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Abstract—The application of Model Predictive Control (MPC)
in electrical drives has been studied extensively in the last decade.
This paper presents what the authors consider the most relevant
contributions published in the last years, mainly focusing on
three relevant issues: weighting factor calculation when multi-
ple objectives are utilized in the cost function, current/torque
harmonic distortion optimization when the power converter
switching frequency is reduced, and robustness improvement
under parameters uncertainties. Therefore, this paper aims to
enable readers to have a more precise overview while facilitating
their future research work in this exciting area.

Index Terms—Model predictive control, variable speed drives,
weighting factors, electrical machine.

I. INTRODUCTION

Electromobility is one of the most relevant actions to fight
against global warming. Starting in 2030’s, several countries
will only approve new cars that do not use fossil fuels [1], [2].
Although the control of motor drive applications has been one
of the most classic electrical engineering challenges, today,
with the development of electric vehicles, it has become a
very relevant and timely research subject [3]. The development
of microprocessors has motivated the exploration of more
sophisticated strategies to control electrical machines using
power semiconductors. MPC is one of these control techniques
[4]–[9]. The interest in using this technique in electrical drives
is based on two essential facts: i) in electrical and mechanical
engineering, some outstanding mathematical models allow the
prediction of the future behavior of the system with high
accuracy, and ii) modern microprocessors allow to do a very
high number of real-time calculations at an affordable cost.
Besides, MPC is easy to understand, easy to implement,
can deal with nonlinearities, and can handle several variables
simultaneously [10] [11]–[13].

The main challenges that should be solved when using MPC
strategies in motor drive applications are:

i. The quality improvement of the load current/torque when
the power converter switching frequency is reduced.
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ii. The weighting factor calculation in the cost function to
control more than one variable simultaneously.

iii. The dependency of MPC strategy from the quality of the
models and the parameter mismatches.

Consequently, this paper presents the most relevant contri-
butions recently reported in the literature to overcome these
challenges. In this regard, the machine currents’ quality has
been significantly improved using a Finite Control-Set Model
Predictive Control (FCS-MPC) strategy with multiple predic-
tion steps [14]–[20]. Furthermore, a very attractive solution
has been developed for three-level neutral-point clamped con-
verters in medium voltage [21]–[24]. Here, optimized pulse
patterns are embedded with an MPC strategy to improve
performance while reducing the converter losses notably. The
weighting factor calculation in the cost function, running
simulations, or using some iterative solutions is not partic-
ularly appreciated by the community because it does not
guarantee the operation in an optimal point [25]. The use
of Artificial Neural Networks (ANN) for the calculation of
the weighting factors emerges as a very powerful solution
that integrates power electronics with techniques of artificial
intelligence [26]. Another interesting solution is to avoid the
need for weighting factors, using what is known as Sequential
MPC, obtaining very promising results [27]. The parameter
dependency is addressed by a new strategy known as Model-
Free MPC. Here, the prediction is performed using estimated
variables, improving significantly the robustness of the MPC
technique [28]. The next pages will explain the most relevant
features of these strategies, including also additional refer-
ences.

II. CLASSICAL MPC APPROACHES IN DRIVES

As is well-known, there are two main control strategies
for electrical drives: Field-Oriented Control (FOC) and Direct
Torque Control (DTC) [29]–[32]. These approaches achieve
closed-loop control of the stator currents with high dynamic
performance. The first one relies on an inner PI-based current
control loop and, the second one uses a predefined lookup
table that relates the position of the stator flux and the sign
of the torque and flux error. Starting from these two basic
strategies, MPC has been applied in electrical drives to control
the internal stator current (Model Predictive Current Control,
MPCC) and also to directly control the machine’s torque and
flux (Model Predictive Torque Control, MPTC) [33]–[40].

The analysis here presented is based on the control of
an induction machine (IM). Thus, the five classic electrical
and mechanical equations in stationary reference frame are
described as [10], [41]:

vs = isRs +
dψs
dt

(1)

0 = irRr +
dψr
dt
− jωψr (2)

ψs = Lsis + Lmir (3)

ψr = Lrir + Lmis (4)

Te =
3

2
p Im

{
ψs is

}
, (5)
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Fig. 1: A cascaded field-oriented control structure with speed
and flux outer control loop and the MPCC inner control loop.

where vs is the stator voltage vector, ψs and ψr are the stator
and rotor flux, is and ir are the stator and rotor current, Te is
the electromagnetic torque, and ω is the speed. The parameters
Rs and Rr are the stator and rotor resistances, Ls, Lr and Lm
represent the stator, rotor and mutual inductances. In (5), ψs
stands for the complex conjugate of ψs and Im{·} operator
denotes the imaginary part.

A. Model Predictive Current Control

Based on the IM model described above, the dynamic model
for the stator current can be expressed as [10], [41], [42]:

dis
dt

= − Rσ
σLs

is +
kr
σLs

(
1

τr
− jω

)
ψr +

1

σLs
vs, (6)

where σ = 1− krks is the total leakage coefficient, kr = Lm

Lr

and ks = Lm

Ls
are the magnetic coupling factors, and Rσ =

Rs + k2
rRr.

Several discretisation methods have been proposed to obtain
the predictions of the stator currents from (6) [10]. The most
utilised method is the Forward Euler discretisation, which
leads to the following discrete-time prediction model for the
stator currents:

ik+1
s =

(
1−TsRσ

σLs

)
iks+

Tskr
σLs

(
1

τr
−jωk

)
ψkr+

Ts
σLs

vks , (7)

where Ts is the sampling period.
For the MPCC strategy, usually, the rotor flux reference

is considered constant during the sampling period. Conse-
quently, to control the motor, the expression (7) is continuously
evaluated to predict the stator current selecting the proper
voltage vector. The cost function is characterized by its high
flexibility and the possibility to add systems constraints and,
it is expressed as

g =
(
i∗sα − ik+1

sα

)2
+
(
i∗sβ − ik+1

sβ

)2
. (8)

Finally, the classical control scheme for MPCC is depicted
in Fig. 1, which shows the inner control loop performing the
predictive current control, and the outer loop handling speed
and torque control [4], [10], [43].

B. Model Predictive Torque Control

Similarly to MPCC, several reports demonstrate the advan-
tages of model predictive torque control (MPTC), highlighting
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Fig. 2: Control diagram of the MPDTC strategy.

its very fast response under torque steps maintaining the stator
flux amplitude constant. Besides, note that in comparison with
MPCC no current controller is implemented in MPTC. To
control the electromagnetic torque predictions of the stator
current ik+1

s and stator flux ψk+1
s must be evaluated for

the seven possible voltage vectors of the 2L-VSI inverter.
Expressions for future torque and flux are [10], [26], [38]:

ψk+1
s = ψks + Tsv

k
s −RsTsi

k
s , (9)

T k+1
e =

3

2
p Im

{
ψ
k+1

s ik+1
s

}
(10)

The cost function is defined as a linear combination of torque
and flux errors, as described in the following equation

g =
(
T ∗e − T k+1

e

)2
+ λΨ

(
Ψ∗s −Ψk+1

s

)2
, (11)

where Ψs = ‖ψs‖ is the amplitude of the stator flux vector
and λψ is the weighing factor. The classical control diagram
of this method is illustrated in Fig. 2. In this figure, the torque
reference is obtained from a speed loop controller and the
stator flux magnitude is usually set as a constant. Finally, as
is detailed in Fig. 2, the torque and flux variables are estimated
by measuring the speed and the stator currents.

An important problem in (11) is the calculation of the
weighting factor λψ , which has a critical influence on the
overall performance of the drive.

C. Model Predictive Speed Control

In addition to torque and machine current control, MPC is
also often considered to implement the speed control loop of
a drive. In fact, MPC can provide benefits in this specific
application, such as robustness to parameter variation and
easy inclusion of flux weakening constraints. In [44] a linear
implementation of MPC is proposed for the speed control loop
of a servo PMSM drive, showing good results, superior to
the one obtained with classical PI control. However, being
the MPC solution obtained analytically considering a linear
plant, external constraints cannot be added to the controller.
In [45], [46], the case of MPC speed control for synchronous
motor drive is studied. Also in this case, an unconstrained
implementation of MPC, with the addition of integral terms
in the cost function to compensate bias errors and external
disturbances is considered. Results show improved perfor-
mance with respect to classical PI speed control and excellent
robustness to mechanical model mismatches and electrical

parameters uncertainties. Finally, in [47] a sensorless MPC
speed loop for a PMSM drive is designed where the speed
MPC is combined with the position estimation in the current
loop. Since the estimated rotor position cannot be as reliable as
the real position sensor information, the MPC reference speed
is adjusted according to the position estimation reliability.
This method prevents system instability and achieve achieving
superior steady state and dynamic response. In [44]–[47] the
MPC speed loop is always cascaded with an external torque
control, which can be implemented using MPC or in a classical
fashion. However, taking advantage of the MPC flexibility, it is
possible to combine the speed and torque control in a single
control loop. An effort in this direction has been taken in
[48]–[50] where combined speed and torque MPC has been
applied to Induction Machines [48], PMSM [49] and IPM
synchronous motor drive [50], respectively. Results shows that,
despite the more complex implementation and the additional
calculation required by the control, the computational burden
can be contained and performances, in terms of load variation
recovery time and, in general, dynamic performances. More-
over, in this case a nonlinear constrained implementation of
MPC is considered allowing a better response to the drive
nonlinearities and improving robustness to system parameters
variation.

III. WEIGHTING FACTOR CALCULATION

Optimization of the weighting factors can be a very chal-
lenging task for cost functions with multiple objectives that
are in conflict or can not be unified. Several solutions have
been proposed to solve this optimization problem. Weightless
MPTC cost functions can be obtained by unifying the dimen-
sions of the control objectives [51], or splitting the control
problem into two cost functions [52]–[54]. However, the use of
weighting factors can not always be avoided due to too many
objectives that can not be unified. To calculate the weight-
ing factors, methods that use artificial neural networks [26],
[55], [56], fuzzy optimization [57] or multi-objective genetic
algorithms [58] were proposed. It needs to be mentioned that
the methods using online weighting factor calculation like in
[55]–[57] can add additional computation burden to the control
algorithm. On the other hand, the method introduced in [26]
uses an offline calculation procedure of both the weighting
factors and the flux reference providing a fast drive start and
good performance during different loading conditions. The
design process is straightforward and applicable to different
cost functions [59]. Nevertheless, the price that has to be paid
for the offline calculation is the additional memory to store the
calculated weighting factors. In addition, the study cases are
limited and interpolations techniques have to be implemented
to cover all the online operation points.

A. Training the ANN and fitness function design

The function of the ANN in the weighting factor calculation
is to become a fast and accurate surrogate of the system
model with the ability to calculate the system performance
metrics for different cost function parameters as shown in the
Fig. 3 workflow. In order to create the surrogate, a system
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Fig. 3: Cost function parameter calculation workflow using
the ANN.

simulation model can be used to collect the data for training
the ANN. Alternatively, for more accuracy, experimental data
can be used. However, it is more time-consuming and requires
a human supervision. The training data of interest are the
performance metrics like torque and stator current rms errors
(Terr,Ψs err, Is err), average switching frequency (fsw avg) ob-
tained for different cost function parameters. The MPTC cost
function for controlling the torque, stator flux and the average
switching frequency can be defined as:

g =
(
T ∗e −T k+1

e

)2
+λψ

(
Ψ∗s−Ψk+1

s

)2
+λsw nsw +hlim (12)

nsw =
∑

x=a,b,c

∣∣Skx − Sk−1
x

∣∣, (13)

where hlim is limiting the stator current, λΨ and λsw are the
weighting factors, and nsw defines the number of switching
transitions. Thus, Sk−1

x is the switching state applied in the
previous sampling period and Skx is the current switching state.

When collecting the performance metrics for different cost
function parameters λΨ, λsw and Ψ∗s , the range of the
parameters should be defined to only sweep combinations
that can lead to a successful drive start and steady state
operation. A feed-forward ANN configuration was used with
a back-propagating training algorithm to tune the parameters
of the ANN. Once trained ANN can be used to calculate
the performance metrics for all weighting factors within the
defined range of the cost function parameters. Afterwards, a
fitness function is defined using the performance metrics to
find the cost function parameters that will provide the desired
control performance. An example of a fitness function for
different loading conditions is shown here:

fANN = Ψ2
s error + I2

s error + T 2
s error + (f1 − fsw avg)2, (14)

where f1 is the average switching frequency for which the
optimum parameter values will be calculated and it is chosen
arbitrary. By repeating the procedure in Fig. 3 for different
operating conditions of the motor drive, the performance can
be optimized for wide operating range of the motor drive. As
it was shown in [26], the size of the optimum parameter region
depends both on the load and the speed reference.
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Fig. 4: Experimental waveforms of drive speed, torque, stator
flux and current for fANN as per (14) and Tload = 5 Nm,
f1 = 2.5 kHz, λΨ = 9.64, λsw = 0.13 and Ψ∗s = 0.65 Wb.

B. Design validation

Fig. 4 shows the experimental waveforms obtained using
λΨ, λsw and Ψ∗s that were calculated with (14) for the fre-
quency f1 = 2.5 kHz and the load torque of 5 Nm. It can be
observed that the design allows a fast start, successful speed
reversing and a good steady-state performance of the drive.

C. Analytical Tuning for MPTC

As discussed above, the weighting factors’ choice for MPTC
strategy—and thus the tuning procedure—may be difficult
because one has to decide on the relative importance between
the torque error and the flux magnitude error. This trade-off
also affects the stator current distortions, which are typically
higher than the ones obtained with MPCC. Recently, in [39],
[60], the value of the weighting factors that minimize the
current distortions are analytically derived. However, MPCC
still achieves lower current distortions, particularly at non-zero
torque reference and low switching frequencies. To overcome
this issue, a slight modification to the conventional MPTC
is proposed in [40]. Here, the MPTC is made equivalent to
MPCC by tracking the rotor flux magnitude Ψ∗r instead of
the stator flux magnitude Ψ∗s . As a result, analytical expres-
sions for the weighting factors can be derived, ensuring the
same closed-loop performance as MPCC. Consequently, the
proposed model predictive torque and flux controller achieves
the same low current and torque distortions as MPCC, without
requiring an outer field-oriented controller that sets the current
references (see Fig. 1).
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Fig. 5: Sequential model predictive flux and torque control.

IV. MPC WITHOUT WEIGHTING FACTORS

As discussed in Section III, the selection of weighting fac-
tors for a multi-objective cost function does not have an analyt-
ical solution. Its selection has been through a heuristic search
and currently with advanced techniques such as ANN, which
goes in the opposite direction of the conceptual simplicity of
predictive control. It is for this reason that many authors have
proposed techniques to avoid the use of weighting factors. In
[61], a Model Predictive Torque Control (MPTC) with multi-
objective optimization based on a ranking table is proposed,
achieving an independence of the weighting factor, however a
relative magnitude errors are missed and changed for discrete
table. In [51] the electrical torque and stator flux magnitude
references are converted into an equivalent reference vector
of stator flux. There are also works that propose to control
the torque and stator flux in an indirect way controlling the
direct and quadrature stator current [62], in this way the cost
function has objectives with the same magnitude. A modified
MPTC is proposed in [63], where the electrical torque and
stator flux are controlled through the control of torque and
reactive torque, both have the same order magnitude so a
weighting factor is not required. A deadbeat predictive direct
torque control is proposed in [64], achieving control of torque
and flux through the tracking of voltage vectors. One of the
latest multi-objective control strategies for motor drives is the
sequential predictive control [54]. This method achieves torque
and flux control by evaluating two cost functions sequentially.
Because it is intuitive and straightforward, this strategy has
been implemented in other applications [65], improved with
more sophisticated techniques [66], and analyzed in depth
[67], [68].

The Sequential Model Predictive Torque Control (SMPTC)
proposed in [54] is illustrated in Fig. 5. As shown in this figure,
the SMPTC strategy has two control objectives: the electro-
magnetic torque and amplitude of the stator flux, controlled
using two cost functions sequentially,

gT =(∆Te)
2 =

(
T ∗e − T k+1

e

)2
, (15)

gΨ =(∆Ψs)
2 =

(
Ψ∗s −Ψk+1

s

)2
. (16)

SMPTC as well as any finite-set model predictive torque
control needs a discrete model to predict the behavior of
variables. The prediction of electric torque and stator flux of
the machine is based on (9) and (10), considering the forward
Euler discretization as presented in [69], [70] and [71].
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Fig. 6: SMPTC during speed reversal maneuver: (a) Motor
speed ω; (b) Electric torque Te; (c) Stator flux magnitude |ψs|;
(d) Stator current iα.

In summary, the SMPTC can be described in the following
three simple steps:

i. The electric torque is predicted for the (k+ 1)-th instant
considering all the possibles vectors of the 2L-VSI using
the discrete-time model of the stator flux and torque.

ii. The cost function gT in (15) is evaluated. The two vector
that minimizes the cost function will be considered for
the next optimization stage.

iii. The two optimal vectors found in the previous step are
evaluated in the cost function gΨ, (16). The vector that
minimizes gΨ will be the optimal vector and will be
applied in the 2L-VSI in the next sampling time.

Thus, using the SMPTC strategy, weighting factors are avoided
while keeping good performance in the motor drive.

An inversion speed maneuver from nominal speed to neg-
ative nominal speed in an induction machine controlled with
SMPTC is depiected in Fig. 6. This figure shows the good
behavior of this control technique, where the electric torque
and the stator flux have a good dynamic and stationary
behavior. The electric torque allows the speed inversion to be
carried out with good dynamic performance. Simultaneously,
the magnitude of the stator flux remains controlled and con-
stant at all times, showing that there is no coupling between
both control objectives.

Nevertheless, as analyzed in [72], the simplicity of SMPTC
removes degrees of freedom that can be exploited to improve
the overall system efficiency. This feature limits the control-
lability of the torque and machine magnetization, what can
lead to suboptimal performance. As shown in [72], when
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the torque and flux terms are minimized sequentially higher
current distortions result over the whole range of switching
frequencies.

V. MULTI-STEP FCS-MPC
Multi-step FCS-MPC has recently gained attention due to its

role as a key enabler for efficiency improvement, specially in
high power electrical drives [42], [72], since it has the potential
to reduce the stator current THD while retaining the power
converter switching frequency. This leads to a power loss
reduction in the electric machine, improving thus the overall
system efficiency [42]. To achieve this, the control input in the
problem formulation is either the switch positions [42] or the
distinctive output voltage levels [16]. For the multi-step case,
the optimal control input vector, uopt(k), is the first element
of the optimal control input sequence:

Uopt =
[
(uopt(k))

T · · · (uopt(k +N − 1))T
]T

. (17)

The vector Uopt is found formulating a standard multi-step
MPC problem that minimizes the stator current tracking error
versus switching effort, ∆u(`) = u(`) − u(` − 1), over an
extended prediction horizon N , i.e.:

min
U

k+N−1∑
`=k

∥∥is(`+ 1)− i∗s(`+ 1)
∥∥2

2
+ λu

∥∥∆u(`)
∥∥2

2

s.t. U ∈ U3N and ‖∆u(`)‖∞ ≤ 1,
(18)

where U is the multi-step decision variable and λu > 0.
The first constraint in (18) can consider either the switching

states or voltage levels, while the second constraint limits the
output voltage level transitions to avoid internal damage in the
converter and excessive dV/dt in the load.

Normally, to find Uopt, it is required to evaluate all the
possible combinations. However, for the multi-step case, the
number of combinations exponentially increases with N , lead-
ing to a high computational burden. Recently [14], [15],

have shown that the control problem (18) can be reformu-
lated as an integer least squares optimization problem. Then,
a sphere decoding algorithm (SDA) enables microprocessors
to efficiently solve (18) in real-time to obtain the multi-step
optimal control vector Uopt [16]–[19].

To do this, the SDA forms an initial sphere centered in
U unc, which is the well known explicit unconstrained optimal
solution. The initial sphere radius, ρini, is determined as
the Euclidean distance between U unc and an initial suitable
candidate, Uini, chosen from the pool of available input
combinations. Then, using a branch-and-bound technique, the
SDA quickly discards all input combinations that lie outside
of the initial sphere. As soon as the SDA finds a candidate
inside the initial sphere, a new smaller sphere is formed and
the process is repeated by evaluating the remaining candidates.
Finally, the optimal solution Uopt is found when the sphere
cannot be further shrink, so its first element, uopt(k), is taken
to synthesize the switching state S applied to the converter.

Similar to the system shown in Fig. 1, but considering a
multi-step MPCC, the best trade-off between performance,
weighting factors, sampling interval, optimality and length of
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the prediction horizon was obtained considering that transients
are one of the main causes of impracticability due to the
SDA initialization [73]–[75]. Thus, a selective initialization
approach choose the box-constrained initialization during tran-
sients while preserving the well-known dynamic performance
of FCS-MPC at minimum sub-optimality cost, without af-
fecting the steady-state performance. Fig. 7 shows results of
multi-step FCS-MPC reducing the stator current total demand
distortion (TDD) (isTDD), defined by:

isTDD =
1√

2Inom

√∑
h6=1

(̂is,h)2, (19)

where Inom refers to the nominal current of the IM and îs,h
is the amplitude of the h-th stator current harmonic. The
points P and Q in Fig. 7 are selected to demonstrate that
for the same average switching frequency of f̃sw = 350 Hz,
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isTDD is reduced by 10.6% for a prediction horizon N = 4.
Finally, Fig. 8 shows a typical speed reversal maneuver, which
demonstrates that the dynamic performance of the algorithm
remains unaltered; see [17] for further details.

An FPGA implementation of the SDA is detailed in [19]
achieving prediction horizons of up to five steps. Multi-step
FCS-MPC is particularly beneficial for higher-order systems,
such as converters with LC filters. As shown in [76], the
current distortions can be reduced by an order of magnitude
when using long prediction horizons of 15 to 20 steps.

VI. MODEL PREDICTIVE PULSE PATTERN CONTROL

Optimal Pulse Patterns (OPP) allow the current distor-
tion in the load to be minimized for a specific switching
frequency [77]. Consequently, OPPs are a very attractive
choice for medium-voltage drives because they achieve a
substantial reduction of the switching frequency at comparable
harmonic distortion [78]. The OPP’s switching angles αj with
j ∈ {1, . . . , d} are calculated offline and stored in the memory
of the real-time control platform as functions of the modulation
index m and the pulse number d, [79]. Fig. 9 shows the three-
level OPP for m = 0.7 and d = 5; the corresponding stator
flux reference trajectory is illustrated in Fig. 9(b).

The use of OPPs provides optimal performance under
steady-state conditions. However, undesired transients are ob-
served whenever the operating point is changed, or transitions
between different pulse patterns occur. To overcome this prob-
lem, closed-loop control strategies have been proposed in the
literature [21]–[23], [78]–[81]. Initial concepts use deadbeat
controllers to track a current reference trajectory [80], [81]
or stator flux reference trajectory to improve the robustness
under parameter variations [78], [79]. However, these methods
require a dedicated observer to identify the instantaneous
fundamental components of the stator currents and flux linkage
vectors. More recently, a model predictive controller, referred
as Model Predictive Pulse Pattern Control (MP3C), has been
introduced in [21]–[23] to control the instantaneous stator flux
instead of its fundamental component. As a result, a simple and
standard flux observer can be used, making the implementation
much simpler.

A. MP3C Control Strategy

Starting with the initial version in [21], the MP3C strategy
has been extended and revised during the past decade [21]–
[23], [82]–[89]. To explain the MP3C fundamentals, the three-
level NPC converter will be used in this review. The block
diagram of the overall MP3C scheme is shown in Fig. 10.

1) Outer Control Loops: As depicted in Fig. 10, the
speed ω is regulated by manipulating the reference torque T ∗e ,
which in turn is translated into the reference angle between
the stator and rotor flux vectors γ∗, as illustrated in Fig. 9(c).
Then, the angular position of the stator flux reference is
determined as:

θ∗ = ∠ψr + sin−1
( T ∗e
kTΨ∗sΨr

)
, (20)
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Fig. 9: (a) OPP for d = 5 switching angles and m = 0.7;
(b) reference trajectory for the OPP shown in (a); (c) control
principle of MP3C.

where Ψ∗s is the desired stator flux magnitude, Ψr = ‖ψr‖ is
the estimated rotor flux vector magnitude provided by the flux
observer and the parameter kT = 3

2p
kr
σLs

.
In its simplest form, the modulation index is determined

by the flux controller from the angular stator frequency
ωs = 2πfs and the dc-link voltage Vdc as m = ωsΨ

∗
s(2/Vdc).

The pulse number d is computed from the maximal allowed
switching frequency of the semiconductor devices fsw ac-
cording to d = floor

(
fsw/fs

)
,where fs is the fundamental

stator frequency. Thus, by using the inputs d and m, the
switching sequence of the OPP in the αβ frame can be stated
as u∗s = Tαβu

∗
abc, where Tαβ is the Clarke transformation.

Then, if the induction machine is fed by the OPP, the stator
flux space vector should track the following trajectory:

ψ∗s(θ) = ψs(0) +
Ψ∗s
m

∫ θ

0

u∗s(ϑ)dϑ. (21)

Therefore, under ideal conditions, the stator voltage matches
precisely the OPP voltage waveform vs = usVdc/2, and
consequently, the stator current distortion is minimized. Never-
theless, the dc-link voltage ripple, voltage drop over the stator
resistance, and the nonlinear effects of the inverter produce
deviations of the stator flux space vector from its reference
trajectory. Trajectory deviations also occur during transients
or transitions between different pulse patterns, among other
disturbances. Therefore, a closed-loop controller must be im-
plemented to compensate these errors quickly and to ensure
the proper operation of the drive.

To this end, an MPC strategy is designed, which operates at
regularly-spaced sampling instants kTs, where k ∈ N and Ts
is the sampling interval. A variable-length prediction horizon
N is utilized such that this time interval includes at least one
switching transition per phase. The switching instants of the
pulse pattern are shifted forward or backwards such that the
stator flux error is corrected within the horizon N to achieve
fast closed-loop control of the stator flux space vector.
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2) Pulse Pattern Controller: Modifying the switching in-
stants of the OPP, the following stator flux correction is
obtained:

∆ψs(∆t) = −Vdc

2
TαβN∆t, (22)

with N = diag{∆uT } and ∆u =
[
∆uTa ∆uTb ∆uTc

]T
,

where ∆ux ∈ {−1, 1}nx comprises the nx switching transi-
tions for the phase x ∈ {a, b, c} within the prediction horizon.
The correction of the switching instants ∆t = t− t∗ contains
all modifications from the OPP’s nominal switching times in
the vector t∗ =

[
t∗Ta t∗Tb t∗Tc

]T
. Thus, by using ∆t as the

decision variable, the MP3C problem is formulated as:

min
∆t

∥∥ψs,err −∆ψs(∆t)
∥∥2

2
+ q
∥∥∆t

∥∥2

2

s.t. t = ∆t+ t∗ ∈ T,
(23)

where ψs,err = ψ∗s − ψs is the instantaneous stator flux
error. The flux reference ψ∗s is obtained by substituting the
reference stator flux angle (20) in (21). Notice that vectors t∗

and ∆u are determined by the OPP, and consequently, they are
provided by the OPP Loader block in Fig. 10, and then used as
parameters in (23). To ensure that the MP3C-based switching
instants t?=∆t?+t∗ occur within the prediction horizon N
in ascending order but before the first switching transition
beyond N (transition with the nominal time t∗x[nx+1]), the set
constraint T in (23) is defined as T = Ta × Tb × Tc, where
for each phase

Tx =
{
tx ∈ Rnx

∣∣ 0 ≤ tx1 ≤ · · · ≤ tx[nx] ≤ t∗x[nx+1]

}
.

(24)
Solving (23) provides a trade-off between the flux error

correction and modification to the nominal OPP. The scalar
q > 0 is used to adjust this compromise.

In summary, the MP3C problem in (23) is a small-scale
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Fig. 12: Medium-voltage experimental results: measured vs
theoretical OPP current TDD at rated torque when varying
the fundamental frequency, [85].

quadratic program that can be solved in real-time by adopting
the active set method or a fast gradient method [83], [90].
Its solution provides a sequence of optimal control actions
within the horizon and, following the receding horizon policy,
only the first control action of this sequence (the pulse pattern
over Ts) is applied to the drive system. Noteworthy extensions
of the trajectory control principle have been developed, such
as the optional insertion of additional switching transitions to
shorten torque transients [23]. The pulse insertion provides
the controller, when required, with an additional degree of
freedom to remove the flux error as quickly as possible. On
the other hand, to address the balancing of the neutral point
(NP) potential of an NPC converter in the MP3C strategy, the
cost function (23) is extended to also control the predicted
error of the NP voltage at the end of the prediction horizon
to zero [88]. As a result, the stator flux trajectory control and
NP balancing are treated in a single control loop by modifying
the switching instant of the OPP.

B. Experimental Results

Experimental results for a medium-voltage NPC inverter
driving a 3.3 kV induction machine rated at 1140 kVA are
summarized in this review (further details can be found in
[85]). To evaluate the performance of the drive system, the
current TDD is utilized.

The stator current waveforms are depicted in Fig. 11,
showing operation with MP3C at a fundamental frequency
of 30 Hz and 60% of the rated machine torque. For a pulse
number equal to 5, the resulting switching frequency is 150
Hz and the current TDD is 8.7%.

The current TDD is depicted in Fig. 12 for two upper
bounds on the switching frequency (150 and 250 Hz) when
the drive operates at various fundamental frequencies and rated
torque. The current TDD that results from the MP3C strategy
(solid lines) is compared with the theoretical one from the
OPP at open-loop (dash-dotted line). As shown in Fig. 12,
the difference between the measurement and the theoretical
TDD is less than 1.85%. This discrepancy tends to increase
with the torque set-point. Thus, the results depicted in Fig. 12
correspond to the worst-case at which the IM operates, i.e., at
rated torque.
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VII. MODEL-FREE MPC

The performance of MPC will be degraded if the system
parameters used in the controller are different from the actual
system parameters [91]. For example, the stator resistance
and dq-axis inductance of a Permanent Magnet Synchronous
Machine (PMSM) may vary with the operating point and
environment. If the machine parameter variations are not taken
into account, the current will show a steady-state error and the
noise will increase during the operation of the machine [92].

Various methods have been proposed in the literature to
tackle the problems of machine parameter variations, including
online parameter identification [93], disturbance observer-
based methods [94], and model free control [28], [95]–[98].
These methods differs in operating principle, complexity and
computational burden. However, one of the main differences
is that the online identification and disturbance observer-based
methods are still using the mathematical model of machines,
while model free control does not use the actual machine
models. This feature distinguishes model free control from
other kinds of methods due to its universality and flexibility.

Recently, model free control has been introduced in MPC
and is gaining increasing attention. The early work on model
free MPC in [95] simply uses the current difference in the past
to predict the future current. Although the principle is simple,
it requires high sampling frequency and the performance is
affected by the updating rate of current difference table.
Furthermore, the use of only one voltage vector during one
control period limits its steady state performance.

The other work on model free MPC uses the so-called
ultra-local model developed by Michel Fliess [99]. As pointed
in [99], in most cases the physical system can be described
using the first/second order ultra-local model. For example,
the PMSM can be described by a first-order ultra-local model
using complex vector in stationary frame as [97]:

dis
dt

= αvs + F, (25)

where F represents the known and unknown part of the
system, which can be summarized as a total disturbance;
α represents a nonphysical scaling factor selected by the
designer; vs and is are the stator voltage vector (input) and
stator current vector (output), respectively. According to [99],
the total disturbance F can be estimated from the input and
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Fig. 14: Experimental results of model-free MPC during a
dynamic process with mismatched parameters at 1R, 2ψ , 2L
under the condition of 10 kHz sampling frequency, (a)-(b)-
(c) F estimated using differential algebra method, (d)-(e)-(f) F
estimated using ESO [97].

output using a differential algebra method as

F̂ = − 6

L

∫ t

t−L
(L− 2σ)is(σ) + ασ(L− σ)vs(σ)dσ (26)

where L = nFTsc and nF is the number of control periods
in the integral step L. Owing to the existence of nF , a lot
of past information is used in the differential algebra method.
This will affect the dynamic response of the system. In [97],
an Extended State Observer (ESO) is employed to observe
the total disturbance. However, it should be noted that the
ESO is still based on the ultra-local model rather than real
machine model. After estimating F, one can track the stator
current reference using deadbeat control based on SVM or
finite-control-set MPC. The control diagram of the PMSM
drive system with an ESO based on ultra-local model is shown
in Fig. 13.

The dynamic responses of a PMSM drive based on model
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TABLE I: Main characteristics of MPC strategies.

MPCC MPTC SMPC Multi-Step MP3C Model-Free

Need of weighting factors 33 7 33 7 33 7
Harmonic distortion 3 3 7 3 33 3
Low switching frequency 7 7 77 33 33 −
Calculation and complexity 3 3 33 7 3 77
Parameter robustness 3 3 3 7 3 33

Scaled from best (33) to worst (77), (−) not studied.

free MPC is illustrated in Fig. 14, where F is estimated using
differential algebra method in (a)-(c) and using ESO in (d)-(f).
From top to bottom, the curves shown in Fig. 14 are the rotor
speed, the reference and the actual values of the q-axis current,
and the a-phase stator current. The permanent magnet flux and
inductance in the controller are twice of the actual value. It
is seen that model-free MPC can achieve accurate tracking
of q-axis current with machine parameter mismatches. It is
worth to highlight that, by estimating F using ESO instead of
differential algebra method, much lower dynamic overshoot is
achieved in the current.

VIII. CHALLENGES AND FUTURE WORK

MPC has shown a high degree of flexibility, allowing
the control of torque, flux, and currents, generating differ-
ent control schemes that are easy to implement. Table I
summarizes the main characteristics of the different MPC
strategies described in the previous chapters. According to the
experience of these researchers, MPC still has to overcome
some challenges in terms of behavior. One of the challenges
is the operation at very low speed, including developing full
torque at zero speed. In the case of sequential MPC, it is
important to gain more practical experience concerning the
selection of the sequence: first selecting the torque and then the
flux or vice versa is an aspect that needs more maturity. Also,
the number of voltage vectors that are chosen at each stage of
the sequence is a matter that needs further investigation.

To reduce the intrinsic dependence that MPC has on the
motor parameters, Model-Free predictive control appears as
an incipient and very attractive alternative, which needs fur-
ther investigation regarding the implementation, observation
techniques, and experimental results. In particular, the per-
formance to parameter mismatch of Model-Free predictive
control should be compared to the one obtained using field-
oriented control (with linear control).

Another future research is the study of MP3C for higher
order systems, such as drives with LC output filter. However,
the optimal dynamic response using multi-step prediction
should be subject of additional study.

Finally, Artificial Intelligence (AI) techniques are being con-
sidered to be applied in power converters [100]. In principle,
MPC is appropriate for AI techniques because it works with
basic models and instantaneous variables. However, this is a
new line of research that must be explored in the future.

IX. CONCLUSIONS

This paper showed that Model Predictive Control is being
used successfully in high-performance motor drive applica-

tions. With little effort, MPC has been applied in field-oriented
control and direct control of flux and torque.

Two different and interesting strategies have solved the
classical problem of weighting factor calculation in the cost
function when using predictive control. The first method uses
sequential predictive control to avoid the use of weighting
factors. This solution is straightforward to understand and
implement without sacrificing the drive’s high-quality transient
behavior. The second strategy uses Artificial Neural Networks
to obtain the optimal value for the weighting factor, introduc-
ing artificial intelligence techniques in the core of the control
method, which opens a very attractive area for future research.

The use of a multiple-step prediction has reduced the dis-
tortion of the load current generated by the inverter. Besides,
for higher power motor drives, optimized pulse patterns can
be integrated with predictive control to further reduce the
distortion in the load current while operating with a low
switching frequency.

Finally, the model-free strategy has demonstrated that it is
possible to control the machine with high quality, without
the need for a precise model, which offers a significant
opportunity to improve the drive’s robustness, introducing
modern estimation techniques into the control algorithm.

These selected advanced topics showed that the application
of Model Predictive Control opens the possibility to continue
improving the behavior of high-performance motor drives, in-
cluding more intelligent techniques and advanced optimization
algorithms.
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