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Abstract—This paper considers a model predictive controller
with reference tracking that manipulates the integer switch
positions of a power converter. It is shown that the optimal switch
position can be determined with a reduced online computational
burden. Instead of solving the optimization problem in each
sampling period, the optimization problem can be solved in a
new coordinate system, partially offline by means of a polyhedral
partition of the solution space. The optimal switch position can
then be found during online operation by using a binary search
tree. This concept is exemplified for a three-level, single-phase
converter with an RL load.

I. INTRODUCTION

Advances in the fields of mathematical optimization and
the increased computational power of controller hardware
have made it possible to consider model predictive control
(MPC) in power electronic systems with short sampling
intervals [1]. MPC using larger horizons has the potential to
deliver significant performance benefits, but requires more
computations at each sampling instant to solve the associated
optimization problem [2], [3]. The online computational
burden of MPC can be lessened by finding a solution to the
MPC problem offline [4], [5]. Storing the solution/control
law in a look-up table eliminates the need for solving an
optimization problem online.

The main purpose of the research presented here is to
find an alternative to sphere decoding with a fixed online
computational burden so as to implement MPC practically
for a multilevel inverter. A discrete time-invariant system
with receding horizon and a finite control set is considered.
Similar to [6] a control law is formulated by means of the
polyhedral partition of the state space. In [6] exact analytical
expressions are developed offline for the partition to avoid
the need for online optimization in finding the control law.
This study partially finds the solution offline in the form of a
binary search tree (BST) in an attempt to reduce the online
evaluation of the partitioned space. A binary search tree
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of minimum depth can be achieved only if the partitioned
state-space is of the lowest possible complexity. This paper
presents an algorithm for reducing the complexity of the
partitioned state-space by utilizing the Delaunay triangulation.

The paper is organized as follows: Section 2 introduces
the model of a multilevel inverter with RL load and the
mathematical background to the MPC problem. In section
3 the partitioned state-space is geometrically presented. The
approach to complexity reduction along with the proposed
algorithm are presented in section 4. Section 5 describes
the advantages obtainable from using a binary search tree.
Simulation of an MPC controlled inverter with the proposed
principles is demonstrated in section 6 and section 7 concludes
the paper.

II. MODEL PREDICTIVE CONTROL

Model predictive control is a method in which the control
action is determined by solving a finite horizon open-loop
optimal control problem at each sampling instant, using the
current state of the system as initial state, searching for
an optimal control sequence over the set horizon and then
applying the first control action in this sequence to the system.
With reference current tracking the general aim is to control
the inverter switches in such a manner so as to generate an
output current ¢ in the load that tracks a reference current 7,
as closely as possible with minimal internal switching losses
in the inverter.

A. Modeling

In order for the MPC controller to predict the possible cur-
rents in the load, a mathematical model for the system needs
to be derived. Consider a single-phase Neutral Point Clamped
(NPC) inverter with the neutral point assumed constant. The
topology is shown in Fig. 1. The inverter leg can deliver three
voltage levels of —0.5Vpe, OVpe and +0.5Vpe across the
load. These output levels can be represented by the integer
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Fig. 1. Single-phase Neutral Point Clamped inverter

values u € {—1,0,+1} that define the state of the switch
positions in the inverter leg. The voltage applied to the RL
load is thus equal to v(t) = 0.5Vpe - u(t). The RL load
equation in the continuous time domain,
di(t)

dt -
Converting the differential to the discrete time domain results
in the predictive load current model i(k + 1) with input vector
u(k) and state vector i(k) as noted in,

i(k + 1) = Ai(k) + Bu(k) (1)

u(t) = Ri(t) + L

with, A=e T+/7, B=Y¢(1 — A)and 7 = £

R

B. Cost function

To find the optimal control input to the inverter, all the
the predicted currents over a finite horizon and the respective
switching states are subjected to a quadratic cost function,
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It is similar to the cost function defined by [2] and consist
of two terms, ||i,.(I+1)—i(l+ 1)||§ to quantify tracking
error from the reference current 4,, and |Ju(l) — u(l — 1)||§
the switching cost. A tuning factor A, is used to adjust
the weight of the switching cost. Shoot through in the in-
verter leg is avoided by adhering to the switching constraint
lu(l) —u(l — 1)||§ < 1. J is a function of the switching
sequence U = [u(k),u(k + 1), ...u(k + N — 1)]" which leads
to an exponential increase in possible switching sequences
over horizon N to evaluate.

C. Optimization problem

The optimization problem for finding the optimum switch-
ing sequence U,,, over the finite horizon can be stated
formally as,

Uopi(k) = arg II}I(IIS J 3)

subject to
i(l+1) = Ai(l) + Bu(l) 4)
u(l) € {-1,0,+1}
1ALl < 1
Vi=k,...k+N—-1

A solution to the optimization problem (3) can be found
by rewriting the cost function in terms of the unconstrained
optimal solution U,,.(k) as derived in [2] and [6],

J = |HU (k) = HUune (k)] - )

H is a transformation matrix that transforms the switching
sequence U (k) and the unconstrained optimal U, (k) to the
H-coordinate solution space. The optimization problem (3)
with cost function (5) then translates into the nearest neighbor
search of the N-dimensional vector HU,,.(k) to the set of
N-dimensional input vectors HU (k) in RY Euclidean space.

ITII. QUANTIZATION

Quantization of HU,,. to the nearest HU vector can be
accomplished using the exhaustive search method which enu-
merates all possibilities and verifies if the switching constraint
is satisfied [1]. This method is simple but computationally
expensive for long horizons and can thus only be used for
short horizons. Another option is sphere decoding which has
been shown to be effective in extended horizon MPC problems
[2]. This research is aimed at exploring the H-coordinate space
and computing a geometrical solution in the format of a binary
search tree (BST) to solve the associated MPC problem.

The first step in our approach is the partitioning of the H-
coordinate space into a Voronoi diagram consisting of convex
polyhedra or so called Voronoi cells V;. A Voronoi diagram
is a structure that is extremely efficient in exploring a local
neighborhood in a geometric space [7]. The diagram starts out
with a given set of points, also referred to as sites or seeds, in
RY Euclidean space. Next, the space is uniquely partitioned
into disjoint polyhedra such that each polyhedron is assigned
to one single site and covers all the points in space that are
closer to that specific site than to any other site [8]. In our case,
the sites are the HU switching sequences arranged in the N-
dimensional, H-coordinate space. The corresponding Voronoi
diagram can be defined as the following set of polyhedra,

Vi={x:lle — HU|| < |l — HU;|} ()

for
i=1,2,...,3N V) #1.
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Fig. 2. Voronoi diagram and Delaunay triangulation of HU-sequences (N =
2).

TABLE I
UNCONSTRAINED HU-SEQUENCES AND DEFINING HYPERPLANES.

Horizon (N) 1] 2 3 4 5 6
HU-sequences | 3 | 9 | 27 | 81 243 729
Hyperplanes 2116 | 98 | 544 | 2882 | 14896

Fig. 2 illustrates the Voronoi diagram for a typical horizon
N = 2 example. The quantification of vector HU,, in the
H-coordinate space can be done by determining in which of
the polyhedra it resides. The most immediate way of solving
this point location problem is to carry out a sequential search
through all the polyhedra. For the horizon N = 2 example, it
translates into the linear investigation (A7x — b) of the 16 hy-
perplanes that define the 9 polyhedra. This exhaustive method
is computationally expensive and not viable for applications in
higher dimensions [9]. Table I highlights the explosive nature
of the number of hyperplanes required to define the Voronoi
diagram as the horizon is extended.

IV. COMPLEXITY REDUCTION

Extension of the MPC horizon results in higher dimension-
ality of the H-transformed coordinate space with increased
geometrical complexity of the Voronoi diagram. The standard
approach to complexity reduction is to unify adjacent polyhe-
dral partitions with similar control laws w(k) [10]. From Fig.
2 it can be noticed that some of the HU (k)-sites have equal
first terms and thus represent the same control law. Unification
of the 9 polyhedra into three subsets, each representing one
of the control laws u € {—1,0,+1} reduces the number of
hyperplanes to be investigated in the point location of HU,, .
from 16 to 10 for the horizon N = 2 case. Fig. 3 displays this
unification graphically.

Additional reduction in complexity is achieved by apply-
ing the hard switching constraints of the inverter. Switching
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Fig. 3. Voronoi diagram of unified polyhedra (/N = 2).

sequences with transitions from state +1 to state —1 and
vice versa are not allowed and eliminated as a possible
solution. Imposing the switching constraint from w(k — 1)
to u(k) demands an individual Voronoi diagram for each
u(k — 1) € {=1,0,+1} possibility. Also in each Voronoi
diagram the switching constraint is applied to the respective
HU-sequences within the horizon. Figures 4 to 6 illustrate the
Voronoi diagrams for the different possibilities of u(k — 1)
with the eliminated HU-sequences indicated with an ”x”. For
example, if u(k — 1) = 0 then switching to any control law
u(k) € {—1,0,41} will satisfy the switching constraint and
is allowed. Within the horizon, sequences HU[+1,—1] and
HU[—1,+1] do not adhere to the switching constraint and
are eliminated. The number of allowed HU-sequences are
reduced to 7 and the number of hyperplanes defining the
unified polyhedra now amounts to 8. Similarly the Voronoi
diagrams for u(k — 1) € {—1,+1} are made up of 5 HU-
sequences and 4 defining hyperplanes in each case. The rest
of the article will refer only to the u(k — 1) = 0 condition
since its Voronoi diagram is of highest complexity thus being
worst case in both the offline tree building and online point
location processes. Table II lists the number of H U-sequences
and defining hyperplanes for u(k — 1) = 0. A significant
reduction can be observed if the numbers are compared to
the unconstrained sequences and hyperplanes of Table 1.

A. Algorithm

This paper proposes an alternative algorithm with a
direct approach in extracting from the Voronoi diagram,
only the hyperplanes defining the hull of unified polyhedra.
Other than following the traditional approach of determining
Voronoi regions, applying complexity reduction and extracting
common facets, we utilize the Delaunay triangulation and
unique spatial arrangement of the HU-sequences to extract
the defining hyperplanes.
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Fig. 4. Voronoi diagram for u(k — 1) = 0 with constrained sequences
(N =2).
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Fig. 5. Voronoi diagram for u(k — 1) = —1 with constrained sequences
(N =2).

The Delaunay triangulation has a unique property in it being
the dual graph of the Voronoi diagram and vice versa [11].
This duality translates into a Delaunay edge (line-segment
connecting two sites) being orthogonal to, and bisected by
the Voronoi hyperplane shared by the respective sites. This
can be observed in Fig. 2 where the Delaunay triangulation
edges are shown in dotted lines. The principle is used in many
algorithms for obtaining the Voronoi diagram from its dual
[12]. We apply the same principle but only determine the
minimal number of hyperplanes defining the hull of the unified
polyhedra, hence eliminating unnecessary computations. We
achieve complexity reduction by removing certain edges from
the Delaunay triangulation before calculating the respective
Voronoi hyperplanes. Delaunay edges that connect sites with
the same control law values u(k) are removed since their dual
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Fig. 6. Voronoi diagram for u(k — 1) = +1 with constrained sequences
(N =2).
TABLE I
CONSTRAINED HU SEQUENCES AND DEFINING HYPERPLANES FOR
ulk—1)=0

Horizon (V) 1123 4 5 6
HU-sequences | 3 | 7 | 17 | 41 99 | 239
Hyperplanes | 2 | 8 | 32 | 126 | 496 | 1952

(Voronoi hyperplane) would be of no significance in solving
the point location problem. The proposed procedure for the
direct extraction of the defining hyperplanes is described in
Algorithm 1.

Algorithm 1 Hyperplane extraction algorithm

Step 1 Find the Delaunay triangulation of HU-sequences.
Step 2 For all Delaunay edges (line segments),

Index edges connecting sites with non-similar control laws
u(k), realizing border-spanning edges.

Step 3 For each border-spanning edge,

Assign the site with u(k) # 0 as the normal vector to a
hyperplane,

Assign the mid-point of the edge as a point in the hyperplane,
Define the hyperplane in point-normal format.

Step 4 Index the hyperplanes in border defining sets.

V. BINARY SEARCH TREE

Although the number of hyperplanes obtained from algo-
rithm 1 are minimal in defining the unified polyhedra it is not
computationally viable to follow the exhaustive search method
for solving the point location problem. The number of hyper-
planes to investigate can be reduced by constructing a binary
search tree (BST). A binary search tree relies on the principle
of binary space partitioning where an N-dimensional space
is recursively divided by (N — 1)-dimensional hyperplanes
until the partitioning satisfies one or more requirements [13].
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Fig. 7. Binary search tree levels for IN-dimensional 3-level hypercube.

A binary search tree is build offline and stored in a look-up
table for online use. During online use the tree is traversed
where at each tree level one specific hyperplane is evaluated
until a leaf node (solution) is reached. Based on this principle
the number of tree levels L to traverse for an ideal spatial
arrangement of n number of sites is L = loga(n) [5].

In this research a three-level inverter is used constituting
three control options {—1,0, +1} per horizon or dimension in
the single-phase case. As seen in Fig. 2 the resulting spatial
arrangement of the HU-sequences is a skewed N-dimensional
hypercube consisting of 3" sequences. An orthogonal spatial
arrangement of the HU-sequences will lead to a Voronoi
diagram of least complexity. Such an orthogonal arrangement
has (2 x N) hyperplanes defining the Voronoi diagram. The
most complex polyhedron in this Voronoi diagram namely the
bounded polyhedron enclosing the origin is also defined by
the same (2 x V) hyperplanes. Thus in a representative binary
search tree a maximum of L = log; 732(n) levels needs to be
traversed (hyperplanes evaluated) for achieving point location.
The orthogonal arrangement is ideal since it makes optimal use
of binary space partitioning and can be taken as the optimal
or lower bound for our three-level hypercube.

The typical spatial arrangement of H U-sequences is skewed
and non-orthogonal. In finding the expected upper bound
number of tree levels for the skewed three-level hypercube,
we consider the minimum number of hyperplanes defining the
most complex polyhedra in the associated Voronoi diagram.
Similar to the orthogonal case it is the bounded polyhedron
enclosing the origin. The number of hyperplanes defining this
polyhedron were determined experimentally and are plotted
in in Fig. 7 together with the the expected lower bound.
The upper bound indicates a non-linear growth of tree levels
into higher dimensions and can be adjudicated to the almost
exponential increase in both HU-sequences and polyhedral
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Fig. 8. Tree stucture for u(k — 1) = 0 and horizon N = 2.

TABLE III
BINARY SEARCH TREE LEVELS FOR u(k — 1) = 0.

Horizon(N) 1121 3 4 5 6
HU-sequences 317117 |41 |99 | 239
BST levels(depth) | 2 | 4 | 8 | 12 | 17 | 22

complexity of the Voronoi diagram.

In constructing a binary search tree for the partitioned
space an adapted version of the binary search tree algorithm
proposed in [9] was used. Utilizing the hyperplanes obtained
from Algorithm 1, tree levels for the u(k — 1) = 0 case were
obtained as listed in Table IIT and plotted as the actual curve in
Fig. 7. The number of hyperplanes obtained from Algorithm 1
has a direct influence on the offline tree building process. For
horizons N > 6 the tree building process became extremely
burdened by the sheer magnitude of hyperplanes that must be
tested and selected at each individual tree node. During online
operation the horizon N = 3 case as an example requires
8 N-dimensional linear calculations (hyperplane evaluations)
in every sampling period. Compared to the exhaustive search
method which would require 27 N-dimensional quadratic
distance calculations the binary search tree results seems fa-
vorable and more so as the horizon increase. Fig. 8 graphically
displays a typical tree structure for the horizon N = 2
example consisting of 4 levels and 25 nodes with the leaf
nodes displayed as the bottom row.

VI. SYSTEM IMPLEMENTATION

The proposed principles in complexity reduction were
implemented in a MATLAB simulation model of the single-
phase NPC three-level inverter to compare the validity
of the output voltage and current waveforms to those of
the benchmark exhaustive method. The simulated system
consists of two modules, an offline- and an online- procedure
respectively. Consider a typical example for horizon N = 2
with steady-state conditions and the following parameters. A
sampling interval of T = 25us, load- resistance of R = 22,
and inductance L = 2mH. The rated r.m.s. output voltage of



the inverter is Vi = 3.3kV with an input dc-link voltage
of Vpc = 5.2kV. Base quantities are used to establish a per
unit system and the current reference is assumed to be 0.8pu
amplitude. A tuning factor A\, of 0.02 was selected.

The offline procedure Algorithm 2 produces the H-
transformation matrix together with the three binary search
trees for each of the possible switching states for u(k—1). All
the system parameters are captured in the H-transformation
matrix. If any of the parameters change the offline procedure
must be repeated.

Algorithm 2 Offline algorithm

Step 1 Obtain the load model parameters.

Step 2 Calculate H-transformation matrix.

Step 3 For each switching position u(k — 1) € {—1,0,+1},
Define the allowed switching sequences over horizon N,
Find the hyperplanes defining the polyhedral partition of the
solution space (Algorithm 1),

Construct the relevant binary search tree.

Step 4 Store BST information in a sparse matrices.

The online procedure Algorithm 3 requires the reference
current 4,.(k), state current i(k) and H-transformation matrix
for calculation of the unconstrained optimal HU,,,.. Selecting
the relevant binary search tree for u(k — 1) and traversing the
tree in quantifying HU,,. leads to the constrained optimum
control w,p (k) for application to the inverter leg.

Algorithm 3 Online algorithm

Step 1 Sample state i(k) and reference current i, (k).

Step 2 Calculate Uy, and HU ..

Step 3 For u(k — 1) select the relevant binary search tree,
Traverse the tree to a leaf node depicting the optimal sequence
Uopt (k).

Step 4 Apply the control law u,,: (k) to the inverter.

For the parameters stated above the simulated output voltage
and current waveforms are displayed in Fig. 9. The waveforms
were found to be identical to the waveforms produced from
using the exhaustive method.

VII. CONCLUSION

We have presented an algorithm for extracting the hyper-
planes defining the control regions in the partitioned state-
space of an MPC controller for a single-phase, three-level
NPC inverter. The algorithm is simple, efficient and extends
into higher dimensions. The extracted hyperplanes were used
in building a binary search tree offline and utilized online in
solution of the MPC problem. The results obtained in terms
of tree levels for extended horizons are favorable. Applying
the inverter switching constraints reduced the solution space
complexity and number of defining hyperplanes. The com-
plexity incurred by opting for a three-level inverter rendered
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Fig. 9. Output voltage and reference tracking load current

the solution space useful to dimension six. In a three-phase,
three-level inverter application a prediction horizon of N = 2
will necessitate an equivalent 3/N-dimensional solution space.
Although the prediction horizons achieved in this paper are
limited, it allows one to understand the controller actions
with integrated inverter constraints. This approach lends itself
to multi-parametric problems of limited complexity where a
controller with fixed computational burden is required.
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