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Prediction of Mechanical Shaft Failures due to
Pulsating Torques of Variable Frequency Drives

Joseph Song-Manguelle, Senior Member, IEEE, Stefan Schröder, Member, IEEE, Tobias Geyer, Member, IEEE,
Gabriel Ekemb and Jean-Maurice Nyobe-Yome

Abstract—Mechanical damage of rotating shafts has been
reported for several years from various high-power applications.
This paper shows that the variable frequency drive incorporated
in a rotating shaft is one of the main root causes of mechanical
shaft failures. Simple analytical relationships show that the
frequencies of the motor airgap torque have a more significant
impact on the mechanical shaft failure than their magnitudes.
Effects of mechanical damping are analytically derived and
analyzed.

Motor airgap torque is successfully reconstructed using only
the motor’s voltage and current, thus avoiding torque sensors,
which are subject to failure and errors. Simple relationships
between frequencies of current harmonics and frequencies of
motor pulsating torques are proposed. For pulse width modulated
inverters (two and multi-level), possible drive operating points
that might excite the shaft’s eigenmodes are predicted.

Simulation results of four interleaved three-level neutral-
point-clamped converters are analyzed for validation purposes.
Experimental tests up to 35MW are performed on a compressor
test bed. The presented results confirm the accuracy of the
proposed approach, which is particularly valuable for multi-
megawatt drive applications.

Index Terms—Pulsating Torque, Torque Harmonics, Torsional
Vibration, Mechanical resonance, Medium-voltage, Multi-level
inverter, PWM, Oil and Gas, LNG, Mining, Cement.

I. INTRODUCTION

FOr the past several years, the oil and gas industry has been
increasingly moving from mechanical to electrical drive

trains. Electrical motors, which were initially used to help
the gas turbine start the compressor drive train, are now used
as prime movers. Consequently, variable speed drive systems
(VSDS) are becoming an important component of such large
rotating shafts.

The trend to integrate VSDS into large rotating shafts has
magnified the challenge to analytically understand and predict
the rotor dynamics, VSDS behavior and shaft limits. However,
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Fig. 1. General representation of a rotating shaft with integrated VSDS

several past investigations mainly focused on understanding
VSDS issues related to its performance and its integration
into an electrical network (grid side harmonic compliance
with the IEEE 519 standard, etc.). On the motor side, issues
related to current harmonic minimization or cancelation were
also reported, as well as motor compatibility with the VSDS
(common mode voltage, bearing currents, voltage spikes,
etc.) [1]-[5]. With regards to the torque, investigations are
usually limited to controlling its DC component. Dynamic
airgap torque equations of the motor are insufficient to predict
mechanical shaft failures.

Mechanical damages of rotating shafts were reported due
to pulsating torques [6]-[8]. A modeling approach to better
understand torsional resonances in drive trains was proposed
in [9]. However, the propagation of the torque signal on the
shaft is not analytically analyzed. Understanding the torque
propagation may help to predict mechanical shaft failures.

Airgap torque harmonics generated by pulse width mod-
ulated (PWM) inverters were calculated in [10]. But the
developed relationships do not show any clear link between
current harmonic frequencies and the generated pulsating
torque frequencies. Several techniques were investigated to
reduce or cancel selected current harmonics. So far, the main
target has been the reduction of low-order current harmonics
and the improvement of the current’s total harmonic distortion
(THD), [11]. Yet, low-order torque harmonics might not be
affected by canceling low-order current harmonics.

This paper explains how the drive’s pulsating torque propa-
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Fig. 2. Equivalent electrical circuit of a generalized shaft system

gates on a rotating shaft. It shows that mechanical shaft failure
is mostly determined by the frequency of a drive’s pulsating
torque and not by its magnitude. A direct relationship between
current harmonic frequencies and pulsating torque frequencies
is proposed. Therefore all analytical developments performed
in previous works to predict current harmonics of drives such
as LCIs, two-level and multi-level PWM converters can be
easily used to predict pulsating torque frequencies of variable
speed drives.

Four three-level PWM neutral-point-clamped converters,
which are connected in parallel, are investigated to validate
the suggested relationships. The overall rating of the drive is
35MW. The effect interleaving has on the current harmonics
is analyzed and related to the torque harmonics. The design,
performance and control strategy of that system have been
previously described in [12], [13].

II. ANALYSIS OF ROTATING SHAFT OSCILLATIONS

A. Preliminary Considerations

A general representation of a rotating shaft system is shown
in Fig. 1. Its phenomenological equivalent electrical circuit
is shown in Fig. 2. According to [9], moments of inertia
are equivalent to inductances, damping factors to resistances,
inverse stiffnesses to capacitances. Angular velocities can be
seen as currents and torques are equivalent to potential differ-
ences measured on the circuit against a common reference, as
illustrated in Fig. 2.

An important outcome of this approach is that a rotating
mechanical shaft can be analyzed in the same way as a simple
RLC circuit. Based on Newton’s second law, a polynomial
differential equation can be established [14], that is valid for
oscillations on electrical and mechanical systems and which
can be solved analytically [15].

To simplify the exposition, this section is restricted to shaft
systems with one inertia J , one damping coefficient D and one
stiffness constant K. The shaft’s angular position is denoted
by θ and an external torque Text is applied to the rotating
mass. The system differential equation can be written as

dθ2

dt2
+ 2n

dθ

dt
+ k2θ = f(t) , (1)

where n = D/(2J), k =
√
K/J , f(t) = Text/J .

B. Shaft Behavior with an Externally Applied Periodic Torque

This case is particularly interesting with regards to large
motor drive applications, which are typically found in the
mining, cement or oil and gas industry. Depending on the

drive’s operating point and settings, the shaft is usually excited
by a set of torque components at several frequencies. For
simplicity, we assume that the externally applied torque is a
sinewave such that f(t) = Ta sin(ωt).

Assuming n 6= 0 and n2 < k2 such that k1 =
√
k2 − n2 is

real, the solution of (1) is given by

θ(t) = θf (t) + θF (t) , (2)

which has two terms. The first term θf represents the free
oscillation, while the second term θF denotes the forced
oscillation:

θf (t) = Ae−nt sin (k1t+ σf ) (3a)
θF (t) = B sin (ωt+ σF ) , (3b)

with

A =
B2

Ta

√[
(2n2 − k2 + ω2)

ω

k1

]2
+ (2nω)

2
, (4a)

B =
Ta√

(k2 − ω2)
2
+ (2nω)

2
(4b)

tan (σf ) =
2k1ω

2n2−k2+ω2 and tan (σF ) = − 2nω
k2−ω2 .

1) Effect of damping factors: If the system is not damped,
i.e. n = 0, (3) reduces to

θf (t) =
Ta

k2 − ω2

ω

k
sin (kt+ σf ) (5a)

θF (t) =
Ta

k2 − ω2
sin (ωt+ σF ) , (5b)

where tan (σf ) = − 2kω
k2−ω2 and σF = 0.

The magnitude of the two components does not depend on
time. Eq. 5 also shows that an externally applied force of high
frequency has only a minor effect on the shaft, since the free
and forced components become negligible (θf → 0, θF → 0
if ω →∞).

2) Long term shaft behavior: For a larger t (3) indicates
that the shaft’s angular position depends only on the forced
oscillations, since the damping factor reduces the effect of the
free oscillation (e−nt → 0 for t→∞). In drive applications,
this case usually occurs when the shaft is operating at a
constant speed, or when the speed is slowly varying or drifting
over time. Therefore, the forced oscillation can be written as

θF (t) =
Ta

k2
√
(1− λ2)2 + (λγ)

2
sin (ωt+ σF ) , (6)

where λ = ω/k and γ = 2n/k. θF (t) reaches its maximum

max
λ

(θF ) =
Ta

k2γ
√
1− γ2/4

(7)

at λ0 =
√

1− λ2/2. This equation highlights that for an
external force of low magnitude, the magnitude of the shaft
oscillation can still reach huge values, if the forced frequency
is very close to the shaft’s natural (eigen) frequencies. Eq. 6
also shows that externally applied forces of high frequencies
will have minor effects on the shaft oscillation, if they are
located far away from the natural frequencies of the shaft.
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In large shafts torsional modes are usually located at low
frequencies. If, however, there are M dedicated rotor sections
on the shaft, there will be M−1 natural frequencies. Therefore,
external high frequency oscillations located close to the highest
natural frequency can still create a huge shaft oscillation.

3) Shaft behavior without damping but with an externally
applied periodic torque at the shaft’s natural frequency:
Setting n = 0 and ω = k in (1) and solving the differential
equation yields

θ(t) =
Ta
2k

(
1

k
sin (kt)− t cos (kt)

)
, (8)

which has one component with the constant magnitude
Ta/(2k

2) and another one with a magnitude linearly increasing
with time, i.e. tTa/(2k), as shown in [9].

Therefore, any torque harmonic located near a shaft’s nat-
ural frequency will create an oscillation whose magnitude
increases indefinitely over time, potentially leading to acceler-
ated fatigue or severe damage of the train, unless sufficiently
damped.

C. Possible sources of torsional stimulus

Large rotating machineries involving electrical machines are
subject to diverse disturbances which can result in torque
oscillations (externally applied torque Text) applied to the
shaft assembly and may stimulate twisting oscillations of
the rotating shaft. Those stimulus forces can be classified in
mechanical and electromagnetic kinds [16], [17].

Mechanical stimulus forces may be generated from struc-
tural irregularities such as static or dynamic unbalance rotating
parts, asymmetrical mechanical parts, friction, loose of bear-
ings, destruction of gear tooth, etc.

Electromagnetic stimulus forces are those created by elec-
tromagnetic phenomenon such as radial magnetic attraction
between stator and rotor, magneto-motive forces (MMF) in the
motor airgap which are influenced by the machine construction
(slot in the stator or rotor). MMF are created by the voltage
applied at the machine terminals.

For variable speed applications, the machine voltage is
generated by a variable frequency drive (VFD). Several aspects
and parameters of VFD operation are able to influence the
machine voltages [18]-[20] (e.g. PWM strategy, motor/drive
loads instability, inverter dead time, parasitic effects on the
control, etc). They may influence the motor MMF, potentially
leading to torsional oscillations. For simplicity, in this paper
we assume that the externally applied forces to the shaft
correspond to the machine airgap torque caused by the PWM
strategy of VFD only.

Drive control and modulation strategies should thus avoid
generating airgap torque harmonic components located near
the shaft’s natural frequencies. Based on our experience, large
shafts can be excited with a pulsating torque magnitude as
low as 0.65% of the nominal torque [21]. Certain operating
points of the drive or transient behavior (change of the speed
command) can create an externally applied torque component
on the shaft at its natural frequency.

The main statements formulated in this section can be di-
rectly extended to a multi-rotor system as shown in Fig. 1. The
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Fig. 3. Campbell diagram: fundamental frequencies that may excite torsional
modes in the shaft. These frequencies are given by the intersections of
pulsating torque frequencies with natural (eigen) frequencies of the shaft.

prediction of drive operating points that lead to the generation
of torque harmonic components located at the shaft’s natural
frequencies is vital to avoid possible shaft damages.

D. Basic Principle of Shaft Excitation with VFD

It’s usually assumed that the natural frequencies of the
rotating mechanical load are constant and do not depend on
the system speed. It’s also assumed that these frequencies are
calculated with very high accuracy. Effects of the variability
of the shaft’s natural frequencies are analyzed in [10].

An electric machine coupled to a mechanical shaft generates
a set of periodic torque components, which depend on the
operating point of the machine – more specifically, they are
defined by the fundamental frequency of the current flowing
through the stator windings. The frequency of the stator
currents depends on the topology, and on the control and
modulation scheme used for the VSDS (Load Commutated
Inverter and its number of pulses in the grid and motor
sides, voltage source inverter and its modulation strategy, etc).
Newton’s differential equation given in Eq. 1 can be rewritten
as follows:
dθ2

dt2
+2n

dθ

dt
+k2θ = T0+T1 sin(ω1t)+T2 sin(ω2t)+ ... (9)

Here, T0 is the DC component of the airgap torque, which
corresponds to the desired torque needed to drive the shaft.

It can be shown that the airgap torque frequencies f1, f2, ...
are linearly dependent on the machine’s rotational speed,
and thus depend on the stator current’s fundamental fre-
quency [10]. The eigenmode of the mechanical shaft gets
excited if any of the airgap torque components is located
sufficiently close to an eigenfrequency of the shaft. These
locations are shown in Fig. 3.

III. STATOR CURRENT HARMONICS AND PULSATING
TORQUE FREQUENCIES IN PWM VSI

A. Voltage Harmonics of PWM Drives

The harmonic spectrum of PWM converters is characterized
by integer multiples of the fundamental frequency f0 and the



4

carrier frequency fc. According to [22] each harmonic hmn(t)
can be written as

hmn (t) = Cmn cos (m (ωct+ θc) + n (ω0t+ θ0) + θmn) ,
(10)

where ωc = 2πfc and ω0 = 2πf0.
Here, θc and θ0 are the phase of the carrier and the funda-

mental, respectively; Cmn and θmn are expressions depending
on the modulation scheme; m and n are integer constants.
Different combinations of m and n can result in the same
harmonic frequency, especially when synchronous PWM is
used. In the PWM voltage spectrum, the (geometric) sum of all
harmonic components described by (10) is visible. According
to [23], even values of m are paired with odd values of n
and vice versa for 3-level phase disposition natural sampled
PWM. All other combinations yield zero amplitudes of the
corresponding harmonic. Practical modulator implementations
based on space-vector PWM behave qualitatively similar to
this.

An important conclusion from (10) is that the amplitude
Cmn of a certain harmonic does not change if the phase
of the fundamental and/or the carrier is changed. Under this
condition, only the phase θh,mn of the harmonic is changed
according to

θh,mn = mθc + nθ0 + θmn . (11)

In a symmetrical 3-phase system, the three fundamental
references have a phase shift θ0 of 0◦, 120◦ and 240◦,
respectively. Hence, the phase shift of the resulting harmonic
is 0◦, n·120◦ and n·240◦, respectively. Depending on the value
of n modulo 3, i.e. 0, 1 or 2, the corresponding harmonics form
a zero, positive or negative sequence system. Since the star-
point of electrical machines is typically not connected with
the converter, the zero sequence voltages in the PWM pattern
do not generate any machine current.

B. Direct Relationship between Current and Torque Frequen-
cies

To understand the resulting torque spectrum, it is instructive
to transfer the harmonics from stationary to rotating coordi-
nates. Here, positive and negative sequence harmonics behave
differently. The former are reduced by one harmonic order,
while the latter are increased by one.

To illustrate this, we consider sideband harmonics around
even multiples of the carrier (m=even). These have, as stated
above, sidebands with odd numbers, i.e. n = ±1, ±3, ±5,
±7, and so on. The zero-sequence harmonics do not generate
any current, whereas the other harmonics generate sidebands
at 0, ±6, ... in rotating coordinates, i.e. at even multiples of 3
(for m=even). Conversely, the sidebands for m=odd comprise
odd multiples of 3, i.e. ±3, ±9, etc.

The torque can be expressed as a product of two currents in
rotating coordinates. As long as these currents are dominated
by large dc-components, the products of two harmonics can
be neglected and the torque harmonic spectrum is similar to
the current spectrum in rotating coordinates.

Let (x, y) be a short notation for the torque harmonic
frequencies [10]

Fxy,Te
= |xfc ± yf0| (12)

and (m,n) denotes the current harmonic frequencies [23]

Fmn,Ia = |mfc ± nf0| . (13)

Based on the above statements and according to [10], the
following relationship can then be stated: A torque harmonic
component located at (x, y) is generated by the two current
harmonics at (m,n), where

m = x

n = y ± 1.
(14)

C. Detailed Relationships between Torque and Current Har-
monic Frequencies

• Baseband harmonics:

x = 0

y = 6j, ∀j = 1, 2, 3, ...
(15)

Examples are given in Table I.
• Sidebands around even multiples of the carrier frequency:

x = 2i, ∀i = 1, 2, 3, ...

y = 3(2j),∀j = 0, 1, 2, ...
(16)

Examples are given in Table II.
• Sidebands around odd multiples of the carrier frequency:

x = 2i+ 1, ∀i = 0, 1, 2, ...

y = 3(2j + 1), ∀j = 0, 1, 2, ...
(17)

Examples are given in Table III.

(x, y) Fxy,Te Fmn,Ia

(0, 6) 6f0 5f0, 7f0
(0, 12) 12f0 11f0, 13f0
(0, 18) 18f0 17f0, 19f0

TABLE I
BASEBAND TORQUE AND GENERATING CURRENT HARMONICS

(x, y) Fxy,Te Fmn,Ia

(2, 0) 2fc 2fc ± f0
(2, 6) |2fc ± 6f0| |2fc ± 5f0| , |2fc ± 7f0|
(2, 12) |2fc ± 12f0| |2fc ± 11f0| , |2fc ± 13f0|
(4, 0) 4fc 4fc ± f0
(4, 6) |4fc ± 6f0| |4fc ± 5f0| , |4fc ± 7f0|
(4, 12) |4fc ± 12f0| |4fc ± 11f0| , |4fc ± 13f0|

TABLE II
SIDEBAND TORQUE AND GENERATING CURRENT HARMONIC

COMPONENTS FOR EVEN m

The relationships proposed in this section show that, based
on current harmonic frequencies, the pulsating torque fre-
quencies can be predicted for a torsional analysis. For the
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(x, y) Fxy,Te Fmn,Ia

(1, 3) |fc ± 3f0| |fc ± 2f0| , |fc ± 4f0|
(1, 9) |fc ± 9f0| |fc ± 8f0| , |fc ± 10f0|
(3, 3) |3fc ± 3f0| |3fc ± 2f0| , |3fc ± 4f0|
(3, 9) |3fc ± 9f0| |3fc ± 8f0| , |3fc ± 10f0|

TABLE III
SIDEBAND TORQUE AND GENERATING CURRENT HARMONIC

COMPONENTS FOR ODD m

integration of large PWM drives such as multi-level convert-
ers, pulsating torque frequencies can be predicted with good
accuracy without too much of a mathematical effort. Such pre-
dictions can be established using the well accepted analytical
expressions of voltage or current PWM converters [22], [23].

These results also show that current harmonic elimination
techniques become more effective regarding the torque spec-
trum if the two current components that generate one specific
torque harmonic are fully eliminated. Cancellation of only
one current harmonic will reduce the magnitude of the torque
component without fully eliminating it.

D. Current Harmonic Cancelation with Interleaving

In the interleaved system, each PWM unit uses the same
fundamental and carrier frequencies but the phase of the carrier
differs for each converter. By choosing the phases θc,i for each
converter i, certain classes of harmonics can be canceled. The
harmonics of each thread are the same but phase shifted by
mθc,i according to (11). Considering a four-thread system and
using the phases

θc,1 = 0, θc,2 =
π

4
, θc,3 =

π

2
, θc,4 =

3π

4
, (18)

all current harmonics with m = 2, 4, 6, ... (for all n, i.e.
including their sidebands) are canceled and harmonics with
m = 1, 3, 5, ... are reduced but not canceled. Since m = x, all
torque harmonics located at x = 2, 4, 6, ... are thus completely
removed.

E. Airgap Torque Reconstruction from the Machine Voltage
and Current

Measuring directly the motor’s airgap torque is generally
not possible. Torque sensors mounted on the shaft may be
used to measure the mechanical torque thus providing an
approximative measurement of the airgap torque. However,
the installation of such sensors is error prone and often not
desired – particularly in environments where explosives are
present, as in the case of Oil and Gas applications. Most
importantly, torque sensors often have a limited bandwidth,
which is typically in the range of a few hundred Hz.

Yet, electrical quantities such as the machine voltages
and currents are routinely measured with high accuracy and
high bandwidth, which can be in the order of several kHz.
Therefore, it is not only convenient but also beneficial to
reconstruct the airgap torque from electrical quantities, i.e.
from the (three-phase) line to line machine voltage and the
(three-phase) machine phase current.

The method to reconstruct the airgap torque consists of three
steps:

1) Transform the three-phase machine voltage (uabc) and
current (iabc) into the stationary αβ0 coordinate sys-
tem using the peak invariant transformation as shown
in Eq. 19; where isα and isβ denote the machine’s
stator current in α and β, respectively. Details of such
transformation are provided in [14], [24].

usαβ0 =M ∗ uabc and isαβ0 =M ∗ iabc (19a)

with M =
2

3

 1 − 1
2 − 1

2

0
√
3
2

√
3
2

1
2

1
2

1
2

 . (19b)

2) Compute the integral over time of the machine voltage
in αβ. To obtain the stator flux linkage in αβ, i.e. ψsα
and ψsβ , any offset and linear trend is removed from
the integral. Note that, in general, an offset is present
in the integral since – for simplicity – the integral starts
from zero as initial value. A linear trend might result
for example from offsets in the voltage measurements.
Yet, as will be seen in the experimental part, since
the method includes an integration step, this approach
remains sensitive to low-frequency measurement noise
both in the amplitude and the phase.

3) Assuming SI quantities, the airgap torque is computed
using

Te =
3

2

P

2
(ψsαisβ − ψsβisα) , (20)

where the factor 3/2 stems from the usage of the peak
invariant transformation and P denotes the number of
poles. A similar torque equation can be derived when the
electrical quantities are given in per unit. Expressions
of airgap torque of synchronous machine in different
reference frames are given in [24].

The torque reconstruction method suggested in this section
is mainly valuable for a high-power VSDS running in high-
power operation range, where the machine losses are relatively
low compare to its absorbed power. Stator losses have been
neglected, therefore the related error in reconstructed torque
is small since the relative losses of the machine are relatively
low. For low-speed operating region, a flux estimation method
developped for sensorless control can be adopted, taking into
account stator resistance value, which is sensitive to stator
current frequency and winding temperature [25].

However the machine characteristics are reflected in the
measured machine current. These characteristics may naturally
include nonlinear effects such as saturation, the skin effect,
stator resistor thermal drift. As a consequence, error in recon-
structed torque using measured machine’s voltage and current
which is due to flux estimation error is reduced.

IV. THEORETICAL VALIDATION

A. VSDS Topology and Control

To validate the correlation between current and torque har-
monics described in the previous sections, the system shown
in Fig. 4 is considered. Four three-level neutral point clamped
(NPC) converters based on IGCTs are connected in parallel
via external coupling inductances. Each NPC converter is
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Fig. 4. Validation system: VSDS topology and control
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Fig. 5. Converter voltages of the 4 threads for fc = 625Hz and f0 = 65Hz

connected to a 33 kV grid via a step-down transformer (33 kV /
3 kV). The machine is a synchronous machine, with a nominal
speed of 3000 rpm and rated at 35 MW. A detailed description
of this VSDS can be found in [13].

The four threads can operate with synchronous commands.
Then, the system behaves like a single high-power three-phase
three-level NPC converter. Alternatively, the PWM signals of
the converters can be interleaved by phase shifting the carrier
angle by 45◦ as shown in Fig. 5.

For the theoretical validation, the system was simulated in
SABER. For this, the active front ends were neglected and
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replaced by constant voltage sources. For the experimental
validation, a full-scale VSDS rated at 35MW was built and
tested extensively [13].

A total of 35 cases was simulated at different operating
points and different carrier frequencies. The torque spectrum
of the motor was calculated using a fast fourier transformation
(FFT) with a 5Hz resolution. The window length of the FFT
was selected to be an integer multiple of the fundamental
period.

The combination of carrier and fundamental frequencies
where always chosen in such away that the expected torque
harmonics according to Eq. 12, would be integer multiple of
5 Hz only. Smaller resolution may be chosen, but required
longer simulation time for such a complex system. Data was
recorded once the system had reached its steady state. The
obtained results are analyzed and summarized in the next
sections.

B. Theoretical Validation: 4-Thread Non-Interleaved System

1) Predicted and simulated torque harmonics: The motor’s
fundamental frequency is varied from 65Hz to 105Hz with
a step size of 5Hz. For many oil and gas applications, the
operating range is within 65−105% of the nominal frequency.
In this case, the nominal frequency is 100Hz. The torque
harmonics are extracted and plotted in the same Campbell
diagram as the predicted torque harmonics, as shown in
Fig. 6. An excellent correlation between the predicted and the
simulated pulsating torque frequencies can be observed.

2) Correlation between current and torque harmonics:
The first column of Fig. 5 shows the non-interleaved output
voltages (phase to dc-midpoint) of each of the four converters,
when using the carrier frequency fc = 625Hz at the operating
point given by f0 = 65Hz. The voltages seen by the motor
after the coupling inductances, the motor currents and the
airgap torque are shown in Fig. 7. The spectra of the motor
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Fig. 8. Non-interleaved current spectrum, fc = 625Hz, f0 = 65Hz

current and airgap torque are illustrated in Figs. 8 and 9,
showing the exact values of the harmonic frequencies.

The results show an excellent correlation between calcula-
tion (prediction) and simulation. Hereafter, a few examples are
given that can be also found in Tables I to III:

• The torque component located at 0Hz (dc-component) is
created by the current component located at |(0 ± 1) ·
65|Hz (fundamental current).

• The torque component located at |1 ·625−9 ·65|Hz (see
Fig. 9) is created by the two current components located
at |1 · 625− (9± 1) · 65|Hz (see Fig. 8).

• The torque component located at 6 · 65Hz is created by
the two current components located at (6± 1) · 65Hz.

• The torque component located at |2 ·625−6 ·65|Hz (see
Fig. 9) is created by the two current components located
at |2 · 625− (6± 1) · 65|Hz (see Fig. 8), etc.
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Fig. 9. Non-interleaved torque spectrum, fc = 625Hz, f0 = 65Hz
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C. Theoretical Validation: 4-Thread 45◦ Interleaved System

1) Predicted and simulated torque harmonics: Simulations
were performed accordingly for the interleaved case, where the
PWM carriers were phase-shifted by 45◦. The second column
of Fig. 5 shows the simulated phase to dc-midpoint voltage
waveforms of each converter. The three-phase voltages seen
by the motor, as well as the stator currents and the motor
torque are shown in the second column of Fig. 7.

In Fig. 10 the predicted torque harmonic frequencies are
plotted along with the simulated ones with a 5Hz resolu-
tion. Also in this case, an excellent correlation between the
predictions and the simulations can be stated. It can be seen
that torque harmonics located at even multiple of the carrier
frequency are canceled, as predicted in the previous section,
due to current harmonic cancelation.

2) Correlation between current and torque harmonics: The
spectra of the motor current and airgap torque are depicted in
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Fig. 12. 45o interleaved torque spectrum, fc = 625Hz, f0 = 65Hz

Fig. 11 and Fig. 12 showing the exact values of the harmonic
frequencies. The results indicate an excellent correlation be-
tween predictions and simulations.

D. Theoretical Validation: Airgap Torque Reconstruction from
the Machine Voltage and Current

The previous section’s Saber simulations of the VSDS
provide a good opportunity to verify the torque reconstruction
methodology introduced previously. For this, we consider the
following setup: Carrier frequency fc = 625Hz, fundamental
frequency f0 = 100Hz and no interleaving. This leads
to the simulated airgap torque shown as a dashed line in
Fig. 13. Using only the simulated stator current and machine
voltage, the method described in Section III-E can be used
to reconstruct the airgap torque. The reconstructed torque is
shown as a straight line (on top of the dashed line denoting the
simulated torque) in Fig. 13. As this figure indicates, a close
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Fig. 13. Simulated and reconstructed airgap torque: no interleaved,
fc = 625Hz, f0 = 100Hz
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Fig. 14. Spectrum of the simulated (red dashed line with star markers) and
reconstructed torque (black straight line with circle markers)

match between the simulated and the reconstructed torque can
be achieved. This fact is further underlined by Fig. 14, which
compares the spectra of these two torques.

V. EXPERIMENTAL VALIDATION

For the experimental validation, the VSDS shown in Fig. 4
was built and tested extensively to power levels of up to
35 MW [13]. Hereafter, we show sample experimental results
for the case of 45◦ interleaving. Fig. 15 shows the machine
phase voltages and the stator currents. Based on the machine
voltages and currents, the airgap torque was reconstructed,
according to the method described and theoretically validated
previously. The corresponding spectra of the phase current and
the reconstructed torque are depicted in Fig. 16.

It should be noted that the reconstruction of the airgap
torque as described in Section III-E was augmented by a post-
processing step, in which a considerable second harmonic in
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Fig. 15. Measured machine voltage (top) and current (bottom). The voltages
and currents are (post processed) measured waveforms captured on a 35 MW
VSDS

the reconstructed torque had to be removed. A preliminary
analysis suggests that this harmonic at the frequency 2f0 is
due to measurement errors – specifically gain errors leading
to three-phase currents and voltages of unequal fundamental
amplitude and phase errors leading to phase shifts between the
measured currents and voltages that are not exactly 120◦. A
detailed investigation of this issue is beyond the scope of this
paper, but is planned for future work.

VI. CONCLUSIONS

A method to predict possible operating points of PWM
drives which may lead to physical damage of rotating shafts
was presented. This approach combines the understanding of
the propagation of the drive’s airgap torque components on
the shaft and the prediction of their location on the frequency
axis. Simple and direct relationships between current harmonic
frequencies and airgap torque frequencies were established,
significantly reducing engineering efforts in the design stage.
The proposed relationships can be easily extended to multi-
level voltage source inverters and load commutated inverters,
providing a useful approach to control engineers in order
to avoid unwanted harmonic torque components and thus
avoiding shaft excitation.

For some particular oil and gas system configurations such
as high-speed integrated motor-compressor units, the motor
is gas cooled making the measurement of the motor’s airgap
torque extremely challenging. Consequently, a method was
proposed to reconstruct the airgap torque from the machine’s
line-to-line voltages and stator currents. This method is inde-
pendent of the machine parameters and can be extended to
other drive configuration.

Software simulations and experimental tests of four parallel
connected IGCT-based 3-level NPC converters confirmed the
accuracy of the suggested approaches.
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