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Abstract—It is widely accepted that model predictive control
(MPC) with long prediction horizons yields, in general, a better
performance than with short horizons. In the context of power
electronic systems, the main advantages include improved closed-
loop stability and lower current distortion per switching fre-
quency. A shortcoming of MPC with long prediction horizons is
the computational burden associated with solving the optimiza-
tion problem in real time, which limits the minimum possible
sampling interval. The solution to the MPC optimization problem
is a polyhedral partition of the state-space. Pre-processing of
the state-space and storing representative information thereof
offline assists in reducing the online computational burden. The
problem structure is a special case in the form of a truncated
lattice. Exploiting this characteristic enables representation of
the partitioned space to be is stored as a minimal set of Voronoi
relevant vectors describing the basic Voronoi cell of a lattice. We
evaluate the algorithm proposed by Micciancio and Voulgaris
known as the MV-algorithm to solve the closest vector problem
with pre-processing (CVPP). The performance of the algorithm is
evaluated in a simulated three-level neutral point clamped (NPC)
voltage source inverter with an RL load.

I. INTRODUCTION

Using MPC with long horizons in power electronic
applications has a significant potential to improve the
performance of three-phase inverters [1], [2] and [3].
Unfortunately, long horizon MPC requires more computations
to obtain the optimum solution which should be reached
within a sampling interval if it is to succeed in a real time
application. In power electronic systems with short sampling
intervals, this computational burden poses a challenge.
Finding the solution to the optimization problem translates to
finding the predicted control vector with minimum Euclidean
distance to the unconstrained optimum in a transformed
solution space. This nearest neighbor problem (NNP) is also
known as the closest vector problem (CVP) in lattice theory.
Three main approaches exist for solving CVP. The first class
are enumeration based algorithms which follow the Pohst [4]
strategy and have traditionally been used as a practical tool
[5]. The second are space saturation algorithms, originally
proposed by Kannan [6]. The last approach are Voronoi based
algorithms, an approach this research is following in the form
of the MV-algorithm [7] to find the exact solution to the CVP,

i.e. the MPC problem. The exact solution is a challenging
prospect, as it has been shown to be non-deterministic
polynomial-time hard (NP-hard) [8].

The paper is organized as follows: Section 2 introduces
the model of a multilevel inverter with RL load and the
mathematical background to the MPC problem. In section
3 the partitioned state-space is geometrically presented. The
approach to solve the CVP along with the proposed algorithm
is presented in section 4. Section 5 demonstrates the simulation
of an MPC controlled inverter with the proposed principles and
section 6 concludes the paper.

II. MODELING

A three-phase neutral point clamped (NPC) inverter, of
which the neutral point potential is assumed to be constant,
can deliver three discrete voltage levels of −0.5VDC , 0 and
0.5VDC at each phase terminal x ∈ {a, b, c} to an RL-
load. These voltage levels can be represented by the integer
values ux ∈ {−1, 0, 1} defining the state of the respective
inverter leg. In the discrete-time domain, the load current can
be predicted by

i(k + 1) = Ai(k) +Bu(k), k ∈ N, (1)

where u(k) denotes the inverter input u = [uaubuc]
T and

i(k) is the three-phase load current transformed to the αβ-
coordinate system i = K[iaibic]

T
= [iαiβ ]

T , where K is
the Clarke transformation matrix. For a more informative
description of the derived three-phase model and its matrices,
the reader is referred to [3]. The quadratic cost function is
defined over a finite horizon N , with ir being the reference
current in the αβ coordinate system.

J =
k+N−1∑

l=k

‖ir(l + 1)− i(l + 1)‖22 + λ ‖u(l)− u(l − 1)‖22
(2)

This cost function is similar to that in [1] which con-
sists of two terms; ‖ir(l + 1)− i(l + 1)‖22 quantifies the cur-
rent tracking error and λ ‖(u(l)− u(l − 1))‖22 the switch-
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ing cost with the tuning factor λ to adjust the weight
thereof. J is a function of the switching sequence U(k) =
[uT (k)uT (k + 1)...uT (k +N − 1)], resulting in 3d feasible
switching sequences to be evaluated during each sampling
period. For a three-phase NPC inverter, we have d = 3N . The
optimization problem for obtaining the optimum switching
sequence Uopt can be stated formally as

Uopt(k) = arg min
U(k)

J, (3)

subject to

i(l + 1) = Ai(l) +Bu(l) (4)

u(l) ∈ {−1, 0, 1}3

∀l = k, ..., k +N − 1.

A solution to the optimization problem (3)-(4) can be found
by rewriting the cost function in terms of the unconstrained
optimal solution Uunc(k) as derived in [1] and [9]

J = ‖HU(k)−HUunc(k)‖22 . (5)

H is an invertible upper triangular matrix that transforms the
unconstrained solution Uunc and the set of 3d input vectors
U to a d-dimensional solution space. Obtaining Uopt in (3)
with (5) translates to finding from the set of HU vectors the
vector with minimum Euclidean distance to the unconstrained
solution HUunc in the transformed H-coordinate solution
space. Only the first control input uopt(k) in the optimal
switching sequence Uopt(k) is applied to the inverter.

III. SOLUTION SPACE

A. Convex hull

Transforming the input vectors to the H-solution space
results in HU vectors arranged in a lattice structure repre-
sented by Λ(H) = Λ(h1, h2, ..., hd) = {HU : U ∈ U} with
U = {−1, 0,+1}d. The basis of the lattice (h1, h2, .., hd) are
linearly independent column vectors of H . The span of Λ can
be interpreted as an outer boundary or convex hull of the set
of possible HU solutions. It has the shape of a d-dimensional
parallelotope with 2d, (d− 1)-dimensional hyperplanes

P = ±
{
x ∈ Rd : 〈ni · (x− hi)〉 = 0, i = 1, . . . d

}
(6)

with the normal ni ∈ Rd, ni 6= 0 to the orthogonal base (x−
hi) of the relevant hyperplane. Scaling the normals with

ni =
〈ni · hi〉
‖n‖2

ni (7)

allows the span of the lattice Λ(H) to be defined as the
intersection of half spaces

P
′
(Λ, 0) =

{
x ∈ Rd : |〈x · n〉| ≤ ‖n‖2,∀n, n 6= 0

}
. (8)

Fig. 1 illustrates this statement by example of a single-phase
inverter with horizon N = 2 in a two-dimensional d = 2
lattice structure. The basis vectors hi and normals ni are

Fig. 1. H-matrix base vectors and HU input vectors for a single-phase
inverter with horizon N = 2.

indicated with the darkened parallelotope highlighting the span
of the lattice.

B. Polyhedral partitioning

Partitioning of Rd space into a Voronoi diagram results in a
number of convex Voronoi cells, each consisting of all points
nearest to a respective Voronoi site [10]. The Voronoi cell V
of an individual site s ∈ HU can be defined as

V (Λ, s) =
{
x ∈ Rd : ‖x− s‖ ≤ ‖x− j‖ ,∀j ∈ Λ, j 6= s

}
.

(9)

In our three-level inverter application the lattice Λ is truncated
with U ∈ U and only the Voronoi cell of the origin, s = 0
is bounded. All the other Voronoi cells are unbounded since
their respective HU -site resides on the convex hull of the
parallelotope. The Voronoi cell enclosing the origin is also
known as the basic Voronoi cell of a lattice, which is a
polytope that is symmetrical in reflection through its Voronoi
site 0. Voronoi relevant vectors v are lattice points closest to
a specific lattice point; in a d-dimensional lattice a maximum
of (2d+1 − 2) Voronoi relevant vectors can exist [11]. Each
Voronoi relevant vector is bisected orthogonally at its midpoint
1
2v by a hyperplane that defines the border between the
Voronoi site and its Voronoi relevant vector. Due to the
symmetrical nature of the basic Voronoi cell, the Voronoi
relevant vectors can be introduced as a subset of the lattice
S(Λ) ⊆ Λ and are subsequently used to define the basic
Voronoi cell

V (Λ, 0) =
{
x ∈ Rd : ‖x‖ ≤ ‖x− v‖ , ‖x‖ ≤ ‖x+ v‖ ,

∀v ∈ S(Λ), v 6= 0} . (10)

The Voronoi diagram for the two-dimensional example is
illustrated in Fig. 3. The shaded polytope refers to the basic
Voronoi cell, and the Voronoi relevant vectors ±v are indi-
cated.
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Fig. 2. Voronoi diagram with basic Voronoi cell and relevant vectors.

IV. MICCIANCIO VOULGARIS (MV ) ALGORITHM

A. Algorithm

The MV algorithm developed by [7] is based on the iterative
slicing algorithm proposed by [12], also known as the slicer
algorithm. The slicer finds the closest lattice point s ∈ Λ to a
target vector t ∈ Rd by iteratively determining which Voronoi
cell of the lattice contains the given target. This is achieved
by finding the lattice point s with the error vector e = s − t
that resides inside the basic Voronoi cell V (Λ, 0). Verification
of e in V (Λ, 0) requires (2d − 1) slicing operations using
the set S(Λ) of Voronoi relevant vectors. A slice through Rd
can be described as the intersection of half spaces constituted
by ± 1

2v and defined by |〈x · v〉| ≤ 1
2‖v‖

2
, x ∈ Rd. Fig 3

demonstrates the slice defined by the relevant Voronoi vector
v3. The intersection of all slices yields the basic Voronoi cell
in terms of the dot product as

V (Λ, 0) =

{
x ∈ Rd : |〈x · v〉| ≤ 1

2
‖v‖2,∀v ∈ S(Λ),

v 6= 0.} (11)

The slicing algorithm typically starts with the lattice point
s = 0 at the origin and iteratively updates s until the resulting
error e is found to be between all the slices defined by the set
v ∈ S(Λ). If e is found to not reside within a specific slice,
then s is updated to s = s−v until e ∈ V identifies the closest
lattice point to t as s = t+ e.
Unfortunately, the slicing algorithm does not perform any

better than previous CVP algorithms, except that it terminates
after a finite number of iterations [7]. The main shortfall is the
iterative manner in which s is updated with v until a solution
is obtained.
A novel selection strategy proposed by [7] identifies the
optimum relevant vector v to update s with. This is achieved
by scaling the basic Voronoi cell to kV with k > 1 and
k ∈ R so that t is located on a facet/border of V defined by
the scaled Voronoi relevant vector kv. The optimal relevant
Voronoi vector is selected as the vector with the maximum

Fig. 3. Slice through the two dimensional H-space.

corresponding k determined from

k = max

∣∣∣∣∣
〈e · v〉
‖v‖2

∣∣∣∣∣ ,∀v ∈ S(Λ), v 6= 0. (12)

Algorithm 1 lists the Micciancio Voulgaris CVPP algorithm
rewritten in terms of the Slicer variables to demonstrate the
selection strategy applied. The algorithm requires as inputs

Algorithm 1 Micciancio Voulgaris CVPP algorithm
1: function CVPP(t, S)
2: s← 0
3: k ← 1
4: while k 6= 0 do
5: e = s− t
6: Find v∗ ∈ S that maximizes (12)
7: k = rnd(〈e · v∗〉/‖v∗‖2)
8: s = s− kv∗
9: end while

10: return s = t+ e

the target vector t = HUunc and the set of relevant Voronoi
vectors S. It is initialized with s = 0 and k 6= 0. The
error vector is determined by e = s − t. Then e is projected
orthogonally onto all the relevant Voronoi vectors v and the
relevant vector v∗ with the maximum k is selected. The rnd
function in line 8 slightly differs from the commonly used
rounding operation in that the midpoint between consecutive
integers is rounded downwards to the integer with smaller
absolute value rnd(0.5) = 0. Rounding (〈e · vi〉/‖vi‖2) in
this manner results in k = 0 if e ∈ V and k ≥ 1 if e /∈ V
as per definition of the Voronoi cell in (11). If k ≥ 1 then s
is updated with an integer k of the vector v∗. The iteration is
repeated until k = 0, in which case the algorithm returns the
closest lattice vector to t as s = t+ e.

B. Hull projection

Similar to the implementation of the Slicer algorithm in a
single-phase inverter as described in [13], the MV algorithm
is a CVP solver of a lattice structure. The solvers rely on
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Fig. 4. Extension of the convex hull to a new projection hull that encloses the
basic Voronoi cell. Illustrated for a single-phase inverter N = 2 and lattice
basis with orthogonality defect γ = 1.27.

the recursive nature of the basic Voronoi cell for defining
the Voronoi partition of the lattice. Due to the truncated
nature of the lattice in our inverter application U ∈ U , the
only bounded Voronoi cell is the basic cell located at the
origin with all other Voronoi cells being partial basic Voronoi
cells, which are unbounded. Therefore, in solving the CVP
problem, we have to consider two possible scenarios that
might occur. One, in which t is inside the convex hull of the
parallelotope and another one in which t is located outside
the parallelotope. The first situation is the norm under steady-
state operation of the inverter and the second usually occurs
under transient conditions. In addressing the second scenario,
it can be observed that all Voronoi borders exiting the convex
parallelotope hull are orthogonal to it. In [7] it is proposed to
project the target orthogonally onto the span of the lattice i.e.
convex hull, resulting in a point with minimum distance from
the target. This projected hull-point t

′
is then used by the CVP

algorithm as an updated target to find the closest lattice point,
i.e. the solution to the MPC problem. In [14] is a projection
algorithm proposed to achieve a similar result, but in a sphere
decoder application. In our case we opted to use an altered
iterative projection algorithm.
Implementation of the projection principle in our inverter
application resulted in inaccuracies for typical small values of
the tuning factor λ. Reducing the switching weight by means
of λ increases the orthogonality defect

γ(H) =

∏d
i=1 ‖hi‖
‖det(H)‖ . (13)

of the lattice basis. As a result may the basic Voronoi cell
extend beyond the span of the truncated lattice. Fig. 4 illus-
trates such a scenario with γ(H) = 1.27 for a single-phase
inverter with N = 2. By example in Fig. 4 it can be observed
that the orthogonal projection of t onto the convex hull P

′

gives an updated point t
′

for use in finding the closest lattice
point. This will result in an error since t ∈ V (Λ, H [01]) and
after projection is t

′ ∈ V (Λ, H[00]). To correct this possible
error we introduce an enlarged projection hull P ∗ that will

Fig. 5. Flow chart of the Online procedure.

ensure V (Λ, 0) ⊆ P ∗ with all Voronoi borders exiting P ∗ in
an orthogonal manner. The normals of P ∗ is determined by
utilizing the covering radius cr of the basic Voronoi cell and
adjusting the normals of P

′
with

n∗i =
cr

‖ni‖
ni,∀ ‖ni‖ ≤ cr, i = 1 . . . d. (14)

In Fig. 4 the new projection hull is shown with the normal
n2 adjusted to n∗2. Projection of t onto P ∗ gives t∗ ∈
V (Λ, H[01]). Integrity is thus maintained as t∗ remains in
the same Voronoi cell as t.

V. SIMULATION AND RESULTS

Evaluation of the MV algorithm was done with a
MATLAB c© simulation model of the three-phase, three-level
NPC inverter and an RL load with the following parameters:
sampling interval of TS = 25µs, load resistance of R = 2Ω,
and load inductance L = 2mH. The rated r.m.s. output voltage
of the inverter is VAC = 3.3kV and the dc-link voltage is
VDC = 5.2kV. Base quantities were used to establish a per
unit system with the reference current amplitude assumed to
be 0.8pu. The tuning factor λ was adjusted for every horizon
to achieve an average switching frequency of proximately
500Hz to 600Hz. In an attempt to quantify the MV algorithm’s
performance in this specific application, the top-down search
of the sphere decoder with the Babai estimate of the initial
integer solution was used as reference.

A. Offline

The following pre-processing steps are required for the MV
algorithm:
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Fig. 6. Three-phase inverter output currents and inverter-leg switch positions.

1) Calculate H-transformation matrix from the load model
parameters.

2) Find the set of Voronoi relevant vectors.
3) From the H-matrix determine the normals of the convex

hull P
′
.

4) Determine the covering radius of the basic Voronoi cell.
5) If V (Λ, 0) ⊆ P ′

fails then adjust the normals with (14)
to define the new projection hull P ∗.

B. Online

The online procedure is illustrated by the flow chart in Fig.
5. Steady-state conditions as well as transient conditions were
simulated. Fig. 6 shows typical phase and reference currents
with the relevant inverter-leg switch positions. The simulated
transient was a step from 0pu to 0.8pu in the reference current
as it would occur at the start-up of the inverter. The average
processing times required to solve the MPC problems for
varying horizons N are depicted respectively in Fig. 7 and
Fig. 8 for these conditions. Table I lists the maximum number
of iterations required by the respective algorithms to solve the
MPC problem during a sampling period. The MV algorithm
was only tested to horizon N = 7 after which the processing
time exceeded any practical consideration.
From Fig. 7 it can be observed that the MV algorithm performs
comparatively well up to horizon N = 4 during steady-
state operation but degrades for longer horizons. During the
start up transient condition, the MV algorithm’s performance
exhibits the same characteristics as during steady-state opera-
tion but with an increased processing time constant, which
can be attributed to the additional processing required for
the projection. From Table I it can be observed that the
number of iterations in the MV algorithm for both conditions
remained constant at 4. Although this seems favorable, is the
computational burden significant at longer horizons due to the
(2d − 1) relevant Voronoi vectors that must be tested in d-
dimensional space during each iteration.
Comparatively does the traditional sphere decoder perform
fairly well under steady-state conditions but perform worse
during transient conditions from horizon N = 3 on. In an
attempt to provide a fair comparison of the decoding speed
of the two algorithms, the projection algorithm was added
to the sphere decoder resulting in a system similar to as

Fig. 7. Processing time required during steady-state operating conditions.

Fig. 8. Processing time required during transient conditions.

proposed in [14]. The projected target on the convex hull
improved the Babai estimate and reduced the initial sphere
radius that facilitated more aggressive pruning by the sphere
decoder. A significant reduction in the algorithm iterations
can be observed in Table I. This addition to the traditional
sphere decoder enabled it to operate efficiently in transient
conditions with a limited loss in performance during steady-
state operation.

TABLE I
MAXIMUM ITERATIONS REQUIRED BY THE ALGORITHMS TO SOLVE THE
MPC PROBLEM DURING STEADY-STATE AND *TRANSIENT OPERATING

CONDITIONS.

Horizon N 3 5 7 9 10
Sphere decoder 108 192 348 783 825

Sphere dec.+proj. 108 213 444 885 1071
MV algorithm 4 4 4

*Sphere decoder 324 2745 19890 152397 329979
*Sphere dec.+proj. 108 213 444 579 768

*MV algorithm 4 4 4
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VI. CONCLUSION

The MV algorithm utilizes the basic Voronoi cell of a lattice
that results from the preprocessing function to solve the CVP.
Using a minimal set of Voronoi relevant vectors to describe the
Voronoi cell equates to limited storage and offline processing
complexities. The online use of the Voronoi relevant vectors
facilitates solving the CVP in a short time for horizons
N = 1 to 4 for a three-phase three-level NPC inverter. The
similarity in the performance characteristics during steady-
state and transient conditions can be attributed to the nature
of the MV algorithm itself, which is bound by the (2d − 1)
number of Voronoi relevant vectors during the online search.
The improved performance compared to the traditional sphere
decoder during transient conditions stems mainly from the hull
projection algorithm. The projection onto the hull ensures a
new target that resides within a translation of the basic Voronoi
cell located around the nearest lattice point s ∈ HU , achieving
a reduction of the s−v iterations till e ∈ V . Although the MV
algorithm seems to be unable to outperform the sphere decoder
for long horizons, its computational burden is deterministic
and upper bounded [7]. The altered sphere decoder with hull
projection showed superior performance in both steady-state
and transient conditions, confirming again its authority and
reputation as the preferred practical tool for solving long
horizon MPC problems.
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