can be described as
dxph(t)

dt
= Dxph(t) +Eusw(t) (4a)

yph(t) = Fxph(t), (4b)

where the state vector xph =
[
is,α is,β ψr,α ψr,β

]>
includes

the stator current and rotor flux in the αβ reference frame. The
output vector is taken as the stator current, i.e. yph = is,αβ .
The matrices D,E and F are defined in Appendix A.

The state-space model of the drive can be converted into
the discrete-time domain using exact Euler discretization. By
integrating (4a) from t = kT̂s to t = (k + 1)T̂s and keeping
usw(t) constant during each interval and equal to usw(k), the
discrete-time model becomes

xph(k + 1) = Aphxph(k) +Bphusw(k) (5a)
yph(k) = Cphxph(k), (5b)

with matrices Aph := eDT̂s , Bph := −D−1 (I −Aph)E,
Cph := F and k ∈ N. I is an identity matrix of appropriate
dimensions. Although the sampling time is Ts = 25µs, we
use the discretization interval T̂s = Tsωb for consistency with
our per unit system, where ωb is the base frequency.

III. MODEL PREDICTIVE CURRENT CONTROL

A. Problem Description

Our control scheme must address two conflicting objectives
simultaneously. On the one hand, the distortion of the stator
currents is cause iron and copper losses in the machine leading
to thermal losses. Because of the limited cooling capability
of the electrical machine, the stator current distortions have
to be kept as low as possible. On the other hand, high
frequency switching of the inputs usw produces high power
losses and stress on the semiconductor devices. Owing to the
limited cooling capability in the inverter, we therefore should
minimize the switching frequency of the integer inputs.

Note that the effect of the inverter switchings on the
torque ripples can be improved during the machine design. In
particular, increasing the time constants of the stator and the
rotor τs and τr can reduce the amplitude of the torque ripples
by decreasing the derivative of the currents is and fluxes
ϕr. This is achieved naturally when dealing with machines
with higher power. Thanks to the flexibility of model based
controller designs such as MPC, different machine dynamics
influencing the torque ripples are automatically taken into
account by the controller, which adapts the optimal inputs
computation depending on the plant parameters. Thus, any
improvements during the machine design can be optimally
exploited by adapting the internal model dynamics in the
controller. Another similar approach is to include LCL filters
between the inverter and the motor to decrease the high fre-
quency components of the currents; see [26]. These approaches
allow operation at lower switching frequencies with low THD
at the same time. However, it is sometimes impossible to
change the machine’s physical configuration and it is necessary
to operate the inverter at high switching frequencies to satisfy
high performance requirements in terms of stator currents
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distortion. For all these reasons there is an unavoidable tradeoff
between these two criteria.

The controller sampling time plays an important role in the
distortion and switching frequency tradeoff. Depending on the
precision required in defining the inverter switching times, the
controller is discretized with higher (e.g. 125µs) or lower (e.g.
25µs) sampling times. Higher sampling times define a more
coarse discretization grid leading to less precise definition of
the switching instants, but more available time to perform the
computations during the closed-loop cycles. Lower sampling
times, on the other hand, lead to improved controller accuracy
while reducing the allowed computing time. However, for
the same switching frequency, longer sampling times produce
higher distortions. Ideally, the sampling time should be chosen
as low as possible to have the highest possible accuracy.

In contrast to the common approaches in direct MPC where
the switching frequency is minimized, in this work we penalize
its difference from the desired frequency which is denoted
by f∗sw. This is motivated by the fact that inverters are usually
designed to operate at a specific nominal switching frequency.

The current distortion is measured via the total harmonic
distortion (THD). Given an infinitely long time-domain cur-
rent signal i and its fundamental component i∗ of constant
magnitude, the THD is proportional to the root mean square
(RMS) value of the difference i− i∗. Hence, we can write for
one phase current

THD ∼ lim
M→∞

√√√√ 1

M

M−1∑

k=0

(i(k)− i∗(k))2, (6)

with M ∈ N. For the three-phase current iabc and its reference
i∗abc the THD is proportional to the mean value of (6) over the
phases. It is of course not possible to calculate the THD in
real time within our controller computations because of finite
storage constraints.

The switching frequency of the inverter can be identified by
computing the average frequency of each active semiconductor
device. As displayed in Figure 1, the total number of switches
in all three phases is 12, and for each switching transition by
one step up or down in a phase one semiconductor device
is turned on. Thus, the number of on transitions occurring
between time step k − 1 and k is given by the 1-norm of the
difference of the inputs vectors: ‖usw(k)− usw(k − 1)‖1.

Given a time interval centered at the current time step
k from k − M to k + M , it is possible to estimate the
switching frequency by counting the number of on transitions
over the time interval and dividing the sum by the interval’s
length 2MTs. We then can average over all the semiconductor
switches by dividing the computed fraction by 12. At time k,
the switching frequency estimate can be written as

fsw,M (k) :=
1

12 · 2MTs

M∑

i=−M
‖usw(k+i)−usw(k+i−1)‖1,

(7)
which corresponds to a non-causal finite impulse response
(FIR) filter of order 2M . The true average switching frequency
is the limit of this quantity as the window length goes to

infinity
fsw := lim

M→∞
fsw,M (k), (8)

and does not depend on time k.
The fsw computation brings similar issues as the THD.

In addition to finite storage constraints, the part of the sum
regarding the future signals produces a non-causal filter that
is impossible to implement in a real-time control scheme.

These issues in computing THD and fsw are addressed
in the following two sections via augmentation of our state
space model to include suitable approximation schemes for
both quantities.

B. Total Harmonic Distortion

According to (6), the THD in the three-phase current is
proportional to the mean value of (is,a−i∗s,a)2+(is,b−i∗s,b)2+
(is,c− i∗s,c)2. As shown in [13], the THD is also proportional
to the stator current ripple in the αβ coordinate system, i.e.

THD ∼ lim
M→∞

M−1∑

k=0

‖ei(k)‖22, (9)

where we have introduced the error signal
ei(k) := is,αβ(k)− i∗s,αβ(k). It is straightforward to
show [27] that the stator current reference during steady-state
operation at rated frequency is given by

i∗s,αβ(k) =
[
sin (k) − cos (k)

]>
. (10)

Hence, in order to minimize the THD, we minimize the
squared 2-norm of vector ei over all future time steps. We
also introduce a discount factor γ ∈ (0, 1) to normalize
the summation preventing it from going to infinity due to
persistent tracking errors. The cost function related to THD
minimization is therefore

∞∑

k=0

γk ‖ei(k)‖22 . (11)

In order to construct a regulation problem, we include the
oscillating currents from (10) as two additional uncontrollable
states xosc = i∗s,αβ within our model of the system dynamics.
The ripple signal ei(k) is then modeled as an output defined
by the difference between two pairs of system states.

C. Switching Frequency

To overcome the difficulty of dealing with the filter in (7),
we consider only the past input sequence, with negative time
shift giving a causal FIR filter estimating fsw. This filter
is approximated with an infinite impulse response (IIR) one
whose dynamics can be modeled as a linear time invariant
(LTI) system. Note that future input sequences in (7) are taken
into account inside the controller prediction.

Let us define three binary phase inputs denoting whether
each phase switching position changed at time k or not, i.e.

p(k) :=
[
pa(k) pb(k) pc(k)

]> ∈ {0, 1}3, (12)

with

ps(k) = ‖us(k)− us(k − 1)‖1 , s ∈ {a, b, c}. (13)
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It is straightforward to show that the following second order
IIR filter will approximate the one-sided version of the FIR
filter in (7) [28]:

xflt(k + 1) =

[
a1 0

1− a1 a2

]

︸ ︷︷ ︸
Aflt

xflt(k) +
1− a2
12Ts

[
1 1 1
0 0 0

]

︸ ︷︷ ︸
Bflt

p(k)

(14)

f̂sw(k) =
[
0 1
]
xflt(k), (15)

where f̂sw(k) is the estimated switching frequency and
xflt(k) is the filter state. The two poles at a1 = 1 − 1/r1
and a2 = 1 − 1/r2 with r1, r2 >> 0 can be tuned to shape
the behavior of the filter. Increasing a1, a2 make the estimate
smoother, while decreasing a1, a2 gives a faster estimation
with more noisy values.

We denote the difference between the approximation f̂sw(k)
and the target frequency f∗sw by esw(k) := f̂sw(k)− f∗(k).
Therefore, the quantity to be minimized in order to bring the
switching frequency estimate as close to the target as possible
is ∞∑

k=0

δγk ‖esw(k)‖22 , (16)

where δ ∈ R+ is a design parameter included to reflect
the importance of this part of the cost relative to the THD
component.

Finally, we can augment the state space to include the
filter dynamics and the target frequency by adding the states[
x>flt f

∗
sw

]>
so that the control inputs try to drive the dif-

ference between two states to zero. Since the physical states
are expressed in the per unit (pu) system with values around
1, in order to have these augmented states within the same
order of magnitude we will normalize them by the desired
frequency f∗sw defining xsw =

[
(1/f∗sw)x>flt 1

]
and the

matrices Asw = blkdiag(Asw, 1), Bsw =
[
B>flt 0>1×3

]>
.

D. MPC Problem Formulation

Let us define the complete augmented state as

x(k) :=
[
xph(k)> xosc(k)> xsw(k)> usw(k − 1)>

]>
,

(17)
with x(k) ∈ R9 × {−1, 0, 1}3 and total state dimension
nx = 12. The vector xph represents the physical system from
Section II-C, xosc defines the oscillating states of the sinusoids
to track introduced in Section III-B, usw(k − 1) are additional
states used to keep track of the physical switch positions at
the previous time step, and xsw are the states related to the
switching filter from Section III-C.

The system inputs are defined as

u(k) :=
[
usw(k)> p(k)>

]> ∈ Rnu ,

where usw are the physical switch positions and p are the
three binary inputs entering in the frequency filter from Sec-
tion III-C. The input dimension is nu = 6. To simplify the no-
tation let us define the matrices G and T to obtain usw(k) and
p(k) from u(k) respectively, i.e. such that usw(k) = Gu(k)

and p(k) = Tu(k). Similarly, to obtain usw(k−1) from x(k)
we define a matrix W so that usw(k − 1) = Wx(k).

The MPC problem with horizon N ∈ N can be written as

minimize
u(k)

N−1∑

k=0

γk`(x(k)) + γNV (x(N)) (18a)

subject to x(k + 1) = Ax(k) +Bu(k) (18b)
x(0) = x0 (18c)
x(k) ∈ X , u(k) ∈ U(x(k)), (18d)

where the stage cost is defined combining the THD and the
switching frequency penalties in (11) and (16) respectively as

`(x(k)) = ‖Cx(k)‖22 = ‖ei(k)‖22 + δ ‖esw(k)‖22 .
The tail cost V (x(N)) is an approximation of the infinite
horizon tail that we will compute in the next section using
approximate dynamic programming (ADP). The matrices A,
B and C define the extended system dynamics and the
output vector; they can be derived directly from the physical
model (5) and from the considerations in Sections III-C
and III-B.

The input constraint set is defined as

U(x(k)) :={‖Tu(k)‖∞ ≤ 1, (19a)
− Tu(k) ≤ Gu(k)−Wx(k) ≤ Tu(k), (19b)

Gu(k) ∈ {−1, 0, 1}3}, (19c)

where constraint (19b) defines the relationship between
usw and p from (12) and (13). Constraint (19a)
together with (19b) defines the switching constraints
‖usw(k)− usw(k − 1)‖∞ ≤ 1 imposed to avoid a shoot-
through in the inverter positions that could damage the
components. Finally, (19c) enforces integrality of the
switching positions.

It is straightforward to confirm that the number of switching
sequence combinations grows exponentially with the horizon
length N , i.e. 33N = 27N . The problem therefore becomes
extremely difficult to solve for even modest horizon lengths.

Observe that the controller tuning parameters are δ, which
defines the relative importance of the THD and fsw com-
ponents of the cost function, and r1, r2, which shape the
switching frequency estimator.

E. Control Loop

The complete block diagram is shown in Figure 2. The
desired torque T ∗ determines the currents xosc by setting the
initial states of the oscillator OSC. The motor speed ωr and
the stator currents is are measured directly from the machine
and used by the observer OBS providing the physical states
of the motor xph. The auxiliary inputs p are fed into the filter
FLT estimating the switching frequency in xsw. The switch
positions usw go through a one step delay and are exploited
again by the MPC formulation.

Following a receding horizon control strategy, at each
stage k the problem (18) is solved, obtaining the optimal
sequence {u?(k)}N−1k=0 from which only u?(0) is applied to
the switches. At the next stage k + 1, given new vectors
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OSC

MPC

FLT

z−1

MOTOR

OBS

T ∗(k) xosc(k)

usw(k)

is(k)ωr(k)

p(k)

xsw(k)

usw(k − 1)

xph(k)

xph(k)

CONTROLLER

Fig. 2. Block diagram of the control loop. The controller within the dotted
line receives the desired torque T ∗(k) and the motor states xph(k) providing
the switch position usw(k).

xosc(k),xph(k),usw(k − 1) and xsw(k) as in Figure 2 a
new optimization problem is then solved providing an updated
optimal switching sequence, and so on. The whole control
algorithm, appearing within the dotted line, runs within 25µs.

F. Approximate Dynamic Programming

The goal of this section is to compute a value function
approximation V adp for an infinite horizon version of (18).
The function V adp is used as a tail cost in (18).

Let V ∗(z) be the value function evaluated in z, i.e. the
optimal value of the objective of our control problem starting
at state z

V ∗(z) = min
u∈U(z)

{ ∞∑

k=0

γkl(x(k),u(k))

}
,

subject to the system dynamics (18b). For notational conve-
nience, we will drop the time index k from the vectors in this
section. The main idea behind dynamic programming is that
the function V ∗ is the unique solution to the equation

V ∗(z) = min
u∈U(z)

{l(z,u) + γV ∗ (Az +Bu)} ∀z,

known as the Bellman equation. The right-hand side can be
written as monotonic operator T on V ∗, usually referred to
as the Bellman operator: V ∗ = T V ∗. Once V ∗ is known, the
optimal control policy for our problem starting at state z can
be found as

ψ∗(z) = arg min
u∈U(z)

{l(z,u) + γV ∗ (Az +Bu)} ,

subject to constraints (18b).
Unfortunately, solutions to the Bellman equation can only

be solved analytically in a limited number of special cases;
e.g. when the state and inputs have small dimensions or
when the system is linear, unconstrained and the cost function
is quadratic [29]. For more complicated problems, dynamic

programming is limited by the so-called curse of dimension-
ality; storage and computation requirements tend to grow
exponentially with the problem dimensions. Because of the
integer switches in the power converter analyzed in this work,
it is intractable to compute the optimal infinite horizon cost
and policy and, hence, systematic methods for approximating
the optimal value function offline are needed.

Approximate dynamic programming [19] consists of various
techniques for estimating V ∗ using knowledge from the system
dynamics, fitted data through machine learning or iterative
learning through simulations.

Approximation via Iterated Bellman Inequalities: the ap-
proach developed in [20] and [21] relaxes the Bellman equa-
tion into an inequality

V adp(z) ≤ min
u∈U(z)

{
l(z,u) + γV adp (Az +Bu)

}
, ∀z,

(20)
or, equivalently, using the Bellman operator: V adp ≤ T V adp.

The set of functions V adp that satisfy the Bellman inequality
are underestimators of the optimal value function V ∗. This
happens because, if V adp satisfies V adp ≤ T V adp, then
by the monotonicity of the operator T and value iteration
convergence, we can write

V adp ≤ T V adp ≤ T
(
T V adp

)
≤ · · · ≤ lim

i→∞
T iV adp = V ∗.

The Bellman inequality is therefore a sufficient condition for
underestimation of V ∗. In [21] the authors show that by iter-
ating inequality (20), the conservatism of the approximation
can be reduced. The iterated Bellman inequality is defined as:

V adp(z) ≤ T MV adp,
where M > 1 is an integer defining the number of iterations.
This inequality is equivalent to the existence of functions V adpi

such that

V adp ≤ T V adp1 , V adp1 ≤ T V adp2 , . . . V adpM−1 ≤ T V adp.

By defining V adp0 = V adpM = V adp, we can rewrite the iterated
inequality as

V adpi−1 ≤ T V adpi , i = 1, . . . ,M, (21)

where V adpi are the iterates of the value function.

To make the problem tractable, we will restrict the iterates to
the finite-dimensional subspace spanned by the basis functions
V (j) defined in [20], [21]:

V adpi =

K∑

j=1

αijV
(j), i = 0, . . . ,M − 1. (22)

The coefficients αi will be computed by solving a Semidefinite
Program (SDP) [22].

The rewritten iterated Bellman inequality in (21) suggests
the following optimization problem for finding the best under-
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estimator for the value function V ∗ :

maximize
∫

X
V adp(z)c(dz) (23a)

subject to V adpi−1 (z)≤ min
u∈U(z)

{
l(z,u) + γV adpi (Az +Bu)

}

(23b)

∀z ∈ R6 × {−1, 0, 1}, i = 1, . . . ,M, (23c)

V adp0 = V adpM = V adp, (23d)

where c(·) is a non-negative measure over the state space. On
the chosen subspace (22), the inequality (23b) is convex in
the coefficients αij . To see this, note that the left-hand side
is affine in αij . Moreover, for a fixed u the argument of min
on the right-hand side is affine in αij while the min of affine
functions is concave.

The solution to (23) is the function spanned by the chosen
basis that maximizes the c-weighted 1-norm defined in the cost
function while satisfying the iterated Bellman inequality [20].
Hence, c(·) can be regarded as a distribution giving more
importance to regions of the state space where we would like
a better approximation.

Following the approach in [21], we make use of quadratic
candidate functions of the form

V adpi (z) = z>P iz + 2q>i z + ri, i = 0, . . . ,M, (24)

where P i ∈ Snx , qi ∈ Rnx , ri ∈ R, i = 0, . . . ,M .

If we denote µc ∈ Rnx and Σc ∈ Snx
+ as the mean and

the covariance matrix of measure c(·) respectively, by using
candidate functions as in (24) the cost function of problem (23)
becomes∫

X
V adp(z)c(dz) = Tr (P 0Σc) + 2q>0 µc + r0.

We now focus on rewriting the constraint (23b) as a Linear
Matrix Inequality (LMI) [30]. We first remove the min on the
right-hand side by imposing the constraint for every admissible
u ∈ U(x0) and obtain

V adpi−1 (z) ≤ l(z,u) + γV adpi (Az +Bu),

∀z ∈ R6 × {−1, 0, 1}, ∀u ∈ U(z), i = 1, . . . ,M.
(25)

From [21], we can rewrite (25) as a quadratic form
[
z
1

]>
M i(u)

[
z
1

]
≥ 0, ∀z ∈ R6 × {−1, 0, 1},

∀u ∈ U(z), i = 1, . . . ,M,

(26)

where

M i(u) = L+ γGi(u)− Si−1 ∈ Snx . (27)

is a symmetric matrix. The matrices Si−1,L and Gi(u) are
defined in Appendix B.

By noting that the state vector z includes two parts which
can take only a finite set of values — the normalized de-
sired frequency fixed to 1 and the previous physical input
usw(k − 1) ∈ {−1, 0, 1} — we can explicitly enumerate part
of the state-space and rewrite the quadratic form (26) more

compactly as
[
z̃
1

]>
M̃ i(m)

[
z̃
1

]
≥ 0, ∀z̃ ∈ R8, ∀m ∈M, i = 1, . . . ,M,

(28)
where z̃ is the state vector without the desired frequency and
usw(k − 1). Moreover, m := (usw,usw,pr) ∈ M are all the
possible combinations of current and previous switch posi-
tions satisfying the switching and integrality constraints (19).
The detailed derivation of M̃(m) ∈ S9 can be found in
Appendix B.

Using the non-negativity condition of quadratic forms [22],
it is easy to see that (28) holds if and only if M̃ i(m)
is positive semidefinite. Hence, problem (23) can finally be
rewritten as the following SDP

maximize Tr (P 0Σc) + 2q>0 µc + r0

subject to M̃ i(m) � 0, ∀m ∈M, i = 1, . . . ,M

V adp0 = V adpM

P i ∈ Snx , qi ∈ Rnx , ri ∈ R, i = 0, . . . ,M,
(29)

which can be solved efficiently using a standard SDP solver,
e.g. [31]. Once we obtain the solution to (29), we can define
the infinite horizon tail cost to be used in problem (18) as

V adp(z) = z>P 0z + 2q>0 z + r0. (30)

G. Optimization Problem in Vector Form

Since we consider short horizons, we adopt a condensed
MPC formulation of problem (18) with only input variables,
producing a purely integer program. In this way all the possible
discrete input combinations can be evaluated directly. With
a sparse formulation including the continuous states within
the variables, it would be necessary to solve a mixed-integer
program requiring more complex computations.

Let us define the input sequence over the horizon N starting
at time 0 as

U =
[
u(0)> u(1)> . . . u(N − 1)>

]>
, (31)

where we have dropped the time index from U to simplify
the notation. With straightforward algebraic manipulations out-
lined in Appendix C, it is possible to rewrite problem (18) as
a parametric integer quadratic program in the initial state x0:

minimize U>QU + 2f (x0)
>
U

subject to AineqU ≤ bineq(x0)

GU ∈ {−1, 0, 1}3N .
(32)

IV. FRAMEWORK FOR PERFORMANCE EVALUATION

To benchmark our algorithm we consider a neutral point
clamped voltage source inverter connected to a medium-
voltage induction machine and a constant mechanical load.
We consider the same model as in [13]: a 3.3 kV and 50 Hz
squirrel-cage induction machine rated at 2 MVA with a to-
tal leakage inductance of 0.25 pu. On the inverter side, we
assume the dc-link voltage Vdc = 5.2 kV to be constant
and the potential of the neutral point to be fixed. The base
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quantities of the per unit (pu) system are the following:
Vb =

√
2/3Vrat = 2694 V, Ib =

√
2Irat = 503.5 A and

fb = frat = 50 Hz. Quantities Vrat, Irat and frat refer to the
rated voltage, current and frequency respectively. The detailed
parameters are provided in Table I. The switching frequency
is typically in the range between 200 and 350 Hz for medium-
voltage inverters [13]. If not otherwise stated, all simulations
were done at rated torque, nominal speed and fundamental
frequency of 50 Hz.

TABLE I
RATED VALUES AND PARAMETERS OF THE DRIVE [13]

Induction Motor Inverter

Voltage 3300 V Rs 0.0108 pu Vdc 1.930 pu
Current 356 A Rr 0.0091 pu xc 11.769 pu
Real power 1.587 MW Xls 0.1493 pu
Apparent power 2.035 MVA Xlr 0.1104 pu
Frequency 50 Hz Xm 2.3489 pu
Rotational speed 596 rpm

We consider an idealized model with the semiconductors
switching instantaneously. As such, we neglect second-order
effects like deadtimes, controller delays, measurement noise,
observer errors, saturation of the machine’s magnetic material,
variations of the parameters and so on. This is motivated by
the fact that, using a similar model, previous simulations [32]
showed a very close match with the experimental results
in [33]. All the steady-state simulations in the following
sections were also performed with model mismatch of ±1 %
in all the parameters of Table I showing negligible variations
in the THD. However, we omit these benchmarks since an
exhaustive sensitivity analysis is out of the scope of this paper.

V. ACHIEVABLE PERFORMANCE IN STEADY STATE

We performed closed loop simulations in steady-state oper-
ation in MATLAB to benchmark the achievable performance
in terms of THD and switching frequency. The system was
simulated for 4 periods before recording to ensure it reaches
steady-state operation. The THD and switching frequency
were computed over simulations of 20 periods. The discount
factor was chosen as γ = 0.95 and the switching frequency
filter parameters as r1 = r2 = 800 in order to get a smooth
estimate. The weighting δ was chosen such that the switching
frequency is around 300 Hz. The infinite horizon estimation
SDP (29) is formulated using YALMIP [34] with M = 50
Bellman iterations and solved offline using MOSEK [31]. Note
that in case of a change in the systems parameters, e.g. the dc-
link voltage or the rotor speed, the tail cost has to be recom-
puted. However, it possible to precompute offline and store
several quadratic tail costs for different possible parameters
and evaluate the desired one online without significant increase
complexity.

For comparison, we simulated the drive system also with
the direct MPC controller described in [13] (denoted DMPC)
tuned in order to have the same switching frequency by
adjusting the weighting parameter λu.

The integer optimization problems were solved using
Gurobi Optimizer [35]. Numerical results with both ap-
proaches are presented in Table II. Note that the choice of the
solver does not influence the THD or the switching frequency
and we would have obtained the same results with another
optimization software.

TABLE II
SIMULATION RESULTS WITH ADP AND WITH DMPC FROM [14] AT

SWITCHING FREQUENCY 300Hz

ADP DMPC [14]

δ THD [%] λu THD [%]

N = 1 4 5.24 0.00235 5.44
N = 2 5.1 5.13 0.00690 5.43
N = 3 5.5 5.10 0.01350 5.39
N = 10 10 4.80 0.10200 5.29

Our method, with a horizon of N = 1 provided both a THD
improvement over the DMPC formulation in [13] with N = 10
and a drastically better numerical speed. This showed how
choosing a meaningful cost function can provide good control
performance without recourse to long horizons. Moreover, we
also performed a comparison with longer horizons N = 2,
N = 3 and N = 10. Our method, with horizon N = 10 would
give an even greater reduction in THD to 4.80 %.

VI. FPGA IMPLEMENTATION

A. Hardware Setup

We implemented the control algorithm on a Xilinx Zynq
(xc7z020) [36], a low cost FPGA, running at approximately
150 MHz mounted on the Zedboard evaluation module [37];
see Figure 3. The control algorithm was coded in C++ using

Fig. 3. Zedboard Evaluation Board used for HIL Tests. The controller runs
on the FPGA while the plant is simulate on the laptop. The states and input
vectors are passed via the ethernet cable (yellow). The micro-usb cable on
the left side provides a UART interface with the laptop used to print if there
are any problems in the communication. The cable in the top left corner is
connected to the power supply while the other micro-usb cable next to it
provides access to the USB-JTAG interface to program the FPGA module.

the PROTOIP Toolbox [38]. The FPGA vendors HLS tool
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Xilinx Vivado HLS [39] was used to convert the written code
to VHDL defining the Programmable Logic connections.

B. Algorithm Description
We now present a detailed description of how the controller

within the dotted lines in Figure 2 was implemented on the
FPGA.

The updates in OSC and FLT were implemented as simple
matrix multiplications. The solver for the integer problem (32)
was implemented with a simple exhaustive search algorithm
for three reasons: first, the tail cost approximation provides
good performance with very few horizon steps while consid-
ering a relatively small number of input combinations; second,
the structure of the problem allows us to evaluate both the
inequalities and cost function for multiple input sequences in
parallel; third, the FPGA logic is particularly suited for highly
pipelined and/or parallelized operations, which are at the core
of exhaustive search.

To exploit the FPGA architecture, we implemented our
algorithm in fixed-point arithmetic using custom data types
defined in Vivado HLS [39]. In particular, we used 4 integer
and 0 fractional bits to describe the integer inputs and 2
integer and 22 fractional bits to describe the states and the cost
function values. This choice is given by the minimum number
of bits necessary to describe these quantities from floating-
point simulations in Section V. Note that the exhaustive search
algorithm does not suffer from any accumulation of rounding
error because it consists entirely of independent function
evaluations, in contrast to iterative optimization algorithms [3].

We provide pseudo-code for our method in Algorithm 1.
From Figure 2, the controller receives the required torque
T ∗(k) and the motor states xph(k) and returns the switch
positions usw(k). From line 2 to line 8 the oscillator OSC and
the filter FLT are updated to compute the new initial state x0

for the optimization algorithm. Note that if there is a change
in the required torque then the oscillator states xosc(k) are
reset to match the new T ∗(k). Line 9 and 10 precompute the
vectors in problem (32) depending on x0.

The main loop iterating over all input combinations is split
into two subloops: Loop 1, which is completely decoupled and
can be parallelized; and Loop 2, which can only be pipelined.

Loop 1 from line 11 to 19 computes the cost function values
for every combination i and stores it into vector J . All the
possible input sequence combinations are saved in the static
matrix U seq . For every loop cycle, sequence i is saved into
variable u. Then, in line 13, the value of p(k) is updated inside
u with usw(k − 1) according to (12) and (13). If u satisfies
the constraint Ainequ ≤ bineq(x0), then the cost function is
stored in J (i) (line 15). Otherwise J (i) is set to a high value
Jub. Note that, even though it would bring considerable speed
improvements, we do not precompute offline the quadratic
part u>Qu of the cost and the left side of the inequality
Ainequ since it would also require enumeration over inputs
at the previous control cycle used in line 13.

Each iteration of this loop is independent from the others
and can therefore be parallelized efficiently.

Loop 2 from line 20 to 26 is a simple loop iterating over the
computed cost function values to find the minimum and save

Algorithm 1 Controller Algorithm
1: function COMPUTEMPCINPUT(T ∗(k),xph(k))

Data: xosc(k − 1), xsw(k − 1), p(k − 1) and usw(k − 1)

Parameters: U seq ∈ Z6×27N , Jub ∈ R
Initialize: J ∈ R27N , Jmin ∈ R and imin ∈ N

Execute Filter and Oscillator to Obtain Initial State:
2: if change in T (k) then
3: xosc(k)← Reset according to (3)
4: else
5: xosc(k)← Aoscxosc(k − 1)
6: end if
7: xsw(k)← Aswxsw(k − 1) +Bswp(k − 1)

8: x0 ←
[
xph(k)> xosc(k)> xsw(k)> usw(k − 1)>

]>

Precompute Vectors:
9: f(x0)← Compute from (40)

10: bineq(x0)← Compute from (41), (42)

Loop 1 - Compute Cost Function Values:
11: for i = 1, . . . , 27N do
12: u← U seq

(:,i)

13: u(4:6) ← p(k) = ‖u(1:3) − usw(k − 1)‖1
14: if Ainequ ≤ bineq(x0) then
15: J (i) ← u>Qu+ 2f(x0)>u
16: else
17: J (i) ← Jub
18: end if
19: end for

Loop 2 - Find Minimum:
20: Jmin ← Jub, imin ← 1
21: for i = 1, . . . , 27N do
22: if J (i) ≤ Jmin then
23: Jmin ← J (i)

24: imin ← i
25: end if
26: end for

Return Results
27: usw(k)← U seq

(1:3,imin)
and p(k)← U seq

(4:6,imin)

28: return usw(k)
29: end function

it into Jmin. Every iteration depends sequentially on Jmin
which is accessed and can be modified at every i. Thus, in
this form it is not possible to parallelize this loop, although it
can be pipelined.

C. Circuit Generation

In Vivado HLS [39] it is possible to specify directives
to optimize the circuit synthesis according to the resources
available on the target board. Loop 1 and Loop 2 were
pipelined and the preprocessing operations from line 2 to 10
parallelized. We generated the circuit for the algorithm 1 with
horizons N = 1 and N = 2 at frequency 150 MHz (clock
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cycle of 7 ns). The resources usage and the timing estimates
are displayed in Table III. Since timing constraints were met,
there was no need to parallelize Loop 1 to reduce computation
time.

TABLE III
RESOURCES USAGE AND TIMING ESTIMATES FOR IMPLEMENTATION ON

THE XILINX ZYNQ FPGA (XC7Z020) RUNNING AT 150MHz

N = 1 N = 2

FPGA Resources

LUT 15127 (28 %) 31028 (58 %)
FF 11156 (10 %) 20263 (19 %)
BRAM 6 (2 %) 21 (7 %)
DSP 89 (40 %) 201 (91 %)

Clock Cycles 371 1953
Delay 2.60µs 13.67µs

Note that for N = 2 we are using already 91 % of the DSP
multipliers. This is due to the limited amount of resources
available on our chosen low-cost hardware.

VII. HARDWARE IN THE LOOP TESTS

We performed hardware in the loop (HIL) experiments using
the controller FPGA fixed-point implementation developed in
Section VI and the machine model described in Section IV.

The control loop was operated using the PROTOIP tool-
box [38]: the plant model was simulated on a Macbook Pro
2.8 GHz Intel Core i7 with 16GB of RAM while the control
algorithm was entirely executed on the Zedboard development
board described in Section VI-A.

A. Steady State

The controller was benchmarked in HIL in steady-state
operation to compare its performance to the achievable per-
formance results obtained in Table II. We chose the same
controller parameters as in Section V.

The HIL tests for horizon N = 1 are shown in Figure 4
in the per unit system. The three-phase stator currents are
displayed over a fundamental period in Figure 4a, the three
spectra are shown in Figure 4b with THD of 5.23 % and the
input sequences are plotted in Figure 4c.

From the experimental benchmarks with horizon N = 1
and N = 2 we obtained THD = 5.23 % and THD = 5.14 %
respectively. As expected, these results are very close to the
simulated ones in Table II. The slight difference (∼ 0.01 %)
comes from the fixed-point implementation of the oscillator
OSC and the filter FLT in Figure 2.

B. Transients

One of the main advantages of direct MPC is the fast
transient response [13]. We tested torque transients in HIL with
the same tuning parameters as in the steady state benchmarks.
At nominal speed, reference torque steps were imposed; see
Figure 6b. These steps were translated into different current
references to track, as shown in Figure 6a, while the computed
inputs are shown in Figure 6c.

The torque step from 1 to 0 in the per unit system presented
an extremely short settling time of 0.35 ms similar to deadbeat
control approaches [40]. This was achieved by inverting the
voltage applied to the load. Since we prohibited switchings
between−1 and 1 in (19b) and (19a), the voltage inversion was
performed in 2Ts via an intermediate zero switching position.

Switching from 0 to 1 torque produced much slower re-
sponse time of approximately 3.5 ms. This was due to the
limited available voltage in the three-phase admissible switch-
ing positions. As shown in Figure 6c, during the second step
at time 20 ms, the phases b and c saturated at the values +1
and −1 respectively for the majority of the transient providing
the maximum available voltage that could steer the currents
to the desired values.

These results match the simulations of the DMPC formula-
tion in [13] in terms of settling time showing that our method
possesses the fast dynamical behavior during transients typical
of direct current MPC.

As noted in [13], having a longer horizon or a better predic-
tive behavior does not significantly improve the settling times.
This is because the benefit of longer prediction obtainable by
extending the horizon or adopting a powerful final stage costs
is reduced by the saturation of the inputs during the transients.

C. Execution Time

To show that the controller is able to run on cheap hardware
within Ts = 25µs, we measured the time the FPGA took
to execute Algorithm 1 for horizon N = 1 and N = 2.
Since there are no available DMPC sphere decoding algorithm
execution times, we compared our results to the time needed
to solve the DMPC formulation in [14] for the same horizon
lengths on a Macbook Pro with Intel Core i7 2.8 GHz and
16GB of RAM using the commercial integer program solver
Gurobi Optimizer [35] which implements an efficient Branch-
and-Bound algorithm. The results are shown in Figure 5.

The FPGA execution times were 5.76µs and 17.27µs for
horizon N = 1 and N = 2 respectively. Note that they
presented a slight overhead of approximately 3.5µs compared
to the estimates in Table III since the measured times included
the time needed to exchange the input-output data from the
FPGA to the ARM processor through the RAM memory.
Without the overhead, the estimated FPGA computing times
obtained by the circuit generation are exact; see [39].

Note that the time needed by the FPGA to compute the
control algorithm is deterministic with zero variance. This
makes our HIL implementation particularly suited for real-
time applications. Furthermore, it is important to underline that
the method we propose is the only method available that can
produce integer optimal solutions to this problem achieving
this performance in 25µs sampling time.

The execution times needed by Gurobi optimizer were
621.2± 119.98µs and 750.40±216.15µs for horizons N = 1
and N = 2 respectively. The non-negligible standard devi-
ation appeared because of the branch-and-bound algorithm
implemented in Gurobi. However, since we are considering
real-time applications, we are interested in the worst case
number of visited nodes which is always the whole tree of
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(a) Three-phase stator currents (solid lines) with
their references (dashed lines).
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(c) Three-phase switch positions inputs.

Fig. 4. Waveforms produced during HIL Tests by the direct model predictive controller at steady state operation, at full speed and rated torque. Horizon of
N = 1 is used. The switching frequency is approximately 300Hz and the current THD is 5.23%.

0 200 400 600 800 1000

N = 1

N = 2

Ts

621.2

750.4

5.76

17.27

Execution Time [µs]

Gurobi
FPGA

Fig. 5. Execution times required by the Xilinx Zynq FPGA (xc7z020) to
execute our controller based on an ADP formulation (blue) and using Gurobi
Optimizer [35] to solve the formulation in [13] on a Macbook Pro with Intel
Core i7 2.8 GHz and 16GB of RAM

combinations, i.e. 27N . Note that the DMPC formulation was
solved in [13] using a different branch-and-bound algorithm
based on the sphere decoding algorithm [15], but the worst
case number of visited nodes cannot be easily reduced because
of the NP−hardness of the problem.

VIII. CONCLUSION AND FUTURE WORK

This work proposes a new computationally efficient direct
model predictive control (MPC) scheme for current reference
tracking in power converters. We extended the problem for-
mulation in [13] and [14] in order to include a switching
frequency estimator in the system state and rewrite the optimal
control problem as a regulation one. To reduce the horizon
length and decrease the computational burden while preserving
good control performances, we estimated the infinite horizon
tail cost of the MPC problem formulation using approximate
dynamic programming (ADP).

Steady-state simulation results show that with our method
requiring short horizons, it is possible to obtain better per-
formance than the direct MPC formulation in [13] with long
horizons. This is due to the predictive behavior of the tail cost
function obtained with ADP.

The control algorithm was implemented in fixed-point arith-
metic on the low size Xilinx Zynq FPGA (xc7z020) for
horizons N = 1 and N = 2. Hardware in the loop (HIL)
tests during steady-state operation showed an almost identical
performance to the simulation results. We also performed
transient simulations where our proposed approach exhibited
the same very fast dynamic response as the direct MPC
described in [13]. Moreover, we showed that our algorithm
can run within the sampling time of 25µs by measuring the
execution time on the FPGA. Results showed that only 5.76µs
and 17.27µs are required to run our controller for horizons
N = 1 and N = 2 respectively.

Direct MPC can also be applied to more complex schemes
such as modular multilevel converters (MMC) [41]. While it
is possible to derive a complete MMC model that could be
used in an MPC approach, the number of switching levels per
horizon stage exponentially increases with the number of con-
verter levels. As stated in [14], long-horizon predictive power
is expected to be even more beneficial with MMCs. We believe
that our method, making use of short prediction horizons and
long predictions using an approximate value function could
be applied effectively to MMCs with more levels because it
is still possible to evaluate on commercially available FPGAs
the multilevel feasible switching combinations over very short
horizons within the required sampling time.

There are several future directions to be investigated. Given
the system design there are several symmetries in the model
that could be exploited to increase the controller horizon
without requiring more computational power. Regarding the
frequency estimation, other filters with different orders could
be implemented and their parameters chosen optimally by
solving an optimization problem instead of performing manual
tuning. Moreover, it would be interesting to benchmark other
ADP tail cost functions (e.g. higher order polynomials) to
understand which ones best approximate the infinite horizon
tail cost and produce the best overall control performance.
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Fig. 6. Reference torque steps produced by the direct model predictive controller in HIL tests with horizon N = 1.

in particular the PROTOIP toolbox.

APPENDIX A
PHYSICAL SYSTEM MATRICES

The matrices corresponding to the continuous-time physical
system in (4) are

D =




− 1

τs
0

Xm

τrD
ωr
Xm

D

0 − 1

τs
−ωr

Xm

D

Xm

τrD
Xm

τr
0 − 1

τr
−ωr

0
Xm

τr
ωr − 1

τr




E =
Xr

D

Vdc
2




1 0
0 1
0 0
0 0


P , F =

[
1 0 0 0
0 1 0 0

]
.

APPENDIX B
ADP FORMULATION

The matrices defining the quadratic form are

Si−1 :=

[
P i−1 qi−1
q>i−1 ri−1

]
, L :=

[
C>C 0nx×1
0>nx×1 0

]

Gi(u) :=

[
Ψ(i) Φ(i)(u)

Φ(i)(u)> Γ(i)(u)

]
,

with
Ψ(i) = A>P i−1A

Φ(i)(u) = A>P iBu+A>qi

Γ(i)(u) = u>B>P iBu+ 2q>i Bu+ ri,

for i = 1, . . . ,M .
The quadratic form decomposition can be derived as fol-

lows. For every m = (usw,usw,pr) ∈M, we can define the
input

um =

[
usw

‖usw − usw,pr‖1

]
,

and the matrix M i(um) using (27). Now we can decompose
the vector in quadratic form (26) using the state definition (17)

[
z> 1

]>
=
[
z>ph z

>
osc z

>
sw,1:2 z

>
sw,3 z

>
upr 1

]>
.

The matrix M i(um) can also be decomposed in the same
fashion into smaller block matrices as follows



zph
zosc
zsw,1:2
zsw,3
zupr

1




> 


M i,11 M i,12 M i,13 M i,14

M>
i,12 M i,22 M i,23 M i,24

M>
i,13 M

>
i,23 M i,33 M i,34

M>
i,14 M

>
i,24 M

>
i,34 M i,44







zph
zosc
zsw,1:2
zsw,3
zupr

1



≥ 0,

where the dependency M i,∗∗(um), m ∈ M has been
neglected to simplify the notation. The first row and first
column block matrices have the first and second dimensions
respectively equal to the length of vector

[
z>ph z

>
osc z

>
sw,1:2

]>
.

Since zupr = usw,pr and zsw,3 = 1 (normalized desired
switching frequency), we can rewrite the quadratic form as




zph
zosc
zsw,1:2

1




> 

M i,11 Ψi,1

Ψ>i,1 Ψi,2







zph
zosc
zsw,1:2

1


 ≥ 0, (33)

where

Ψi,1 = M i,13zupr +M i,12 +M i,14

Ψi,2 = z>uprM i,33zupr + 2M i,23zupr + 2M>
i,34zupr

+ 2M i,24 +M i,22

Therefore, we will denote the matrix in (33) as M̃ i(m) and
the quadratic form vectors as

[
z̃> 1

]>
.

APPENDIX C
DENSE FORMULATION OF THE MPC PROBLEM

By considering the input sequence (31) and the state se-
quence over the horizon denoted as

X =
[
x(0)> x(1)> . . . x(N)>

]>
,
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the system dynamics (18b) with initial state constraint (18c)
can be written as

X = Ax0 + BU , (34)

where A and B are

A :=




I
A
...
AN


, B :=




0 . . . 0
B ...AB B
...

. . . . . . 0

AN−1B · · · AB B



.

Let us separate cost function (18a) in two parts: the cost from
stage 0 to N−1 and the tail cost. The former can be rewritten
as

N−1∑

k=0

γk‖Cx(k)‖22 = X>HX

= U>B>HBU + 2
(
B>HAx0

)>
U + const(x0),

(35)

where the last equality is obtained by plugging in (34) and the
term const(x0) is a constant depending on the initial state.
Matrix H is defined as

H =




C>C 0

γC>C
.... . .

γN−1C>C
0 · · · 0



. (36)

In order derive the tail cost, let us write the last stage as

x(N) = ANx0 + BendU , (37)

where Bend is the last row of B used to compute the last state.
Using equations (37) and (30), the tail cost can be rewritten
as

V adp(x(N)) = x(N)>P 0x(N) + 2q>0 x(N) + r0

= U>
(
B>endP 0Bend

)
U + 2

(
B>endP 0A

Nx0 + B>endq0
)>
U

+ const(x0).
(38)

By combining (35) and (38) according to (18a), we obtain
the full cost function

J = U>QU + 2f (x0)
>
U + const(x0),

with

Q = B>HB + γNB>endP 0Bend (39)

f (x0) =
(
B>HA+ γNBendP 0AN

)
x0 (40)

+ γNB>endq0.

We now rewrite the constraints of problem (18) in vector
form. Inequalities (19b) with k = 0, . . . , N −1 can be written
as

RU ≤ SX ⇐⇒ (R− SB)U ≤ SAx0, (41)

where in the term on the right we substituted (34).

Similarly, constraint (19a) with k = 0, . . . , N − 1 can be

written as

‖Tu(k)‖∞ ≤ 1 ⇐⇒ FU ≤ 1, (42)

where 1 is a vector of ones of appropriate dimensions.
Matrices R,S and F are

R =




I − T
. . .

I − T
−I − T

. . .
−I − T




,

S =




W 0
. . .

...
W

−W
. . .
−W 0




, F =




T
. . .

T
−T

. . .
−T




.

Let us define matrix G extrapolating all the switch positions
usw(k) from U as

G =



G

. . .
G


 .

We can now merge (41) and (42) into a single inequality
AineqU ≤ bineq(x0) and rewrite (18) neglecting the constant
terms in the cost function obtaining the result in (32).
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