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Abstract Power electronics converters use switching elements to manipulate volt-
age and current waveforms. This enables the interconnection of components having
different requirements, e.g., when incorporating renewable energy sources into the
grid. The use of switching elements may lead to high energy efficiency. However,
switching dynamical systems are difficult to analyse and design. In this chapter, we
outline how model predictive control concepts can be used in power electronics and
electrical drives. Special emphasis is given on the finite-set nature of manipulated
variables and associated stability and optimisation issues. For particular classes of
system models, we discuss practical algorithms, which make long-horizon predic-
tive control suitable for power electronics applications.

1 Introduction

Advances in the field of power electronics allow engineers to manipulate electrical
power and to control its flow efficiently with power levels ranging from milliwatt
to gigawatt. The utilization of power electronics has increased considerably in re-
cent years. In 2015, the overall market size was USD 36 billion [42]. The power
electronics market can be divided into industrial applications, utility-scale power
electronics [13], automotive [14], consumer electronics, aerospace and defense, and
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information and communication technology. Notable examples of industrial appli-
cations include renewable energy systems [8], rail traction and motor drives [15].
Power converters have been constantly advanced regarding their semiconductors,
packaging, passive materials, topologies and control techniques [30].

From a control systems perspective, power electronic systems give rise to in-
trinsically challenging design problems. Specifically, three major challenges can be
identified:

1. Switched dynamics. The main building blocks of power electronic systems are
linear circuit elements, such as inductors, capacitors and resistors, which are
complemented by semiconductor switches. The latter are either actively con-
trolled or (passive) diodes. As a result, when controlling currents, fluxes and volt-
ages and manipulating the switch positions, power electronic systems constitute
switched linear systems, provided that saturation effects of magnetic material,
delays and safety constraints can be neglected [21, 53].
In general, however, power electronic systems represent switched nonlinear sys-
tems. Nonlinearities arise, for example, when machine variables such as the elec-
tromagnetic torque or stator flux magnitude are directly controlled; both quanti-
ties are nonlinear functions of currents or flux linkages. For grid-connected con-
verters, the real and reactive power is nonlinear in terms of the currents and volt-
ages. Saturation effects in inductors and current constraints lead to additional
nonlinearities.

2. MIMO systems. Three-phase power converters have at least three manipulated
variables, i.e., one switch position per phase. In the simplest case, the current of
an inductive load needs to be controlled. When the star point of the load floats,
two linearly independent currents arise, resulting in a system with two controlled
variables and three manipulated variables. For more complicated systems, such
as converters with LC filters and inductive loads, six controlled variables result.
Dc-ac modular multilevel converters (MMC) [36] with n modules per arm are
significantly more complex with up to 6n manipulated variables and up to 6n+6
controlled variables.

3. Short computation times. The third challenge results from the short sampling in-
tervals of 1 ms and less that are typically used in power electronic systems. These
short sampling intervals limit the time available to compute the control actions.
To reduce the cost of power electronic converters sold in high volumes, cheap
computational hardware is usually deployed as the control platform. Replacing
existing control loops with only low computational requirements by new and
computationally more demanding methods exasperates the challenge of short
sampling intervals. This is particularly the case for direct control methods that
avoid the use of a modulator. These methods typically require very short sam-
pling in the range of 25 µs.

To address these challenges, various embodiments of model predictive control
(MPC) principles have emerged as a promising control alternative for power con-
version applications [9, 20, 31, 50, 51, 54]. As we shall see in this chapter, this pop-
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ularity of MPC is due to the fact that predictive control algorithms present several
advantages that make them suitable for the control of power electronic systems:

1. The concepts are intuitive and easy to understand;
2. MPC can handle converters with multiple switches and states, e.g., current, volt-

age, power, torque, etc.;
3. constraints and nonlinearities can be easily included; and
4. the resulting controller is, in general, easy to implement.

2 Basic Concepts

Various MPC methods have been proposed for controlling power electronic systems.
Here, one can distinguish between formulations that use system models governed
by linear time-invariant dynamics, and those that incorporate nonlinearities. Most
MPC strategies are formulated in a discrete-time setting with a fixed sampling in-
terval, say h > 0. System inputs are restricted to change their values only at the
discrete sampling instants, i.e., at times t = kh, where k ∈ N, {0,1,2, . . .} denotes
the sampling instants.

Since power electronics applications are often governed by nonlinear dynamic
relations, it is convenient to represent the system to be controlled in discrete-time
state space form via:

x(k+1) = f (x(k),u(k)), k ∈ N, (1)

where x(k) ∈ Rn denotes the state value at time k and u(k) ∈ Rm is the plant in-
put. Depending on the application at hand, the system state is a vector, which may
contain capacitor voltages, inductor and load currents, and fluxes.

2.1 System Constraints

An interesting feature of the MPC framework is that it allows one to incorporate
state and input constraints, say:

x(k) ∈ X⊆ Rn, k ∈ {0,1,2, . . .},
u(k) ∈ U⊆ Rm, k ∈ {0,1,2, . . .}. (2)

State constraints can, for example, correspond to constraints on capacitor voltages
in flying capacitor converters or neutral point clamped converters. Constraints on
load currents can also be modeled as state constraints. Throughout this chapter we
will focus on input constraints, since they naturally arise when controlling power
converters.
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Fig. 1 MPC with continuous control set.

Input constraints, u(k) ∈U, are related to the switch positions during the interval
(kh,(k + 1)h]. If a modulator is used, then u(k) will be constrained to belong to
a bounded continuous set. For example, the components of u(k) could correspond
to duty cycles, d(k), or PWM reference signals. In this case, the control input is
constrained by

u(k) = d(k) ∈ U, [−1,1]m ⊂ Rm, k ∈ {0,1,2, . . .}, (3)

where m denotes the number of phases, see Fig. 1. Clearly, the above model can only
approximate switching effects, see also [35]. Nevertheless, as we will see, several
interesting and powerful controllers for power converters have been developed by
using this simple setting.

On the other hand, in so-called direct control applications, where no modulator is
used, u(k) is constrained to belong to a finite set describing the available switch com-
binations. Such approaches have attracted significant attention in the power elec-
tronics community, often under term finite control set MPC (FCS-MPC) [51]. The
main advantage of this predictive control strategy comes from the fact that switch-
ing actions, say S(k), are directly taken into account in the optimization procedure
as constraints on the system inputs, see Fig. 2. Thus, the control input is restricted
to belong to a finite set represented by

u(k) = S(k) ∈ U⊂ Rm, k ∈ {0,1,2, . . .}, (4)

where U is an integer set obtained by combining the m switch values. For the control
of multilevel topologies, it is often convenient to consider the resultant phase voltage
level as the control input rather than the switch position of each semiconductor
switch. For example, for a five-level inverter, U= {−2,−1,0,1,2}m.
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Fig. 2 MPC with finite control set (direct control).

2.2 Cost Function

A distinguishing element of MPC, when compared to other control algorithms, is
that at each time instant k and for a given (measured or estimated) plant state x(k),
a cost function over a finite horizon of length N is minimized. The following choice
encompasses many alternatives documented in the literature:

V (x(k),u′(k)), F(x′(k+N))+
k+N−1

∑
`=k

L(x′(`),u′(`)). (5)

Here, L(·, ·) and F(·) are weighting functions, which serve to penalize predicted
system behaviour, e.g., differences between references for voltages and currents and
their predicted values, see Sect. 2.4.

For example, for a two-level three-phase inverter in orthogonal αβ coordinates,
one can use (see [52])

L(x′(`),u′(`)) = λ1(iα(`)− i?α)
2 +λ2(iβ (`)− i?

β
)2.

For a one-phase three-cell flying capacitor converter (FCC) one can choose (see,
e.g., [37])

L(x′(`),u′(`)) = λ1(ia(`)− i?a)
2 +λ2(vc1(`)− v?c1)

2 +λ3(vc2(`)− v?c2)
2.

In (5), predicted plant state values, x′(`), are formed using the system model (1):

x′(`+1) = f (x′(`),u′(`)), ` ∈ {k,k+1, . . . ,k+N−1} (6)

where
u′(`) ∈ U, ` ∈ {k,k+1, . . . ,k+N−1}
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refers to tentative plant inputs (to be decided). The recursion (6) is initialized with
the current plant state measurement (or estimate), i.e.:

x′(k)←− x(k). (7)

Thus, (6) refers to predictions of the plant states that would result if the plant inputs
at the update times {k,k + 1, . . . ,k +N − 1} were set equal to the corresponding
values in

u′(k), [u′T (k) u′T (k+1) . . . u′T (k+N−1)]T . (8)

Both, the predicted plant state trajectory and the plant inputs are constrained in
accordance with (2), i.e., we have:

u′(`) ∈ U, ∀` ∈ {k,k+1, . . . ,k+N−1}
x′(`) ∈ X, ∀` ∈ {k+1,k+2, . . . ,k+N}.

Constrained minimization of V (·, ·) in (5) gives the optimizing control sequence
at time k and for state x(k):

uopt(k), [(uopt(k))T (uopt(k+1;k))T . . . (uopt(k+N−1;k))T ]T . (9)

It is worth emphasizing here that, in general, plant state predictions, x′(`), will
differ from actual plant state trajectories, x(`). This is a consequence of possible
model inaccuracies and the moving horizon optimization paradigm described next.

2.3 Moving Horizon Optimization

Despite the fact that the optimizer uopt(k) in (9) contains feasible plant inputs over
the entire horizon, (kh,(k+N− 1)h], in most MPC approaches, only the first ele-
ment is used, i.e., the system input in (1) is set to

u(k)←− uopt(k).

At the next sampling step, i.e., at discrete-time k + 1, the system state x(k + 1)
is measured (or estimated), the horizon is shifted by one step, and another op-
timization is carried out. This yields uopt(k + 1) and its first element provides
u(k+ 1) = uopt(k+ 1), etc. As illustrated in Fig. 3 for a horizon length N = 3, the
horizon taken into account in the minimization of the cost function V slides forward
as k increases.

The design of observers for the system state is beyond the scope of this chapter.
The interested reader is referred to [2, 17, 22], which illustrate the use of Kalman
filters for MPC formulations in power electronics.
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Fig. 3 Moving horizon principle with horizon length N = 3.

2.4 Design Parameters

As seen above, MPC allows one to treat multi-variable nonlinear systems in an,
at least conceptually, simple way. In addition to choosing the sampling interval h
(which, amongst other things, determines the system model (1)), MPC design es-
sentially amounts to selecting the cost function, i.e., the weighting functions F(·)
and L(·, ·), and the horizon length N.
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As we shall see, the design of the weighting functions should take into account
the actual control objectives and may also consider stability issues [3, 43]). 1 For
example, tracking of the desired output and internal voltages and currents (which
are assumed to be given, cf., [46]) can be accommodated into the MPC framework
by choosing weights that penalize a measure of the difference between predicted
and reference values.

For a given sampling frequency 1/h, larger values for the horizon length N will
in general provide better performance, as quantified by the weighting functions F(·)
and L(·, ·). Indeed, one can expect that, for large enough N, the effect of u(k) on
x′(`) for ` > k+N will be negligible and, consequently, MPC will approximate the
performance of an infinite horizon optimal controller [27, 45]. On the other hand,
the constrained optimization problem which, in principle, needs to be solved on-
line to find the controller output, has a computational complexity which, in general,
increases with the horizon length. As a consequence, the horizon parameter N allows
the designer to trade-off performance versus on-line computational effort.

3 Linear Quadratic MPC for Converters with a Modulator

Most power converters use a modulation stage to synthesise the switching signals.
To simplify the design of control strategies, it is common practice to separate con-
trol and modulation issues, see, e.g., [29]. By averaging the switching signal, the
switching nature of the power converter can be concealed, provided that the switch-
ing frequency per fundamental frequency is high, a modulation method with a fixed
modulation cycle is used and sampling is performed when the voltage and current
ripples due to modulation are close to zero. If these conditions are fulfilled, one may
use standard methods for the controller design. As we shall see below, for the case
of MPC, the situation is similar.

A particularly simple case of (5)–(6) arises when the cost function is quadratic
and the system model is linear and time-invariant, i.e.:

V (x(k),u′(k)) = x′T (k+N)Px′(k+N)+
k+N−1

∑
`=k

{
x′T (`)Qx′(`)+u′T (`)Ru′(`)

}
,

x′(`+1) = Ax′(`)+Bu′(`),

x′(`) ∈ X⊆ Rn, u′(`) ∈ U⊆ Rm, ` ∈ {k,k+1, . . . k+N−1},
(10)

where A and B denote the state-update and input matrices, and P, Q and R are pos-
itive semi-definite matrices of appropriate dimensions. The constraint sets X and U
are polyhedra.

1 Note that the weighting functions should be chosen such that V (·, ·) depends on the decision
variables contained in u′(k), see (8).
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Fig. 4 Topology of the dc-dc buck converter

Despite the ever growing computational power available and recent advances in
implementing quadratic programming (QP) solvers on embedded system architec-
tures, solving the QP in real-time for power electronics applications poses a highly
challenging problem. When using sampling intervals in the µs range, the computa-
tion times needed to solve the QP typically exceed the sampling interval—often by
one or two orders of magnitude. Rather than solving the mathematical optimization
problem in real-time for the given state vector at the current time-step, the opti-
mization problem can be solved offline for all possible states. Specifically, so-called
(explicit) state-feedback control laws as presented in previous parts of this book, can
be computed for all states x(k) ∈ X [6]. Explicit control laws are characterised via
a polyhedral partition of the state space which can be stored in a look-up table. The
optimal control input can thus be read from the look-up table in a computationally
efficient manner.

Example 1. To further illustrate the derivation and properties of the explicit state-
feedback control law of MPC, consider a dc-dc step-down synchronous converter.
The latter is commonly referred to as a buck converter, and it is shown in Fig. 4.
Using the classic technique of averaging between the on and off modes of the circuit,
the discrete-time system model

x(k+1) = Ax(k)+Bvsd(k) (11)

can be obtained, where vs denotes the unregulated input voltage and d(k) the duty
cycle. The state vector contains the inductor current i` and the output voltage vo, i.e.
x = [i` vo]

T . From Fig. 4, the continuous-time system matrices are

F =

[ −R`/L −1/L
Ro

Ro+Rc

L−RcR`C
LC − 1

Ro+Rc
L+RcRoC

LC

]
, G =

[
1/L
Ro

Ro+Rc
Rc
L

]
, (12)

whereas their discrete-time representations in (11) are given by

A = eFh , B =
∫ h

0
eFτ Gdτ . (13)



10 Daniel E. Quevedo, Ricardo P. Aguilera, and Tobias Geyer
Predictive Control in Power Electronics and Drives: basic concepts, theory and methods 9

−3 −2 −1 0 1 2 3

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
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Fig. 2 Explicit state-feedback control law for the dc-dc buck converter over the state-space X
spanned by the scaled inductor current ĩ!(k) and the scaled output voltage ṽo(k)

the duty cycle. The latter is bounded between zero and one. This control problem
can be captured by the optimization problem

V (x̃(k),u(k)) =
k+N−1

∑
!=k

{
(x̃(!)− x̃ref)

T Q(x̃(!)− x̃ref)+Ru2(!)
}
,

x̃(!+1) = Ax̃(!)+Bu(!),

x̃(!) ∈ X, u(!) ∈ U, ! ∈ {0,1, . . . N},

(16)

where we set Q = diag(0,1), R = 0.1, X = [−ĩ!,max, ĩ!,max] × [−10,10] and U =
[0,1]. Note that ĩ!,max = i!,max/vs and u = d. To facilitate the regulation of the output
voltage to a non-zero reference, we define x̃ref = [0, ṽo,ref]

T with ṽo,ref = vo,ref/vs.
We assume ṽo,ref = 0.5 and choose the horizon N = 3.

The explicit control law can be computed using the MPT toolbox [46]. The two-
dimensional state-space is partitioned into 20 polyhedra. Using optimal complex-
ity reduction [32], an equivalent control law with 11 polyhedra can be derived, as
shown in Fig. 2(a). The corresponding state-feedback controller uopt(k) is shown in
Fig. 2(b). Note that the duty cycle is limited by zero and one as a result of the design
procedure. An additional patch, such as an anti-windup scheme, is not required.

A similar MPC scheme was proposed in [51]. This rather basic controller can be
enhanced in various ways. In the context of dc-dc converters, it is usually preferred
to penalize the change in the duty cycle rather than the duty cycle as such, by intro-
ducing ∆u(k) = u(k)− u(k − 1) and penalizing R(∆u(!))2 rather than R(u(!))2 in
(16). To enhance the voltage regulation at steady-state by removing any dc offset,
an integrator state can be added [51]. Load variations can be addressed by a Kalman
filter, see [29].

(a) Polyhedral partition of the state-space X

Predictive Control in Power Electronics and Drives: basic concepts, theory and methods 9

−3 −2 −1 0 1 2 3

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
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(b) Control law uopt(k)

Fig. 5 Explicit state-feedback control law for the dc-dc buck converter over the state-space X
spanned by the scaled inductor current ĩ`(k) and the scaled output voltage ṽo(k)

Adopting the per unit (pu) system, the parameters in (12) are here taken as the
inductor L = 3 pu, capacitor C = 20 pu and output resistor Ro = 1 pu. The internal
resistor of the inductor is set to R` = 0.05 pu and the equivalent series resistance
of the capacitor is Rc = 0.005 pu. The nominal input voltage is assumed to be vs =
1.8 pu.

To allow for variations in the input voltage, it is convenient to scale the system
equations by vs, as proposed in [22]. To this end, we define ĩ` = i`/vs, ṽo = vo/vs
and x̃ = [ĩ` ṽo]

T , and rewrite (11) as

x̃(k+1) = Ax̃(k)+Bd(k) . (14)

Note that, unlike (11), (14) is linear in the state vector and the duty cycle.
The control objective is to regulate the output voltage to its reference v?o and to

maintain the inductor current below its maximal allowed limit i`,max by manipulating
the duty cycle. The latter is bounded between zero and one. This control problem
can be captured by the optimization problem (cf., (10))

V (x̃(k),u(k)) =
k+N−1

∑
`=k

{
(x̃′(`)− x̃?)T Q(x̃′(`)− x̃?)+R(u′(`))2

}
,

x̃′(`+1) = Ax̃′(`)+Bu′(`),

x̃′(`) ∈ X, u′(`) ∈ U, ` ∈ {k,k+1, . . . k+N−1},

(15)

where we set Q = diag(0,1), R = 0.1, X = [−ĩ`,max, ĩ`,max]× [−10,10] and U =
[0,1]. Note that ĩ`,max = i`,max/vs and u = d. To facilitate the regulation of the output
voltage to a non-zero reference, we define x̃? = [0 ṽ?o]

T with ṽ?o = v?o/vs. We assume
ṽ?o = 0.5 and choose the horizon N = 3.

The explicit control law can be computed using the MPT toolbox [33]. The two-
dimensional state-space is partitioned into 20 polyhedra. Using optimal complexity
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reduction [25], an equivalent control law with 11 polyhedra can be derived, as shown
in Fig. 5(a). The corresponding state-feedback controller providing u(k) = uopt(k)
is shown in Fig. 5(b). Note that the duty cycle is limited by zero and one as a result
of the design procedure. An additional patch, such as an anti-windup scheme, is not
required, see also [12].

A similar MPC scheme was proposed in [39]. This rather basic controller can be
enhanced in various ways. In the context of dc-dc converters, it is usually preferred
to penalize the change in the duty cycle rather than the duty cycle as such, by intro-
ducing ∆u(k) = u(k)− u(k− 1) and penalizing R(∆u(`))2 rather than R(u(`))2 in
(15). To enhance the voltage regulation at steady-state by removing any dc offset,
an integrator state can be added [39]. Load variations can be addressed by a Kalman
filter, see [22].

In the context of power electronics and drives applications, such MPC formu-
lations have been studied extensively. One of the earliest references is [38], which
proposes an explicit MPC controller in a field-oriented controller setting for an elec-
trical drive. These initial results are extended in [40]. In [7], the speed and current
control problem of a permanent-magnet synchronous machine is solved using MPC.
Drives with flexible shafts are considered in [11], whereas [41] focuses on active
rectifier units with LC filters.

4 Linear Quadratic Finite Control Set MPC

Controlling power converters without a modulator has received significant interest
in recent years, leading to direct control methods. These methods combine the inner
control loop, which typically controls the load currents, and the modulator in one
computational stage. In doing so, the intrinsic delay of the modulator is avoided and
the switching nature of the power converter can be directly addressed.

One of the most popular predictive control strategy for power electronic systems
is FCS-MPC [9, 51]. This predictive control strategy explicitly models the switch
positions by means of a finite control set. This implies that the input constraint set
has a finite number of elements, as, for example, in (4).

In general, large prediction horizons N are preferable when using MPC. How-
ever, finding the optimal input sequence in case of FCS-MPC typically requires one
to solve a combinatorial optimization problem [48]. Interestingly, for some topolo-
gies, one-step horizon MPC provides already good closed-loop performance [31,
50].

4.1 Closed-Form Solution

Consider again a quadratic cost function and a linear time-invariant system model.
Unlike as in (10), however, the input constraint set U is now a finite control set. Here-
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after, we revisit the closed-form expression for the solution to this linear quadratic
FCS-MPC problem, as presented in [26, 48].

Firstly, we define the predicted state sequence

x′[1:N](k), [x′T (k+1) x′T (k+2) . . . x′T (k+N)]T . (16)

The subscript [1:N] indicates that, unlike in (8), the state sequence is shifted by one
time step.

Considering an initial system state x′(k) = x(k), see also (7), we obtain

x′[1:N](k) = Φu′(k)+Λx′(k),

where

Φ ,




B 0 · · · 0 0
AB B · · · 0 0
...

...
. . .

...
...

AN−1B AN−2 · · · AB B


 , Λ ,




A
A2

...
AN


 .

In the following, we drop the time dependence of the state and input sequences
in order to simplify the notation. The cost function (10) can then be re-written as

V (x,u′) = ν(x)+u′TWu′+2u′T Fx, (17)

where x = x(k), u′ = u′(k) and the term ν(x) is independent of u′. In (17),

W , Φ
T QΦ +R ∈ RNm×Nm,

F , Φ
T QΛ ∈ RNm×n,

with
Q , diag{Q, . . . ,Q,P} ∈ RNn×Nn,

R , diag{R, . . . ,R} ∈ RNm×Nm.

Notice that, if Q and R are positive definite, so is W .

Remark 1 (Unconstrained Solution) If system constraints are not taken into ac-
count, i.e. U, Rm and X, Rn, then V (x,u′) is minimized when

uopt
uc (x), arg

{
min

u′∈RNm
V (x,u′)

}
,−W−1Fx. (18)

Based on the unconstrained optimum, it is convenient to rewrite the cost function
(17) as:

V (x,u′) = (u′−uopt
uc (x))

TW (u′−uopt
uc (x))+g(x), (19)

where the term g(x) is independent of u′.
To obtain the optimal finite set constrained solution one must find the control in-

put which minimizes V (x,u′). From (19), it follows that level sets of the cost func-
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Fig. 6 Geometrical representation of the optimal solution for FCS-MPC with u1,u2 ∈ {0,1} and
the horizon N = 1.

tion are ellipsoids, where the eigenvectors of W define the principal directions of the
ellipsoid. Thus, the constrained optimizer uopt(x) does not necessarily correspond
to the nearest neighbor of uopt

uc (x) within the constraint set UN .

Example 2. Consider the case where a power converter, modeled as a linear time-
invariant model, has two semiconductor switches, which can take two values, i.e.,
u1,u2 ∈ {0,1}. Thus, the control input belongs to the following finite set:

u ∈ U,
{[

0
0

]
,

[
0
1

]
,

[
1
0

]
,

[
1
1

]}
⊂ R2. (20)

A geometrical representation of the situation for the case when the horizon is N = 1
is depicted in Fig. 6 (left). Here, the ellipses, εi centered in uopt

uc , represent all the
points that lead to the same cost. Formally, if a,b ∈ εi then, V (x,a) =V (x,b).

As we move away from the centre, the ellipses become larger, increasing the
cost function value, i.e., if a ∈ ε1 and b ∈ ε2 then, V (x,a) < V (x,b). Thus, in this
example, the optimal solution, which produces the minimum cost function value
is uopt = [1 0]T , despite the nearest vector to the unconstrained solution being u =
[1 1]T . Clearly, the optimal solution is, in general, not the nearest neighbour to the
unconstrained solution.

Based on the above observations, one can derive a closed-form solution to the
finite-set constrained optimisation problem at hand.

Definition 1 (Vector Quantizer (see e.g. [18])) Consider a set A ⊆Rn and a count-
able (not necessarily finite) set B , {bi} ⊂ Rn, i ∈ I ⊆ N which satisfies that
∃ε > 0 :| bi−b j |≥ ε,∀i, j ∈I . A function qB(·) : A →B is an Euclidean vector
quantizer if qB(a) = bi ∈ B if and only if bi satisfies that | a− bi |≤| a− b j |,
for all b j 6= bi, where b j ∈ B. The associated quantization error is defined as
η̄B(a), qB(a)−a.

Theorem 1 ( [48]) Denote the elements of UN ,U×·· ·×U via {µ1, . . . ,µr}. Con-
sider a matrix H that satisfies HT H =W. Then, the constrained optimizer
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uopt(x), arg
{

min
u′∈UN

V (x,u′)
}

(21)

is given by
uopt(x) = H−1qν

(
H−1uopt

uc (x)
)
= Hqν

(
−H−T Fx

)
, (22)

where the vector quantizer qV maps RNm to V. The latter set is defined via V ,
{ν1, . . . ,νr} ⊂ RNm, in which νi = Hµi for all µi ∈ UN .

Proof. To obtain the optimal solution, we define v′ = Hu′. Now, the cost function
(19) can be expressed as:

V (x,v′), (v′−vopt
uc (x))

T (v′−vopt
uc (x))+g(x), (23)

where
vopt

uc (k), Huopt
uc (x).

Thus, in terms of v′, the level sets of the cost function describe spheres centered at
vopt

uc , as depicted in Fig. 6 (right). Therefore, in terms of these transformed variables,
the nearest vector to the unconstrained solution, vopt

uc (x) is indeed the (constrained)
optimal solution.

Notice that since W is symmetric and positive definite, then it is always possible
to obtain a matrix H that satisfies HT H =W , e.g., H =W 1/2, as chosen in [48].

4.2 Design for Stability and Performance

We will next investigate stabilizing properties of FCS-MPC. For that purpose, we
will include additional terminal constraints in the problem formulation of Section
2.2. This will allow us to adapt robust control concepts to suit the problem at hand.

For our subsequent analysis, we shall assume that the pair (A,B) is stabilizable
and that the matrices Q and R are positive definite. A widely-used idea to establish-
ing stability of MPC is based on finding a known control policy, say κ f (x), which
stabilizes the system model within a given terminal region X f , see [49]. In particu-
lar, for a disturbance-free LTI system with convex constraints, say

x(k+1) = Ax(k)+Bū(k) , (24)

using quadratic MPC, one can use a fixed state feedback gain as a stabilizing con-
troller for the terminal region X f (see Section 2.5 in [49]). To adapt this idea to
systems with finite control inputs, we first introduce an associated convex set via:

Ū, {ū ∈ Rm : |ū| ≤ ūmax} ,

where ūmax ∈ (0,∞) is a design parameter. Since Ū is bounded, so is the quantization
effect, i.e.,
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∆q , max
ū∈Ū
|qU (ū)− ū|< ∞. (25)

Note that ∆q depends upon ūmax.
Based on this, stability of FCS-MPC can be examined by investigating properties

of a local controller κ f (x) corresponding to the optimal solution presented in (22)
with prediction horizon N = 1. In this case, one has F = BT PA and W = BT PB+R,
so that

uopt
uc (x) = Kx, K =−W−1F. (26)

The above motivates one to impose that the terminal state in the optimisation lies
inside a terminal region: x(k+N) ∈ X f , with

X f , {x ∈ Rn : |x| ≤ b} , b , ūmax

|K| . (27)

Within this region the local controller satisfies

κ f (x) = Kx+H−1
ηV(x), x ∈ X f , (28)

where ηV(x), η̄V(W−1/2Kx). Clearly,

|ηV(x)| ≤ |qV
(
HKx

)
−HKx| ≤ |HqU (Kx)−HKx|

≤ |H||qU (Kx)−Kx| ≤ |H|∆q,
(29)

where we have used (25).
Consequently, system (24) with the proposed local controller κ f (x) in (28) can

be expressed via:

x(k+1) = AKx(k)+w f (x(k)), ∀x(k) ∈ X f , (30)

where AK = A+ BK, and w f (x(k)) = BH−1ην(x(k)) represents the effect of the
quantization on the “nominal system”, x(k+1) = AKx(k).

Notice that, in (30), w f (x) is not an external disturbance but a known discon-
tinuity produced by the quantization, which makes (30) a nonlinear system. The
key point here is that w f (x) is bounded on X f . Therefore, the local controller can
be shown to be stabilizing if it is robust to bounded input disturbances. As shown
in [3], it is convenient to choose the matrix P in (10) as the (unique) solution to the
algebraic Riccati equation

AT
KPAK +Q+KT RK−P = 0. (31)

With this choice, κ f (x) in (28) can be used to guarantee closed-loop stability of
FCS-MPC. Theorem 2, given below, establishes that for all x(0) that belong to the
feasible set XN , the system will be steered by the multi-step predictive controller
towards the terminal region X f ⊆ XN and then (with the same controller) into an
ultimately bounded set DδN ⊂ X f .
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Theorem 2 ( [3]) Let DδN ,
{

x ∈ X f : |x| ≤ δN
}

be a neighbourhood of the origin,
where

δ
2
N , γN∆

2
q , γN ,

(
1+(1−ρ)N

λmin(Q)(1−ρ)

)
|W |. (32)

Suppose that x(0) ∈ XN and the matrix P in (10) satisfies (31). If ∆q in (25) is
bounded by

∆
2
q <

b2

γN
, (33)

then limsupk→∞ |x(k)| ≤ δN . Furthermore, there exists a finite instant t > 0, such
that after that instant, the system state x(k) converges at an exponential rate, i.e.,
there exists c > 0 and ρ ∈ [0,1), such that

|x(k)|2 ≤ cρ
k−t |x(t)|2 + γN∆

2
q ,∀k ≥ t, (34)

where c = λmax(P)/λmin(Q) and ρ = 1−1/c, with λmin(Q)≤ λmax(P).

4.3 Example: Reference Tracking

The topology of a two-level inverter is presented in Fig. 7. The associated continuous-
time dynamic model for the three-phase output current, iabc , [ia ib ic]T , is

diabc(t)
dt

=− r
L

iabc(t)+
1
L
(Vdcsabc(t)− vo(t)I3×1), (35)

where Vdc denotes the dc-link voltage and vo stands for the common-mode voltage.
The latter is defined as vo =

1
3 (va + vb + vc), where va, vb and vc are the voltages at

the inverter terminals, see Fig. 7. The switch positions, Sabc , [Sa Sb Sc]
T , belong to

the following finite set
{[

0
0
0

]
,

[
0
0
1

]
,

[
0
1
0

]
,

[
0
1
1

]
,

[
1
0
0

][
1
0
1

]
,

[
1
1
0

]
,

[
1
1
1

]}
. (36)

For this converter, the control target is to track three-phase sinusoidal references
of the form:

i?abc(t) = a?
[
sin(ωt) sin(ωt−2π/3) sin(ωt +2π/3)

]T (37)

We will next illustrate how the preceding ideas can be applied to this situation.
For that purpose, we first note that sinusoidal quantities in a three-phase system can
be transformed into a rotating orthogonal dq reference frame using the so-called
Park transformation. More specifically, the three-phase current iabc in (35) is trans-
formed into the dq frame by the transformation
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idq(t) = Γ (t)iabc(t), (38)

where:

Γ (t), 2
3

[
sin(ωt) sin(ωt− 2π

3 ) sin(ωt + 2π

3 )
cos(ωt) cos(ωt− 2π

3 ) cos(ωt + 2π

3 )

]
, (39)

and idq , [id iq]T .
Fig. 8 (left) shows the typical output voltages of a two-level inverter in a vectorial

representation in the stationary orthogonal αβ coordinate system. The finite input
set, U, contains the 7 inverter vectors, which are contained by the nominal input set,
Ū, i.e.,

U= {u0, . . . ,u6} ⊂ Ū⊂ R2. (40)

In this case, the quantization of the nominal input ū ∈ Ū is given by qU(ū) = u1,
thus ηU(ū) = u1− ū. Notice that the inverter voltage vectors rotate in the dq ref-
erence frame. However, they always will be contained by the nominal input set, Ū,
producing the same maximum quantization error ∆q as in the αβ coordinate system.

Thus, considering x = idq and u = sdq, the discrete-time model of the two-level
inverter in the dq frame is
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x(k+1) = Ax(k)+Bu(k), u(k) ∈ U(k), (41)

A =

[
1−hr/L ωh
−ωh 1−hr/L

]
, B = (h/L)VdcI2×2, (42)

where h is the sampling period and

U(k) = Γ (kh)S. (43)

In this case, with a current reference of constant amplitude a?, the reference

x? = i?dq = [a? 0]T (44)

directly follows. The input required to keep this state value is given by

u? = S?dq = [ra?/Vdc ωLa?/Vdc]
T . (45)

Here, experimental results of the performance of FCS-MPC when applied to a
three-phase two-level inverter are presented. The inverter prototype was built using
discrete insulated-gate bipolar transistors (IGBTs) IRG4PC30KD. The electrical pa-
rameters of the converter-load system are Vdc = 200 V , r = 5 Ω and L = 17 mH, see
Fig. 7. The predictive strategy was implemented in a standard TMS320C6713 DSP
considering a sampling period of h = 100 µs. The desired amplitude for the output
current is a? = 5 A with an angular frequency of ω = 2π50 rad/s.

Following the result in Theorem 1, one obtains for the weighting matrices Q =
I2x2 and R = 2I2x2 that

P = 1.7455I2×2, K =

[
−0.4514 −0.0146
0.0146 −0.4514

]
. (46)

A key observation is that the time-varying constraint set U in (43), can be
bounded by a fixed nominal set Ū. In Fig. 8, one can see that when the nominal
input ū is inside the hexagon-shaped boundary, the maximum quantization error,
∆q, is given by the centroid of the equilateral triangle formed by the adjacent in-
verter vectors. Therefore, the maximum quantization error is given by ∆q = 2

√
3

9 .
The associated nominal input set can be chosen as:

Ū, {ū ∈ R : |ū| ≤ 2∆q},

while the terminal region can be characterized via (see [4] for details):

X f ,
{

x ∈ Rn : |x− x?| ≤ umax−|u?|
|K| = 1.3

}

which provides that

|ηU(ū)| ≤ ∆q = 2

√
3

9
, ∀x ∈ X f .
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Fig. 9 Convergence of the two-level inverter for R = 0.0001I2×2.

Thus, one can anticipate that the system state will be led by the predictive con-
troller to the ultimately invariant set:

DδN , {x ∈ Rn : |x− x?| ≤ δ = 0.8088} . (47)

The evolution of the two-level inverter using FCS-MPC with N = 1 and starting
from id = iq = 0 is depicted in Fig. 9. Here, one can see that the predictive controller
leads the system state to the terminal region, X f , and then to DδN . As expected for
this kind of controller, the inverter voltage spectrum is spread, as can be observed in
Fig. 10. If this is undesired, then one can use noise shaping techniques, as described
in [10, 47].

5 An Efficient Algorithm for Finite-Control Set MPC

In this section we consider the cost function

V (x(k),u(k))=
k+N−1

∑
`=k

(y∗(`+1)−y′(`+1))T (y∗(`+1)−y′(`+1))+λu(∆u′(`))T
∆u′(`) ,

(48)
which penalises the predicted output errors and the control effort

∆u′(`), u′(`)−u′(`−1) .

The latter is weighted by the non-negative scalar weighting factor λu. The cost func-
tion (48) is minimized subject to
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u(k) ∈ UN

‖∆u′(`)‖∞ ≤ 1, ∀` ∈ {k,k+1, . . . ,k+N−1} , (49)

where the first constraint restricts the sequence of manipulated variables to the set of
feasible switch positions of the converter. In many converters the second constraint
is required to avoid switching in a phase by more than one step up or down.

Owing to the discrete nature of the decision variable u(k), minimizing (48) sub-
ject to (49) is difficult, except for short horizons. In fact, as the prediction horizon
is enlarged and the number of decision variables is increased, the (worst-case) com-
putational complexity grows exponentially, thus, cannot be bounded by a polyno-
mial, see also [48]. The difficulties associated with minimizing V become apparent
when using exhaustive search. With this method, the set of admissible switching se-
quences u(k) is enumerated and the cost function evaluated for each such sequence.
The switching sequence with the smallest cost is (by definition) the optimal one and
its first element is chosen as the control input.

It is easy to see that exhaustive search is computationally feasible only for very
small horizons N, such as one or two. In fact, for N = 5, assuming a three-level
converter, the number of switching sequences amounts to 1.4 ·107.
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Techniques from vector quantization [18] and from mathematical programming,
such as branch and bound [19,34,44], can be used to reduce the computational bur-
den. However, none of the general methods take advantage of the particular structure
of (48) and the fact that in MPC the solution is implemented in a moving horizon
manner.

To address computational issues, we will exploit the geometrical structure of
the underlying MPC optimization problem and present a practical optimization al-
gorithm. The algorithm uses elements of sphere decoding [28] to provide optimal
switching sequences, requiring only little computational resources, thus, enabling
the use of longer prediction horizons in practical applications [5, 23, 24].

We will illustrate the ideas on a variable speed drive application consisting of a
three-level neutral point clamped voltage source inverter driving an induction ma-
chine. The methods proposed and results obtained are directly applicable to both the
machine-side inverter in an ac drive setting, as well as to grid-side converters. The
ideas can also be used for other converter topology and are particularly promising
for topologies with a high number of voltage levels.

5.1 Modified Sphere Decoding Algorithm

Using algebraic manipulations akin to those mentioned in Section 4, it is easy to
show that the minimization of (48) amounts to finding

uopt(k) = argmin
u

(z−Hu)T (z−Hu), subject to (49), (50)

where H is an invertible lower-triangular matrix. In (50), we use

z = Huuc,

where uuc is the sequence obtained from optimizing (48) without constraints, i.e.,
with U = R3. Thus, we have rewritten the MPC optimization problem as a (trun-
cated) integer least-squares problem. Interestingly, various efficient solution algo-
rithms for (50) subject to finite-set constraints have been developed in recent years;
see, e.g., [1] and references therein. We will next show how to adapt the sphere
decoding algorithm [16, 28] to find the optimal switching sequence uopt(k).

The basic idea of the algorithm is to iteratively consider candidate sequences, say
u ∈ UN , which belong to a sphere of radius ρ(k)> 0 centered in z,

(z−Hu)T (z−Hu)≤ ρ(k). (51)

Especially in the case of multilevel converters (where U has many elements; see,
e.g., [37]), the set of candidate sequences satisfying the above conditions is much
smaller than the original constraint set UN . Not surprisingly, computation times can
be drastically reduced compared to exhaustive search.
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A key property used in sphere decoding is that, since H is triangular, for a given
radius, identifying candidate sequences which satisfy (51) is very simple. In partic-
ular, for the present case, H is lower triangular, thus (51) can be rewritten as

ρ
2(k)≥ (z1−H(1,1)u1)

2 +(z2−H(2,1)u1−H(2,2)u2)
2 + . . . (52)

where zi denotes the i-th element of z, ui is the i-th element of u, and H(i, j) refers to
the (i, j)-th entry of H. Therefore, the solution set of (51) can be found by proceed-
ing in a sequential manner akin to Gaussian elimination, in the sense that at each
step only a one-dimension problem needs to be solved; for details, see [28].

The algorithm requires an initial value for the radius used at time k to determine
u. On the one hand, the radius ρ(k) should be as small as possible, enabling us to
remove as many candidate solutions a priori as possible. On the other hand, ρ(k)
must not be too small, to ensure that the solution set is non-empty. As shown in [23],
it is convenient to choose the initial radius by using the following educated guess
for the optimal solution:

usub(k) =




0 I 0 . . . 0

0 0 I
. . .

...
...

. . . . . . 0
0 . . . . . . 0 I
0 . . . . . . 0 I




uopt(k−1), (53)

which is obtained by shifting the previous solution by one time-step and repeating
the last switch position. This is in accordance with the moving horizon optimization
paradigm. Since the optimal solution at the previous time-step satisfies the con-
straint, usub(k) is a feasible solution candidate of (48). Given (53), the initial value
of ρ(k) is then set to:

ρ(k) = (z−H usub(k))T (z−H usub(k)). (54)

At each time-step k, the controller first uses the current system state x(k), the
future reference values, the previous switch position u(k−1) and the previous opti-
mizer uopt(k−1) to calculate usub(k), ρ(k) and z. The optimal switching sequence
uopt(k) is then obtained by invoking Algorithm 1 (see [23]):

uopt(k) = MSPHDEC( /0,0,1,ρ2(k),z), (55)

where /0 is the empty set2.
As can be seen in Algorithm 1, this modification to sphere decoding operates

in a recursive manner. Starting with the first component, the switching sequence

2 The notation H(i,1:i) refers to the first i entries of the i-th row of H; similarly, u1:i are the first
i elements of the vector u. Note that the matrix H is time-invariant and does not change when
running the algorithm. Therefore, H can be computed once offline before the execution of the
algorithm.
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Algorithm 1 Modified sphere decoding algorithm
function uOPT(k) = MSPHDEC(u, d2, i, ρ2, z)

for each u ∈ {−1,0,1} do
ui← u
d′2← (zi−H(i,1:i)u1:i)

T (zi−H(i,1:i)u1:i)+d2

if d′2 ≤ ρ2 then
if i < 3N then

MSPHDEC(u,d′2, i+1,ρ2,z)
else

if u meets (49) then
uopt← u
ρ2← d′2

end if
end if

end if
end for

end function

u is built component by component, by considering the admissible single-phase
switch positions in the constraint set {−1,0,1}. If the associated squared distance
is smaller than the current value of ρ2, then one proceeds to the next component. If
the last component,i.e., u3N , has been reached, meaning that u is of full dimension
3N, then u is a candidate solution. If u meets the switching constraint (49) and if
the distance is smaller than the current optimum, then one updates the incumbent
optimal solution uopt and also the radius ρ .

The computational advantages of this algorithm stem from adopting the notion
of branch and bound [34,44]. Branching is done over the set of single-phase switch
positions {−1,0,1}; bounding is achieved by considering solutions only within the
sphere of current radius. If the distance d′ exceeds the radius, a certificate has been
found that the branch (and all its associated switching sequences) provides only so-
lutions worse than the incumbent optimum. Therefore, this branch can be pruned,
i.e., removed from further consideration without exploring it. During the optimiza-
tion procedure, whenever a better incumbent solution is found, the radius is reduced
and the sphere thus tightened, so that the set of candidate sequences is as small as
possible, but non-empty. The majority of the computational burden relates to the
computation of d′ via evaluating the terms H(i,1:i)u1:i. Thanks to (52), d′ can be
computed sequentially, by computing only the squared addition due to the ith com-
ponent of u. In particular, the sum of squares in d, accumulated over the layers 1 to
i−1, does not need to be recomputed.

5.2 Simulation Study of FCS-MPC

As an illustrative example of a power electronics system, we consider a medium-
voltage variable speed drive system consisting of a neutral point clamped (NPC)



24 Daniel E. Quevedo, Ricardo P. Aguilera, and Tobias Geyer
2

Vdc
2

Vdc
2

N
NN

A
B

C

is

IM

Fig. 1: Three-level three-phase neutral point clamped voltage source inverter driving an induction motor with a fixed neutral point potential

Vector Norms: The 1-norm of a vector ξ ∈ Rn is defined as ||ξ||1 !
∑n

i=1 |ξi|, where ξi denotes the ith

element of ξ. The squared Euclidean norm of ξ is defined as ||ξ||22 ! ξT ξ =
∑n

i=1 ξ2
i , and the squared norm

weighted with the positive definite matrix Q is given by ||ξ||2Q ! ξT Qξ. The infinity norm of ξ is defined as

||ξ||∞ ! maxi |ξi|.

II. DRIVE SYSTEM CASE STUDY

Whilst the ideas of the present work can be applied to a variety of power electronics systems, we will focus

our exposition on the setup described below.

A. Physical Model of the Inverter

As an illustrative example of a medium-voltage power electronic system, consider a variable speed drive

consisting of a three-level neutral point clamped (NPC) voltage source inverter (VSI) driving an induction

machine (IM), as depicted in Fig. 1. The total dc-link voltage Vdc is assumed to be constant and the neutral

point potential N is fixed.

Let the integer variables ua, ub, uc ∈ U denote the switch positions in the three phase legs, where for a

three-level inverter the constraint set is given by

U ! {−1, 0, 1} . (2)

In each phase, the values −1, 0, 1 correspond to the phase voltages −Vdc
2 , 0, Vdc

2 , respectively. Thus, the voltage

applied to the machine terminals in orthogonal coordinates is

vs,αβ =
1

2
Vdc uαβ =

1

2
Vdc P u (3)

with u ! [ua ub uc]
T . The voltage vectors are shown in Fig. 2 with their 0-component being neglected.

B. Physical Model of the Machine

The state-space model of a squirrel-cage induction machine in the stationary αβ reference frame is summa-

rized hereafter. For the current control problem at hand, it is convenient to choose the stator currents isα and

isβ as state variables. The state vector is complemented by the rotor flux linkages ψrα and ψrβ , and the rotor’s

angular velocity ωr. The model input are the stator voltages vsα and vsβ . The model parameters are the stator
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Fig. 11 Three-level three-phase neutral point clamped voltage source inverter driving an induction
motor with a fixed neutral point potential

voltage source inverter (VSI) and a squirrel-cage induction machine (IM). This setup
is shown in Fig. 11. The inverter can synthesize three output voltage levels at each
of its three phase terminals. The total dc-link voltage Vdc is assumed constant and
the neutral point potential N is fixed.

System Model

Let the integer variables ua, ub, uc ∈ {−1,0,1} denote the switch positions in the
three phase legs. The voltage vector applied to the machine terminals in the station-
ary orthogonal αβ coordinate system is

vs,αβ =

[
vsα

vsβ

]
=

1
2

Vdc P u (56)

with

P , 2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]
, u ,




ua
ub
ub


 ∈ U and U, {−1,0,1}3. (57)

For the state-space model of an induction machine in the stationary coordinate
system, we choose the stator currents isα and isβ and the rotor flux linkages ψrα and
ψrβ as state vector

x ,
[
isα isβ ψrα ψrβ

]T
.

The model input are the stator voltages vsα and vsβ as defined in (56). The model
parameters are the stator and rotor resistances Rs and Rr, and the stator, rotor and
mutual reactances Xls, Xlr and Xm, respectively. Assuming operation at a constant
speed, the angular velocity of the rotor, ωr, is also a parameter. The continuous-time
state-space equations of the squirrel-cage induction machine are then (see [32])



Model Predictive Control for Power Electronics Applications 25

3

0 4 8 12 16 20

−1

−0.5

0

0.5

1

Time (ms)

(a) Stator currents is

0 500 1000 1500 2000
0

0.01

0.02

0.03

0.04

Frequency (Hz)

(b) Stator current spectrum

0 4 8 12 16 20
−1

0

1

−1

0

1

−1

0

1

Time (ms)

(c) Switch positions u

Fig. 3: Simulated waveforms for MPC with the horizon N = 10, the sampling interval Ts = 25 µs and the weight λu = 103 · 10−3

reduction of 42%. Both examples are indicated by the red arrows in Fig. 2. For high switching frequencies,

however, the performance benefit of OPPs compared to SVM becomes marginal. For fsw > 600Hz and pulse

numbers greater than 12, the difference is very small. Moreover, the optimization process to compute the OPP

becomes computationally very demanding. As a result, OPPs have only been computed up to pulse number 15,

or equivalently a switching frequency of 750Hz.

With the above as a background and recalling that OPPs exhibit to some extent optimal steady-state behaviour,

in the sequel, we will quantify the relative merits of MPC by normalizing the current THD to the one obtained

by OPPs.1 Specifically, we introduce

δTHD =
ITHD − ITHD,OPP

ITHD,OPP
, (2)

which is the relative current THD degradation, normalized to the current THD of OPPs and given in percent.

The normalization is done with regard to the polynomial approximation of the OPPs included in Fig. 2. For

switching frequencies beyond 750Hz, SVM is used as a baseline, since OPPs were computed only up to this

frequency.

III. PERFORMANCE EVALUATION

In this section, we adopt the framework described in the two preceding sections and present simulation

results on the performance and computational burden of direct MPC with horizons larger than one. We use the

modified sphere decoding algorithm described in [1] and also investigate a simple suboptimal method.

A. Trade-Offs for Sampling Interval Ts = 25 µs

In a first step, the steady-state performance of MPC tracking the current reference is illustrated, using the

sampling interval Ts = 25 µs. The controller uses the cost function J with prediction horizon N = 10 and

weighting factor λu = 103 · 10−3. This results in an average device switching frequency of fsw = 300Hz,

which is typical for medium-voltage applications, and a current THD of ITHD = 5.03%. Fig. 3(a) illustrates

three-phase stator current waveforms along with their (dash-dotted) references over one fundamental period.

The colours blue, green and red correspond to phase a, b and c, respectively. The spectrum of the stator current,

1Traditional closed-loop control using a modulator with OPPs has very low bandwidth, whereas MPC often achieves fast transient
response.
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however, the performance benefit of OPPs compared to SVM becomes marginal. For fsw > 600Hz and pulse

numbers greater than 12, the difference is very small. Moreover, the optimization process to compute the OPP

becomes computationally very demanding. As a result, OPPs have only been computed up to pulse number 15,
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results on the performance and computational burden of direct MPC with horizons larger than one. We use the

modified sphere decoding algorithm described in [1] and also investigate a simple suboptimal method.

A. Trade-Offs for Sampling Interval Ts = 25 µs

In a first step, the steady-state performance of MPC tracking the current reference is illustrated, using the

sampling interval Ts = 25 µs. The controller uses the cost function J with prediction horizon N = 10 and

weighting factor λu = 103 · 10−3. This results in an average device switching frequency of fsw = 300Hz,

which is typical for medium-voltage applications, and a current THD of ITHD = 5.03%. Fig. 3(a) illustrates

three-phase stator current waveforms along with their (dash-dotted) references over one fundamental period.

The colours blue, green and red correspond to phase a, b and c, respectively. The spectrum of the stator current,

1Traditional closed-loop control using a modulator with OPPs has very low bandwidth, whereas MPC often achieves fast transient
response.
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(b) Switch positions u

Fig. 12 Simulated waveforms for MPC with horizon N = 10 and the weight λu = 0.103

dis,αβ

dt
=− 1

τs
is,αβ +

(
1
τr
−ωr

[
0 −1
1 0

])
Xm

D
ψr,αβ +

Xr

D
vs,αβ (58a)

dψr,αβ

dt
=

Xm

τr
is,αβ −

1
τr

ψr,αβ +ωr

[
0 −1
1 0

]
ψr,αβ , (58b)

where we have used

Xs , Xls +Xm , Xr , Xlr +Xm , D , XsXr−X2
m , τs ,

XrD
RsX2

r +RrX2
m

and τr ,
Xr

Rr
.

The objective of the current controller is to manipulate the three-phase switch
position u such that the stator current vector is,αβ closely tracks its reference. To
this end, we define the system output vector y , is,αβ and its reference y∗ , i∗s,αβ

.
The second control objective is to minimize the switching effort, i.e., the switching
frequency or the switching losses.

Performance Evaluation

As an example of a typical medium-voltage induction machine, consider a 3.3kV
and 50Hz squirrel-cage induction machine rated at 2MVA with a total leakage in-
ductance of 0.25 pu. The dc-link voltage is Vdc = 5.2kV and assumed to be constant.
The parameters of the drive system are provided in [24]. We consider operation at
the fundamental frequency 50 Hz and full torque. The controller uses the sampling
interval h = 25 µs.

During steady-state operation, the key control performance criteria are the de-
vice switching frequency fsw and the total harmonic distortions (THD) of the cur-
rent ITHD. We will also investigate the empirical closed-loop cost, Vcl, which—in
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Fig. 4: Key performance criteria of MPC for the prediction horizons N = 1, 3, 5, 10 and Ts = 25 µs. The switching frequency, current THD

and closed-loop cost are shown as a function of the tuning parameter λu, using a double logarithmic scaling. The individual simulations

are indicated using dots, their overall trend is approximated using dash-dotted polynomials
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Fig. 5: Trade-off between the relative current THD and the switching frequency for MPC with the prediction horizons N = 1, 3, 10 and

the sampling interval Ts = 25 µs

computed with a Fourier transformation, is shown in Fig. 3(b). The three-phase switching sequence is depicted

in Fig. 3(c). As can be seen, unlike PWM, the switching pattern lacks symmetry and repetitiveness, resulting

in a non-discrete and predominantly flat spectrum. Nevertheless, non-triplen odd-order current harmonics such

as the 5th, 7th, 11th, 13th and 19th harmonics are clearly identifiable.

Next, the influence of λu on the switching frequency, the current THD and the cost is investigated. For

each of the horizons N = 1, 3, 5 and 10 and for more than 1000 different values of λu, ranging between 0

and 0.5, steady-state simulations were run. Focusing on switching frequencies between 100Hz and 1 kHz, and

current THDs below 20%, the results are shown in Fig. 4, using a double logarithmic scale. Each simulation

corresponds to a data point. Polynomial functions are overlaid, which approximate the individual data points.

Figs. 4(a) and 4(b) suggest that, for small prediction horizons, the relationship between λu and the performance

variables is approximately linear in double logarithmic scale; for larger values of N , the relationship is more

complicated, but still monotonic.

Fig. 4(c) illustrates the empirical closed-loop costs obtained, see (1). Clearly, the cost is reduced as the

prediction horizon is increased, suggesting the use of horizons larger than one. For example, with λu = 0.01

and N = 1, we have Jcl ≈ 50, whereas with horizon N = 3, the closed-loop cost can be reduced to Jcl ≈ 3!
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Fig. 13 The closed-loop cost is shown as a function of the tuning parameter λu for different pre-
diction horizons. The individual simulations are indicated using dots, their overall trend is approx-
imated using dash-dotted polynomials

accordance with (48)—captures the squared RMS current error plus the weighted
averaged and squared switching effort.

We start by investigating the steady-state performance of MPC with prediction
horizon N = 10 and weighting factor λu = 0.103. An average device switching fre-
quency of fsw = 300 Hz results, which is typical for medium-voltage applications,
and a current THD of ITHD = 5.03%. Fig. 12(a) illustrates three-phase stator current
waveforms along with their (dash-dotted) references over one fundamental period.
The three-phase switch positions are shown in Fig. 12(b).

The influence of λu on the empirical closed-loop is investigated next. Steady-
state simulations were run for each of the horizons N = 1, 3, 5 and 10 and for more
than 1000 different values of λu, ranging between 0 and 0.5. Focusing on switching
frequencies between 100 Hz and 1 kHz, and current THDs below 20%, the results
are shown in Fig. 13, using a double logarithmic scale. The cost is significantly
reduced as the prediction horizon is increased, suggesting the use of N > 1.

Computational Burden

Last, we investigate the computational burden of the modified sphere decoder for
different prediction horizons. The switching frequency is held constant at 300 Hz
for all prediction horizons by tuning the weight λu accordingly. We use the num-
ber of switching sequences that are investigated by the algorithm at each time-step
as a measure of the computational burden. The average and the maximal number
of switching sequences is monitored over multiple fundamental periods. Table 1
shows that the computational burden of the algorithm grows modestly as the predic-
tion horizon is increased, despite being exponential in the worst case. In contrast to
that, exhaustive search becomes computationally intractable for prediction horizons
exceeding three.
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Prediction Sphere decoding Exhaustive search
horizon N avg. max. avg. max.

1 1.18 5 11.8 18
2 1.39 8 171 343
3 1.72 14 2350 4910
5 2.54 35 467’000 970’000
10 8.10 220

Table 1 Average and maximal number of switching sequences that need to be considered by the
sphere decoding and exhaustive search algorithms to obtain the optimal result, depending on the
length of the prediction horizon

6 Conclusions

In this chapter, basic aspects and methods underlying model predictive control for
power electronics applications have been presented. Algorithms and system theo-
retic properties depend on whether the discrete switch positions are directly manip-
ulated, or a modulator is used. Special attention has been paid on (practical) stability
and computational issues.

Our presentation has been kept at a basic system-theoretic level and was illus-
trated on simple converter topologies, which can be described via LTI dynamics.
Some configurations like, e.g., active front end converters [46] and modular multi-
level converters [36], require a more careful consideration of both control theoretic
tools and also physical system knowledge for the design of high-performance model
predictive controllers.
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