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Abstract—This paper considers a medium-voltage static syn-
chronous compensator (STATCOM) that is based on a delta-
connected modular multilevel converter (MMC) and operates at
switching frequencies of 150 Hz or less. Offline computed optimal
pulse patterns (OPPs) facilitate the shaping of the grid current
spectrum at such low switching frequencies. However, STATCOM
applications require the injection of harmonics and negative-
sequence currents, as well as fast power transients. In order
to achieve this, a model predictive controller is designed, which
modifies the switching transitions of the OPPs, inserts additional
pulses if required, and controls the circulating current in the
delta-connected MMC.

Index Terms—Static synchronous compensator, modular multi-
level converter, optimized pulse pattern, model predictive control

I. INTRODUCTION

Static synchronous compensators (STATCOMs) are grid-

connected power converters that generate or absorb reactive

power [1]. Additional objectives include the compensation of

harmonics and negative-sequence currents, which result from

large dynamic loads, such as arc furnaces. The voltages and

currents at the point of common coupling (PCC) with the grid

must meet stringent grid codes, which impose limits on the

amplitudes of harmonics and inter-harmonics [2].

Modular multilevel converters (MMCs) achieve line-to-line

voltages in the medium and high voltage range through the

series-connection of unipolar or bipolar modules [3]. This

feature makes the MMC topology particularly suitable for

grid-connected applications like STATCOMs, as it allows one

to reduce or fully eliminate the coupling transformer [4].

Furthermore, due to the large number of voltage levels that

can be generated by an MMC, the grid codes can be met with

small or even without output filters [5].

The MMC requires a sophisticated control and modulation

scheme [6]. Ideally, the controller facilitates the reduction of

the filter size while meeting the grid codes, and it allows

one to operate the converter at low switching frequencies.

This minimizes the losses and enables the use of a simpler

and cheaper cooling system. Additional requirements are the

control of the circulating current in the delta-connected MMC

topology, harmonic injection, a fast dynamic response during

transients and the ability to operate under unbalanced grid

conditions.
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A well-known approach for improving the spectral content

of the converter currents is the use of optimal pulse patterns

(OPPs) [7]. However, the classic control methodology used

with OPP-based modulation, which is described, for example,

in [8] and references therein, is not suitable for STATCOM

applications, because the application of pre-stored switching

angles governed by a slow modulation index selection loop

fails to meet the above mentioned control requirements. The

literature on OPP-based control methods for STATCOMs is

therefore scarce.

Extending [9], an OPP-based model predictive control

(MPC) system is proposed in this paper, which provides the

benefits of OPP-based modulation, while meeting the control

objectives that are required for STATCOMs. A fast online con-

troller, called model predictive pulse pattern control (MP3C),

directly modifies the OPP switching instants to achieve fast

closed-loop current control. The control method described

here extends a related methodology applied to medium-voltage

drives, see [10] and subsequent work by the authors for dc-

ac MMCs [11] and ac-ac MMC railway interties [12]. To this

end, a three-dimensional virtual converter flux at the converter

terminals is controlled, such that the desired fundamental and

harmonic current components are injected into the PCC. To

balance the capacitor voltages of the MMC modules, MP3C

needs to also control the circulating current within the MMC.

Classical OPP-based control methods require the switching

angles to vary smoothly with the modulation index. Such OPPs

are suboptimal with regard to their harmonic performance.

This is particularly the case for selective harmonic elimina-

tion (SHE) patterns, in which a certain number of harmonic

amplitudes are set to zero, see e.g. [13] and [14]. MP3C allows

one to drop the smoothness restriction on the switching angles,

thus providing additional degrees of freedom to optimize the

harmonic spectrum. In particular, OPPs can be designed such

that the harmonic content of the voltages and currents is

constrained below the amplitude limits prescribed by the grid

codes while minimizing the overall distortions.

This paper focuses on delta-connected MMCs for STAT-

COM applications [15], [16]. The main contribution of this

paper is twofold: (i) A high-bandwidth control method is

introduced that enables STATCOM operation with OPPs. To

the best of the authors’ knowledge, such a method has not

been previously reported in the literature for STATCOMs.

(ii) The benefits of using OPPs for MMC STATCOM are

shown, focusing on spectral performance and switching losses.
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Fig. 1: Delta-connected MMC STATCOM connected to the grid

This result opens up new opportunities for a redesign and

optimization of MMC STATCOM systems.

The paper is structured as follows. The STATCOM system

is described and modelled in Sect. II, and suitable OPPs

are designed in Sect. III. Based on the references derived in

Sect. IV, the OPP-based MPC scheme is proposed in Sect. V.

Its performance is evaluated in Sect. VI for an industrial case

study in several operating conditions. The characteristics of

the proposed MPC scheme are discussed in Sect. VII before

concluding the paper in Sect. VIII.

II. STATCOM MODELING

As shown in Fig. 1, the delta-connected MMC STATCOM

is connected via the PCC to the grid. Other loads connected to

the PCC can be considered as a disturbance, which is modeled

as the three-phase current source il,abc = [il,a il,b il,c]
T 1.

The grid is modeled with an equivalent Thevenin represen-

tation, comprising the sinusoidal three-phase voltage source

vg,abc = [vg,a vg,b vg,c]
T , the series inductance Lg and the

grid resistance Rg. We also define the three-phase grid current

ig,abc = [ig,a ig,b ig,c]
T .

1Throughout this paper, lower-case quantities are variables, lower-case
boldface quantities are vectors, upper-case quantities are parameters, and
upper-case boldface quantities are matrices.

The delta-connected MMC has three branches. Each branch

consists of the series-connection of M bipolar modules, an

inductor Lbr and a (small) resistance Rbr. The inductance

Lsc (the subscript sc stands for STATCOM) and resistance

Rsc model the connection of the MMC to the PCC, see, for

example, [17, Chap. 31]. This connection typically includes a

transformer.

Each module contains two pairs of switches and a capacitor,

see Fig. 1. The voltage of the capacitor is denoted by vcjk ,

where j ∈ {1, 2, 3} refers to the branch and k ∈ {1, . . . ,M}
refers to the module within that branch. By applying different

gate signals to the module’s switches, the capacitor is either

disconnected from the converter branch or it is connected to

the converter branch with a positive or negative polarity. The

voltage across the module terminals is vjk = ujkvcjk, where

ujk ∈ {−1, 0, 1} denotes the switch position, which is the

control variable. The voltage of the series-connection of the

modules in the jth branch is

vj =

M
∑

k=1

ujkvcjk. (1)

We refer to vj as the branch voltage, and ij is correspond-

ingly the branch current. We also define the vectors v123 =
[v1 v2 v3]

T and i123 = [i1 i2 i3]
T for the branch voltage and

the branch current, respectively.

The circuit in Fig. 1 is described by the following equations

that arise from Kirchhoff’s laws:

v123 = Lbr

di123
dt

+Rbri123 +D1vg,abc+ (2a)

+D1

(

Lsc

disc,abc

dt
+Rscisc,abc + Lg

dig,abc

dt
+Rgig,abc

)

,

isc,abc = D2i123, (2b)

ig,abc = isc,abc − il,abc, (2c)

where D1 =





1 −1 0

0 1 −1

−1 0 1



 and D2 =





1 0 −1

−1 1 0

0 −1 1



.

The matrix D1 translates three-phase (abc) quantities to

branch (123) quantities, whereas D2 translates branch quanti-

ties back to the three-phase system. We refer to the three-phase

current at the STATCOM terminals as the converter current

isc,abc (in contrast to the branch current i123), see also (2b).

The Clarke transformation matrix

K =
2

3









1 − 1
2 − 1

2

0
√
3
2 −

√
3
2

1
2

1
2

1
2









transforms three-phase (abc) variables and branch (123) vari-

ables into the stationary orthogonal αβγ reference frame. To
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Fig. 2: Equivalent differential-mode and common-mode circuit representations

this end, we introduce the variables

vαβγ =Kv123,

iαβγ =Ki123,

isc,αβγ =Kisc,abc,

vg,αβγ =Kvg,abc,

ig,αβγ =Kig,abc.

With this, and as shown in Appendix A, (2) can be separated

into two sets of equations—one only with differential-mode

and the other one only with common-mode components. The

differential-mode equations are

1√
3
Dvαβ = Leq

disc,αβ

dt
+Reqisc,αβ+ (3a)

+ Lg

dig,αβ

dt
+Rgig,αβ + vg,αβ ,

ig,αβ = isc,αβ − il,αβ, (3b)

where Leq = Lsc +
1
3Lbr and Req = Rsc +

1
3Rbr. The matrix

D =
1

2

[
√
3 1

−1
√
3

]

(4)

performs a clockwise rotation of a two-dimensional vector

by 30◦. This rotation arises when translating branch quan-

tities from delta to star configuration. The equations for the

differential-mode components describe the currents between

the STATCOM isc,αβ , the grid ig,αβ , and the load il,αβ .

To control the differential-mode converter current isc,αβ , the

differential-mode component of the converter voltage vαβ can

be used, see (3a) and Fig. 2.

Similarly, as shown in Appendix A, the corresponding

common-mode equations follow as

vγ = Lbr

dicirc

dt
+Rbricirc, (5a)

ig,γ = 0. (5b)

The common-mode component of the branch current is non-

zero and called the circulating current, i.e.

icirc = iγ =
1

3
(i1 + i2 + i3).

As can be seen in Fig. 1, the circulating current flows

through the converter branches and remains inside the delta-

connected converter. Because the circulating current shifts

energy between the branches of the converter, it has to be

tightly controlled in order to prevent any drift in the module

capacitor voltages. To this end, the common-mode component

of the converter voltage vγ can be used, see (5a) and Fig. 2.

The common-mode component of the grid current ig,γ is zero.

III. OPP COMPUTATION

OPPs are computed offline such that the desired spectral

properties of the converter current isc,abc are achieved. To

make this procedure tractable, it is common practise to assume

operation at steady state and nominal operating conditions,

i.e. the module capacitors are assumed to be constant voltage

sources vc and disturbances from the grid are neglected. The

expression (1) of the sum of the module voltages in the jth
branch then simplifies to

vj = vc

M
∑

k=1

ujk = vcuj ,

with j ∈ {1, 2, 3}, where uj ∈ {−M, . . . , 0, . . . ,M} is the

branch switch position.

We restrict the OPPs to quarter-wave symmetric pulse

patterns, for which u(π − θ) = u(θ) and u(θ + π) = −u(θ)
hold, where θ is the phase angle. The quarter-wave symmetric

pulse pattern is fully characterized by the primary switching

angles θ1, . . . , θd at which the switching function changes its

value, and the primary switching transitions ∆u1, . . . ,∆ud,

with ∆ui ∈ {−1, 1}. For example, ∆ui = 1 implies that the

value of the switching function increases by 1 at the switching

angle θi.
The integer number d denotes the number of switching

transitions of one phase in a quarter of a fundamental period;

it is commonly referred to as the pulse number. The latter

defines the switching frequency of the system. An example of

a quarter-wave symmetric pulse pattern with d = 9 switching

transitions is shown in Fig. 3.

The three-phase pulse pattern over one fundamental period

can be constructed from the first quarter-wave of the single-

phase pattern by first constructing the single-phase pulse

pattern over one 2π-period and the shifting the pulse pattern

by 2π
3 and 4π

3 to obtain the pulse patterns in phase b and c,
respectively. For more details on OPPs, the reader is referred

to [7].

Owing to its 2π-periodicity and quarter-wave symmetry, the

OPP can be represented by the Fourier series

u(θ) =

∞
∑

n=1

ûn sin(nθ) (6)
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Fig. 3: Quarter-wave symmetric single-phase pulse pattern

with the Fourier coefficient

ûn =











4

nπ

d
∑

i=1

∆ui cos(nαi), for odd n,

0, for even n.

(7)

Quarter-wave symmetric pulse patterns are, by definition, free

of even harmonics. Hence the Fourier coefficients ûn are zero

for even harmonic orders n.

OPPs are computed by solving the following optimization

problem for a fixed pulse number d and a given amplitude of

the fundamental component û1:

min
θ1,...,θd

∆u1,...,∆ud

∑

n=2k+1,k∈N

n≤N

Cn

(

1

n2

d
∑

i=1

∆ui cos(nθi)

)2

(8a)

subj. to 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θd ≤
π

2
(8b)

j
∑

i=1

∆ui ≤M, ∀j ∈ {1, . . . , d} (8c)

4

π

d
∑

i=1

∆ui cos(θi) = û1 (8d)

∣

∣

∣

∣

∣

vc

k2ω1(Lg + Leq)π

d
∑

i=1

∆ui cos(kθi)

∣

∣

∣

∣

∣

≤ îk,lim, ∀k ∈ K.

(8e)

The d switching angles θi and switching transitions ∆ui
constitute the optimization (or decision) variables. The ob-

jective function (8a) penalizes the sum of the (weighted)

amplitudes of the switching function’s harmonic spectrum.

Thanks to the quarter-wave symmetry, only odd harmonics

need to be considered. We distinguish between differential-

mode and common-mode harmonics. For a 2π
3 phase shift

between the converter branches, all non-triplen harmonics

are differential-mode harmonics, which give rise to converter

current harmonics. Triplen harmonics constitute common-

mode harmonics, which drive circulating current harmonics,

see Sect. II. To account for this difference, triplen and non-

triplen harmonics can be penalized differently by choosing

the weighting coefficients Cn accordingly. If the coefficients

for the non-triplen harmonics are the same and those for the

triplen harmonics are zero, the objective function penalizes the

total harmonic distortion (THD) of the converter current, see

[18]. The highest harmonic order considered in the objective

function is denoted by N .

Constraint (8b) imposes an ascending order on the switching

angles. The addition of constraint (8c) ensures that the pulse

pattern can be synthesized by an M -level converter. Constraint

(8d) ensures that the amplitude of the switching function’s

fundamental component is equal to û1.

Constraint (8e) ensures that the spectral limits imposed by

the grid codes are met. Here, vc denotes again the nominal

voltage of the module capacitors, ω1 = 2πf1 is the angular

fundamental frequency and Lg + Leq is the equivalent grid

inductance. The relevant grid code defines the limits îk,lim.

The set K contains odd non-triplen harmonic orders, typically

up to the harmonic order of N = 180.

Because the switching transitions are restricted to the set

{−1, 0, 1}, the optimization problem (8) is a mixed-integer

nonlinear program. Rather than solving it directly, it can be

solved indirectly by enumerating feasible switching sequences.

The set of investigated switching sequences can be signifi-

cantly reduced by employing heuristics, e.g., by eliminating

switching sequences that lead to high common-mode voltages

that drive undesired circulating currents and increase losses.

For a given switching sequence, (8) simplifies to a non-convex

but real-valued optimization problem, in which the switching

transitions are given and the switching angles are the only

optimization variables. Real-valued optimization problems can

be solved relatively efficiently, but require multiple different

initial conditions owing to their non-convex nature. For more

details on formulating and solving OPP optimization problems

for multi-level converters, the reader is referred to [19].

To enable the operation of the system at different oper-

ating points (corresponding to e.g. different reactive power

references), OPPs are computed for a range of fundamental

amplitudes û1. Moreover, to enable operation at different

switching frequencies, the OPPs are typically computed for

a range of pulse numbers d. The primary switching angles

and primary switching sequences are stored in the controller

memory.

IV. MODELING FOR REFERENCE GENERATION

In this section, we derive a slightly simplified model of

the STATCOM system, based on which we will generate

references for the control loops, see Sects. V-A and V-B.

To this end, we adopt the notion of virtual fluxes, which are

defined as the time integral of the voltage v

ψ(t) =

∫ t

0

v(τ)dτ.

Virtual fluxes generalize flux linkages in electrical machines.

In this paper, we use the terms flux and virtual flux inter-

changeably.
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Fig. 4: Block diagram of the OPP-based model predictive control system for the delta-connected MMC STATCOM

We introduce the virtual converter flux and the grid flux

ψαβ =

∫ t

0

vαβ(τ)dτ, ψγ =

∫ t

0

vγ(τ)dτ, (9a)

ψg,αβ =

∫ t

0

vg,αβ(τ)dτ, (9b)

integrate (3a) and (5a), and neglect all ohmic resistances. This

leads to the model

1√
3
Dψαβ = Leqisc,αβ + Lgig,αβ +ψg,αβ, (10a)

ψγ = Lbricirc. (10b)

We distinguish between fundamental components, which we

denote by the superscript 1, and harmonic components, to

which we refer with the superscript h. We apply this principle

of superposition to the virtual converter flux, converter current,

load current and grid current, and define

ψαβ = ψ1
αβ +ψh

αβ , (11a)

isc,αβ = i1sc,αβ + ih
sc,αβ , (11b)

il,αβ = i1l,αβ + ih
l,αβ , (11c)

ig,αβ = i1g,αβ + ih
g,αβ . (11d)

We also define the fundamental component of the virtual flux

at the PCC as

ψ1
PCC,αβ = Lgi

1
g,αβ +ψg,αβ . (12)

The grid voltage and the virtual grid flux are, by definition,

free of harmonics. Note that the objective of the STATCOM

is to remove all significant harmonics from the grid current.

We may thus assume that the virtual PCC flux consists only

of a fundamental component, which can be easily estimated

from the measured voltage at the PCC.

With the definitions (11) and (12), we can separate the

model (10) into the fundamental-component model

1√
3
Dψ1

αβ = Leqi
1
sc,αβ +ψ1

PCC,αβ , (13a)

ψ1
γ = Lbri

1
circ, (13b)

and the harmonic model

1√
3
Dψh

αβ = (Lg + Leq)i
h
sc,αβ − Lgi

h
l,αβ , (14a)

ψh
γ = Lbri

h
circ. (14b)

Note that we used (3b) when deriving (14a).

V. OPP-BASED MPC

The OPPs computed in Sect. III are modified online to en-

sure the precise tracking of the virtual converter flux reference,

in order to ensure fast responses to power steps, as well as

the injection of harmonics and negative-sequence components.

These characteristics are achieved by the proposed model

predictive control system, whose block diagram is shown in

Fig. 4.

A. Outer Control Loops

The outer control loops provide the following three refer-

ences to the inner control loops. We denote references by the

superscript ∗.

Differential-mode fundamental current reference i1∗sc,αβ . This

reference is typically obtained from the reactive power setpoint

Q∗ or from the grid voltage regulation loop. During steady-

state operation, i1∗sc,αβ contains only the fundamental compo-

nent without additional harmonics. In balanced steady-state

conditions, i1∗sc,αβ corresponds to two sinusoidal waveforms of

the same amplitude that are phase shifted by π
2 . In the case of

unbalanced operation, owing, for example, to an asymmetric

fault in the grid, the phase shift could differ from π
2 and the

two amplitudes could be different from one another.

Harmonic current reference ih∗
sc,αβ . This reference facilitates

the compensation of grid or load harmonic components, which

are injected, for example, by arc furnaces. The reference

contains the time-evolution of higher-order harmonic currents

without a fundamental component.

Circulating current reference i∗circ. For symmetric grid con-

ditions, the circulating current reference is typically zero to

avoid unnecessary switching and conduction losses. Additional
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harmonics might be added to the circulating current reference

to achieve operation during unbalanced conditions and to meet

additional objectives, such as the minimization of the capacitor

voltage ripple [20]. In both cases, energy stored in the module

capacitors is shifted between the branches.

B. Reference Generation for MP3C

MP3C regulates the virtual converter flux vector along its

reference trajectory. Three computational entities provide the

necessary references and inputs to MP3C. These entities are

shown on the left-hand side of Fig. 4 and will be explained

below.

Steady-state switching function. Given the differential-mode

fundamental converter current reference i1∗sc,αβ and the es-

timated virtual PCC flux vector ψ1
PCC,αβ , the reference for

the fundamental component of the virtual converter flux ψ1∗
αβ

directly follows from (13a). As shown in Appendix B, the

corresponding converter voltage reference v1∗αβ follows from

(22), based on which the amplitudes û∗
123 and relative phase

angles ∠u∗
123 of the switching functions are computed (as-

suming nominal capacitor voltages). This is done for each

one of the three converter branches. Based on the outputs of

this block, appropriate OPPs are loaded and the optimal flux

trajectory is defined for steady-state operation.

During steady-state operation, the amplitudes û∗
123 and rel-

ative phase angles ∠u∗
123 are constant. In balanced conditions,

the switching functions in the three branches have the same

amplitude and a relative phase shift of 2π
3 . In unbalanced

conditions, however, the amplitudes of the switching functions

in the three branches generally differ, as do the phase shifts be-

tween them. Such a scenario will be considered in Sect. VI-C

and requires the use of three different OPPs—one per phase.

Flux reference phase angle. The reference for the fundamen-

tal component of the virtual converter flux ψ1∗
αβ was computed

in the entity discussed above. Its phase angle follows from

θ∗ = arctanψ1∗
β /ψ

1∗
α , which corresponds to the phase angle

of the OPP.

Harmonic flux reference. Based on the references for the

harmonic converter current ih*
sc,αβ and the harmonic circulating

current ih*
circ, the reference for the virtual harmonic converter

flux

ψh*
αβγ =

[
√
3DT (Lg + Leq)i

h∗
sc,αβ

Lbri
h∗
circ

]

is derived from (14). To do so, the reference for the harmonic

load current ih*
l,αβ is set to zero, and D−1 = DT is used.

C. MP3C

The MP3C block diagram is shown in Fig. 5. Its three blocks

are described hereafter.

OPP selection and flux trajectory. Based on the required

fundamental components of the switching functions û∗
123, the

OPPs are loaded from memory. Starting from the primary

switching angles and transitions, the switching pattern over

the fundamental period is unwrapped by exploiting quarter-

wave symmetry. To allow for unbalanced operating conditions,

three different OPPs are considered, one per converter branch.

Flux reference

computation
Pattern controller

MP
3
C

OPP selection and

flux trajectory computation 

Fig. 5: Block diagram of MP3C

The three single-phase OPPs are combined in one three-phase

OPP with the switching function uOPP,123 that has switching

transitions at the angles θOPP.

To compute the virtual flux trajectory corresponding to the

OPP, the switching functions are multiplied by the nomi-

nal module capacitor voltage to obtain the nominal branch

voltages. These voltages are transformed into the stationary

orthogonal coordinate system and then integrated over time to

obtain the virtual flux trajectory ψOPP,αβγ .

Since the nominal branch voltage is piecewise constant,

the resulting virtual flux trajectory is piecewise affine. It thus

suffices to compute its corner points, in between which the

trajectory can be interpolated. Because the OPPs in the three

branches have, in general, different fundamental components

with different amplitudes and phase shifts between them, it

is advisable to compute the corner points of the virtual flux

trajectory online (rather than offline).

Flux reference vector. The flux reference angle θ∗ deter-

mines the point on the virtual flux reference trajectory that is

to be tracked. The exact point on the reference trajectory is

obtained by interpolating between its corner points using the

information stored in θOPP and ψOPP,αβγ .

Pattern controller. The model predictive pattern controller

is based on the following principle [10]: A flux error in the

jth branch ∆ψj = ψ∗
j −ψj can be removed by shifting the ith

switching transition in that phase by the time ∆tji = − ∆ψj

∆ujivc
,

where ∆uji is the sign of the ith switching transition and

vc is the nominal capacitor voltage. A positive ∆tji implies

that the switching transition needs to be postponed, whereas

a negative ∆tji means that the switching transition is to

be moved forward in time. This simple observation follows

directly from the definition of the virtual flux (9a) and the

assumption of the branch voltages being piecewise constant

waveforms.

In the stationary orthogonal reference frame, the flux error

compensation problem can be formulated as the constrained
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(b) MP3C at 50 Hz switching frequency: slightly improved harmonic spectrum
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(c) MP3C at 150 Hz switching frequency: similar switching losses as CB-
PWM, but with a significantly improved harmonic spectrum

Fig. 6: Harmonic converter current spectrum during steady-state operation at nominal capacitive reactive power

optimization problem

min
∆t

∥

∥ψ∗
αβγ −ψαβγ −ψαβγ,corr(∆t)

∥

∥

2

2
+∆tTQ∆t (15a)

subj. to kTs ≤ t11 ≤ t12 ≤ · · · ≤ t1n1
≤ t∗1(n1+1) (15b)

kTs ≤ t21 ≤ t22 ≤ · · · ≤ t2n2
≤ t∗2(n2+1) (15c)

kTs ≤ t31 ≤ t32 ≤ · · · ≤ t3n3
≤ t∗3(n3+1). (15d)

The number of OPP switching transitions in the prediction

horizon is denoted by n1, n2 and n3 for the three branches.

The ith nominal switching instant and the ith switching tran-

sition in branch 1 are denoted by t∗1i and ∆u∗1i, respectively.

The nominal switching instants and switching transitions in

branches 2 and 3 are defined accordingly.

The corrections of the switching instants are aggregated in

the optimization variable

∆t = [∆t11 . . .∆t1n1
∆t21 . . .∆t2n2

∆t31 . . .∆t3n3
]T .

For branch 1, for example, the correction of the ith switching

instant is given by ∆t1i = t1i − t∗1i, where t1i denotes the

modified ith switching instant.

The virtual flux error is given by ψ∗
αβγ−ψαβγ , where ψαβγ

is the estimated virtual converter flux at the terminals of the

MMC. The correction of the virtual flux error throughout the

prediction horizon is achieved by

ψαβγ,corr(∆t) = −vcK





∑n1

i=1∆t1i∆u1i
∑n2

i=1∆t2i∆u2i
∑n3

i=1∆t3i∆u3i



 .

Note that the flux correction is a linear function in the

optimization variable. Its squared two norm, which is denoted

August 20, 2019 TIA 2019
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by || · ||22, is a quadratic function in ∆t. The term ∆tTQ∆t
in the objective function (15a) penalizes modifications of the

switching instants with the aim to preserve the nominal OPP

if possible. The matrix Q is positive definite and diagonal; it

sets the trade-off between switching time modifications and

controller bandwidth. We set all diagonal entries in Q to the

same small value, such as 0.001. The term ∆tTQ∆t is a

quadratic function in ∆t.
The constraints (15b)–(15d) ensure that the order of the

switching transitions is kept in each branch. That means that

each switching transition can be moved forward in time at

most until the previous switching instant in the same branch

or, in the case of the first upcoming switching instant, to the

current time step kTs. Switching transitions can be delayed at

most until the next switching transition in the same branch or,

in the case of the last switching transition considered in the

optimization, until the first switching instant that is scheduled

beyond the prediction horizon. In branch 1, for example, this

switching instant is given by t∗1(n1+1).

The constraints (15b)–(15d) are linear and the objective

function (15a) is quadratic in the optimization variable. This

implies that the optimization problem (15) underlying MP3C

is a quadratic program (QP), for which highly efficient solvers

are readily available. For a detailed discussion on these and

some implementation aspects of MP3C on FPGAs, the inter-

ested reader is referred to [21].

We design a model predictive controller (MPC) based

on the receding horizon control principle. The controller

solves the optimization problem (15) at each sampling in-

stant kTs and computes the number of MMC modules

uj ∈ {−M, ..., 0, ...,M} to be inserted into each branch

j ∈ {1, 2, 3} within the current sampling interval. At the

next sampling instant, a new flux reference and a new flux

estimate are obtained, and new nominal switching instants

and corresponding switching transitions are read in. The

optimization procedure is repeated with the new data over a

shifted (or receding) prediction horizon.

D. Cell Selection

Each branch uses a dedicated cell selection algo-

rithm that translates the branch switch positions uj ∈
{−M, . . . , 0, . . . ,M} into module switch positions ujk ∈
{−1, 0, 1}, where j ∈ {1, 2, 3} and k ∈ {1, . . . ,M}. The cell

selection algorithms exploit the redundancy of the modules in

the branches to balance the capacitor voltages of the modules

within their branch.

Adopting the sorting algorithm proposed in [3], the modules

are sorted according to their capacitor voltages. If current flows

into (out of) the branch, the module with the lowest (highest)

voltage is inserted. In contrast, the module with the lowest

(highest) voltage is removed, when the current flows out of

(into) the branch.

VI. PERFORMANCE EVALUATION

Consider the STATCOM in Fig. 1 with M = 9 modules per

branch. The rated converter voltage is 10.3 kV and the rated

0

0−20 −10 10 20
t (ms)

1

−1

P

Q

(a) Active power P (pu) and reactive power Q (pu)

0

0−20 −10 10 20
t (ms)

1

−1

(b) Converter currents isc,abc (pu)

0

0−20 −10 10 20
t (ms)

2

−2

1

−1

(c) Branch voltages v123 (pu)

0−20 −10 10 20
t (ms)

0.9

1.1

1

(d) Capacitor voltages vc1k (pu) of the 9 modules in branch 1

Fig. 7: Reactive power reference step from −1 to 1 pu at time t = 0. The
power references are shown as dotted lines

current is in the kiloampere range. A per unit (pu) system is

established based on the peak values of the rated phase voltage

and current. The inductors are Lbr = Lsc = Lg = 0.1 pu and

the resistors are Rbr = Rsc = Rg = 0.005 pu.

The sampling interval of the controller is 25µs and the grid

frequency is 50 Hz. Unless otherwise stated, MP3C uses an

OPP with pulse number d = 9, similar to the one shown in

Fig. 3. This implies a switching frequency per semiconductor

device of 50 Hz.

The switching (power) losses are the sum of the switching

energy losses in all three branches over the fundamental period

divided by the length in time of the fundamental period. We

assume constant capacitor voltages and equal switching losses

for all switching events. The switching energy losses are then

proportional to the current magnitude when switching. This

allows us to state the following measure for the switching

August 20, 2019 TIA 2019
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(power) losses:

Psw ∼ f1

3
∑

j=1

Nj
∑

ℓ=1

|ij(tj,ℓ)| , (16)

where f1 denotes the fundamental frequency, and Nj is the

number of switching events within a fundamental period

in branch j, with j ∈ {1, 2, 3}. Recall that ij(·) is the

instantaneous current in the jth branch, and tj,ℓ is the time

instant of the ℓth switching event in that branch.

A. Steady-State Operation

Consider steady-state operation at the nominal reactive

power Q = 1 pu, which is injected into the grid. The harmonic

amplitude spectra of the converter currents are depicted in

Fig. 6. All harmonics including inter-harmonics are grouped

with the nearest integer harmonic by computing the rms value

of their amplitudes. The amplitude of the resulting harmonic

is then normalized using the short-circuit current. The limits

imposed by the grid code [2] on the amplitudes of the current

harmonics at the PCC are also shown.

Three different control scenarios are considered hereafter.

Fig. 6(a) depicts the current spectra for asynchronous carrier-

based PWM (CB-PWM) operating at a switching frequency

of 150 Hz per semiconductor device. We use this standard

modulation method to provide a baseline in terms of switching

losses and harmonic performance. The first harmonic to violate

the grid code is the 16th.

The harmonic current spectrum in Fig. 6(b) results from

the proposed MP3C method operating with an OPP with

pulse number d = 9. The device switching frequency is

approximately 50 Hz, and the switching losses are reduced by

60% when compared to CB-PWM. Lower switching losses

increase the system efficiency, allow for a cheaper cooling

system, and extend the lifetime of the semiconductor switches.

In addition, the harmonic spectrum is slightly improved with

respect to CB-PWM, with the first violation of the grid code

constraints occurring at the 25th harmonic. Compared to CB-

PWM, which operates at three times the switching frequency,

significantly fewer (8 instead of 24) grid code violations occur,

see Figs. 6(b) and 6(a).

Alternatively, MP3C may use the 150 Hz device switching

frequency of CB-PWM; the resulting switching losses are very

similar to those of CB-PWM. The harmonic spectrum is, how-

ever, superior to that of CB-PWM, as shown in Fig. 6(c). The

grid codes are met up to the 63th harmonic, whereas for CB-

PWM, the first violation occurs already at the 16th harmonic.

We conclude that MP3C enables a significant reduction of the

size of an output filter. Note that for CB-PWM to achieve a

similar harmonic performance to that of MP3C operating at

150 Hz, a switching frequency of 300 Hz would be required.

It is interesting to notice that the harmonic spectra are

qualitatively different between the two control methods; MP3C

produces little even and inter-harmonics, which are penalized

more heavily by the grid code. The odd harmonics at low

frequencies meet the grid code, but they are not fully elim-

inated. This shaping of the harmonic spectrum extends the

− −

−

−

0

0

1

1

11

2

2

22

α

β

Virtual grid flux ψ1
g,αβ

Virtual conv. flux ψ1
αβ

Converter current i1sc,αβ

Fig. 8: Injection of a negative-sequence current: virtual fluxes and converter
current trajectories in stationary orthogonal coordinates

frequency range for which the grid code can be met without

the installation of an output filter.

B. Reactive Power Reference Step

The dynamic response to a reactive power reference step is

simulated next. An extreme transient from nominal inductive

power Q = −1 pu to nominal capacitive power Q = 1 pu

is considered. The active and reactive power are shown in

Fig. 7(a). The latter exhibits a very fast response, with the

power transient lasting for less then 5ms, i.e.less than a quarter

of the fundamental period. During this transient, the phase of

the current is shifted by 180◦, as can be seen in Fig. 7(b).

The branch voltages are depicted in Fig. 7(c). Before and

after the transient, the characteristic switching pattern of the

OPP is clearly recognizable. During the transient, however,

MP3C strongly modifies the pulse pattern in order to ac-

complish a fast transient. To facilitate this, pulse insertion

as described in [22] is used for the MP3C algorithm. The

capacitor voltages of the individual modules are disturbed by

the transient. The dc components of the capacitor voltages are

offset by at most 25% of their peak-to-peak voltage ripple.

The cell selection algorithm quickly removes any dc offset

and restores the equilibrium within two fundamental periods.

Fig. 7(d) shows the nine capacitor voltages of the first MMC

branch.

C. Negative-Sequence Current Injection

Consider the balanced grid voltage

vg,abc =





cos(ω1t)

cos(ω1t− 2π
3 )

cos(ω1t+
2π
3 )



 or vg,αβγ =





cos(ω1t)

sin(ω1t)

0





and unbalanced operation. The STATCOM is required to inject

a negative-sequence converter current with the reference

i1∗sc,abc =





cos(ω1t)

cos(ω1t+
2π
3 )

cos(ω1t− 2π
3 )



 or i1∗sc,αβγ =





cos(ω1t)

− sin(ω1t)

0




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into the grid to compensate for a corresponding load current.

To accomplish this, the fundamental component of the virtual

converter flux is required to be

ψ1∗
αβ =

√
3DT (Leqi

1∗
sc,αβ +ψ1

PCC,αβ)

in accordance with (13a).

The trajectories of the virtual grid flux, virtual converter

flux and the injected converter current are shown in Fig. 8

in stationary orthogonal coordinates. Note that the (negative-

sequence) current vector rotates clockwise, whereas the virtual

grid and converter flux vectors rotate in an anti-clockwise

direction. The latter forms an ellipsoidal trajectory.

The corresponding simulation results are summarized in

Fig. 9. Figs. 9(a) and 9(b) show that the three-phase grid

voltage and the injected converter current have the expected

phase shifts; phases a, b and c of the grid voltage are aligned

with phases a, c and b of the converter current. Fig. 9(c) shows

the three branch voltages, which have, as expected, different

amplitudes and use different OPPs (with different fundamental

components and non-120◦ phase shifts between them). Ac-

cordingly, the currents in the three branches differ significantly,

with branch 2 exhibiting a particularly low current amplitude,

as can be seen in Fig. 9(d).

This implies a significant circulating current in the con-

verter, as shown in Fig. 9(e). This circulating current arises

irrespectively of the chosen control method; rather, it is

dictated by the operating point, particularly the imbalances

in the converter currents. The reference for the circulating

current, which is shown as the dashed line, is determined from

the flux reference ψ∗
γ according to (13b). MP3C tracks the γ-

flux reference well, albeit with a small phase lag.

D. Harmonic Current Injection

Last, the system response to the asymmetrical harmonic

current reference

ih∗
sc,abc = 0.04





sin(3ω1t) + sin(13ω1t)

− sin(3ω1t)− sin(13ω1t)

0



 (17)

is investigated. Operation is at a device switching frequency

of 150 Hz. The tracking of the converter current in the time

domain is shown in Fig. 10(a), whereas Fig. 10(b) depicts

the harmonic spectrum of the three-phase output current. The

tracking performance is good, particularly in light of the low

device switching frequency of 150Hz. The inserted 4th and

13th harmonics can be clearly identified in the harmonic

spectrum and have a magnitude of approximately 0.04 pu, as

required by the reference (17).

An OPP, which was computed offline for steady-state oper-

ation, is not suitable for harmonic current injection. Instead,

MP3C achieves harmonic current injection by aggressively

correcting the switching instants of the OPP and by inserting

additional pulses as described in [22]. More specifically, an

OPP with a device switching frequency of 50 Hz is used,

and the pulse insertion mechanism increases the switching

frequency to 150Hz. For this kind of operating regime, pulse

5 10 15 20 25 30 35 40
t (ms)

1

0.5

0

0

−0.5

−1

(a) Grid voltage vg,abc (pu)

5 10 15 20 25 30 35 40
t (ms)

1

0.5

0

0

−0.5

−1

(b) Converter current isc,abc (pu)
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1

2

0

0

−1

−2

(c) Branch voltage v123 (pu)
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t (ms)

1

0.5

0

0

−0.5

−1

(d) Branch current i123 (pu)

5 10 15 20 25 30 35 40
t (ms)

0.2
0.4
0.6

−0.2
−0.4
−0.6

0

0

(e) Circulating current icirc (pu)

Fig. 9: Injection of a negative-sequence current

insertion achieves a better tracking performance than when

using OPPs with a higher pulse number. This is due to the fact

that MP3C inserts pulses at time instants in the fundamental

cycle where they best improve the tracking of the harmonic

current reference.

Note that a switching frequency of 150 Hz implies 27

switching transition per quarter of the fundamental period. For

the 13th harmonic component, only 27/13 = 2.08 switching
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(a) Current references (dashed lines) and converter currents (solid lines)

0
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0.04

0.03
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Harmonic order
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Fig. 10: Injection of a harmonic converter current i
h
sc,abc (pu). The colours

blue, green and red refer to phase a, b and c, respectively

transitions are available per quarter-period. MP3C performs

remarkably well at this low ratio between switching frequency

and harmonic current frequency.

VII. DISCUSSION

During nominal operation, i.e. reactive power injection or

absorption, the applied switching patterns are very similar to

those of the nominal OPPs, thus achieving converter current

waveforms with optimal harmonic spectra. When varying

the fundamental component (i.e. the modulation index), the

OPPs may exhibit discontinuities in their switching angles;

the fast online control mechanism of MP3C allows for seam-

less transitions between OPPs around angular discontinuities.

Specifically, deviations in the converter currents are avoided.

Triplen harmonics are common-mode harmonics and thus

cancel out in the converter currents. In the branch currents,

however, they drive triplen circulating current harmonics.

Indeed, control of the circulating current is achieved by con-

trolling the common-mode converter flux, which is the integral

of the common-mode voltage. Therefore, it is advisable to use

OPPs, whose triplen harmonics have reduced amplitudes.

During unbalanced operation, such as when injecting

negative-sequence currents, the trajectory of the virtual con-

verter flux is non-circular. To achieve this operation, different

OPPs (with different fundamental components and with non-

120◦ phase-shifts between them) are used in the three MMC

branches. As a consequence, the triplen harmonics are no

longer pure common-mode harmonics, but can have a signif-

icant differential-mode component. This further justifies the

computation of OPPs with reduced triplen harmonics.

Classic OPP-based control systems use linear PI control

loops, e.g. in a voltage-oriented controller setting, that manip-

ulate fundamental voltage references (or modulation indices),

which are fed to a separate modulator. During a transient,

the PI current controllers change the fundamental voltage

references and thus use different pulse patterns. Because of

that, the use of pulse patterns with continuous switching

angles is mandatory; this can be achieved by adopting selective

harmonic elimination (SHE) as a technique to compute such

patterns [14].

The proposed MPC scheme, however, addresses the cur-

rent (or virtual flux) control problem and the PWM in one

computational stage. Dynamic control is not accomplished by

switching to a new OPP, but rather by modifying the switching

instants of the OPP through MP3C. The virtual converter flux

trajectory based on the OPP is optimal in the sense that it

encodes the optimal harmonic current spectrum that meets the

grid codes. By tracking this flux trajectory, MP3C ensures that

during steady-state operation the optimal harmonic spectrum

is obtained despite variations in the capacitor voltages of the

modules, system delays and small disturbances. OPPs with

a different fundamental component are only selected when

the steady-state operating point changes, but not to reject

disturbances or to achieve transients.

VIII. CONCLUSIONS

An OPP-based control system for delta-connected MMC

STATCOMs was proposed in this paper. By computing OPPs

that meet the relevant grid codes, the MP3C scheme provides

an excellent harmonic current spectrum while operating at

device switching frequencies at or below 150 Hz. Compared to

classic control and modulation methods such as carrier-based

PWM, the switching losses can be either reduced for a similar

current spectrum, or the current spectrum can be significantly

improved for similar switching losses.

This increases the system efficiency and reduces the size

of the output filter, lowering the cost of the overall converter

system. Thanks to the fast MPC-based control methodology

modifying the OPPs, the proposed control scheme is able to

address the control objectives inherent to STATCOMs, such

as very fast responses to transients and power steps, and the

compensation for negative-sequence and harmonic currents at

the PCC.

APPENDIX A

The equation systems (3) and (5) are derived in this ap-

pendix. Left-multiplying each equation in (2) with the Clarke

transformation matrix K leads to

vαβγ = Lbr

diαβγ
dt

+Rbriαβγ +D
′
1vg,αβγ+ (18a)

+D′
1

(

Lsc

disc,αβγ

dt
+Rscisc,αβγ + Lg

dig,αβγ

dt
+Rgig,αβγ

)

,

isc,αβγ = D′
2iαβγ , (18b)

ig,αβγ = isc,αβγ − il,αβγ , (18c)

with

D′
1 =KD1K

−1 =

[
√
3DT

02×1

01×2 0

]
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and

D′
2 =KD2K

−1 =

[
√
3D 02×1

01×2 0

]

.

D was defined in (4), 01×2 is a 1× 2 zero vector, and 02×1

is a 2× 1 zero vector.

Owing to the block diagonal characteristic of D′
1 and D′

2,

(18) can be separated into differential-mode and common-

mode equations. The differential-mode equations directly fol-

low to

vαβ = Lbr

diαβ
dt

+Rbriαβ +
√
3DTvg,αβ+ (19a)

+
√
3DT

(

Lsc

disc,αβ

dt
+Rscisc,αβ + Lg

dig,αβ

dt
+Rgig,αβ

)

,

isc,αβ =
√
3Diαβ, (19b)

ig,αβ = isc,αβ − il,αβ, (19c)

which can be further simplified. We left-multiply (19a) with

1/
√
3D, exploit the fact that D−1 = DT , and insert (19b)

into the equation. This simplifies (19a) to

1√
3
Dvαβ = vg,αβ + (Lsc +

1

3
Lbr)

disc,αβ

dt
+

+ (Rsc +
1

3
Rbr)isc,αβ + Lg

dig,αβ

dt
+Rgig,αβ.

The common-mode equations directly follow from (18) to

vγ = Lbr

diγ
dt

+Rbriγ , (20a)

isc,γ = 0, (20b)

ig,γ = 0. (20c)

APPENDIX B

Which fundamental-component converter voltage v1αβ cor-

responds to the fundamental-component virtual converter flux

vector ψ1
αβ? During steady-state operation, the latter can be

written in terms of the flux angle θ = ω1t and the flux

magnitude Ψ as

ψ1
αβ = Ψ

[

cos(θ)

sin(θ)

]

. (21)

The converter voltage is the derivative of the virtual converter

flux, see also (9a). This allows us to write

v1αβ =
d

dt
ψ1
αβ = Ψω1

[

− sin(θ)

cos(θ)

]

= ω1

[

0 −1

1 0

]

ψ1
αβ .

(22)

The converter voltage is thus equal to the virtual converter flux

rotated forward by 90 degrees and scaled by the angular grid

frequency.
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