
1

Resource-Efficient Gradient Methods for Model
Predictive Pulse Pattern Control on an FPGA

Stefan Richter, Tobias Geyer, Senior Member, IEEE, and Manfred Morari, Fellow, IEEE

Abstract—We demonstrate that an optimization-based Model
Predictive Pulse Pattern Controller (MP3C) can be designed with
a complexity in terms of hardware resource usage on a field
programmable gate array (FPGA) that is comparable to that of
a conventional controller. Key to the superior performance and
resource usage over existing solution methods for MP3C are an
appropriate problem reformulation and a newly derived result
for the projection on the truncated monotone cone that composes
the feasible set in this application. Using a coldstarted classic
gradient method in fixed-point arithmetic, a numerically stable
implementation is shown to require less than 300 clock cycles to
meet the stringent accuracy specification for problems with at
most three switching transitions per phase. For the case of four
(five) transitions, only about 550 (690) cycles are required. At the
same time, merely two DSP-type multipliers on an FPGA are used
for all problem sizes. These results indicate a speed improvement
of ten times and a resource reduction by 17 times in terms of
DSP-type multipliers for the case of three transitions per phase
when compared to an existing solution method. When there are
four or five transitions per phase, the resource reductions are
even more impressive.

Index Terms—Embedded optimization, model predictive con-
trol, optimized pulse patterns, gradient methods, FPGA.

I. INTRODUCTION

THE trade-off between harmonic current distortions and
the switching frequency at which the power semicon-

ductors are operated is fundamental to the field of power elec-
tronics. Optimized pulse patterns (OPPs) provide the optimal
trade-off by minimizing the harmonic current distortions for a
given switching frequency [1]. They are particularly attractive
when operating the converter at low ratios between switching
and fundamental frequency [2]. Examples include traction and
medium-voltage converters used for variable speed drives [3].

Under idealized conditions, OPPs provide the optimal
steady-state performance for power electronics converters. In
reality, however, fluctuations in the DC-link voltage, converter
nonlinearities and the need to switch between different OPPs
severely impact their performance. To mitigate these issues and
to achieve dynamic control of the load currents, it is mandatory
to augment OPPs by a fast closed-loop controller.

In power electronics, pulse width modulation schemes are
traditionally used that feature fixed-length modulation inter-
vals. Regularly-spaced sampling instants exist, at which the
current ripple is zero. This allows one to neglect the switching
ripple and to adopt the concept of averaging, based on which

S. Richter is with Richter Optimization GmbH, 8046 Zürich, Switzerland
(e-mail: sr@richteroptimization.com).

T. Geyer is with ABB Corporate Research, Baden-Dättwil, Switzerland.
M. Morari is with the Automatic Control Laboratory, ETH Zürich, 8092

Zürich, Switzerland.

linear current control loops can be designed. As a result, PI
current controllers are almost exclusively used in industrial
power electronics converters [4].

To minimize the current distortions in OPPs, the concept
of fixed-length modulation intervals is relinquished, making
it intrinsically hard to achieve fast closed-loop control based
on OPPs using traditional PI-based control concepts [5].
When considering a three-phase induction machine fed by a
voltage source inverter, fast current control can be achieved by
regulating the machine’s stator flux linkage. The stator flux is
the time integral of the applied stator voltage, which is, under
nominal conditions, equal to the OPP switching waveform
multiplied with the DC-link voltage. This leads to an optimal
stator flux trajectory of the OPP. Fast machine control based
on OPPs can then be achieved by regulating the stator flux
along this optimal trajectory by manipulating the time instants
of the switching transitions [6]. To this end, a deadbeat flux
controller can be designed [7].

The notion of deadbeat trajectory tracking was generalized
in [8]. The flux error correction and the manipulation of the
switching instants is performed within a prediction horizon of
a fixed length. The impact of the switching time modifications
is predicted using a model, albeit a very simple one, and the
receding horizon policy is adopted. This leads to an OPP-
based model predictive controller (MPC) [9], [10], to which we
refer as Model Predictive Pulse Pattern Control (MP3C) [8].
The optimization problem underlying Model Predictive Pulse
Pattern Control (MP3C) is a quadratic program (QP) with a
decision vector that is of a time-varying dimension.

MP3C is an attractive control method for high-power con-
verters operating at low switching frequencies. MP3C com-
bines the dynamic performance of a high-bandwidth controller
with the superb harmonic performance of OPPs during steady-
state operation. Solving the QP in real time, however, has
proven to be a highly challenging task, given the short
sampling intervals of 25 µs typically used and the prevalence
of low-cost low-performance field programmable gate arrays
(FPGAs) which serve as computational platforms.

A. MP3C Problem Setup

In the following, we give a formal description of the
MP3C problem as a QP. In the stationary and orthogonal α-β
coordinate system the problem can be written as

min
∆t

1

2
‖ψs,err − ψs,corr(∆t)‖2 +

q

2
‖∆t‖2 (1)

s.t. ∆t ∈ X − t̄ ,

mailto:sr@richteroptimization.com

2

where ψs,err is the stator flux error and ψs,corr(∆t) is the
stator flux correction. The decision vector ∆t is composed of
all modifications from the OPP’s nominal switching times t̄
in phases ‘a’, ‘b’ and ‘c’, i.e. ∆t = t − t̄ where ∆t =
(∆ta ,∆tb ,∆tc), t = (ta , tb , tc) and t̄ = (t̄a , t̄b , t̄c)1. Despite
the fixed-length prediction horizon, the number of switching
transitions per phase and hence the problem size of the
QP in (1) is varying. However, there is at least a single
transition and a maximum of n transitions per phase. There-
fore, the length of the decision vector can take values from
{3, 4, . . . , 3n}. In practice, longer prediction horizons and thus
higher values of n render the MP3C controller more robust
against measurement noise [8]. Note that typical values for
n are from {3, 4, 5}. From here on we let na, nb and nc
(≤ n) denote the actual number of switching transitions in
the corresponding phase within the prediction horizon.

By modifying the switching times of the OPP, the stator
flux error ψs,err ∈ R2, which is the difference between the
reference and the estimated stator flux, can be corrected over
the prediction horizon. Indeed, the flux correction ψs,corr is
linear in ∆t and is given by

ψs,corr(∆t) =− Vdc

6
·
[
2 −1 −1

0
√

3 −
√

3

]
·N ·∆t , (2)

with the matrix

N =

∆uTa 0T 0T

0T ∆uTb 0T

0T 0T ∆uTc

 , (3)

whose zero row vectors are of appropriate dimensions. The
switch position changes associated with the switching tran-
sitions for phase ‘a’ are denoted by the vector ∆ua. Since
there are only positive or negative switching transitions, we
have ∆ua ∈ {−1, 1}na . The vectors ∆ub and ∆uc are defined
accordingly. Note that all of these vectors are determined
by the OPP and so are additional parameters of the MP3C
problem. The DC-link voltage Vdc also varies in practice but
will be assumed constant in this paper.

Solving the MP3C problem in (1) provides a tradeoff be-
tween flux error correction and modification from the nominal
OPP. The tradeoff can be adjusted by the scalar weight q > 0.
The set constraint ∆t ∈ X−t̄ ensures feasibility of the optimal
switching times t∗ = ∆t∗ + t̄ . In fact, the set X is defined as
X = Xa × Xb × Xc, where, e.g. for phase ‘a’

Xa =
{
ta ∈ Rna | 0 ≤ ta1 ≤ ta2 ≤ . . . ≤ tana

≤ t̄ana+1

}
. (4)

This definition ensures that the optimal switching times happen
in the future in ascending order but prior to the (na + 1)th
transition with the nominal transition time t̄ana+1 .

In summary, the MP3C problem is a small-scale QP of
varying size with the parameters ψs,err, t̄ , t̄ana+1

, t̄bnb+1
and

t̄cnc+1
along with ∆ua,∆ub and ∆uc.

B. Requirements on the Solution Method

We briefly summarize the specifications any solution
method must meet. Note that we consider an FPGA as the

1We use the notation (x, y) to abbreviate [xT , yT]T in this paper.

computational platform. This is the most prevalent platform
on medium-voltage converters due to the short, deterministic
execution times and the ability to parallelize computations.
Although the content of this section also applies to platforms
such as (serial) digital signal processors (DSPs), the require-
ments on hardware resources below mainly concern FPGAs.

a) Solution Time: The sampling interval is 25 µs. Since
MP3C represents only a part of the overall controller structure
(cf. Fig. 7 in [8]) and other blocks need to be evaluated too,
only about 20 µs are available to derive a solution. On an
FPGA with 40 MHz clock rate, for example, this amounts to
800 cycles.

b) Accuracy: Simulations indicate that closed-loop per-
formance using a feasible, suboptimal solution ∆t satisfying
‖∆t−∆t∗‖∞≤ 10 µs is sufficiently close to the performance
obtained with the optimal solution ∆t∗. In view of horizon
lengths of up to 5 ms, this means a tight accuracy requirement.

c) Hardware Resource Usage: The solution method
needs to be implemented in fixed-point arithmetic since it is
significantly more efficient in terms of required programmable
logic blocks when compared to floating-point arithmetic.
‘Cheap’ and fast operations in fixed-point arithmetic with
respect to resource usage and latency are additions, subtrac-
tions, negations, comparisons and multiplications/divisions by
powers of two (the latter amount to left and right shifts,
respectively). On most platforms, these operations have a
latency of one clock cycle. All other multiplications are
considered fast only if they are mapped on DSP blocks, in
which case the product can be calculated in a single cycle too
(plus two cycles to initialize the input and output registers).
Divisions, square roots and more sophisticated functions are
computed iteratively or are derived from lookup tables and
are thus considered ‘expensive’ and slow. In general, multiple
clock cycles are required for these operations.

The number of available DSP blocks on small, low-cost
FPGAs is typically in the order of tens. Furthermore, such
FPGAs operate on 18 bit words only, i.e. if numbers are
represented with more than 18 bits, multiple DSP blocks need
to be reserved for the evaluation of a single product. As we
want to explore the possibility of running MP3C on a low-cost
FPGA, we can only afford using a few DSP-type multipliers.
In contrast, high-performance FPGAs feature hundreds of DSP
blocks and 27 bit words.

d) Avoidance of Overflow: Fixed-point numbers are
uniquely defined by their integer and fractional part (and
the sign, if applicable). For the solution method to be safely
implementable, an upper bound on the largest absolute number
in the solution method must be known a priori so that the
number of bits for the integer part can be determined and
overflows avoided. Of course, this upper bound can be deduced
from extensive numerical simulations. Yet, an analytic bound
that covers all possible scenarios is preferred.

The above list of requirements will guide the design of the
solution method. It will be shown that all specifications are
met by our proposed method. Taking into account resource
constraints at the design stage is an example of co-designing
a solution method along with its implementation. For further
aspects on co-design we refer the interested reader to [11].

3

C. Review of Existing Solution Methods for MP3C

So far, existing solution methods only fulfill a subset of the
preceding stringent requirements. The original paper on MP3C
[8] suggests two approximate solution methods, both meeting
the requirements on resource usage and overflow but sacrific-
ing accuracy. The first approach is a primal active set method
that repeatedly solves an unconstrained subproblem followed
by a clipping step that ensures feasibility. This approach
can handle changing problem sizes, since the subproblem
has constant size independent of the number of switching
transitions. It was found from extensive simulations that only
very few, i.e. 2 to 3, iterations are necessary to compute the
optimal solution. However, there is no proof yet that rigorously
guarantees this for all scenarios and all problem sizes.

In the same paper, a computationally even cheaper approach
based on deadbeat control is introduced. An actual implemen-
tation of this approach on a medium-voltage drive is presented
in [12]. The trade-in for being able to meet the resource
requirements is the modification of the QP in (1). Specifically,
switching time modifications are not penalized (q = 0) and the
prediction horizon is determined online as the minimal horizon
that spans switching transitions in two phases. Consequently,
the flux error correction is limited to modifying the switching
times in two phases only, which makes the control susceptible
to measurement noise.

The first exact solution method for the MP3C problem is
reported in [13]. In order to slightly simplify the solution
method, the original QP in (1) is altered so that at every
sampling instant there are exactly n switching transitions per
phase, thus circumventing the problem of changing prob-
lem sizes. The solution method builds upon Nesterov’s fast
gradient method [14] and is guaranteed to converge to an
optimal solution in infinite precision (hence, we call it an exact
solution method). In finite precision, particularly in fixed-point
arithmetic, [13] proves that the error still remains bounded
and that for the maximum number of switching transitions
per phase of n = 3 the accuracy requirement is met after
about 2400 clock cycles for word lengths of 27 bits. In order
to attain this speed, more than 90 DSP-type multipliers are
used to fully parallelize the fast gradient method. As follows
from these numbers, an implementation on a low-cost FPGA
is not achievable2.

In short, no exact solution method for the original MP3C
problem in (1) meeting all the requirements of Section I-B has
been proposed so far. To show that this is indeed possible is
the purpose of this paper.

Before outlining the contents of this paper, we want to point
out two more aspects regarding the fast and resource-efficient
solution of MPC-related optimization problems such as MP3C.
An alternative and popular approach for the implementation of
optimization-based controllers is the explicit approach based

2In fact, trading in more solution time for less resources is doable in the
approach reported in [13]. Specifically, an implementation with 34 DSP-
type multipliers taking about 3000 clock cycles can be realized. Similar
implementations for problem instances with n ∈ {4, 5} would require 43 and
52 DSP-type multipliers, respectively (from personal communication with the
main author of [13]). These numbers serve as a basis for the comparison with
our implementation.

on multiparametric programming [15] (see, e.g., [16] for an
FPGA implementation in a DC-DC power converter). Since
the Hessian in MP3C depends on the switching transitions
∆ua, ∆ub and ∆uc and multiparametric programming is
tractable only for nonparametric Hessians, an explicit solution
needs to be computed for every possible Hessian. For the
case of n = 3, for example, there are 864 different Hessians
and each of them has an associated explicit solution with
about 1500 to 2500 polyhedral partitions of the 14-dimensional
parameter space as computations with the MPT3 toolbox [17]
have shown. It follows that for MP3C an approach using the
explicit solution is intractable even on state-of-the-art FPGAs.

Finally, we want to point out that research on efficient
optimization methods and implementations is very active at
the time being, e.g. [18], [19]. A very recent overview of other
relevant work in this field can be found in [20].

D. Contribution and Outline of the Paper

In Section II we introduce a constant-size reformulation
of the QP in (1). This allows us to operate on constant
memory and resources, independent from the actual number
of transitions per phase. This is a prerequisite for an efficient
implementation. We will then reformulate the primal problem
as a dual problem by first introducing new variables and con-
straints and then dualizing them. The resulting dual problem
exhibits much better convergence behavior than the primal
problem when solved with gradient methods.

Section III gathers all pieces required to derive an algorith-
mic solution to the dual MP3C problem. First, we summarize
the basics of the gradient methods considered in this paper,
in particular, the classic gradient method and Nesterov’s fast
gradient method (Section III-A). After that, we map these
methods to the dual of the MP3C problem (Section III-B)
and provide an in-depth treatment of the key issues for
resource-efficient and fast implementations. These issues in-
clude the projection on the feasible set (Section III-B1),
preconditioning (Section III-B2) and the optimal choice of the
step size enlargement factor for the classic gradient method
(Section III-B3). The feasible set in MP3C is composed of
(shifted) truncated monotone cones (cf. set Xa in (4)). We
present a new result for the projection on this set that will
enable us to arrive at implementations with a very small
resource footprint. In fact, we will show that for any dimension
of this cone, the projection can be computed without using
any DSP-type multiplier. With respect to preconditioning, we
prove that there does not exist a static preconditioner in the
dual domain that can decrease the worst case condition number
over all possible combinations of switching transitions.

Further fixed-point aspects come into play in Section IV.
The most important aspect is to avoid overflow errors. Sec-
tion IV-A presents an analysis that derives an upper bound on
the largest absolute number that can occur inside the gradient
methods, and which is valid for all possible scenarios. The
aforementioned analysis will lead to guidelines on how to scale
the dual iterates so that a high accuracy with short bit lengths
can be accomplished (Section IV-B). If done carefully, the
appropriate scaling of iterates can also facilitate the reduction

4

of the required DSP-type multipliers. Section IV-C concludes
with an estimate of the number of clock cycles for a single
iteration of the used gradient methods.

Section V presents fixed-point simulation results proving
that the classic gradient method meets all of the requirements
in Section I-B for problem sizes up to n = 5 transitions per
phase. Finally, Section VI gives an outlook for potential future
work.

II. DUAL CONSTANT-SIZE REFORMULATION

For a resource-efficient implementation it is of first and
foremost importance that the problem size remains constant.
In order to achieve this, we embed all size-varying instances
of the MP3C problem in (1) into the equivalent reformulation

min
∆tr

1

2
‖ψs,err − ψ̃s,corr(∆tr)‖2 +

q

2
‖∆tr‖2 (5)

s.t. ∆tr ∈ Xr − t̄r
with the decision vector ∆tr that is of the constant length 3n.

The flux error correction ψ̃s,corr is defined according to (2),
but the size-varying matrix N is now replaced by the constant-
size matrix Nr given as

Nr =

(∆ua, 0n−na)
T 0T 0T

0T (∆ub, 0n−nb)
T 0T

0T 0T (∆uc, 0n−nc)
T

 ,
where the zero vector of length m is denoted as 0m. In the
constant-size reformulation, the feasible set is determined by
Xr = Xr,a × Xr,b × Xr,c, and t̄r = (t̄r,a , t̄r,b , t̄r,c) is defined as

Xr,a =
{
tr,a ∈ Rn | 0 ≤ tr,a1 ≤ . . . ≤ tr,an ≤ t̄ana+1

}
, (6)

t̄r,a =
(
t̄a , t̄ana+1

· 1n−na

)
for phase ‘a’ and analogously for phases ‘b’ and ‘c’.

In order to see that every solution to the original MP3C
problem in (1) can be recovered from the solution to the
reformulation in (5), we let

∆tr =
(
(∆ta ,∆ta) , (∆tb ,∆tb) , (∆tc ,∆tc)

)
with, e.g., ∆ta being an auxiliary vector of length n − na,
so that all auxiliary vectors together with the original mod-
ification vectors ensure a constant length of the vector ∆tr.
By means of partial minimization, the reformulation can be
rewritten as

min
∆t=(∆ta ,∆tb ,∆tc)

1

2
‖ψs,err − ψs,corr(∆t)‖2 +

q

2
‖∆t‖2+

min
∆ta ,∆tb ,∆tc

q

2

(
‖∆ta‖2 + ‖∆tb‖2 + ‖∆tc‖2

)
s.t. (∆ta ,∆ta) ∈ Xr,a − t̄r,a

(∆tb ,∆tb) ∈ Xr,b − t̄r,b
(∆tc ,∆tc) ∈ Xr,c − t̄r,c .

For every feasible modification in the original problem
setup, ∆t ∈ X − t̄ , the inner minimization problem has an
optimal value of zero, whereas for every infeasible modifica-
tion, ∆t /∈ X−t̄ , the inner minimization problem is infeasible.
Hence, the optimal solution of the reformulation is

∆t∗r =
(
(∆t∗a , 0n−na) , (∆t

∗
b , 0n−nb) , (∆t

∗
c , 0n−nc)

)
,

where ∆t∗ = (∆t∗a ,∆t
∗
b ,∆t

∗
c) is the optimal solution to the

size-varying original problem. As a result, we can recover the
optimal size-varying modifications ∆t∗ to the original problem
from the optimal solution to the constant-size reformulation.
Note that the reformulation is easily implementable on an
FPGA since only cheap operations are required for its setup.

Empirical evidence shows that gradient methods applied
in the primal domain, i.e. the domain in which the MP3C
problem is formulated, have a slow convergence. This is due
to tight accuracy requirements (cf. Section I-B) and the bad
conditioning as a consequence of a small weight q 3. The
authors of [13] report that for the case of n = 3 there are
300 iterations necessary for the fast gradient method to achieve
the required accuracy level on a slightly different problem
setup than used in this paper. Preliminary work has shown
similar iteration counts for our constant-size reformulation
and also that optimal preconditioning by means of diagonal
preconditioner matrices only marginally improves the con-
ditioning (apart from unacceptable memory requirements for
storing these matrices for every possible Hessian matrix).

Interestingly, convergence is much faster if the problem is
solved in an appropriate dual domain, although the condition
number turns out to be of the same order as in the primal do-
main. For this, we first introduce a new primal variable ψ̃s,corr
for the flux error correction (by a slight abuse of notation) so
that problem (5) becomes

min
∆tr,ψ̃s,corr

1

2
‖ψs,err + ψ̃s,corr‖2 +

q

2
‖∆tr‖2

s.t. ψ̃s,corr = Vr∆tr

∆tr ∈ Xr − t̄r ,

with the matrix

Vr =
Vdc

6
·
[
2 −1 −1

0
√

3 −
√

3

]
·Nr . (7)

If we dualize the new equality constraint by means of the
dual multiplier λ ∈ R2, i.e.

d̃(λ)= min
∆tr∈Xr−t̄r

1
2‖ψs,err+ψ̃s,corr‖2+ q

2‖∆tr‖
2+λT(ψ̃s,corr−Vr∆tr),

we obtain the unconstrained dual problem in minimization
form

min
λ
d(λ) (8)

with the convex dual function d(λ) , −d̃(λ) given as

d(λ)=
1

2
‖λ‖2+ ψTs,errλ+ max

∆tr∈Xr−t̄r

−q
2
‖∆tr‖2 + λTVr∆tr . (9)

It can be shown that the primal solution ∆t∗r can be recovered
from the inner maximization problem given the optimal dual
solution or so-called Lagrange multiplier λ∗, i.e.

∆t∗r = arg max
∆tr∈Xr−t̄r

−q
2
‖∆tr‖2 + (λ∗)TVr∆tr .

3The maximum ratios between the largest and the smallest eigenvalue of
the Hessian (condition numbers) are between 2 · 103 and 5 · 103 depending
on the problem size and the scenario.

5

In the following section we will investigate the resource-
efficient solution of the dual problem (8) using gradient
methods. For more details on the used dualization technique,
which is also referred to as partial elimination, we refer the
reader to, e.g., [21, §4.2.2].

III. GRADIENT METHODS FOR MP3C

This section first provides in Section III-A a condensed
introduction to the gradient methods employed for MP3C. In
particular, it highlights the main issues with respect to our ap-
plication, i.e. assumptions for convergence, convergence speed
and effects in case of inexact computations. In Section III-B
we then provide all the necessary details so that the discussed
gradient methods can be applied to efficiently solve the dual
MP3C problem in (8).

A. A Primer on Gradient Methods

The MP3C problem belongs to the class of convex opti-
mization problems in which a convex function is minimized
over a convex set, see, e.g., [22]. There is a great variety of
different solution methods for convex problems. It is important
to understand that each of them has its own strengths and
weaknesses with respect to the additional assumptions made
(level of smoothness, type of feasible set, etc.), the computa-
tional cost per iteration (expensive solution of system of linear
equations versus cheap matrix-vector products), the numerical
stability in the presence of inaccurate computations and other
criteria.

For the MP3C problem, three main solution methods come
into question: interior point, active set and gradient methods.
Interior point methods (cf. [23, §16.7]) and active set methods
(cf. [23, §16.4]) are traditionally used as general purpose
methods. Fast specializations of them, e.g. for MPC in [24],
[25], are primarily obtained by exploiting structure in the
problem data to speed up linear algebra operations. For MP3C,
these are not the methods of choice as hardware resource usage
on platforms in mind is too high (some parts of the algorithms
still require floating-point arithmetic for numerical stability)
and costly divisions cannot be avoided.

Gradient methods find an optimizer by iteratively evaluating
function values and gradients at test points and updating the
solution estimate. They are resource-efficient by their very na-
ture: Function and gradient evaluations are cheap in numerous
important cases, and for many problems of practical interest,
such as MP3C, they can be made divisionfree (and free of
other more sophisticated mathematical functions). However,
these methods are not considered general purpose methods
since their convergence rate can vary widely depending on
the problem characteristic. Since many practical applications
only require solutions with low accuracy, e.g. within 1 %
of the optimal value, gradient methods can still be a viable
alternative, particularly if problem specific properties, such as
the geometry of the feasible set, are fully exploited.

From here on we investigate both the classic and Nesterov’s
fast gradient method for the solution of the dual MP3C
problem. We first review their associated algorithms, given

Algorithm 1 Classic Gradient Method for Problem (10)
Require: Initial iterate x0 ∈ Rnf , factor h ∈ (0, 2)
1: loop
2: xi+1 = xi − h

L
∇f(xi)

3: end loop

Algorithm 2 Fast Gradient Method for Problem (10)
Require: Initial iterate x0 ∈ Rnf , y0 = x0,

initial weight α0 :
√
µ/L ≤ α0 < 1

1: loop
2: xi+1 = yi − 1

L
∇f(yi)

3: αi+1 ∈ (0, 1) : α2
i+1 = (1−αi+1)α2

i +(µ/L)αi+1

4: βi =
αi(1−αi)

α2
i+αi+1

5: yi+1 = xi+1 + βi(xi+1 − xi)
6: end loop

in Algorithms 1 and 2, and their assumptions for convergence
by means of the unconstrained optimization problem

min
x
f(x) (10)

with convex objective function f : Rnf → R.
Prerequisite for the classic and the fast gradient method to

converge is a Lipschitz continuous gradient ∇f , i.e. existence
of a constant L > 0 such that for all x, y ∈ Rnf

f(x)− f(y)−∇f(y)T (x− y) ≤ L

2
‖x− y‖2 . (11)

It can be shown [14, §2] that in this so-called smooth case, the
classic gradient method requires O(L/ε) iterations to find an
approximate solution that is ε-close to the optimal value. For
the fast gradient method, the number of iterations only grows
with O(

√
L/ε). In both cases, convergence is sublinear.

If function f is also strongly convex, i.e. there is a constant
µ > 0 such that for all x, y ∈ Rnf we have

µ

2
‖x− y‖2 ≤ f(x)− f(y)−∇f(y)T (x− y) , (12)

the number of iterations grows with O(κf ln(L/ε)) for the
classic gradient method and O(

√
κf ln(L/ε)) for the fast

gradient method (κf = L/µ is the condition number of f).
This is denoted linear convergence.

Implementations in fixed-point arithmetic inherently suffer
from round-off errors. These errors add up with errors from
inexact gradient evaluations, e.g. when the gradient is com-
puted by means of an iterative solution to a subproblem (this is
indeed the case for the dual formulation of the MP3C problem
as shown below). However, the classic gradient method can
tolerate such errors without diverging. This is true for the
smooth [26] and the strongly convex case [27]. For the
fast gradient method the situation is different. Accelerated
convergence comes at the price of error accumulation which is
unbounded in the smooth case [26] but bounded in the strongly
convex case [27].

B. Application to MP3C
For the dual MP3C problem in (8), the gradient of the dual

function (9) is given by

∇d(λ) = λ+ ψs,err + Vr∆t
∗
r (λ) (13)

6

where

∆t∗r (λ) = arg max
∆tr∈Xr−t̄r

−q
2
‖∆tr‖2 + λTVr∆tr . (14)

Note that the gradient of the max-term in (8) is due to
Danskin’s Theorem [21, Proposition B.25].

It can be seen that the latter subproblem can be rewritten
as a projection problem

∆t∗r (λ) = arg min
∆tr∈Xr−t̄r

1

2
‖∆tr − q−1V Tr λ‖2 . (15)

For notational convenience, we denote the projection of the
point z on the set Q as πQ(z) from here on so that

∆t∗r (λ) = πXr−t̄r

(
q−1V Tr λ

)
,

which can further be simplified to

∆t∗r (λ) = πXr

(
q−1V Tr λ+ t̄r

)
− t̄r (16)

by means of a variable transformation in (15). The latter
form will be the starting point for the investigations in Sec-
tion III-B1 where an efficient method for the evaluation of
the projection operator πXr(·) in fixed-point arithmetic will be
derived.

Before looking at the projection operation more closely,
it remains to calculate constants Ld (Lipschitz constant of
dual gradient) and µd (strong convexity parameter of dual
objective). These constants determine the step sizes h/Ld in
the classic gradient method as well as 1/Ld and βi in the
fast gradient method. Since the dual function (9) is the sum
of a quadratic function with identity Hessian and a max-term,
constant Ld itself is given by the sum

Ld = 1 + q−1λmax

(
VrVr

T
)
, (17)

where the second term is the tight Lipschitz constant of
the max-term’s gradient as proved in [28]. Here, λmax (·)
denotes the largest eigenvalue. Indeed, the sum (17) is the
tight Lipschitz constant of the dual’s gradient.

The Lipschitz constant is a function of matrix Vr, which
is a parameter in MP3C. Note that the positive definite 2×2-
matrix VrVr

T can be written as

VrVr
T =

(
Vdc

6

)2 [
4na + nb + nc

√
3
(
nc − nb

)
√

3
(
nc − nb

)
3
(
nb + nc

)] (18)

since, e.g. for phase ‘a’, ‖∆ua‖2 = na by definition of ∆ua.
Hence, only the number of transitions in the respective phases
are important for the maximum eigenvalue; Transition direc-
tions do not play any role.

In the 2×2 case we can write down the maximum eigen-
value explicitly so that the dual Lipschitz constant follows as

Ld = 1 + q−1V
2

dc

18
· (19)(

na + nb + nc +
√
n2

a + n2
b + n2

c − nanb − nanc − nbnc

)
.

Online computation of this constant requires squares and
square roots to be evaluated and thus is not a valid option if we
aim for a ultralow-resource implementation. As an alternative,
all possible Lipschitz constants (or preferrably, step sizes h/Ld
and 1/Ld) can be enumerated and stored in a lookup table.

A naive implementation requires n3 entries. If we exploit
symmetry of the Lipschitz constant Ld in the arguments na, nb
and nc, the number of entries in the lookup table can be
reduced to n2 + n!/

(
3! (n − 3)!

)
and thus a resource-saving

implementation can be achieved.
The parameter of strong convexity is solely determined by

the quadratic term in the dual function, i.e.

µd = 1 (20)

and thus is not dependent on any problem data. Note that the
max-term does not permit any quadratic lower bound (12). In
order to see this, it suffices to consider the simple case t̄r = 0
and a line segment [λ1, λ2] ⊆ R2 in the dual domain such that
the projection ∆t∗r (λ) in (16) evaluates to the origin for all
points λ in the line segment. In this case, the max-term in the
dual function (9) is an affine function over the line segment
and therefore, no quadratic lower bound can exist.

Finally, we note that for the fast gradient method the step
size βi for the update of the secondary iterate yi+1 depends on
both the iteration counter i ∈ {1, . . . , imax} and the inverse
condition number µd/Ld (cf. line 3 in Algorithm 2). For
an implementation that is gentle on resource usage, saving
all step size sequences {βi}imax

i=1 for every possible inverse
condition number is not acceptable. As an alternative, we opt
for saving this sequence only once for the smallest inverse
condition number 1/(1 + q−1nV 2

dc/6) which is the inverse of
the largest Lipschitz constant4. This choice still guarantees
linear convergence since we effectively underestimate the
strong convexity parameter µd. However, every underestimate
of the tight strong convexity parameter in (20) fulfills the
inequality in (12) and hence is also an admissible strong
convexity parameter.

1) Efficient Projection On the Truncated Monotone Cone:
In the dual reformulation of the MP3C problem the projection
operator πXr(·) has to be evaluated once in every iteration of
the gradient methods in order to compute the dual gradient
(cf. (13) and (16)). This section will discuss all necessary
details in order to make this projection operation resource-
efficient. In the following we will first decompose the problem
according to each phase. The feasible set for each phase is a
truncated monotone cone (cf. (6)), which is the intersection of
a monotone cone and a box. We will present a new result that
says that the projection on this set is equivalent to projecting
first on the monotone cone and then on the box. This result will
be key to the suggested projection implementations thereafter.

Since set Xr is the direct product of sets Xr,a,Xr,b and
Xr,c, the projection operation in (16) can be decomposed into
three independent projections. In fact, the point to project
of length 3n is split into three chunks of size n that are
individually projected on the associated sets Xr,a,Xr,b and Xr,c.
For that reason it suffices to consider projection on a single
truncated monotone cone from here on. Since the following
results are generally valid, we use a different, more standard
notation as in the MP3C context.

4The largest Lipschitz constant is obtained if (19) is maximized over all
triples

(
na, nb, nc

)
∈ {1, . . . , n}3. The Lipschitz constant can be shown to

be a nondecreasing function of
(
na, nb, nc

)
, hence, the maximum is attained

at (n, n, n).

7

We consider the truncated monotone cone of dimension m

K =
{
x ∈ Rm |x ≤ x1 ≤ x2 ≤ . . . ≤ xm ≤ x

}
, (21)

which can be written as the intersection of the convex mono-
tone cone K and a box B, i.e.

K = K ∩ B ,

where

K =
{
x ∈ Rm |x1 ≤ x2 ≤ . . . ≤ xm

}
, (22a)

B =
{
x ∈ Rm |x ≤ xi ≤ x, i ∈ {1, 2, . . . ,m}

}
. (22b)

It turns out that projection on set K can be further decom-
posed. In particular, we will prove in Theorem 1 below that
πK(z) = πB(πK(z)). In the proof, the following proposition
and corollary are central.

Proposition 1 (Optimality in Conic Convex Optimization).
Consider the convex optimization problem

min
x∈C

f(x)

where f : Rm → (−∞,∞] is a closed proper convex function
and C ⊆ Rm is a closed convex cone. If the optimal value is
finite and there exists a point in the intersection of the relative
interiors of C and dom f , then (x∗, s∗) is a primal/dual
solution pair if and only if

x∗ ∈ arg min
x

f(x)− (s∗)Tx (i)

x∗ ∈ C (ii)
s∗ ∈ C∗ (iii)

(s∗)Tx∗ = 0 , (iv)

where C∗ =
{
s ∈ Rm | sT y ≥ 0 for all y ∈ C

}
denotes the

dual cone of C.

Proof. This follows from [29, Prop. 5.3.8] with f1 = f , f2

being the indicator function of C, A=Im and noticing that

x∗∈arg min
y∈C

(s∗)Ty ⇔ x∗∈ C, s∗∈ C∗ and (s∗)Tx∗ = 0 .

Corollary 1 (Projection on Convex Cone). Point πC(z) is the
projection of z on the nonempty convex cone C if and only if

πC(z) ∈ C, πC(z)− z ∈ C∗ and (πC(z)− z)TπC(z) = 0 .

Proof. We let f(x) = 1
2‖x− z‖

2 in Proposition 1 and notice
that all assumptions are satisfied. Then condition (i) can be
rewritten as πC(z) = z + s∗ and the result follows.

We now state the main theoretical contribution of this paper.

Theorem 1 (Projection on Truncated Monotone Cone). Con-
sider the nonempty truncated monotone cone K in (21). For
the projection of point z ∈ Rm on this set it holds that

πK(z) = πB(πK(z)) ,

where K is the monotone cone in (22a) and B ist the m-
dimensional box in (22b).

Proof. The problem of projection on set K is recovered if in
Proposition 1 we let C=K and f(x) = 1

2‖x − z‖
2 + ιB(x),

where ιB(·) denotes the indicator function for set B. We will
show that the optimality conditions (i)-(iv) are satisified with
x∗ = πB(πK(z)) and s∗ = πK(z)− z.
In order to validate (i), it suffices to rewrite it as a projection,

x∗ = πB(z + s∗) ,

which is clearly satisfied by our choices for x∗ and s∗. Con-
straint (ii) is fulfilled since projection of an ordered vector on a
box results in an ordered vector again, hence πB(πK(z)) ∈ K.
We make use of Corollary 1 to confirm that πK(z)− z ∈ K∗
which validates (iii). Last, we prove that (iv) holds by

0 ≤
(
πK(z)− z

)T
πB(πK(z))

=
(
πK(z)− z

)T
πK(z)−

(
πK(z)− z

)T(
πK(z)− πB(πK(z))

)
≤
(
πK(z)− z

)T
πK(z) = 0 .

The first inequality follows from the definition of the dual cone
and the fact that the first vector of the scalar product is in K∗
whereas the other vector is in K. Also we note that

πK(z)− πB(πK(z)) =

(
πK(z)

)
I
− x · 1|I|

0m−|I|−|I|(
πK(z)

)
I
− x · 1|I|

 , (24)

where index sets I and I contain indices of active box
constraints of πB(πK(z)), i.e.

I =
{
i ∈ {1, 2, . . . ,m} |

(
πB(πK(z))

)
i

= x
}

I =
{
i ∈ {1, 2, . . . ,m} |

(
πB(πK(z))

)
i

= x
}
.

Since the vector in (24) is included in cone K, the second in-
equality follows by similar reasoning as for the first inequality.
The final equality follows from Corollary 1.

Remark 1. Theorem 1 is a generalization of [30, Theorem 1]
where projection on the nonnegative monotone cone is proved,
i.e. x = 0, x =∞. Note that the line of proof pursued here is
different from the one presented in [30].

In [13] the authors have noticed empirically the validity of
Theorem 1. However, no proof is given there.

The main benefit of Theorem 1 in the context of MP3C
is that the projection on the truncated monotone cone can be
made a two-stage process: Projection on the monotone cone
followed by a projection on the box. The former operation
cannot be done in closed form but iterative algorithms exist
that provide the exact projection in at most m iterations
(cf. [31]). The latter operation can be implemented cheaply
in hardware by comparison and saturation only, i.e.(

πB(z)
)
i

= max
(
x,min(x, zi)

)
, i ∈ {1, 2, . . . ,m} .

In the remainder of this section we will emphasize on
a resource-efficient implementation of the projection on the
monotone cone πK(·). Unfortunately, the algorithm presented
in [31] is not well suited for this purpose as it involves
pseudoinverses of matrices of varying size. A more suitable
approach is to precompute the projection operator by means
of multiparametric programming with the point to project
z ∈ Rm being the parameter (this approach was taken in [13]).
The explicit solution is a polyhedral partition of the parameter

8

space Rm and an online lookup suffices to evaluate the
projection operation. For this approach, Theorem 1 leads to a
significantly more resource-efficient lookup table. Whereas in
MP3C the explicit solution for the projection on the truncated
monotone cone possesses 2n+1−1 polyhedral regions in the
parameter space of dimension n + 1 (the upper bound is
an additional parameter there), we now need to store only
2n−1 regions in n dimensions for the projection on the
monotone cone. (These numbers follow from computations in
MPT3 [17].) Although the number of regions grows exponen-
tially with n in both cases, Theorem 1 leads to a reduction of
almost 75%.

However, the explicit solution has drawbacks. It needs a
lookup table and an efficient method to solve the point location
problem, which requires at least one DSP-type multiplier.
We propose to solve the projection onto the monotone cone
approximately in the dual domain. Most importantly, this
approach does not require any DSP-type multiplier. In order
to see this, note that the solution to the projection problem
can be computed from the dual solution η∗ ∈ Rm−1 as

πK(z) = z −GT η∗ , (25a)

η∗ = arg min
η≥0

1

2
ηTGGT η − (Gz)T η . (25b)

Herein, G denotes the (m− 1)×m-matrix
1 −1 0 · · · 0

0 1 −1
. . .

...
...

. 0
0 · · · 0 1 −1

 , (26)

which defines the monotone cone by K = {x ∈ Rm|Gx ≤
0}. For the solution of the dual problem (25b) we employ
the classic gradient method in Algorithm 1 with step size
h/Lη = 2/(Lη + µη) which is a valid choice in the strongly
convex case (cf. [32, Theorem 5.5]). Since the dual projection
problem is a constrained problem, every gradient step requires
a projection onto the feasible set, which is the LP-cone here
(cf. [14, §2.2.3]). The algorithmic scheme for the solution of
the dual projection problem on the monotone cone (25b) can
thus be written as

ηi+1 = max
(

0m−1, ηi −
2

Lη + µη

(
GGT ηi −Gz

))
. (27)

Since matrix G is a first difference matrix, product Gz
can be computed without DSP-type multipliers. Furthermore,
Hessian GGT is a second difference matrix, e.g. for m = 4

GGT =

 2 −1 0
−1 2 −1

0 −1 2

 . (28)

Conclusively, only shifts, negations and additions are required
for multiplication with this matrix. Ultimately, multiplying in
the step size can be implemented by a shift operation too as
follows from the next proposition.

Proposition 2. Consider the dual projection problem for the
monotone cone K given in (25b). Let Lη denote the Lipschitz
constant of the gradient and µη the strong convexity parameter

of the objective. For every dimension m of the cone K the step
size for the classic gradient method in (27) is given by

2

Lη + µη
=

1

2
.

Proof. The Lipschitz constant of the gradient of a convex
quadratic objective is given by the maximum eigenvalue of
the Hessian, the strong convexity parameter by the minimum
eigenvalue (cf. [14, Theorems 2.1.6 and 2.1.11]). For a second
difference matrix, these eigenvalues are

λmax

(
GGT

)
= 2− 2 cos

(m− 1)π

m
,

λmin

(
GGT

)
= 2− 2 cos

π

m
,

as follows from the theory of eigenvalues of Toeplitz Matrices.
Since 2 cos (m−1)π

m = −2 cos π
m the result follows.

This result allows us to implement the projection on the
monotone cone (and hence the truncated monotone cone)
without any DSP-type multipliers. Most importantly, prelimi-
nary computational studies have shown that when employing
warmstarting from the last iterate ηi+1 of the previous outer it-
eration, a single iteration of the dual projection method in (27)
suffices for computing an approximate gradient from (13) so
that both the classic and the fast gradient method converge.
The reason for this is the very small condition number
λmax

(
GGT

)
/λmin

(
GGT

)
< 10 of the Hessian in (25b) due

to small values of m in MP3C, i.e. m = n ∈ {3, 4, 5}.
2) Preconditioning: The dual MP3C problem (8) is a

strongly convex optimization problem. As discussed in Sec-
tion III-A, both the classic and the fast gradient method
converge linearly in this case with the number of iterations
to reach an ε-suboptimal solution being proportional to the
condition number κd = Ld/µd (classic gradient method) or its
square root

√
κd (fast gradient method). The condition number

of the dual problem can be influenced by a change of variables
λ = Pγ with P being an invertible 2×2-matrix. Using a recent
result from [33] it can be shown that the condition number of
the dual objective (9) under a change of variables is given by

κd(P, j) =
λmax

(
P
(
I + q−1Mj

)
PT
)

λmin (PPT)
, (29)

where matrix Mj denotes the jth realization of positive
definite matrix VrVrT in (18). It can be seen that there exists
a total of n3 possible realizations of this matrix depending on
the number of transitions per phase (na, nb, nc). For every re-
alization Mj we could find a specific preconditioner matrix Pj
that minimizes the condition number κd(j) from the solution
to a convex semidefinite program (cf. [34, §3.2]). However,
this approach requires n3 2×2-matrices to be stored which is
not a viable approach on the FPGA in mind due to resource
constraints. We therefore aim for a single, static preconditioner
P ∗ that minimizes the worst case condition number of the dual
objective, i.e.

P ∗ ∈ arg min
P invertible

max
j∈{1,2,...,n3}

κd(P, j) . (30)

It turns out that there is no reason for choosing a precondi-
tioner different than the identity matrix in MP3C, i.e. static

9

preconditioning does not pay off in this application. The
following proposition establishes this result.

Proposition 3. Consider the computation of a static precon-
ditioner P ∗ according to the min-max problem in (30) with
condition number κd(P, j) defined in (29). A solution to this
problem is given by the identity matrix.

Proof. Choose j such that Mj is the realization of matrix
VrVr

T for the case na = nb = nc = n. According to (18),
Mj = νI with ν = nV 2

dc/6 in this case. Hence,

min
P inv.

max
j∈{1,...,n3}

κd(P, j) ≥ min
P inv.

λmax

(
P
(
I + q−1νI

)
PT
)

λmin (PPT)

= (1 + q−1ν) min
P inv.

λmax

(
PPT

)
λmin (PPT)

= 1 + q−1ν .

On the other hand, choose P = I such that

min
P inv.

max
j∈{1,...,n3}

κd(P, j) ≤ max
j∈{1,...,n3}

κd(I, j)

= 1 + q−1 · max
j∈{1,...,n3}

λmax (Mj) ,

where maxj∈{1,...,n3} λmax (Mj) = ν as follows from Sec-
tion III-B. This proves that the identity is a solution to the
min-max problem.

3) Choice of Step Size Enlargement Factor: In the classic
gradient method in Algorithm 1 the step size is given by
h/L where L denotes the Lipschitz constant of the objective’s
gradient. The gradient method can be proved to converge
for any h ∈ (0, 2) where h = 1 is recommended in the
literature. Very recent research in [35] suggests that for better
convergence speed the standard step size of 1/L should be
enlarged for most purposes, i.e. a step size enlargement factor
h > 1 should be chosen. The optimal choice for h is shown to
be dependent on three factors: the performance criterion, the
condition number and the conducted number of iterations.

Since the MP3C problem is solved in the dual domain,
the ‘residual gradient norm’ [35, §4.1.3] is the performance
criterion of choice. Based on the derivations in the cited work
we have chosen a static, optimal step size enlargement factor
for an a priori fixed number of iterations and the worst case
condition number 1 + q−1nV 2

dc/6 in this application.

IV. FPGA IMPLEMENTATION ASPECTS

In this section we focus on implementation aspects of the
gradient methods for MP3C that were described in Section III.
The most important aspect with respect to a fixed-point
implementation on an FPGA is the prevention of overflows.
Section IV-A presents an analysis that allows one to derive
an upper bound on the largest absolute number that can
occur inside the gradient methods. Knowledge of this number
permits one to safely pick the number of integer bits for a
fixed-point number representation. In the dual form of the
MP3C problem there are both dual and primal variables (the
latter are used to compute the dual gradient). Section IV-B
introduces an appropriate scaling for the dual iterates of
the gradient methods so that the number of fractional bits

are primarily determined by the accuracy requirement in the
primal domain. As a side effect, the number of DSP-type
multipliers is reduced, too. Finally, Section IV-C provides an
estimate of the number of clock cycles for a single iteration
of the employed gradient methods.

A. Prevention of Arithmetic Overflow

In order to compute an upper bound on the largest absolute
number inside the gradient methods, we first define appropriate
parameter sets for the continuous parameters of the MP3C
problem. These parameters are contained in the following
compact sets

ψs,err ∈ [−ψs,err, ψs,err] , (31a)
t̄r ∈ Xr , (31b)

t̄ana+1 , t̄bnb+1 , t̄cnc+1 ∈ [0, t̄max] . (31c)

For the sake of brevity, we only consider the case of the
classic gradient method. The classic gradient method can be
summarized from Section III in a single line as the iteration

λi+1=λi−
h

Ld

(
λi+ψs,err+Vr

(
πXr

(
q−1V Tr λi+ t̄r

)
− t̄r
))
, (32)

where the step size h/Ld is a function of Vr according to (17)
and the projection πXr(·) is evaluated approximately via (27)
and by making use of Theorem 1.

First and foremost we derive an upper bound on ‖λi‖∞
which is valid for all i ≥ 0 and every parameter scenario. For
the classic gradient method we have for all i ≥ 0 [14, §2.1.5]

‖λi+1 − λ∗‖ ≤ ‖λi − λ∗‖ .

In MP3C we choose λ0 = 0 as an initial iterate, therefore

‖λi − λ∗‖ ≤ ‖λ∗‖ for all i ≥ 0 .

Making use of the triangular inequality gives the upper bound

‖λi‖∞ ≤ ‖λi‖ ≤ 2‖λ∗‖ for all i ≥ 0 .

So in order to bound the dual iterates, we need to bound the
Lagrange multiplier λ∗. This can be accomplished as follows.
From the necessary and sufficient optimality condition for the
dual problem, ∇d(λ∗) = 0, we conclude that

‖λ∗‖ = ‖ψs,err + Vr∆t
∗
r (λ∗)‖

using the definition of the dual gradient in (13). Since the
optimal primal solution ∆t∗r is identical with ∆t∗r (λ∗), we
obtain the chain of inequalities

‖ψs,err + Vr∆t
∗
r ‖2≤ ‖ψs,err + Vr∆t

∗
r ‖2 + q‖∆t∗r ‖2≤ ‖ψs,err‖2.

The middle term is twice the minimum value of (5) and the
rightmost term is twice the primal objective value if ∆tr = 0,
which is feasible in view of constraint (31b). Consequently,
we obtain

‖λi‖∞≤2‖ψs,err‖ for all i ≥ 0 . (33)

We also need to compute an upper bound on the variables in
the approximate evaluation of the projection on the monotone

10

cone through iteration (27) followed by (25a). As our com-
putational studies have shown, only a single iteration suffices
for both the classic and the fast gradient method to converge
if warmstarting is employed. Warmstarting is beneficial for
convergence but more difficult to analyze than coldstarting
before. However, by introducing conservatism appropriately, a
reasonable upper bound on the first iterate can be derived as
shown next.

From here on we denote by η0(i) the initial iterate for
iteration (27) at outer iteration i. Similarly, η1(i) denotes the
first update and η∗(i) the optimal solution at outer iteration i.
We let η0(1) = 0 and deduce from [32, Theorem 5.5]

‖η1(1) − η∗(1)‖ ≤ c ‖η
∗
(1)‖ , (34)

where convergence ratio c = (κη − 1)/(κη + 1) and κη =
Lη/µη is the condition number of the objective in (25b). For
the second outer iteration we similarly obtain

‖η1(2) − η∗(2)‖ ≤ c ‖η0(2) − η∗(2)‖ .

Considering warmstarting, i.e. η0(2) = η1(1), and (34) gives

‖η1(2) − η∗(2)‖ ≤ c
2‖η∗(1)‖ + c‖η∗(1) − η

∗
(2)‖ .

If we carry on this argument and use the triangular inequality,
we arrive at the following upper bound for the size of the first
iterate after outer iteration i ≥ 2

‖η1(i)‖ ≤ ‖η∗(i)‖ + ci‖η∗(1)‖ +

i−1∑
j=1

cj‖η∗(i−j) − η
∗
(i−j+1)‖ .

Let ζ denote a bound (to be derived below) on the largest
dual optimal solution, i.e. ‖η∗(i)‖ ≤ ζ for all i ≥ 0. With this
bound, the latter inequality becomes

‖η1(i)‖ ≤ ζ
(
1 + ci + 2

i−1∑
j=1

cj
)
≤ ζ 1 + c

1− c
for all i ≥ 0 .

Plugging in the definition of the convergence ratio c and
considering that the condition number of the dual objective
in (25b) for projection on a monotone cone in dimension n
can be compactly written as κη = cot2

(
π
2n

)
results in the

following upper bound for the first iterate

‖η1(i)‖∞ ≤ ζ cot2

(
π

2n

)
for all i ≥ 0 .

We are left to derive an upper bound ζ on the norm of the
largest dual optimal solution. For this, we assume that zi is the
point to project onto the monotone cone at outer iteration i.
From the optimality condition in Corollary 1 it follows using
(25a) and the Cauchy-Schwarz inequality

‖GT η∗(i)‖
2 =

(
GT η∗(i)

)T
zi ≤ ‖GT η∗(i)‖‖zi‖ ,

so that ‖GT η∗(i)‖ ≤ ‖zi‖ if η∗(i) 6= 0. The minimum singular
value of matrix GT is given by

√
2− 2 cos πn (cf. proof of

Proposition 2) so that an upper bound on ‖η∗(i)‖ follows as

ζi =
‖zi‖√

2− 2 cos πn

.

It remains to upper bound the norm of the point to project for
all parameter values and all iterations. In fact, from (32)

‖zi‖ ≤ q−1‖Vr
T ‖‖λi‖ + ‖t̄r‖ , for all i ≥ 0

≤ 2q−1Vdc‖ψs,err‖
√
n

6
+
√

3n t̄max , ρ(n) . (35)

Since modifications of the switching times are cheap to
implement, the scalar weight q is in the order of 10−4 in
our application. As a consequence from (35), the number of
integer bits in an implementation depends on the magnitude
of the point to be projected as the constant Vdc is typically
in [1.5, 2.5]. In fact, the bound on the largest absolute number
follows from the approximate projection on the monotone cone
(cf. (25a))

πK(zi) ≈ zi −GT η1(i) .

Taking into account ‖GT ‖∞ = 2 so that

‖zi −GT η1(i)‖∞ ≤ ‖zi‖ + 2ζ cot2

(
π

2n

)
,

we finally arrive at

#(integer bits)(n) =

⌈
log2 ρ(n)

(
1 + 2

cot2
(
π
2n

)
√

2− 2 cos πn

)⌉
for the classic gradient method. Choosing this number of
integer bits guarantees that no overflow occurs in fixed-
point arithmetic when solving the dual MP3C problem. The
actual number of integer bits that result from our analysis for
n ∈ {3, 4, 5} are reported in Table I.

Remark 2. The number of integer bits for the fast gradient
method can be shown to be greater or equal to the number
of integer bits for the classic gradient method (cf. Table II).
The worst case analysis follows similar reasoning as for the
classic gradient method.

B. Scaling of Iterates for Accuracy and Resource Efficiency

The analysis of the previous section shows that the number
of integer bits depends on the magnitude of the point to be
projected onto the truncated monotone cone. A closer look
at (35) reveals that the largest number inside the gradient
methods is about q−1 (≈104) times larger than the magnitude
of the dual iterate.

In our implementation we aim for a consistent word length5

and the same number of integer bits and fractional bits for all
iterates and intermediate variables of the gradient methods. For
this reason, ‘up-scaling’ the dual iterate is important in order
to increase the accuracy given a short fractional bit length.
Most importantly, changing the scale of the dual iterate does
not change the size of the point to be projected. Thus the
analysis leading to the number of integer bits in Section IV-A
remains valid. By changing the scales of the dual iterates,
the number of fractional bits is primarily determined by the
accuracy requirement in the primal domain.

When done properly, rescaling of the dual iterates can also
reduce the number of DSP-type multiplications on the FPGA.

5Word length , #(integer bits) + #(fractional bits) + 1 (sign bit)

11

In order to show this for the classic gradient method, let us
define the scaled dual iterate λ̂i as

λ̂i = 2bD−1λi

where b is a positive ‘upscale integer’. The diagonal matrix D
follows from decomposing the matrix Vr in (7) as Vr = DUr
with

D =
Vdc

6

[
1 0

0
√

3

]
,

Ur =

[
(2∆ua, 0n−na)

T (−∆ub, 0n−nb)
T (−∆uc, 0n−nc)

T

0n
T (∆ub, 0n−nb)

T (−∆uc, 0n−nc)
T

]
.

Iteration (32) for the classic gradient method now becomes

λ̂i+1 = λ̂i −
h

Ld

(
λ̂i + 2bD−1ψs,err − 2bUrt̄r︸ ︷︷ ︸

expression ¬

(36)

+ 2bUr πXr

(
q−12−bUTr D

2λ̂i+ t̄r

)
︸ ︷︷ ︸

expression

)
,

where D2 = (Vdc/6)2 [1 0
0 3]. So by scaling the dual iterate,

one multiplication with
√

3 disappears. We are left with the
following multiplications that require a DSP-type multiplier:

¬ D−1ψs,err
 If q−1(Vdc/6)2 = 2d for an integer d, this expression

can be evaluated without any DSP-type multiplier. The
assumption is very mild, since q is a tuning parameter
and can always be adjusted so that the latter condition
holds. Note that multiplication with the factor 3 in D2 is
split up in a multiplication by 2 and an addition.

• One more DSP-type multiplication occurs when the gra-
dient ¬ + is multiplied by the step size h/Ld.

If the gradient is evaluated prior to multiplication by the
step size, a rough analysis shows that ‘upscale integer’ b can
be chosen as b = 5/6/7 for n = 3/4/5 so that no overflow
occurs.

C. Estimating the Number of Required Clock Cycles

Before deriving an estimate for the number of clock cycles,
we have a look at the total number of DSP-type multipliers
needed for an implementation of the gradient methods. As
analyzed in the previous section, we have D−1ψs,err, multipli-
cation of the (scaled) dual gradient with the step size h/Ld
(classic gradient method) or 1/Ld (fast gradient method) and
the additional multiplication with the step size βi in the fast
gradient method. In all cases, at least one multiplicand has a
magnitude of less than one, i.e. it can be represented without
any integer bits (in fact, in our application ‖ψs,err‖∞ < 1,
h/Ld < 1, 1/Ld < 1 and βi < 1 for all i ≥ 0).

In Section I-B we have assumed that our target FPGA
provides DSP-type multipliers that are able to multiply 18 bit
numbers with each other in one clock cycle (plus two cycles
for the input and output registers). As seen from Tables I
and II, the word lengths in our implementation are greater than
18 bits in all cases, thus 4 multipliers are required to multiply
numbers of word lengths up to 36 bit. However, since all
multiplications involve multiplicands of magnitudes below one

and the number of necessary fractional bits in our application
is always less than 18 bits, only two DSP-type multipliers
are required to compute a product in MP3C. Furthermore,
we reuse both of these multipliers for all necessary DSP-
type multiplications. Hence, a total of only two DSP-type
multipliers is required for both gradient methods and all
considered problem sizes with a maximum of n ∈ {3, 4, 5}
transitions per phase.

The estimates on the number of clock cycles are based upon
the following assumptions:
• The multiplication/division by powers of two (left and

right shifts respectively), negation, comparison, addition
and subtraction have a latency of one clock cycle.

• The multiplication of an 18 bit number with a 36 bit
number has a latency of 5 clock cycles. Every additional
multiplication has a latency of one cycle (pipelining).

• The summation of m numbers takes dlog2me clock
cycles (adder tree).

Under these assumptions, it can be shown that the evaluation
of the expression

¬ takes max{6, 1 + dlog2 3ne}+ 2 clock cycles,
 takes 11 + dlog2 3ne clock cycles.

Furthermore, the gradient update, i.e. the computation of λ̂i+1,
can be accomplished in 8 cycles. For the fast gradient method,
additional 8 cycles are required for the update of the secondary
iterate.

Since expression ¬ can be evaluated in parallel with expres-
sion , we deduce that 23 cycles are necessary for a single
iteration of the classic gradient method and 31 cycles for the
fast gradient method. Both estimates hold true for a maximum
of n ∈ {3, 4, 5} transitions per phase.

Remark 3. The estimate for the number of clock cycles
depends on the evaluation order of the terms in iteration (36).
Other evaluation orders than the one presented here are
possible and can lead to a further reduction of the number
of clock cycles.

V. FIXED-POINT SIMULATION RESULTS

The proposed gradient methods were implemented in Mat-
lab both in floating-point arithmetic (standard double preci-
sion) and fixed-point arithmetic using Fixed Point Designer
(vers. 4.2). Note that the reported fixed-point simulation results
are identical to the results one would obtain from an actual
implementation of our method in hardware.

As an input we used 1700 to 2500 realistic test data samples
generated from a three-level neutral point clamped inverter
drive system with a medium-voltage induction machine oper-
ating at nominal speed and rated torque. This drive system is
described in [8] along with its parameters.

A typical device switching frequency of 170 Hz implies
that a switching transition in one of the three phases occurs,
on average, every 1 ms. An accuracy of 1% of the resulting
switching instant is deemed acceptable, which translates into
an accuracy of 10 µs. Based on this, we determined the mini-
mum number of iterations imin for a primal iterate that satisfies
‖∆tr,imin

− ∆t∗r ‖∞ ≤ 10 µs (cf. Section I-B) using floating-
point simulations. Herein, ∆tr,imin

denotes the approximate

12

TABLE I
FIXED-POINT SIMULATION RESULTS FOR THE CLASSIC GRADIENT METHOD

Transitions Number Format Iterations Accuracy1 [µs] Clock Cycles
n integer2/fraction3 imin mean/std.dev./max total

3 14 bits / 13 bits 13 1.59 / 1.13 / 7.87 299
4 16 bits / 14 bits 24 1.00 / 0.84 / 6.54 552
5 17 bits / 14 bits 30 1.08 / 1.21 / 9.14 690

TABLE II
FIXED-POINT SIMULATION RESULTS FOR THE FAST GRADIENT METHOD

Transitions Number Format Iterations Accuracy1 [µs] Clock Cycles
n integer2/fraction3 imin mean/std.dev./max total

3 15 bits / 13 bits 20 1.25 / 0.96 / 9.00 620
4 16 bits / 15 bits 35 0.27 / 0.45 / 8.50 1085
5 17 bits / 14 bits 35 0.47 / 0.91 / 9.71 1085

1The accuracy measure is ‖∆tr,imin
− ∆t∗r‖∞ where ∆tr,imin

is the approximate
projection on the truncated monotone cone at the final dual iterate.
2The number of integer bits follows from the worst case analysis in Section IV-A.
3The number of fractional bits was determined empirically as the smallest number such
that the required accuracy is reached after imin iterations in floating point arithmetic.

projection on the truncated monotone cone at the final dual
iterate λ̂imin

in the iteration given by (36) for the classic
gradient method (and similarly for the fast gradient method).

After determining the number of iterations, the minimum
number of fractional bits was empirically identified from fixed-
point simulations so that the accuracy requirement could be
met within the previously determined number of iterations.
The number of integer bits was chosen according to the worst
case analysis in Section IV-A.

The results are summarized in Table I for the classic
gradient method and in Table II for the fast gradient method.
The word lengths, including the sign bit, for both gradient
methods and all problem sizes do not exceed 32 bits. From the
mean accuracy and the standard deviation (abbreviated with
std.dev in the tables) it follows that most of the test cases
can be solved at a much higher accuracy than required. In
order to emphasize this point, Figure 1 illustrates the overall
convergence behavior of both gradient methods for the case
n = 3 as boxplots. We observe that both methods satisfy
the accuracy requirement already after ten iterations for more
than 95% of the test data samples. The plots also indicate
that the classic gradient method (cf. Figure 1a) decreases
the worst case error faster than the fast gradient method
(cf. Figure 1b), while the fast gradient method reduces the
average error quicker. This behavior can be attributed to the
nonmonotone behavior of the fast gradient method with respect
to the function values along the iterates. Note that in this
application, the worst case behavior is more relevant.

Finally, we emphasize that our proposed solution method
in the dual domain requires only two DSP-type multipliers,
independent of the problem size. Compared to the existing so-
lution method [13], which is based on the fast gradient method
in the primal domain and uses about 3000 clock cycles, our
approach converges ten times faster and reduces the number

iteration i

1 2 3 4 5 6 7 8 9 10 11 12 13

er
ro
r
‖
∆
t r
,i
−
∆
t∗ r
‖
∞

[µ
s
]

10−2

10−1

100

101

102

103

104

median
mean
5%− 95%
min - max

(a) Error convergence of the classic gradient method (full sample set).

iteration i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
er
ro
r
‖
∆
t r
,i
−
∆
t∗ r
‖
∞

[µ
s
]

10−2

10−1

100

101

102

103

104

(b) Error convergence of the fast gradient method (full sample set).

Fig. 1. Convergence of the largest componentwise error from the optimal
solution ‖∆tr,i −∆t∗r ‖∞ for the full test data sample set in case of n = 3
(fixed-point number representation as given in Tables I and II). After ten
iterations, both the classic gradient method and the fast gradient method reduce
the error below 10 µs for more than 95% of the data samples.

of multipliers by a factor of at least 17 (cf. resource metrics in
the footnote on pg. 3). Furthermore, compared to the deadbeat
variation of MP3C, see [8], hardware resource usage with
respect to the key metric of number of DSP-type multipliers
is reduced by a factor three, while the execution time is six
times longer. However, in terms of control performance and
robustness, our optimization-based approach is much more
favorable.

VI. FUTURE WORK

Future work could concentrate on reducing the word length.
Empirical tests have shown that the number of integer bits
can be reduced by up to seven bits without causing overflows.
However, excluding overflows for reduced word lengths by
means of a rigorous analysis would require more assumptions
to be made on the parameters of the MP3C problem.

Another theoretical aspect left for future research is to
investigate why the gradient methods converge faster in the
dual domain than in the primal domain in this application
although the condition numbers are not too different.

REFERENCES

[1] G. S. Buja, “Optimum output waveforms in PWM inverters,” IEEE
Trans. Ind. Appl., vol. 16, no. 6, pp. 830–836, Nov./Dec. 1980.

[2] A. K. Rathore, J. Holtz, and T. Boller, “Synchronous optimal pulsewidth
modulation for low-switching-frequency control of medium-voltage mul-
tilevel inverters,” IEEE Trans. Ind. Electron., vol. 57, no. 7, pp. 2374–
2381, Jul. 2010.

[3] B. Wu, High-power converters and AC drives. New York: Wiley, 2006.

13

[4] M. P. Kazmierkowski and L. Malesani, “Current control techniques for
three-phase voltage-source PWM converters: A survey,” IEEE Trans.
Ind. Electron., vol. 45, no. 5, pp. 691–703, Oct. 1998.

[5] B. Beyer, “Schnelle Stromregelung für Hochleistungsantriebe mit Vor-
gabe der Stromtrajektorie durch off-line optimierte Pulsmuster,” Ph.D.
dissertation, Wuppertal University, 1998.

[6] J. Holtz and N. Oikonomou, “Synchronous optimal pulsewidth modula-
tion and stator flux trajectory control for medium-voltage drives,” IEEE
Trans. Ind. Appl., vol. 43, no. 2, pp. 600–608, Mar./Apr. 2007.

[7] ——, “Fast dynamic control of medium voltage drives operating at very
low switching frequency—An overview,” IEEE Trans. Ind. Electron.,
vol. 55, no. 3, pp. 1005–1013, Mar. 2008.

[8] T. Geyer, N. Oikonomou, G. Papafotiou, and F. Kieferndorf, “Model
Predictive Pulse Pattern Control,” IEEE Transactions on Industry Appli-
cations, vol. 48, no. 2, pp. 663–676, Apr. 2012.

[9] J. M. Maciejowski, Predictive control. Prentice Hall, 2002.
[10] J. B. Rawlings and D. Q. Mayne, Model predictive control: Theory and

design. Madison, WI, USA: Nob Hill Publ., 2009.
[11] E. C. Kerrigan, “Co-design of hardware and algorithms for real-time

optimization,” in European Control Conference (ECC), Jun. 2014, pp.
2484–2489.

[12] N. Oikonomou, C. Gutscher, P. Karamanakos, F. D. Kieferndorf, and
T. Geyer, “Model predictive pulse pattern control for the five-level
active neutral-point-clamped inverter,” IEEE Transactions on Industry
Applications, vol. 49, no. 6, pp. 2583–2592, 2013.

[13] H. Peyrl, J. Liu, and T. Geyer, “An FPGA implementation of the fast
gradient method for solving the Model Predictive Pulse Pattern Control
problem,” in IEEE International Symposium on Sensorless Control for
Electrical Drives and Predictive Control of Electrical Drives and Power
Electronics (SLED/PRECEDE), 2013, pp. 1–6.

[14] Y. Nesterov, Introductory Lectures on Convex Optimization. A Basic
Course. Springer, 2004.

[15] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The Ex-
plicit Linear Quadratic Regulator for Constrained Systems,” Automatica,
vol. 38, no. 1, pp. 3–20, Jan. 2002.

[16] A. Suardi, S. Longo, E. Kerrigan, and G. Constantinides, “Energy-aware
MPC co-design for DC-DC converters,” in European Control Conference
(ECC), Jul. 2013, pp. 3608–3613.

[17] M. Herceg, M. Kvasnica, C. Jones, and M. Morari, “Multi-Parametric
Toolbox 3.0,” in Proceedings of the European Control Conference,
Zürich, Switzerland, July 17–19 2013, pp. 502–510, http://control.ee.
ethz.ch/∼mpt.

[18] P. Patrinos, A. Guiggiani, and A. Bemporad, “A dual gradient-projection
algorithm for model predictive control in fixed-point arithmetic,” Auto-
matica, vol. 55, pp. 226–235, May 2015.

[19] M. Rubagotti, P. Patrinos, A. Guiggiani, and A. Bemporad, “Real-time
model predictive control based on dual gradient projection: Theory and
fixed-point FPGA implementation,” International Journal of Robust and
Nonlinear Control, p. n/a, Jan. 2016.

[20] H. Peyrl, A. Zanarini, T. Besselmann, J. Liu, and M.-A. Boéchat,
“Parallel implementations of the fast gradient method for high-speed
MPC,” Control Engineering Practice, vol. 33, pp. 22–34, Dec. 2014.

[21] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, Mas-
sachusetts: Athena Scientific, 1999.

[22] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, Mar. 2004.

[23] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New
York: Springer, 2006.

[24] J. Mattingley and S. Boyd, “CVXGEN: A code generator for embedded
convex optimization,” Optimization and Engineering, vol. 13, no. 1, pp.
1–27, 2012.

[25] H. Ferreau, C. Kirches, A. Potschka, H. Bock, and M. Diehl, “qpOASES:
A parametric active-set algorithm for quadratic programming,” Mathe-
matical Programming Computation, vol. 6, no. 4, pp. 327–363, 2014.

[26] O. Devolder, F. Glineur, and Y. Nesterov, “First-order methods of smooth
convex optimization with inexact oracle,” Mathematical Programming,
vol. 146, no. 1-2, pp. 37–75, 2014.

[27] ——, “First-order methods with inexact oracle: the strongly convex
case,” Université catholique de Louvain, Center for Operations Research
and Econometrics (CORE), Tech. Rep., 2013.

[28] S. Richter, C. N. Jones, and M. Morari, “Certification aspects of the fast
gradient method for solving the dual of parametric convex programs,”
Mathematical Methods of Operations Research, vol. 77, no. 3, pp. 305–
321, Dec. 2012.

[29] D. P. Bertsekas, Convex Optimization Theory, 1st ed. Athena Scientific,
Jun. 2009.

[30] A. B. Németh and S. Z. Németh, “How to project onto the mono-
tone nonnegative cone using Pool Adjacent Violators type algorithms,”
arXiv:1201.2343 [math, stat], Jan. 2012, arXiv: 1201.2343.

[31] A. Németh and S. Németh, “How to project onto an isotone projection
cone,” Linear Algebra and its Applications, vol. 433, no. 1, pp. 41–51,
Jul. 2010.

[32] S. Richter, “Computational complexity certification of gradient methods
for real-time model predictive control,” Ph.D. dissertation, ETH Zürich,
Zürich, 2012.

[33] P. Giselsson, “Improved fast dual gradient methods for embedded model
predictive control,” in Proceedings of 2014 IFAC World Congress, 2014.

[34] L. E. Ghaoui, E. Feron, V. Balakrishnan, and S. Boyd, Linear Matrix
Inequalities in System & Control Theory. Society for Industrial and
Applied Mathematics, Jul. 1994.

[35] A. B. Taylor, J. M. Hendrickx, and F. Glineur, “Smooth Strongly
Convex Interpolation and Exact Worst-case Performance of First-order
Methods,” arXiv:1502.05666 [math], Feb. 2015.

http://control.ee.ethz.ch/~mpt
http://control.ee.ethz.ch/~mpt

	Introduction
	mp3c Problem Setup
	Requirements on the Solution Method
	Review of Existing Solution Methods for mp3c
	Contribution and Outline of the Paper

	Dual Constant-Size Reformulation
	Gradient Methods for mp3c
	A Primer on Gradient Methods
	Application to mp3c
	Efficient Projection On the Truncated Monotone Cone
	Preconditioning
	Choice of Step Size Enlargement Factor

	fpga Implementation Aspects
	Prevention of Arithmetic Overflow
	Scaling of Iterates for Accuracy and Resource Efficiency
	Estimating the Number of Required Clock Cycles

	Fixed-Point Simulation Results
	Future Work
	References

