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Spectrum Shaping Methods for Predictive Control Approaches Applied
to a Grid-Connected Power Electronics Converter

Benjamin Stickan, Per Rutquist, Tobias Geyer and Moritz Diehl

Abstract— This work proposes methods to incorporate penalties
on specific frequency components of the output signal into a
Model Predictive Control (MPC) problem formulation. This is
relevant for many control applications, in which the control
objectives are specified in the time domain (e.g. tracking), as
well as in the frequency domain to shape the output spectrum
of the system. Focusing on a grid-connected converter system,
the objective function of Finite Control Set MPC is augmented
by spectral penalties to shape the harmonic spectrum of the
converter current.

I. INTRODUCTION

When evaluating the quality of a feedback system, one
often analyses the frequency spectra of its outputs. This
can be achieved by sampling the output signals at a certain
frequency, store the values for an adequate amount of time
and perform a Discrete Fourier Transform (DFT) [1] on the
data set. This transforms the signal from the time domain into
the frequency domain. If the system has “desired” spectral
components, but is prone to “undesired” components, the
control engineer’s task is to remove these unwanted parts.
It thus seems natural to integrate the DFT into the control
objective to suppress undesired behavior in the first place.

A. Model Predictive Control

One way of designing a feedback controller is Model
Predictive Control (MPC) [2]. The basic idea is to use a
scalar objective or “cost” function, which is a function of
current and future system states and control inputs over a
finite time horizon, and minimize it. For linear discrete-
time systems it is common to use a quadratic cost function
and to state the problem as a Quadratic Programming (QP)
problem formulation. The solution to the problem is a control
trajectory which can be applied to the system. To turn this
into a feedback control law, a new QP can be set up and
solved every time new system feedback (e.g. measurements)
is available.

B. Motivation

The application that motivates the presented work are power
electronics converters that are connected to the public elec-
tricity network, from here on called grid. In most cases it
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is desired that the converter injects only sinusoidal-shaped
currents at the fundamental frequency (e.g. 50 Hz or 60 Hz)
into the grid. All other frequencies are unwanted and thus
there exist limits which the converter must meet. One chal-
lenge when controlling power electronics systems is that it
is only possible to manipulate the states of the switches (e.g.
IGBTs, MOSFETs, . . . ), which means the open-loop system
input u can only attain values from a discrete set U, resulting
in a combinatorial optimization problem. Since this type is
difficult to solve, it is common practice to solve the relaxed
(averaged) problem [3], i.e. to solve for u ∈ Rnu , to add
a modulation scheme, e.g. Pulse Width Modulation (PWM)
or Space Vector Modulation (SVM) [4], and to apply the
modulated signal to the system. A different approach is to
directly control the switch positions. This is achieved by
setting the controller sampling time much shorter than for
the modulation-based approaches, and to define the switch
positions to be constant throughout the sampling intervals.
The optimal solution is then a future set of discrete switching
states. In the context of MPC for power electronics, this is
referred to as Finite Control Set Model Predictive Control
(FCS-MPC) [5] [6]. In general, this approach leads to a
high control dynamic, but also to a broad and uncontrolled
output spectrum which often does not meet the strict grid
requirements. Therefore, the main focus of this work is the
efficient integration of a DFT into the QP problem.

C. Spectral control

In [7], it was shown how spectral weights for distinct
frequencies can be incorporated in a QP on the example of
perception-based clipping of audio signals. In cases where
only a small subset of the spectrum is to be manipulated,
the concept of Sliding DFT [8] (SDFT) can be exploited.
This is particularly efficient when the DFT window is much
longer than the prediction horizon used for controlling the
plant. In [9], the SDFT approach was implemented in a
straight-forward enumeration scheme to control multilevel
converters with a 1-step prediction horizon. As the SDFT
can be regarded as a discrete-time filter, it is also possible
to use any other discrete filter for the aforementioned
approach. This is explained in [10] for a 3-level 3-phase
converter. Related, yet more sophisticated approaches are
described in [11], [12] and [13], where spectral weights as
well as hard constraints are added to an MPC method. The
DFT can be viewed as a filter that acts on the output of the
system. In case of hard constraints on spectral components,
recursive feasibility [14] has to be taken into account.
In [15], the concept of Dynamic Phasors is utilized to
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more accurately model PWM based systems and therefore
improve the control performance. The idea is to overcome
the drawback of simple state-space averaged models, that
cannot capture system dynamics in between to controller
sampling instances, by generalizing them such that they
also account for higher order harmonics. This in turn leads
to a nonlinear relation between the input signals and the
phasors.

D. Contribution
The work presented in the following will only address direct
weighting of certain frequency components in the objective
function of an MPC regulation problem, even though the
concepts can be adopted for the spectral constraint case
in a straight forward way. The novelty in comparison to
existing work is the direct incorporation of a DFT, whereas
previous work by [11], [12] and [13] generally describes
how to utilize recursive filters for spectrum control in an
MPC setting. The emphasis lies on efficient real-time capable
algorithms for formulating dense unconstrained QPs, which
can be used to implement fast linear feedback control laws.
We propose three methods that result in the exact same
closed-loop behavior but with possibly large differences in
the computational complexity. It will be shown that for
special cases, e.g. when the DFT window is much larger
than the prediction horizon to capture very low frequencies or
when only a few distinct frequencies are of interest, the com-
putational effort can be significantly reduced by choosing the
appropriate method. Therefore, detailed computation effort
estimates are given and compared. Finally, the effectiveness
of the proposed methods will be demonstrated for an FCS-
MPC controlled converter.

II. SPECTRUM PENALTIES IN THE OBJECTIVE FUNCTION

The Discrete Fourier Transform (DFT) matrix is given by

W =
1√
L


1 1 1 · · · 1
1 ω ω2 · · · ωL−1

1 ω2 ω4 · · · ω2(L−1)

...
...

...
. . .

...
1 ωL−1 ω2(L−1) · · · ω(L−1)(L−1)

 (1)

with ω = e−
2πj
L (j being the imaginary unit) and L denoting

the length of the signal. The scaling factor 1√
L

makes matrix
W ∈ RL×L unitary.
The DFT of a signal vector z̄ ∈ RL is then

Wz̄ = p, (2)

with p ∈ CL. In spectral shaping, it is desired to increase or
decrease the magnitude of certain frequency components of
p. The squared magnitude |ph|2 for the h-th component of
p allows us to define the objective-function term1

J =
1

2

L−1∑
h=0

qh · |ph|2 =
1

2
z̄HWHQwW︸ ︷︷ ︸

:=Q

z̄, (3)

1WH denotes the Hermitian transpose of W

with

Qw =


q0 0 · · · 0
0 q1 · · · 0
...

...
. . .

...
0 0 · · · qL−1

 (4)

and qh ∈ R+. We also impose the following symmetry on
all weights except for the DC component q0:

qh = qL−h, h = 1, · · · ,
⌈
L/2

⌉
− 1. (5)

The reason is the following: for real-valued signals, the
magnitudes of the positive and negative frequency compo-
nents are the same. Therefore also the weights qh may be
symmetric. In a convex optimization problem setting, it is
important to note that Q := WHQwW is real, symmetric,
circulant and positive definite. The proof can be found in [7].

III. FULL SPECTRUM CONTROL

Within this section, we develop two dense problem for-
mulations that both integrate a full spectrum DFT into an
MPC regulation problem. Therefore, it is referred to as Full
Spectrum Control.
We consider a linear discrete-time system of the form

xk+1 = Axk +Buk (6)
zk = Cxk (7)

with system states xk ∈ Rnx and system inputs uk ∈ Rnu .
The system is also assumed to be stabilizable. To simplify
the setting, the output zk ∈ R whose spectrum we aim
to influence is assumed to be scalar. The MPC regulation
problem, to which we want to add spectral penalties, is
stated as the following discrete-time optimal control problem
(OCP):

min
x0,...,xN
u0,...,uN−1

1

2

N−1∑
k=0

(
xTkQxk + uTkRuk

)
+

1

2
xTNQNxN

s.t. x0 = x̂0,

xk+1 = Axk +Buk, k = 0, . . . , N − 1,

zk = Cxk, k = 1, . . . , N,

(8)

where Q,R,QN � 0.

A. Problem formulation for L = N

In case the prediction horizon N equals the DFT filter length
L, we can directly add the weighted objective function term
J to our existing problem (8). For convenience, we will join
all states, inputs and outputs into respective vectors, in the
following referred to as “stacking”, and use a matrix formu-
lation to state the optimization problem (see e.g. [16]):

min
x̄, ū, z̄

1

2

(
x̄TQ̄x̄+ ūTR̄ū+ z̄TQz̄

)
s.t. Āx̄ = B̄ū+ b̄,

z̄ = C̄x̄,

(9)
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where

x̄ =
[
xT0 xT1 · · · xTN

]T
, (10)

z̄ =
[
zT1 zT2 · · · zTN

]T
, (11)

ū =
[
uT0 uT1 · · · uTN−1

]T
. (12)

The equivalent problem after condensing, i.e. eliminating x̄
and z̄ using all equality constraints, is of the general form

min
ū

1

2
ūTHū+ gTū+ ρ, (13)

with H ∈ Rnu×nu being the Hessian and g ∈ Rnu×nxN . In
this case, it can be written as

min
ū

1

2
ūT
(
H̄ +D

)
ū+

(
(ḡb + db) b̄

)T
ū+ ρ, (14)

where

H̄ =
(
Ā−1B̄

)T
Q̄Ā−1B̄ + R̄, (15)

D =
(
C̄Ā−1B̄

)TQC̄Ā−1B̄, (16)

db =
(
C̄Ā−1B̄

)TQC̄Ā−1, (17)

ḡb =
(
Ā−1B̄

)T
Q̄Ā−1. (18)

Here, H̄ ∈ Rnu×nu denotes the Hessian of the original
OCP to which we add the spectral weighting Hessian D ∈
Rnu×nu . Matrices ḡb ∈ Rnu×nxN and db ∈ Rnu×nxN
are multiplied by the parameter vector b̄ to obtain g. The
remaining constant factor ρ will not change the solution of
(14) and can thus be neglected, which is why we do not
elaborate on it here.
From the above formula it can be seen that including
spectral weights does not alter the complexity of solving an
unconstrained (dense) quadratic MPC regulation problem in
the case of L = N . Note, however, that the unconstrained
problem (9) loses most of its sparse structure due to Q,
such that block sparse QP solvers such as FORCES [17]
or qpDUNES [18] cannot be used.

B. Problem formulation for L > N

In most control applications, it might be desirable to use
filter lengths longer than the prediction horizon (L > N ).
E.g. when the (controlled) output shows low frequency
oscillations that cannot be captured by a DFT over the
prediction horizon N . In this case, L can be expanded into
the past such that

z̄ = [zN−L+1 · · · z0︸ ︷︷ ︸
:=z̄p (past)

z1 · · · zN︸ ︷︷ ︸
:=z̄f (future)

]T, (19)

where z̄p and z̄f are the past and future outputs of the
system. In the context of a receding horizon control policy,
we assume that we have access to the past outputs. E.g. they
are stored in memory during the past control steps. We can

then rewrite (3) as

J =
1

2
z̄TQz̄, =

1

2

[
z̄p

z̄f

]T [Qp Qpf

QT
pf Qf

] [
z̄p

z̄f

]
=

1

2
z̄Tf Qf z̄f + z̄TpQpf z̄f +

1

2
z̄TpQpz̄p. (20)

Substituting this in (9) leads to the optimization problem

min
x̄, ū, z̄f

1

2

(
x̄TQ̄x̄+ ūTR̄ū+ z̄Tf Qf z̄f

)
+ z̄TpQpf z̄f

s.t. Āx̄ = B̄ū+ b̄,

z̄f = C̄x̄,

z̄p = ˆ̄zp

(21)

with ˆ̄zp ∈ RL−N being the vector of past outputs. The
equivalent dense problem then reads as

min
ū

1

2
ūT
(
H̄ +D

)
ū+

(
(ḡb + db) b̄+ dzpz̄p

)T
ū, (22)

with

dzp =
(
QpfC̄Ā

−1B̄
)T
. (23)

From (22) it can be seen that enlarging the filter length
into the past requires the additional multiplication of dzp ∈
Rnu×(L−N) with z̄p ∈ RL−N to obtain g.

IV. PARTIAL SPECTRUM CONTROL

In some applications it is desired to have a huge filter size
but short prediction horizon, where only a small range of
the spectrum or even only one component is of interest.
This can be exploited to reduce the computational effort
of the overall control algorithm. Instead of setting qh = 0
for all disregarded frequencies in the Full Spectrum Control
method, we aim at algorithms which require less computa-
tional effort and deliver the same solution. In this section, we
will derive dynamic system interpretations of such a partial
DFT and develop two methods how to incorporate them
into the unconstrained problem formulation. Because only
a subset of the full spectrum is of interest here, we refer to
these methods as Partial Spectrum Control methods.
A well known method for calculating single frequency com-
ponents at only a fraction of the computational cost of a full
DFT is the Sliding DFT [8] algorithm, which we use to start
our derivation. The h-th spectral component ph from (2) at
time step k over the past L signal samples is calculated by

ph,k =
1√
L

0∑
n=1−L

zk+n ω
(n−1)h

=
1√
L

(
zk+1−L +

0∑
n=2−L

zk+n ω
(n−1)h

)
, (24)

5225



i
i

“spectrum˙shaping” — 2019/9/12 — 19:30 — page 4 — #4 i
i

i
i

i
i

with h = 0, . . . , L− 1.
At time step k + 1 we obtain

ph,k+1 =
1√
L

0∑
n=1−L

zk+1+n ω
(n−1)h

=
1√
L

1∑
n=2−L

zk+n ω
(n−2)h

=
ω−h√
L

(
0∑

n=2−L
zk+n ω

(n−1)h + zk+1 ωLh︸︷︷︸
=1

)

= ω−h
(
ph,k +

zk+1√
L
− zk+1−L√

L

)
, (25)

which shows that the spectral component of the next time
step can be recursively calculated from the previous one.
It can be interpreted as adding the new value zk+1 to the
DFT window and removing the last value zk+1−L. To avoid
the necessity for complex calculations, we propose to use a
vector representation of complex numbers. We define the
function

γ : C→ R2, x 7→
[
Re(x)
Im(x)

]
, (26)

the filter-state

sh,k := γ(ph,k) (27)

and matrices

As,h =

[
Re(ω−h) − Im(ω−h)
Im(ω−h) Re(ω−h)

]
=

[
cos(2πh/L) − sin(2πh/L)
sin(2πh/L) cos(2πh/L)

]
, (28)

Bs,h =
1√
L

[
Re(ω−h)
Im(ω−h)

]
=

1√
L

[
cos(2πh/L)
sin(2πh/L)

]
, (29)

such that

sh,k+1 = As,hsh,k +Bs,h(zk+1 − zk+1−L). (30)

We now have defined a recursive DFT formula that can be
viewed as a dynamic system equation. It is easy to see that
As,h, which we identify as the system matrix, is a rotational
matrix, and the elements of Bs,h are exactly the same as
in the first column of As,h multiplied by a constant. From
a computational complexity point of view this is not the
preferred form, but it simplifies the integration into the MPC
problem formulation.
Equation (30) now serves a dual purpose:

1) It can be used as a filter-like structure to recursively
calculate the current value of any single spectral com-
ponent at each time step.

2) State sh can be incorporated into the MPC formulation
to control the spectral behavior.

A. Recursive partial DFT

As in the previous sections, we aim to derive a quadratic
objective function term to weight the absolute value of the
spectral components with a real-valued factor.

Lemma 1: We can express the weighted squared magnitude
of the h-th spectral component at time step k by the DFT
filter state as follows:

qh |ph,k|2 = sTh,kQs,hsh,k (31)

with Qs,h =

[
qh 0
0 qh

]
. (32)

Proof: We can write ph,k as

ph,k = Re(ph,k) + j Im(ph,k)

= sh,k,1 + j sh,k,2 (33)

with j being the imaginary unit and thus have

qh|ph,k|2 = sTh,kQs,hsh,k (34)

To ensure the same solution for the Full as well as for the
Partial Spectrum Control methods, we suppose that at current
time step k we want to optimize over N future system out-
puts (zk+1, . . . , zk+N ), such that the objective function does
not contain intermediate states (sk+1, . . . , sk+N−1) but only
the final state sk+N . Assuming that we want to add weights
on multiple frequency components h ∈ S ⊆ {0, . . . , L− 1}
to (8) by utilizing the recursive DFT formulation (30), we
can state our problem as

min
x0,...,xN
u0,...,uN−1

sh,N , h∈S

1

2

N−1∑
k=0

(
xTkQxk + uTkRuk

)
+

1

2
xTNQNxN +

∑
h∈S

sTh,NQs,hsh,N

s.t. x0 = x̂0,

xk+1 = Axk +Buk, k = 0, . . . , N − 1,

zk = Cxk, k = 1, . . . , N,

sh,0 = ŝh,0, h ∈ S,
sh,k+1 = As,hsh,k k = 0, . . . , N − 1,

+Bs,h(zk+1 − zk+1−L), h ∈ S,
(35)

where the initial filter state ŝ0 is calculated recursively with
(30) at each time step. The dense problem then becomes

min
ū

1

2
ūT
(
H̄ +D

)
ū

+
(
(ḡb + db) b̄+ dzpN z̄pN + ds0s̄0

)T
ū,

(36)

where

dzpN =
(
C̄Ā−1B̄

)T (
Ā−1
s B̄s

)TQĀ−1
s B̄s, (37)

ds0 =
(
C̄Ā−1B̄

)T (
Ā−1
s B̄s

)TQĀs−1
, (38)

Here, z̄pN =
[
z−L+1 . . . z−L+N

]T
for L>N denotes a

set of N past output values and s̄0 ∈ R2nh with nh = |S|
is the vector of all stacked initial filter states ŝh,0. Matrices
Ās ∈ R2nh×2nh and B̄s ∈ R2nh contain all As,h and Bs,h.
Note that, independent of N , this method always requires to
store the past L system outputs.
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B. Improved recursive partial DFT

To further reduce the computation time (in most cases), a
combination of two different recursive formulas, one for
the filter and another one for the optimization problem
formulation, can be utilized. The purpose of the following is
to eliminate the dzpN z̄pN term in (36), such that the dense
optimization problem becomes easier to formulate.

Lemma 2: Inside the OCP formulation the simplified recur-
sion

s̃h,k+1 = As,hs̃h,k +Bs,hzk+1, k = 0, . . . , N − 1 (39)

can be used, if the modified recursive filter rule

vh,k+1 =As,hvh,k +Bs,hzk+1

− B̃s,hzk+1−L+N , k = −∞, . . . , 0 (40)

with B̃s,h =A−Ns,h Bs,h (41)

is applied. When we set the initial filter of the OCP to s̃h,0 =
vh,0, then

sh,N = s̃h,N (42)

still holds at the end of the prediction horizon.

Proof: First, we write the original recursion as the sum
(see (24)-(30) and note that we changed the index to simplify
notation):

sh,k = As,hsh,k−1 +Bs,h(zk − zk−L)

=

k∑
n=k+1−L

Ak−ns,h Bs,hzn. (43)

We do the same for the modified filter:

vh,k = As,hvh,k−1 +Bs,hzs,k − B̃s,hzk−L+N

=

k∑
n=k+N+1−L

Ak−ns,h Bs,hzn. (44)

Starting at s̃h,0 = vh,0, the final filter state within the
prediction horizon can be calculated as

s̃h,N =

N∑
n=1

AN−ns,h Bs,hzn +ANs,hvh,0

s̃h,N =

N∑
n=1

AN−ns,h Bs,hzn +ANs,h

0∑
n=N+1−L

A−ns,hBs,hzn

=

N∑
n=N+1−L

AN−ns,h Bs,hzn = sh,N . (45)

Analogously to (35) and (36) we write the problem as:

min
x0,...,xN
u0,...,uN−1

s̃h,N , h∈S

1

2

N−1∑
k=0

(
xTkQxk + uTkRuk

)
+

1

2
xTNQNxN +

∑
h∈S

s̃Th,NQs,hs̃h,N

s.t. x0 = x̂0,

xk+1 = Axk +Buk, k = 0, . . . , N − 1,

zk = Cxk, k = 1, . . . , N,

s̃h,0 = vh,0 h ∈ S,
s̃h,k+1 = As,hs̃h,k k = 0, . . . , N − 1,

+Bs,hzk+1, h ∈ S
(46)

and obtain the dense problem

min
ū

1

2
ūT
(
H̄ +D

)
ū+

(
(ḡb + db) b̄+ ds0s̄0

)T
ū. (47)

This results in a cheaper dense formulation algorithm for
the optimization problem with the side effect of having a
slightly more expensive recursive filter rule (30) compared
to original filter equation (40).

V. COMPUTATIONAL BURDEN

In this section, we will compare the “full spectrum”,
“partial” and “improved partial” methods regarding the
computational efficiency over the following parameters:

N : Horizon length
L: Filter length
nh: Number of frequency components

Incorporating spectral shaping penalties into the dense
unconstrained MPC problem requires changing the Hessian
as well as the vector g of the problem. Since the problem
considered here is linear, the Hessian remains constant in
the dense problems (22), (36) and (47). In contrast to that,
g needs to be recalculated at each time step according to
the initial states and parameters.
When we revise the dense problem (22), we see that adding
D to H̄ and db to ḡb does not change the problem complexity.
Only the multiplication of the additional parameter vector
z̄p by dzp increases the effort of calculating g. Since the
Hessian is not affected, we only elaborate on additional
computations that are necessary for calculating g and the
DFT filter in the following.
Table I summarizes the necessary additional operations for
each method while Table II gives the corresponding matrix
dimensions. To get an estimate on the computational effort,
we assume that a vector-vector multiplication of vectors of
length m requires m multiplications and m − 1 additions,
resulting in 2m − 1 flops. A matrix-vector multiplication
with an n×m matrix leads to n(2m− 1) flops accordingly.
Adding two vectors of length m requires m additions.
Fig. 1 compares the effort of all three methods (A: “full”,
B: “partial”, C: “improved partial”) depending on the
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TABLE I
ADDITIONAL OPERATIONS REQUIRED AT EACH TIME STEP COMPARED

TO THE MPC METHOD WITHOUT SPECTRUM CONTROL

Method g h-th component DFT filter

A
Full spectrum dzpz̄p -
control

B
Partial spectrum ds0s̄0 As,hsh,k

control +dzpNz̄pN +Bs,h(zk+1 − zk+1−L)

C
Improved partial ds0s̄0 As,hvh,k +Bs,hzk+1

spectrum control −B̃s,hzk+1−L+N

TABLE II
MATRIX DIMENSIONS

Method A dzp ∈ RN×(L−N)

Method B ds0 ∈ RN×2nh , dzpN ∈ RN×N

As,h ∈ R2×2, Bs,h ∈ R2×1

Method C ds0 ∈ RN×2nh , As,h ∈ R2×2

Bs,h ∈ R2×1, B̃s,h ∈ R2×1

prediction horizon length N . It shows the relation between
the number of future and past DFT window values for a
fixed window size. Method (C) does only depend on N via
ds0 and thus the effort grows linearly. Method (B) contains
dzpN ∈ RN×N such that its flop count grows quadratically,
whereas (A) is a negative quadratic function.
Fig. 2 compares the methods over the number of frequencies
that are penalized. Method (A) has constant complexity
over nh, because it always penalizes all frequencies, just
that the penalty for the non-regarded frequencies is set
to zero. Methods (B) and (C) have a linear increase with
different slopes, such that it depends on the N/L ratio if the
complexity curves intersect. It thus depends on the specific
problem parameters which method suits best.

VI. RESULTS

As mentioned in the beginning, the original target system,
of which we aim to control the output spectrum, is a
grid-connected FCS-MPC controlled 3-level Neutral Point
Clamped (NPC) converter. The topology is shown in Fig. 3.
The following continuous-time state-space model has been
used for the simulations as well as for the controller design:

F =


R
X 0 − 1

X 0
0 R

X 0 − 1
X

0 0 0 −ωg
0 0 ωg 0

 , G =


VDC

2X 0
0 VDC

2X
0 0
0 0

K,
with K =

2

3

[
1 −0.5 −0.5

0
√

3
2 −

√
3

2

]
. (48)

F ∈ R4×4 denotes the system matrix, G ∈ R4×3 is the input
matrix and K ∈ R2×3 is the Clarke transform matrix. The
state vector x =

[
iα iβ vg,α vg,β

]T
contains converter-

side currents and the grid voltages whereas the input vector
u =

[
ua ub uc

]T ∈ {−1, 1}3 relates to the switch posi-
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(a) Single frequency penalization.
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(b) Penalization of 25 distinct frequencies.

Fig. 1. Computational effort for all three methods over the prediction
horizon N with the fixed DFT window length L = 100.

tions a 3-phase 3-level converter can generate. All quantities
are given in the per unit (pu) system in Table III.

A. FCS-MPC problem

The MPC problem formulation is of combinatorial type,
because the system inputs u are restricted to a discrete
set. The control approach used in this work first solves
the relaxed (unconstrained) problem. Afterwards, a sphere
decoding algorithm is used to determine the optimal discrete
inputs to the system. We incorporated the spectrum shaping
penalties with the “improved partial control” method into the
relaxed problem formulation. For a more detailed description
of the FCS-MPC method and sphere decoding, see e.g. [19].

B. Simulation settings

To evaluate the effectiveness of the spectrum shaping al-
gorithms, two scenarios were simulated; one without and
another one with spectrum control on both the converter
currents iα and iβ . The average switching frequency was
manually tuned, in both cases, to approximately 500 Hz
by a delta penalty on the switching actions. Parameters
of the simulation can be found in Table III. The system
has been simulated for 1 s using MATLAB Simulink. The
output current iα was recorded at 40 kHz and afterwards
transformed to the frequency domain. Blanking times that
prevent shoot-through of the switches were not considered.

C. Discussion

All presented spectrum control methods deliver the same
results and only differ in their computational complexity.
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Fig. 2. Computational effort for all three methods over the number of
frequencies to be penalized with fixed DFT window length L = 100.

Fig. 3. Circuit diagram of the investigated 3-level NPC converter topology.

Fig. 4 shows the critical part of the spectrum of iα for
both scenarios as well as the harmonic limits given in the
IEEE 519 guideline. Fig. 4a shows many violations on the
harmonic distortion limits especially for even harmonics,
which are only allowed to be 1/4 of the odd ones. For the
spectrum shown in Fig. 4b, we implemented penalties on
harmonics of the order h = 20 . . . 60 and penalized the
even ones 2.5 times more than the odd ones. It can be seen
that there are significantly fewer violations and that even-
order harmonic components are reduced to a minimum. As
a result, the grid code limits are mostly met. This widens the
application range for model predictive controllers not only
to grid-connected converters, but also to many other systems
that need to meet criteria in the frequency domain.

VII. CONCLUSION

It has been shown how penalties on certain components in
the frequency domain can be incorporated into a quadratic

TABLE III
SYSTEM PARAMETERS

Vll,r 3300 V rated line-to-line rms voltage
Sr 9 MVA rated apparent power
Ir

Sr√
3Vll,r

rated rms phase current

f1,r 50 Hz rated fundamental frequency

ωb 2πf1,r base angular frequency

Vb

√
2
3
Vll,r base voltage

Ib
√

2Ir base current

ωg 1 angular grid frequency [pu]
X 0.15 grid reactance [pu]
R 0.015 grid resistance [pu]
VDC

5200V
Vb

DC-link voltage [pu]

Ts,r 25 µs controller sampling interval [SI]
Ts ωb Ts,r controller sampling interval [pu]
Tsim 1 s simulation time
fdft 40 kHz sampling frequency of DFT on system output
L 800 DFT window length inside controller
N 3 MPC prediction horizon

MPC problem formulation. Three different methods have
been developed that all lead to the same system behavior,
but with different execution costs. It thus depends on the
problem structure which method suits best. Parameters to be
considered are the number of harmonics nh to be penalized,
the MPC prediction horizon N and the filter length L which
relates to the lowest harmonic. Practical limitations to be
considered are the amount of past data that needs to be stored
and numeric errors which might propagate and/or accumulate
in the recursive filter based methods.
The practical relevance of this method was demonstrated
for an FCS-MPC controlled grid-connected converter. FCS-
MPC achieves a superior dynamic performance but suffers
from an output spectrum that is non-compliant with common
grid regulations. After adding spectrum penalties, limits on
harmonic current distortions are shown to be mostly met.
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[14] J. Löfberg. Oops! I cannot do it again: Testing for recursive feasibility
in MPC. Automatica, 48(3):550 – 555, 2012.
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