
Alternative Sphere Decoding Algorithm for
Long-horizon Model Predictive Control of

Multi-level Inverters
Johan Raath

Department of Electrical, Electronic
and Computer Engineering

Central University of Technology
South Africa

Email: jraath@cut.ac.za

Toit Mouton
Department of Electrical and

Electronic Engineering
University of Stellenbosch

South Africa
Email: dtmouton@sun.ac.za

Tobias Geyer
ABB Corporate Research

ABB Switzerland Ltd,
Power Electronic Systems

Switzerland
Email: t.geyer@ieee.org

Abstract—The computational burden associated with long-
horizon finite control set Model Predictive Control remains a
challenging problem in power electronic systems with short
sampling intervals. In an attempt to address this problem and
enable real-time applications, we introduce an alternative Sphere
Decoding Algorithm which utilizes matrix block processing and
offline preprocessing to support the online optimization process.
The expected performance of the algorithm is presented here
in the form of MATLAB c© simulations together with real-time
simulations, run on an OPAL5600 c© real-time simulator.

I. INTRODUCTION

Long-horizon model predictive control (MPC) evaluates
the cost function over a prediction horizon of multiple
sampling periods. In power electronic systems, an extended
prediction horizon is favoured for its enhanced closed-
loop performance during steady-state operation. Under
these conditions [1], showed that long prediction horizons
lead to significant reductions in current distortion and
converter switching frequency. The computational burden
associated with long-horizon MPC is troublesome in real-time
applications where computations are restricted by the length
of the sampling interval. This, in particular, is the case
for integer-valued finite control set MPC (FCS-MPC) in
which the computational burden increases exponentially with
the length of the prediction horizon N . For this reason,
FCS-MPC implementations are typically limited to short
prediction horizons. Some of the most recent developments
with real-time validations include [3] and [4] which achieved
prediction horizons in the range of N = 3 to 5. In three-phase
applications, the underlying FCS-MPC problem translates
to an integer least squares (ILS) problem of dimension
d = 3N . Solving such a high dimensional problem with a
large number of admissible solutions demands an efficient
optimization process or solver. In power electronic systems,
the well-known Sphere Decoding Algorithm (SDA) adapted
in [5] and its evolution to date, has proven to be very effective
in practical implementations. Some major contributions that

assist the SDA include the sphere-radius selection strategy
of [6] which involves the the “so-called” Babai estimate,
and the concept of target preconditioning through orthogonal
projection of the target onto the search space convex hull [7]
and [8]. Target preconditioning, in particular, assists during
transient events that occur in the power electronic system.

In an attempt to enhance the computability of the SDA,
this paper presents an alternative approach, which proposes
the use of block matrix computations. According to [9] is
block matrix computation a simple but effective tool for
improving algorithm performance in modern processors as it
facilitates efficient data handling between main memory and
the processing unit. Employing block matrices enables the
inclusion of offline preprocessing, which assists in reducing
the online computational burden of the decoding algorithm.
The proposed algorithm is incorporated into the FCS-MPC
of a complex, time-varying system. The power electronic
system to be considered is similar to the one presented in
[2], where an induction machine is driven by a three-phase,
three-level NPC inverter via an intermediate LC-filter. For
such a system of higher-order, it was concluded by [10] that
long-horizon MPC is particularly beneficial, especially when
switching is expensive. Hence the selection, as control of such
a system substantiates the use of long-horizon FCS-MPC and
the subsequent need for an efficient solver to the optimisation
problem.

The paper is organized as follows: Section II introduces
a brief overview of the system model. In section III, the
altered Sphere Decoding Algorithm is presented, followed by
the pseudo-code in section IV. The inherent nature of the
algorithm is explored through MATHCAD c© simulations in
section V. Section VI subjects the algorithm to real-time testing
on an OPAL-RT c© 5600 platform and section VII concludes
the paper.

0000–0000/00$00.00 c© 20XXIEEE

Fig. 1. FCS-MPC of a three-phase three-level NPC inverter driving an induction machine via an intermediate LC filter.

II. SYSTEM AND MODELLING

The selected electrical drive system can be defined as a
multiple-input multiple-output (MIMO) system managed by
an FCS-MPC designed, MIMO controller. Figure 1 depicts
the layout. The general cascaded approach of a predictive
current control system is followed where the electromagnetic
subsystem of the IM is managed by a predictive controller
and the mechanical subsystem by a proportional-integral (PI)
speed controller. Noteworthy, the following assumptions are
made: Firstly, the dc supply VDC is considered stiff with the
neutral point of the NPC inverter regulated to the constant
value VDC/2. Secondly, the rotor speed ωr is assumed
constant for the duration of the MPC prediction horizon.

Modelling of the proposed system and formulation of the
MPC problem is done in accordance with [10, p.234]. Each
inverter leg x ∈ {a, b, c} of the three-phase NPC inverter
can deliver three voltage levels which are represented by the
integer values

ux ∈ U = {−1, 0, 1} . (1)

Combined, these states define the inverter control vector

uabc = [ua ub uc]
T ∈ U = U3. (2)

Note that the set U to the Cartesian power three results in
the inverter control vector set U with a cardinality #(U) = 27.

The objective of the controller at every sampling instant is
to manipulate the state of the inverter legs uabc, such that the
system outputs, i.e. inverter current ii, capacitor voltage vc
and stator current is, closely track their respective references
(∗), while limiting the average inverter switching frequency.
System states are obtained at every sampling instant through
direct measurement and an observer. The system output ref-
erences which define the operating point of the induction
machine are computed from the rotor flux Ψ∗r setting and the
torque requirement T ∗e . For optimal machine magnetisation,
Ψ∗r is typically held constant at its maximum value but can
be decreased if field-weakening is required. To adhere to the

control objective stated above, the well-known cost function

J =

k+N−1∑
l=k

‖y∗(l + 1)− y(l + 1)‖2Λ + λu ‖u(l)− u(l − 1)‖22 ,

(3)

featuring reference tracking and switching cost is adopted.
The first term in (3) quantifies the tracking error between the
system output vector y and the reference in y∗ vector. Weigh-
ing matrix Λ, assign weighting factors to the tracking of the
output variables. The second term in (3) quantifies the inverter
switching cost, with λu denoting the switching penalty. The
ratio between the weighing matrix Λ and switching penalty
λu establishes a compromise in overall tracking accuracy to
the switching cost. Because the cost function (3) is a function
of the switching sequence

ũ(k) = [uT (k) uT (k + 1) ...uT (k +N − 1)]
T ∈ Z3N , (4)

it has been shown in [5] that the cost function can be written
in terms of the unconstrained minimum

ũunc(k) = [uT
unc(k) uT

unc(k + 1) ...uT
unc(k +N − 1)]

T ∈ R3N ,
(5)

to define the optimization problem as an integer-least-squares
(ILS) problem, i.e.

û(k) = arg min
ũ(k)∈U

‖Hũ(k)−Hũunc(k)‖22 . (6)

Matrix H is the Cholesky decomposition1 of the Hessian ma-
trix, and U = UN , the set of admissible switching sequences.
Solving the ILS problem (6), geometrically translates to find-
ing from the set of Hũ vectors the vector with minimum
Euclidean distance to the unconstrained solution or target

x̃ = Hũunc ∈ Rd, (7)

in the transformed H-coordinate space. This relates to the
traditional nearest neighbour problem which is also known as
the closest vector problem (CVP) [11] in lattice theory.

1Every real-valued symmetric positive-definite matrix A has a unique
Cholesky decomposition that results in a unique lower triangular matrix B
with strictly real and positive diagonal entries such that A = BBT .

Fig. 2. Search tree with one-dimensional versus three-dimensional branching
for a single-step in the prediction horizon.

III. PROPOSED ALGORITHM

The basic premise in sphere decoding is to limit the number
of Hũ vectors, i.e. lattice points to search over by selecting
an initial bound in the form of a sphere centered around the
target [12]. Considering the lattice points inside the bounding
sphere can be described as a process of pruning a search
tree. The conventional approach constitutes a search tree of
depth d = 3N , with one-dimensional branches corresponding
to the elements of the control set U . Pruning of a branch
occurs if the cost J of traversal to a higher dimensional
node exceeds the square of the bounding sphere radius δ2.
If this is the case, the algorithm steps back and attempts
to find another path. The process continues until a path or
sequence of d-branching steps is found with minimal cost.
The computational complexity of the SDA corresponds to
the number of floating-point operations (flops) per node
visit, multiplied by the number of nodes visited (algorithm
iterations) throughout the search process [12].

A. Algorithm concept

In essence, the proposed strategy is similar to the general
sphere decoding approach except that an alternative search tree
is considered. The new tree poses three-dimensional branches
that correspond to the inverter control vector set U . This
in effect reduces the tree depth from d = 3N , to a depth
equal to the prediction horizon N . Fig. 2 compares the new
tree structure with the conventional. The proposed strategy
deviates from the conventional approach where at every parent
node, a single one-dimensional branching step is evaluated to
a process where 27 three-dimensional branches are evaluated
simultaneously. The branches that effect a partial cost less
than the sphere radius identifies the sibling nodes which are
to be considered as parents in the next tree level. In a similar
fashion as the conventional SDA, the process follows a depth-
first approach and prunes the branches with an excessive cost.
The search ends when only one path through the search tree
remains, i.e. the optimal solution (6) as a sequence of N ,
three-dimensional branching steps. To easy further explanation
of the algorithm concept, we will drop the time dependency

(k), and state the optimal solution (6) as N , three-dimensional
sub-vectors

û = [ûT
1 û

T
2 ...û

T
N]T ∈ U ⊂ Zd, (8)

which correspond to the search-tree levels, i.e. intermediate
horizons

n = 1, 2, . . . , N. (9)

B. Cost calculation

As a first observation, the proposed approach of computing
at every parent node, the cost of 27 branchings

J̃ = [J̃1 J̃2...J̃27] ∈ R27, (10)

seems demanding. However, it can be alleviated by introducing
some offline precomputation. This necessitates the representa-
tion of the inverter control set U as the matrix

U = [u1 u2...u27] ∈ Z3×27. (11)

with the control vectors indexed as the columns of U . Trans-
formation of these three-dimensional control vectors to the
H-coordinate space is accomplished with three-by-three trans-
formation matrices. By definition, the transformation matrix
H ∈ Rd×d is square and lower triangular. Hence, partitioning
it into three-by-three, non-zero sub-matrices results in

y =
N(N + 1)

2
, (12)

sub-matrices, i.e.

Hz, z = 1, 2..y, Hz ⊂H. (13)

The numbering of the non-zero sub-matrices in this work is
done in a top-to-bottom, and left-to-right manner, as demon-
strated for the horizon N = 3 case,

H =

 H1 0 0
H2 H3 0
H4 H5 H6

 .
Note that the rows of sub-matrices in H are congruent to

the search-tree levels, i.e. intermediate horizons (9). Also, the
sub-matrices that constitute the diagonal of H are identified
with

b =
n(n+ 1)

2
. (14)

Each of the sub-matrices Hz transforms the set of control
vectors U to corresponding three-dimensional column-vectors
of matrices

Gz = HzU , Gz ⊂ G. (15)

This allows for the precomputation and storage of the trans-
formed sub-vectors in sub-matrices of the matrix G ∈
R3×27×y . To express the cost vector (10) in terms of the
intermediate horizon n, the target vector is also presented as
a sequence of three-dimensional vectors

x̃ = [x̃T
1 x̃

T
2 ...x̃

T
N]T ∈ Rd. (16)

The 27 costs for traversing the 27 branches from the search-
tree root node to the first tree level (n = 1), is obtained from
augmenting (6) to give

J̃ = ‖H1U − x̃no‖2 (17a)

= ‖G1 − x̃no‖2 . (17b)

Note that the vector o = [11, 12, . . . , 127]T replicates the sub-
vector x̃n to constitute a matrix for the element-wise subtrac-
tion from G1. Traversing to higher tree levels necessitates the
introduction of an index vector

p = [p1 p2...pN]T ∈ ZN , (18)

which records the branching steps per tree level. Each element
of p refers to the column index of a selected control vector
in U . This is to keep track of the path followed and the
intermediate cost incurred to a specific node in the search tree.
The 27 intermediate branching costs from a node in tree-level
one to tree-level two will therefore resemble

J̃ =
∥∥(H3U +H2upn−1o)− x̃no

∥∥2 + J̃pn−1 (19a)

=
∥∥H3U − (x̃n −H2upn−1)o

∥∥2 + J̃pn−1 (19b)

=
∥∥G3 − (x̃n −G2,pn−1)o

∥∥2 + J̃pn−1 . (19c)

At tree-level (n = 2), the term (pn−1) identifies the partial
cost J̃pn−1 uncured for traversal to level one via the branching
effected by sub-vector upn−1

. Congruently, denotes G2,pn−1

the pth1 column vector in the matrix G2. From (19c), and with
the inclusion of variable b (14), the evolution of the partial
cost for traversing to tree levels n > 1, can be envisioned as

J̃ =
∥∥Gb − (x̃n − (Gb−1,pn−1

+Gb−2,pn−2
+ . . .

+Gb−(n−1),p1
))o

2
+ Jn−1,pn−1

.
(20)

The availability of matrix G eliminates the need for online
transformation computations, and as a result, reduces the
computational effort per node visited. Henceforward, we shall
refer to the proposed approach as the Sphere Block Decoding
Algorithm (SBDA).

IV. ALGORITHM PSEUDO-CODE

The Sphere Block Decoding Algorithm outputs the optimal
control sequence û upon input of a target x̃ and the estimated
initial sphere radius δ. Also, the SBDA requires the inverter
control set U (11) and the precalculated matrix G (15). Algo-
rithm 1 lists the main routine SPHBLKDEC and Algorithm
2 the subroutine DECODE. The main routine initiates the
subroutine (line:7), and upon receiving an index vector (18),
constructs the optimal control sequence û from the set U .

The subroutine DECODE initiates with the first tree level
(n = 1), the index vector p← ones(1, N) and a queue-vector
q, loaded with a single element referencing the root node.
Starting at the root necessitates the zeroing of the branching
costs J̃ . As a first step, the variable b (14) is computed for
the current tree level n, followed by the for-loop, which
repeats for the number of admissible parent nodes listed in

Algorithm 1 Sphere Block Decoding Algorithm - main routine
1: function SPHBLKDEC(x̃, δ2,G,U)
2: n← 1
3: p← ones(1, N)
4: q ← [1]
5: J̃ ← zeros(1, 27)
6: o← ones(1, 27)
7: [p̂, δ2] = DECODE(x̃, δ2,G, n,p, q, J̃ ,o)
8: for n = 1 : N do
9: ûn ← U1:3,p̂n

10: end for
11: return û
12: end function

Algorithm 2 Sphere Block Decoding Algorithm - subroutine

1: function DECODE(x̃, δ2,G, n,p, q, J̃ ,o)
2: b← sum(1 : n)
3: for m = 1 : nummel(q) do
4: x← x̃n

5: if n = 1 then
6: J ← J̃pn

7: else
8: p(n−1) ← qm
9: J ← J̃pn−1

10: for y = 1 : (n− 1) do
11: x = x−G(b−y),p(n−y)

12: end for
13: end if
14: J̃ = ‖Gb − xo‖2 + J
15: q̃ = find(J̃ ≤ δ2)
16: if nummel(q̃) ≥ 1 then
17: if n = N then
18: [δ2, pn] = min(J̃)
19: p̂← p
20: else
21: [p̂, δ2] = DECODE(x̃, δ2,G, (n +

1),p, q̃, J̃ ,o)
22: end if
23: end if
24: end for
25: return [p̂, δ2]
26: end function

the queue-vector q. The nth level sub-vector is extracted
from the target vector (line:4), followed by the gathering
of the preceding branching cost. This is zero for tree-level
(n = 1), and updating of the target sub-vector x is also not
required (lines:8 to 13). All 27 branching costs are computed
in (line:14) and compared with the squared sphere radius
(line:15). The resulting queue-vector reflects the index values
of admissible branchings which are to be considered as parent
nodes for branching to the next tree level. If admissible
branchings exist, traversal to the next tree level is considered
by re-calling the DECODE subroutine (line:21).

The subroutine DECODE is now initiated with the new
tree-level (n + 1), the branching path p, the admissible
parent nodes q̃ and the cost of all 27 traversals J̃ . Note
that p, q̃ and J̃ convey the relative conditions at tree-level
n. The same sequence of events is followed whereby b is
computed, the for-loop identifies the first parent node in
the queue, and the target sub-vector is extracted (lines:1 to
4). Tree-levels (n > 1), require updating of the branching
path with the selected parent node and also the branching
cost incurred by it (lines:8 and 9). Updating of the target
sub-vector with the effects of previous branchings (lines:10
to 12) again leads to the cost computation and identification
of admissible branchings. If no viable branchings exist
q̃ = [], the branch is pruned and the next parent in the
queue q is considered. Branching continues until the final
tree level (n = N) is reached, whereupon the branching with
minimal cost is identified. The last element of the index
vector pn is updated, and the branching cost incurred for the
recorded path p is taken as the new squared sphere radius.
With the tightened sphere radius the algorithm continues
to prune non-admissible branches while searching for more
cost-effective paths, until a single optimal path p̂ remains.
This path is returned to the main routine, for construction of û.

Although not listed in Algorithm 2, the queue of admissible
parent nodes at each tree level can be pruned further by apply-
ing the switching constraint and/or other selection strategies
like best-first sorting.

A. Complexity

The proposed tree structure of the SBDA is more complex
than the conventional approach, and an increase in the com-
putational burden per algorithm iteration is to be expected.
Computation of the 27 branching costs (line:14) contributes
to the bulk of the burden imposed by Algorithm 2. It amounts
to a (3 × 27)-matrix which undergoes subtraction, element
squaring and column summations. Element wise (⊗,⊕,),
the total number of operations for (line:14) can be conveyed
as

(3× 27)(2⊗+⊕+). (21)

Updating of the target sub-vector (line 11) requires

(3n− 3)	 (22)

operations. Cumulatively, (21) and (22) effects a total of

3n+ 321 flops (23)

per parent node visited. The number of node visits, i.e. algo-
rithm iterations for the sphere decoding approach, is dependent
on the selected sphere-radius. An optimal sphere radius selec-
tion that includes only one lattice point (the optimal solution),
will result in a minimum number of algorithm iterations, which
equals the depth of the relevant search tree. For the SBDA with
tree depth n = N , the lower computational bound is therefore

set to
3

2
(N2 +N + 214) flops. (24)

Storage of the matrix G requires memory space, which can
be computed as

C = 3× 27× y × 8 bytes, (25)

where y denotes the number of non-zero matrices (12), and
8 bytes, an assumed word length. Even for a relatively long
prediction horizon of N = 10, the storage demand will be
relatively small, i.e. memory capacity of 36 kB.

A theoretical analysis of the SDA’s and the SBDA’s re-
spective pseudo-codes in terms of their lower computational
bounds reveals the nature of the proposed approach. Figures
4(a) and 4(b) shows the relationship between algorithm itera-
tions and flop count of the two respective decoders. Relative
to the lower bound of the SDA (SDAlo), the lower bound of
the SBDA (SBDAlo), exhibits a reduced number of algorithm
iterations but poses an elevated flop count for short prediction
horizons. However, the difference in flop count diminishes as
the prediction horizon increases.

V. SIMULATED PERFORMANCE

In an attempt to find the upper computational bounds of the
respective decoding algorithms, the drive system presented
above was simulated in MATLAB c©. A sampling frequency
of FS = 12kHz was chosen with the system parameters as
listed in Table I. Base quantities were used to establish a

TABLE I
PARAMETERS OF THE DRIVE SYSTEM.

Parameter SI value pu value
Nominal stator voltage 3300 V 0.5774
Nominal stator current 356 A 1.0000
Nominal power 1.587 MW 0.7799
Apparent power 2.035 MVA 1.0000
Rated stator frequency 50 Hz 1.0000
Number of pole pairs 5
Rotational speed 595 rpm 0.9913
Air-gap torque 26.2 kNm 1.0000
Stator resistance 57.61 mΩ 0.0108
Rotor resistance 48.89 mΩ 0.0091
Stator leakage inductance 2.544 mH 0.1493
Rotor leakage inductance 1.881 mH 0.1104
Main inductance 40.01 mH 2.3486

Filter inductance 2 mH 0.1174
Filter Capacitance 200 µF 0.3363
Filter inductor resistance 2.0 mΩ 0.0004
Filter capacitor resistance 2.0 mΩ 0.0004

DC link voltage 5200 V 1.9299

per-unit system. For steady-state conditions a constant torque
load Tl = 1pu at the rated speed ω∗r = 0.9911pu and optimal

Fig. 3. Performance indicators of the SBDA and benchmark SDA simulated in MATLAB c©. Figure (a) shows the algorithm iterations, Figure (b) the flop count
and Figure (c), the average algorithm termination times. The respective results refer to values incurred per sample. Theoretical lower bounds are identified by
the post-fix “lo” with the simulation results for steady-state operation and transients respectively identified by “s” and “t”.

machine magnetisation Ψ∗r = 1pu were selected. The response
of the drive to transients was evaluated by invoking a rapid
speed-step from ω∗r = 0pu to ω∗r = 0.9911pu while burdened
with a variable torque load. In both cases, the main diagonal
of the weighing matrix Λ was populated to strongly favour
tracking of the stator current. Also, the switching weight λu
was adjusted to achieve an average switching frequency per
semiconductor device of fsw = 300Hz.

Both, the SDA and SBDA were expected to solve the
optimization problem (2), aided with intelligent initialization
in the form of target preconditioning [7], and sphere-radius
estimation [6]. Simulation of the FCS-MPC process followed
a general order as illustrated by the state-machine in Figure 4.
At every sample period (k), the output variables are obtained

Fig. 4. State machine representation of the FCS-MPC scheme.

from which the unconstrained minimum ũunc is computed.
Transformation to H-coordinate space sets x̃ = Hũunc as
the target. If necessary, the target is preconditioned to give the
updated target x∗. The next step computes the initial sphere
radius δ. After decoding, the solution to the optimisation

problem (6) is produced, from which the first control vector
û1 (8) is extracted and applied as the optimal control uabc

action to the inverter.

Figures 4(a) to 4(c) shows the respective performance
parameters when the simulations are conducted for 10 cycles
of the fundamental stator current frequency. The recorded
algorithm iterations and flop counts are the maximum val-
ues obtained during the simulation. The distinct nature of
the SBDA reverberates in its upper computational bound
where fewer algorithm iterations (Fig. 4(a)) are required but
a heightened flop count (Fig. 4(b)) is recorded. Again, as
the horizon extends, the flop count of the SBDA converges
towards the SDA’s bound. Figure 4(c) shows the average al-
gorithm termination times recorded by the MATLAB c© timing
function. Upon investigation, it is evident that the respective
algorithm complexities (Fig. 4(b)) are not captured by their
corresponding termination times an opposite trend is observed.
This contradiction is supported by the statement that flop count
is a crude approach to the measurement of the efficiency of
an algorithm in practice [13].

VI. REAL-TIME SIMULATION

To investigate this notion further, the same drive system
was emulated on an OPAL-RT c© 5600 real-time simulator.
The realisation of the drive system in the RT-LAB system is
illustrated in Figure 5. Note that the controller and plant are
implemented on separate CPU cores and interfaced via the
FPGA controlled analogue and digital IOs with a hardwired
external loop. The external loop enforces hardware synchro-
nisation, and in the process solidifies the performance results
of the controller in real time. Reference settings such as the
IM speed ω∗r and flux Ψ∗r , together with the mechanical load
torque Tl, are managed from the host computer. Measurements
of the plant during test procedures are recorded in the RT
simulator and transferred to the host upon completion. Real-
time implementation issues included the extrapolation of the
system prediction model to compensate for an acquisition and

Fig. 5. Setup of the drive system on an OPAL-RT c© 5600 platform.

communication delay of two sampling periods. Also, due to
the dynamic nature of the system, i.e. varying rotor speed, the
matrix H was precomputed for a range of incremental steps
(1%) of the pu speed range.

A. Steady-state

Real-time simulation of the IM drive in steady-state
conditions was done as specified in section VI. For the
prediction horizon N = 8 case, the resulting waveforms are
shown in Figure 6. Measurements of the inverter current
ii and stator current is were employed to compute their
respective total demand distortions, i.e. ii,TDD and is,TDD.
The torque total demand distortion Te,TDD was obtained
by calculating Te from the measured stator current is and
estimated rotor flux ψr. Table II list the results for prediction
horizons N = 3, 5 and 8. At first glance, the dramatic effect

TABLE II
PERFORMANCE METRICS OF THE DRIVE SYSTEM DURING STEADY-STATE

OPERATION.

N fswd (Hz) ii,TDD (%) is,TDD (%) Te,TDD (%)
3 314.3 13.422 3.592 2.737
5 301.3 13.144 2.802 2.139
8 307.8 12.495 1.849 1.490

of the LC filter on the current TDD can be noticed. The
input current to the filter ii, with a fairly high TDD, is
transformed to result in the stator current is with a low
single-digit value. As a drive performance indicator, this
improves with extension of the prediction horizon. Compared
to the theoretical MATLAB c© simulations, the real-time
results showed a general decrease from the theoretical values.
The deviation is contributed to the inaccuracies instilled by
the analogue-to-digital and digital-to-analogue conversion
processes.

Performance of the two controller algorithms was quantified
in terms of their respective computation times tSDA and
tSBDA. Reported by a function of the OPAL-RT c© software,
the termination times are plotted in the last graph of Figure

Fig. 6. Real-time simulation results of the IM drive during steady-state con-
ditions. The inverter output voltages, stator currents and respective algorithm
termination times are denoted by vi,abc, is,abc and tSDA, tSBDA.

6. Note that due to the sampling frequency of 12kHz, the
computation time is bounded to the duration of a sampling
period TS = 83µs, which is indicated with the red line. The
SBDA (dark silhouette), in general, terminates faster than the
SDA and well within the sampling period, whereas the SDA
terminates closer to the 83µs bound with frequent overruns2

occurring. Prediction horizons 9 and 10 demanded too big
a computational effort for successful termination of either
algorithm.

B. Transients

The response of the drive to transients was tested for a
speed step as specified in section VI. The prediction horizon

2An “overrun” occurs if the operations of the real-time simulator are not
achieved within a period of the selected fixed time-step, i.e. sampling period.
In such a case the real-time simulation is considered erroneous.

Fig. 7. System waveforms corresponding to a variation in rotor speed
from 0pu to 0.911pu. Rotor speed ωr , developed torque Te, inverter current
ii, capacitor voltage vc, stator current is and controller computation time
tSBDA.

N = 8 controller was selected with the resulting waveforms
in Figure 7. The rapid speed-step in the reference ω∗r can be
observed, together with the rotor speed ωr, delayed due to
the inertia of the system. The rapid demand for an increase of
the motor speed effects a large transient deviation (ωr − ω∗r),
which subsequently leads to the speed controller issuing a
maximum torque request. This, almost immediate torque
response Te is maintained at a maximum until the required
speed is attained. The enlarged view of the machine torque
exhibits the rapid torque adjustment made by the predictive
controller; a settling time of less than 10ms is achieved
with minimal overshoot. During the acceleration process,
the inverter current is slightly elevated while the capacitor
voltage builds. Importantly, the stator current is optimally
maintained throughout the transient period. The controller
termination time, supported by the SBDA remained well

within the sample period bound.

VII. CONCLUSION

An alternative sphere decoding algorithm was proposed to
facilitate the FCS-MPC of a three-level NPC inverter driv-
ing a medium-voltage induction machine via an intermediate
LC-filter in real time. The inherent characteristics of the
Sphere block decoding algorithm with preprocessing were
demonstrated with MATLAB c© simulations. It confirmed the
expected increase in computational complexity, i.e. flop count,
but also showed that the SBDA becomes more competitive
as the prediction horizon lengthen. The average termination
times of the control algorithm in the theoretical MATLAB c©

simulations supported the statement that flop count is a crude
approach to the measurement of the efficiency of an algorithm.
Real-time simulation of the drive system on an OPAL-RT c©

5600 simulator showed that the SBDA is efficient in solving
the underlying FCS-MPC problem in real time for prediction
horizons up to eight. The computability of the SBDA is mainly
contributed to a general reduction in memory traffic, effected
by the online block-matrix processing and supportive offline
preprocessing.

REFERENCES

[1] T. Geyer, “A comparison of control and modulation schemes for medium-
voltage drives: emerging predictive control concepts versus PWM-based
schemes”, IEEE Transactions on Industrial Applications, vol. 47, no. 3,
pp. 1380–1389, Mar. 2011.

[2] T. Geyer, P. Karamanakos and R. Kennel, “On the benefit of long-horizon
direct model predictive control for drives with LC filters”, IEEE Energy
Conversion Congress and Exposition (ECCE), pp. 3520–3527, Sept. 2014.

[3] M.D. Dorfling, “Practical implementation of long-horizon direct model
predictive control”, Masters dissertation, Stellenbosch University, 2018.

[4] R. Baidya, “Multistep Model Predictive Control for Power Electronics
and Electrical Drives”, PhD dissertation, University of New South Wales,
2018.

[5] T. Geyer and D. Quevedo, “Multistep finite control set model predictive
control for power electronics”, IEEE Transactions on Power Electronics,
vol. 29, no. 12 pp. 6836–6846, Feb. 2014.

[6] P. Karamanakos, T. Geyer and R. Kennel, “Reformulation of the long-
horizon direct model predictive control problem to reduce the computa-
tional effort”, Energy Conversion Congress and Exposition (ECCE), pp.
3512-3519, Sep. 2014.

[7] R. Baidya, R. Aguilera, P. Acuna, R. Delgado, T. Geyer, D. Quevedo
and T. Mouton, “Fast multistep finite control set model predictive control
for transient operation of power converters”, Annual Conference of the
Industrial Electronics Society, pp. 5039–5045, Oct. 2016.

[8] P. Karamanakos, T. Geyer, and R.P. Aguilera, P. Ricardo, “Computation-
ally efficient long-horizon direct model predictive control for transient
operation.”, IEEE Energy Conversion Congress and Exposition (ECCE),
pp. 4642-4649, 2017.

[9] D. Watkins, “Fundamentals of Matrix Computations”, John Wiley & Sons,
vol. 2, pp. 9–11, Aug. 2004.

[10] T. Geyer, “Model predictive control of high power converters and
industrial drives”, John Wiley & Sons, pp. 234–250, Nov. 2016.

[11] J. Cassels, “An introduction to the geometry of numbers”, Springer
Science & Business Media, 2012.

[12] B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm I. Ex-
pected complexity”, IEEE transactions on signal processing, vol. 53, no.
8, pp. 2806-2818, Jul. 2005.

[13] G. Golub and C. Van Loan, “Matrix computations”, The Johns Hopkins
University Press, vol. 3, p.17, Dec. 2012.

