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Abstract In this chapter we revise basic principles and methods of model predic-
tive control with a view towards applications in power electronics and drives. The
simplest predictive control formulations use horizon-one cost functions, which can
be related to well-established dead-beat controllers. Model predictive control us-
ing larger horizons has the potential to give significant performance benefits, but
requires more computations at each sampling instant to solve the associated op-
timization problems. For particular classes of system models, we discuss practical
algorithms, which make long-horizon predictive control suitable for power electron-
ics applications.

1 Introduction

Model predictive control (MPC), also referred to as receding horizon control, has
received significant attention. Applications and theoretical results abound, see, e.g.,
the books [17, 51, 52, 77, 108] and survey papers [84, 98]. An attractive feature of
MPC is that it can handle general constrained nonlinear systems with multiple inputs
and outputs in a unified and clear manner.

Particularly, in the field of power electronics, various embodiments of MPC prin-
ciples have emerged as a promising control alternative for power converters and
electrical drives [20, 66, 111, 112]. This is due to the fact that predictive control al-
gorithms present several advantages that make it suitable for the control of power
converters:
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1. Concepts are intuitive and easy to understand;
2. MPC can handle converters with multiple switches and states, e.g., current, volt-

age, power, torque, etc.;
3. constraints and nonlinearities can be easily included; and
4. the resulting controller is, in general, easy to implement.

The aim of this chapter is to provide an overview of the basic theoretical underpin-
nings of MPC and to illustrate their use in power converters. For that purpose, in
Section 2, we begin by presenting the key element underlying MPC, namely, that of
moving horizon optimization. In Section 3 we analyze, in detail, the special case of
MPC with horizon one. These simple formulations often give good results and only
require little computations, leading to their immense popularity in power electron-
ics applications [112]. In particular, we establish relationships between dead-beat
control and horizon-one MPC strategies. For implementations without a modulator,
dealt with by so called Finite Control-Set MPC with a quadratic cost function, we
derive the optimal control input by exploring the geometry of the underlying opti-
mization problem. Section 4 focuses on the general case of MPC with longer hori-
zons. In general, using long horizons yields better closed-loop performance than
MPC with horizon one [34, 53]. However, solving the underlying on-line optimiza-
tion problems can be highly demanding. To overcome these issues, we examine spe-
cial purpose optimization algorithms, which allow one to implement long-horizon
optimal solutions in practical power electronics and drive systems.

2 Basic Concepts

Various model predictive control methods have been proposed for controlling power
electronics and drives. Here, one can distinguish between formulations that use sys-
tem models governed by linear time invariant dynamics, and those that incorpo-
rate nonlinearities. Most MPC strategies are formulated in a discrete-time setting
with a fixed sampling interval, say h > 0. System inputs are restricted to change
their values only at the discrete sampling instants, i.e., at times t = kh, where
k ∈ N, {0,1,2, . . .} denotes the sampling instants.

Since power electronics applications are often governed by nonlinear dynamic
relations, it is convenient to represent the system to be controlled in discrete-time
state space form via:

x(k+1) = f (x(k),u(k)), k ∈ N, (1)

where x(k) ∈ Rn denotes the state value at time k and u(k) ∈ Rm is the plant in-
put. Depending on the application at hand, the system state is a vector, which may
contain capacitor voltages, inductor and load currents, and fluxes.
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Fig. 1 MPC with continuous control set.

2.1 System Constraints

An interesting feature of the MPC framework is that it allows one to incorporate
state and input constraints, say:

x(k) ∈ X⊆ Rn, k ∈ {0,1,2, . . .},
u(k) ∈ U⊆ Rm, k ∈ {0,1,2, . . .}. (2)

State constraints can, for example, correspond to constraints on capacitor voltages
in flying capacitor converters or neutral point clamped converters. Constraints on
load currents can also be modeled as state constraints. Throughout this chapter we
will focus on input constraints, since their form is peculiar to the nature of power
converters.

Input constraints, u(k) ∈U, are related to the switch positions during the interval
(kh,(k + 1)h]. If the converter uses a modulator, then u(k) will be constrained to
belong to a bounded continuous set. For example, the components of u(k) could
correspond to duty cycles, d(k), or PWM reference signals. In this case, the control
input is constrained by

u(k) = d(k) ∈ U, [−1,1]m ⊂ Rm, k ∈ {0,1,2, . . .}, (3)

where m denotes the number of phases, see Fig. 1. Clearly, the above model can
only approximate switching effects, see also [73]. Nevertheless, as we will see, sev-
eral interesting and powerful controllers for power electronics and drives have been
developed by using this simple setting.

On the other hand, in direct control-applications, where no modulator is used,
u(k) is constrained to belong to a finite set describing the available switch combina-
tions. Such approaches have attracted significant attention in the power electronics
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community, often under term Finite Control Set MPC [112]. The main advantage
of this predictive control strategy comes from the fact that switching actions, say
S(k), are directly taken into account in the optimization as constraints on the sys-
tem inputs, see Fig. 2. Thus, the control input is restricted to belong to a finite set
represented by

u(k) = S(k) ∈ U, {0,1}m ⊂ Rm, k ∈ {0,1,2, . . .}, (4)

where U is a boolean set obtained by combining the m switch values. For the control
of some multi-level topologies, it is at times convenient to consider the resultant
voltage level as the control input, without making the distinction at a switch level.
For example, for a 5-level inverter, one would have {−2,−1,0,1,2}m.

2.2 Cost Function

A distinguishing element of MPC, when compared to other control algorithms, is
that at each time instant k and for a given (measured or estimated) plant state x(k),
a cost function over a finite horizon of length N is minimized. The following choice
encompasses many alternatives documented in the literature:

V (x(k),u′(k)), F(x′(k+N))+
k+N−1

∑
`=k

L(x′(`),u′(`)). (5)

Here, L(·, ·) and F(·) are weighting functions, which serve to penalize predicted
system behaviour, e.g., differences between voltage references and predicted val-
ues, see Sect. 2.4. Predicted plant state values, x′(`), are formed using the system
model (1):
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x′(`+1) = f (x′(`),u′(`)), ` ∈ {k,k+1, . . . ,k+N−1} (6)

where
u′(`) ∈ U, ` ∈ {k,k+1, . . . ,k+N−1}

refers to tentative plant inputs (to be decided). The recursion (6) is initialized with
the current plant state measurement (or estimate), i.e.:

x′(k)←− x(k).

Thus, (6) refers to predictions of the plant states that would result if the plant inputs
at the update times {k,k + 1, . . . ,k +N − 1} were set equal to the corresponding
values in

u′(k),
{

u′(k),u′(k+1), . . . ,u′(k+N−1)
}
. (7)

Both, the predicted plant state trajectory and the plant inputs are constrained in
accordance with (2), i.e., we have:

u′(`) ∈ U, ∀` ∈ {k,k+1, . . . ,k+N−1}
x′(`) ∈ X, ∀` ∈ {k+1,k+2, . . . ,k+N}.

Constrained minimization of V (·, ·) in (5) gives the optimizing control sequence
at time k and for state x(k):

uopt(k),
{

uopt(k),uopt(k+1;k), . . . ,uopt(k+N−1;k)
}
. (8)

It is worth emphasizing here that, in general, plant state predictions, x′(`), will
differ from actual plant state trajectories, x(`). This is a consequence of possible
model inaccuracies and the moving horizon optimization paradigm described next.

2.3 Moving Horizon Optimization

Despite the fact that the optimizer uopt(k) in (8) contains feasible plant inputs over
the entire horizon, (kh,(k+N− 1)h], in most MPC approaches, only the first ele-
ment is used, i.e., the system input is set to

u(k)←− uopt(k).

At the next sampling step, i.e., at discrete-time k + 1, the system state x(k + 1)
is measured (or estimated), the horizon is shifted by one step, and another op-
timization is carried out. This yields uopt(k + 1) and its first element provides
u(k+ 1) = uopt(k+ 1), etc. As illustrated in Fig. 3 for a horizon length N = 3, the
horizon taken into account in the minimization of V slides forward as k increases.
The design of observers for the system state lies outside the scope of the present
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chapter. The interested reader is referred to [2, 29, 41], which illustrate the use of
Kalman filters for MPC formulations in power electronics.
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2.4 Design Parameters

As seen above, MPC allows one to treat multi-variable nonlinear systems in an,
at least conceptually, simple way. In addition to choosing the sampling interval h
(which, amongst other things, determines the system model (1)), MPC design es-
sentially amounts to selecting the cost function, i.e., the weighting functions F(·)
and L(·, ·), and the horizon length N.

The design of the weighting functions F(·) and L(·, ·) should take into account
the actual control objectives and may also consider stability issues [3, 4, 84]. 1 For
example, tracking of desired output and internal voltages and currents can be accom-
modated into the MPC framework by choosing weights which penalize a measure
of the difference between predicted and reference values.

For a given sampling frequency 1/h and, especially for systems with inverse
response, larger values for the horizon length N will in general provide better per-
formance, as quantified by the weighting functions F(·) and L(·, ·). Indeed, one can
expect that, for large enough N, the effect of u(k) on x′(`) for ` > k +N will be
negligible and, consequently, MPC will approximate the performance of an infi-
nite horizon optimal controller [53]. On the other hand, the constrained optimiza-
tion problem which, in principle, needs to be solved on-line to find the controller
output, has computational complexity which, in general, increases with the horizon
length. As a consequence, the optimization horizon parameter N allows the designer
to trade-off performance versus on-line computational effort. Fortunately, excellent
performance can often be achieved with relatively small horizons. In fact, in most
applications of MPC to power electronics and electrical drives a horizon N = 1 is
chosen. We will next present key aspects of horizon-one MPC. In Section 4, we will
then discuss specific optimization algorithms which allow MPC with larger horizons
to be implemented in practical power electronics and drive applications.

3 Horizon-One Predictive Control

In the academic field of power electronics, it is most common to focus on one-step
horizon formulations when using predictive controllers. This comes from the fact
that horizon-one solutions are easy to obtain and often give satisfactory results.

In this section, we present some basic concepts on one-step predictive control
formulations used in power electronics. Our focus is on power converters and elec-
trical drive systems, which can be modeled in discrete-time as

x(k+1) = Ax(k)+Bu(k), (9)

where x ∈ Rn stands for the n-system states (e.g. voltages and currents) and u ∈ Rm

stands for the m-control inputs (e.g. duty cycles or power switches).

1 Note that the weighting functions should be chosen such that V (·, ·) depends on the decision
variables contained in u′(k), see (7).
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For our subsequent analysis, it is convenient to focus on regulation problems with
a constant reference, say x? ∈ Rn. By setting

x(k+1) = x(k) = x?,

it follows that
x? = Ax?+Bu?⇒ x? = (I−A)−1Bu?,

where u? ∈ Rm is the required input to maintain x?.
If we now introduce the system state and input tracking errors as

x̂ , x− x?, and

û , u−u?,
(10)

respectively, then it is easy to see that

x̂(k+1) = x(k+1)− x? = A(x̂(k)+ x?)+B(û(k)+u?)− x?.

Since x? = Ax?+Bu?, we obtain the system model:

x̂(k+1) = Ax̂(k)+Bû(k), (11)

In the sequel, we shall refer to x̂ ∈ Rn as the system state, whereas û ∈ Rm is the
control input. Consequently, the control goal becomes one of leading the system
(11) to the origin. This is equivalent to leading the original system (9) to the desired
reference, x?.

3.1 Deadbeat Control with a Modulator

One of the earliest control strategies referred to as “predictive control” in the power
electronics community are deadbeat controllers. These use a discrete-time system
model to calculate, at each sampling instant, the required control input to lead the
system output to some desired value in a finite number of time steps. Generally, this
input is in the form of a voltage reference, which is then modulated as described
in Section 2.1. Deadbeat control has been applied to current control in three-phase
inverters [70, 125, 127], rectifiers [78, 91], active filters [59, 87], DC-DC converters
[114], and torque control of induction machines [19].

This control technique is normally used to govern power converters and electrical
drives by obtaining the required input to achieve the desired system reference in
only one sampling instant. Nevertheless, for some class of power converters, it is
not possible to achieve the control target in just one sampling instant and more
time-steps need to be considered. A useful concept to understand this issue is called
reachability, which is defined as follows.
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Definition 1 (Reachability [5]). The system (11) is reachable if it is possible to find
a control sequence, say

u =




u(0)
u(1)

...
u(`−1)


 , ` ∈ N

such that an arbitrary state, x?, can be reached from an initial state, x(0), in a finite
time, i.e., `-sampling steps.

Now, we introduce the so-called reachability matrix, used to determined the sys-
tem reachability, which is represented via

W` =
[
A`−1B . . . AB B

]
. (12)

The following theorem follows from the preceding definition.

Theorem 1 (Reachability [5]). The system (11) is reachable in ` sampling steps if
and only if the reachability matrix W` has rank n, where n is the number of system
states.

Assuming that the initial state, x(0), is known, the system state at the sampling
time ` is given by

x(`) = A`x(0)+W`u. (13)

As stated in Theorem 1 above, if W` has rank n, then it is possible to obtain u by
solving a system of n linearly independent equations. This sequence leads the initial
system state, x(0), to the desired final state value, x?.

It is important to emphasize that, based on Theorem 1, for the one-step case,
where `= 1, we have that

W1 = B.

Thus, if one wants to lead the system state from x(0) to x? in only one sampling
instant, then the number of control inputs must be equal or larger than the number
of system states, i.e., m≥ n. Notice that if there are more control inputs than system
states, i.e., m > n, then the solution to Ax(0)+W1u = 0, see (13), is not unique.

Following, based on the above discussion, two particular cases are analyzed.

Invertible Matrix B

In this case, we focus on power converters which present the same number of system
states as control inputs, i.e., n=m. This occurs for several converter topologies, e.g.,
a three-phase inverter in αβ coordinates with an rl-load, which has 2-inputs and 2-
outputs [113] .

Here, B is a square matrix which, if nonsingular, is invertible. Moreover, the one-
step reachability matrix, W1 = B, has rank n. Therefore, it is possible to lead the
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system (11) to x? in one sampling instant. The one-step deadbeat control law for
this case is expressed by:

û(k) =−B−1Ax̂(k),

u(k) =−B−1A(x(k)− x?)+u?.
(14)

Non-Invertible Matrix B

Here, we consider the case where the system (11) has less control inputs than system
states, e.g., a three-phase inverter with an LC-filter [21]. Thus, matrix B ∈ Rn×m,
with n > m, is not invertible. Moreover, the one-step reachability matrix W1 = B
has rank smaller than n. However, if matrix B has rank m, then BT B ∈ Rm×m is
invertible. Therefore, one can obtain the, so called, Moore-Penrose pseudoinverse
matrix, which is given by

B† = (BT B)−1BT ;

see, e.g., [5]. Thus, the minimum time deadbeat control law can be expressed via:

û(k) =−B†Ax̂(k) =−(BT B)−1BT Ax̂(k),

u(k) =−(BT B)−1BT A(x(k)− x?)+u?.
(15)

The minimum number of sampling steps required to achieve a desired reference can
be determined by adding terms of the form A`B, until the reachability matrix W` in
(12) has full rank n 2.

Notice that if the system inputs are constrained to a bounded set, e.g., u(k) ∈
[−1,1]m, then it is necessary to saturate the control input when the system is far
from the reference yielding:

û(k) = sat
[
−B†Ax̂(k)

]
, û ∈ [umin−u?,umax−u?]

u(k) = sat
[
−B†A(x(k)− x?)+u?

]
, u ∈ [umin,umax]

Thus, the desired system reference may not be reached in one sampling instant
whenever the control input is saturated.

While this method has been used when a fast dynamic response is required, be-
ing deadbeat-based, it is often fragile. Indeed, uncertainties such as model errors,
unmodeled delays, and external disturbances may often deteriorate the closed-loop
performance. In the literature, there exist some works addressing these issues. For
example, in [86] an adaptive self tuning deadbeat controller has been proposed to
deal with system parameter uncertainties and compensate the calculation delay. On
the other hand, in [83] a disturbance observer has been included to improve the
disturbance rejection of the closed-loop system.

2 It is important to remark that in the case that B∈Rn×n, with B nonsingular, we have that B† =B−1.
Thus, the control law (14) is a particular case of (15).
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3.2 Horizon-One MPC with a Finite Control Set

One of the most popular predictive control strategy for power converters and drives
is FCS-MPC [20, 112]. This predictive control strategy explicitly considers the
power switches, S(k) in the optimization by means of a finite control set constraint.
Modulation stages are not needed.

In general, large prediction horizons are preferable when using MPC. However,
finding the optimal input sequence for the finite control set case typically requires
one to solve a combinatorial optimization problem. Interestingly, for some topolo-
gies, one-step horizon MPC provides good closed-loop performance [66, 111]. In
this section, we discuss the optimal solution to this predictive control strategy.

3.2.1 Cost Function

When using MPC for power electronics, it is often desirable to minimize the track-
ing error of the system state, which includes variables of different physical nature
and order of magnitude, e.g., currents, voltages, torques, power. It is therefore con-
venient to adopt a cost function, which considers a weighted positive sum of the
tracking errors of the controlled variables, see, e.g., [112]. This particular class of
cost function can be, in general, expressed via:

V = λ1(x1(k+1)− x?1)
2 +λ2(x2(k+1)− x?2)

2 + . . .+λn(xn(k+1)− x?n)
2, (16)

where λi are the weighting factors, which allow the designer to trade-off among
the different system state tracking errors. For example, for a two-level three-phase
inverter, in αβ orthogonal coordinates, one can use (see [113])

V2LI = λ1(iα(k+1)− i?α)
2 +λ2(iβ (k+1)− i?

β
)2,

where λ1 = λ2 = 1. For a one-phase three-cell Flying Capacitor Converter (FCC)
one can choose (see, e.g., [74])

VFCC = λ1(ia(k+1)− i?a)
2 +λ2(vc1(k+1)− v?c1)

2 +λ3(vc2(k+1)− v?c2)
2.

The above cost functions can be expressed as

V (x(k),u(k)) = x̂T (k+1)Px̂(k+1) (17)

where x̂(k) = x(k)− x? represents the state tracking errors of system (11), and P =
diag{λ1, . . . ,λn} is the weighting matrix.

In this case, it is also assumed that the power converter to be controlled is mod-
eled as per (9), i.e.,

x(k+1) = Ax(k)+Bu(k), (18)
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where u represents the m-control inputs, which belong to a finite set of p-elements,
i.e.,

u ∈ U, {u1, . . . ,up} ⊂ Rm. (19)

3.2.2 Unconstrained Optimum

To derive a closed form solution for FCS-MPC with horizon N = 1, we note that
given (9), the quadratic cost function (17) can be expanded via

V (x(k),u(k)) = x̂T (k)AT PAx̂(k)+ ûT (k)BT PBû(k)+2ûT (k)BT PAx̂(k), (20)

where û(k) = u(k)−u?, as before. If there were no control constraints, i.e., û(k) ∈
Rm, then the unconstrained optimal solution can be obtained as follows:

∂V (x̂(k), û(k))
∂ û(k)

= 2BT PBû(k)+2BT PAx̂(k) = 0

Thus, the minimizer to (17), without taking into account any system constraints, is
given by

ûopt
uc (k) =−Kx̂(k),

uopt
uc (k) =−K(x(k)− x?)+u?,

(21)

where
K = (BT PB)−1BT PA. (22)

It is worth noting that this unconstrained solution, will normally, not belong to the
finite set (19).

To obtain the constrained optimal solution, uopt(k) ∈ U, it is convenient to intro-
duce the following auxiliary variable:

z(k), u(k)−uopt
uc (k) = û(k)− ûopt

uc (k). (23)

In terms of z(k), the cost function in (20) can be expressed via:

V (x(k),u(k)) = g(x(k))+ zT (k)Hz(k), (24)

where the term g(x(k)) is independent of u(k) and

H , BT PB. (25)
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Fig. 4 Geometrical representation of FCS-MPC optimal solution; u1,u2 ∈ {0,1}.

3.2.3 Closed-Form Solution

To obtain the optimal finite set constrained solution, one must find the control input
which minimizes V (x(k),u(k)). From (24), it follows that level sets of the cost func-
tion are ellipsoids, where the eigenvectors of H define the principal directions of the
ellipsoid. Thus, the constrained optimizer uopt(k) does not necessarily correspond
to the nearest neighbour of uopt

uc (k) within the constraint set U.

Example 1. Consider the case where a power converter, modeled as per (18), has
2 power switches, which can take only two values, i.e., u1,u2 ∈ {0,1}. Thus, the
control input belongs to the following finite set:

u ∈ U,
{[

0
0

]
,

[
0
1

]
,

[
1
0

]
,

[
1
1

]}
⊂ R2. (26)

The vectorial representation of the optimal solution is depicted in Fig. 4. Here, the
ellipses, εi centered in uopt

uc , represent all the points that lead to the same cost. For-
mally, if a,b ∈ εi then, V (x(k),a) =V (x(k),b).

As we move away from the centre, the ellipses become larger, increasing the
cost function value, i.e., if a ∈ ε1 and b ∈ ε2 then, V (x(k),a) < V (x(k),b). Thus,
in this example, the optimal solution, which produces the minimum cost function
value is uopt = [1 0]T , despite the nearest vector to the unconstrained solution being
u = [1 1]T . Clearly, the optimal solution is, in general, not the nearest neighbour to
the unconstrained solution.

To obtain the optimal solution, we use the following transformation [104]:

v = H1/2u, v ∈ V, H1/2U.

Now, the cost function (24) can be expressed as:

V (x(k),v(k)), g(x(k))+(v(k)− vopt
uc (k))

T (v(k)− vopt
uc (k)), (27)
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where
vopt

uc (k), H1/2uopt
uc (k).

Thus, using this transformation, the level sets of the cost function describe spheres
centered in vopt

uc , as depicted in Fig. 4. Therefore, in terms of these transformed
variables, the nearest vector to the unconstrained solution, vopt

uc (k), is indeed the
(constrained) optimal solution.

Definition 2 (Vector Quantizer (see e.g. [31])). Consider a set A ⊆Rn and a finite
set B ,

{
b1, . . . ,bp

}
⊂ Rn. A function qB(·) : A → B is an Euclidean vector

quantizer if qB(a) = bi ∈B if and only if bi satisfies that | a−bi |≤| a−b j |, for all
b j 6= bi, where b j ∈B.

Using the vector quantizer presented in Definition 2, it follows that

vopt(k) = qV
(

H1/2uopt
uc (k)

)
, vopt(k) ∈ V.

Finally, the actual optimal solution, which minimizes the cost function (17), is
given by:

uopt(k) = H−1/2vopt(k) = H−1/2qV
(

H1/2uopt
uc (k)

)
, uopt(k) ∈ U. (28)

A block diagram of the resulting one-step FCS-MPC closed-loop is depicted in
Fig. 5. Notice that qV(·) in (28) implies that the quantization considers the vectors
from the finite set V= H1/2U, i.e., qV(a) ∈ V.
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3.2.4 Relationship to Deadbeat Control and Embellishments

It is interesting and instructive, to compare horizon-one predictive control with
deadbeat control. Here, we first notice that (21) is a weighted version of (15). In
fact, when P = I, where I denotes the identity matrix, both control values are the
same. Thus, horizon-one FCS-MPC, with the simple cost function presented in (16)
and (17), is a class of quantized deadbeat controller. Intuitively, such a predictive
control methodology presents features akin to those of a deadbeat controller, i.e., a
fast dynamic response but poor robustness.

To mitigate this problem, it is convenient to include control weighting in the cost
function. This will lead to a less aggressive, more cautious, controller. In this case,
the cost function can be formulated as3

V (x(k),u(k)) = ûT (k)Rû(k)+ x̂T (k+1)Px̂(k+1), (29)

see (10) and where R is a positive definite matrix, which can be used as a tuning
parameter. With a larger matrix R we are seeking to apply an input close to u?. This
allows one to reduce the control action that is applied to the system, leading to a
slower dynamic response with often better robustness properties.

To obtain the optimal solution of this embellished horizon-one FCS-MPC for-
mulation, one can roughly follow the analysis presented in Subsection 3.2.3. The
optimal solution has the same structure as presented in (28) (see also (21)), but
where

H = BT PB+R, (30)

and
K = H−1BT PA, (31)

see also [104]. Notice that, the control gain matrix K is reduced as R is increased.
Thus, for the same system tracking error, x̂(k), this new formulation produces a less
aggressive actuation.

Example 2. If H is diagonal, i.e., H = αI, with α ∈R, then the cost in (24) becomes

V (x(k),u(k)) = g(x(k))+ zT (k)Hz(k),

= g(x(k))+α
2(u(k)−uopt

uc (k))
T (u(k)−uopt

uc (k)).
(32)

The level sets of this cost function are spheres centered in uopt
uc (k). Therefore, one

can directly quantize the unconstrained solution uopt
uc (k), to obtain the finite optimal

solution without performing any transformation, i.e.,

uopt(k) = qU
(
uopt

uc (k)
)
= qU (−Kx̂(k)+u?) ∈ U.

Fig. 6 illustrates a block diagram for this particular horizon-one FCS-MPC closed-
loop when H = αI.

3 Alternatively, one can also penalize the size of the increments of the control input via a term of
the form (u(k)−u(k−1))T R(u(k)−u(k−1)).
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One-Step FCS-MPC
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Power
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Fig. 6 One-step FCS-MPC closed-loop with a diagonal matrix H.

4 Predictive Control with Long Horizons

In the context of MPC, long prediction horizons yield in general a better closed-loop
performance than short horizons. In particular, extending the length of the predic-
tion horizons reduces the cost associated with the objective function in closed-loop
operation [53, 103]. Indeed, the use of very long prediction horizons is typically
preferred. In particular, the infinite horizon case often ensures closed-loop stability,
provided that a solution with a finite cost exists [77, 108].

In the field of power electronics and electrical drives, the benefits of long predic-
tion horizons can be highlighted using the following three examples. First, for the
direct MPC formulation outlined in Section 4.5.2, very long prediction horizons of
100 and more time-steps yield a superior steady-state performance, in the sense that
current THDs similar to the one obtained by employing optimized pulse patterns
(OPPs) can be achieved, when assuming the same device switching losses. In con-
trast to that, very short horizons tend to lead to steady-state performance results that
are inferior to carrier-based PWM [35, 115].

Second, for systems with an inverse behavior4, long prediction horizons are re-
quired during transient operation to ensure the tracking of the reference signals and
to avoid closed-loop instability. This was illustrated in [61] for a boost converter
with a single voltage control loop (without an underlying current control loop) that
directly manipulates the switch position.

Third, and as already mentioned in Section 3, very short horizons lead to a closed-
loop behavior similar to the one typically obtained by deadbeat control, particularly
when the penalty on the manipulated variable is small or set to zero. Deadbeat con-

4 When considering linear time-invariant (LTI) systems, inverse behavior is equivalent to non-
minimum phase behavior, i.e. systems with zeros in the right half-plane of the Laplace domain.



Predictive Control in Power Electronics and Drives: basic concepts, theory and methods 17

trol is known to be highly sensitive to measurement and estimation noise, as well
as parameter uncertainties of the system model. Long prediction horizons, on the
other hand, significantly reduce the sensitivity of the controller to noise and—as a
result—improve the performance during steady-state operation [39].

Unfortunately, the computational burden associated with solving the optimiza-
tion problem underlying MPC increases exponentially with the length of the predic-
tion horizon. At the same time, the sampling intervals typically required in power
electronic systems are very short, often amounting to a few tens of µs. From a
computational point of view, this makes the solution of MPC problems with long
prediction horizons very challenging. Indeed, the belief in the power electronics
community is widespread that MPC problems with long horizons cannot be solved
in real time. Nevertheless, control and optimization techniques are available that
reduce the computational burden to a level, which allows the solution of MPC prob-
lems on today’s available computational platforms within sampling intervals of less
than 100 µs. In this section, several such techniques will be presented along with
corresponding power electronics examples, for which they have been applied to.
Selected experimental results are highlighted as well.

4.1 Linear Quadratic MPC for Converters with a Modulator

A particularly simple case of (5)–(6) arises when the cost function is quadratic and
the system model is linear, i.e.:

V (x(k),u(k)) = x′T (k+N)Px′(k+N)

+
k+N−1

∑
`=k

{
x′T (`)Qx′(`)+u′T (`)Ru′(`)

}
,

x′(`+1) = Ax′(`)+Bu′(`),

x′(`) ∈ X⊆ Rn, u′(`) ∈ U⊆ Rm, ` ∈ {0,1, . . . N},

(33)

where A and B denote the state-update matrices of a linear time-invariant system,
and P, Q and R are penalty matrices of appropriate dimensions. More specifically,
P and Q are positive semi-definite matrices and R is a positive definite matrix. The
constraint sets X and U are polyhedra, given by the intersection of a finite number of
half-spaces, which are defined by hyperplanes. In such a setup, a PWM is typically
used.

By successively using the state-update equation in (33) and assuming a finite N,
the state vector at time-step `+1 can be represented as a function of the state vector
at time-step k and the control sequence as follows:
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


x′(k)
x′(k+1)

...

...
x′(k+N)



=




I
A
...
...

AN




x(k)+




0 · · · · · · 0
B 0 · · · 0

AB B · · · 0
...

...
. . .

...
AN−1B AN−2B2 · · · B







u′(k)
u′(k+1)

...

...
u′(k+N−1)



. (34)

We rewrite this expression in compact form as

x(k) = Sx(k)+Tu(k) , (35)

with S and T appropriately defined. Introducing Q , diag(Q, . . . ,Q,P) and R ,
diag(R, . . . ,R), the cost function in (33) can be rewritten as

V (x(k),u(k)) = xT (k)Qx(k)+uT (k)Ru(k) . (36)

Substituting (35) into (36) leads to5

V (x(k),u(k)) = uT (k)Hu(k)+2xT (k)Fu(k) , (37)

with

H = TT QT+R

F = ST QT.

Note that u(k) is the real-valued optimization variable and H = HT is the positive
definite Hessian matrix.

4.1.1 Unconstrained Solution

Similar to the horizon-one case treated in Section 3.2.2, if the system inputs and
states in (33) are unconstrained, i.e. X= Rn and U= Rm, then the moving horizon
optimization problem (33) with the reformulated cost function (37) can be solved
algebraically. This yields the control sequence as a linear function of the state vector
according to u(k) = −Kx(k) with K = −H−1FT . The control input at time-step k
is obtained by taking the first element of this sequence, i.e. the linear state-feedback
controller is of the form

u(k) =−K0x(k) (38)

with K = [KT
0 KT

1 . . . KT
N−1]

T . Directly related to this is to concept of generalized
predictive control (GPC) [18]. The unconstrained finite-horizon approach was in-
vestigated in [64, 76] for use in electrical drive applications.

5 Note that (37) contains the third term xT (k)ST Sx(k). Since this term is constant and independent
of u(k), it can be omitted in the cost function without affecting the result of the optimization
problem.
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Optimality, however, does not ensure stability, motivating the use of an infinite
horizon N. The problem (33) is then referred to as the linear quadratic regulator
(LQR), and K = K0 = . . . = KN−1 is the solution of an algebraic Riccati equation.
LQR controllers have been proposed for a number of power electronics applications;
early examples of such applications include dc-dc converters [30] and electrical
drives [88].

4.1.2 Constrained Solution

On the other hand, if the inputs and states are constrained to belong to polyhedra,
then (33) can be rewritten6 in the form

min
u(k)

V (x(k),u(k)) = uT (k)Hu(k)+2xT (k)Fu(k)

subj. to Gu(k)≤ w+Ex(k) .
(39)

with G and E being matrices of appropriate dimensions and w denoting a column
vector. For a given state vector x(k), (39) can be simplified to

min
u(k)

V (u(k)) = uT (k)Hu(k)+2cT u(k)

subj. to Gu(k)≤ g ,
(40)

with c = FT x(k) and g = w+Ex(k).
If u(k) satisfies the constraints Gu(k) ≤ g in (40), then u(k) is said to be a fea-

sible solution. The problem (40) is feasible, if there exists at least one such feasible
solution, else the problem is infeasible. Assuming feasibility, the optimization vari-
able, for which the minimal (i.e. the optimal) value of the cost function is obtained,
is the optimizer uopt(k).

The form (40) is a convex mathematical optimization problem with a quadratic
objective function and linear constraints, a so called quadratic program (QP) [51].
Such problems can be solved efficiently. Specifically, with H being positive definite,
(40) can be solved in polynomial time [67].

QPs are typically solved using the interior point method [62, 90]. Other solution
approaches include the active set [28] and gradient methods [89]. Examples of QP
solvers include SeDuMi [119], CPLEX [58] and IpOpt [124]. Recently, first efforts
have been reported in the literature to solve QPs in embedded systems, particularly
when running on field-programmable gate arrays (FPGAs), see e.g. [24, 60, 109,
110]. Moreover, a simplified QP is solved algebraically in [76] to derive a position
controller for a brushless dc drive.

Another example is model predictive pulse pattern control (MP3C), which ma-
nipulates online the switching instants of pre-computed optimized pulse patterns

6 For the cost function the constant term in (37) has been neglected. The inequality constraints can
be derived by substituting (35) into the state constraints and adding the input constraints.
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(OPPs) [14, 97] to achieve very fast closed-loop control. The underlying QP can
be solved easily using a variation of the active set method [39]. First experimen-
tal results on a 1.1 MVA five-level inverter with a 6 kV medium-voltage induction
machine are available [92].

4.2 The Explicit State-Feedback Control Law for Linear Quadratic
MPC with a Modulator

Despite the ever growing computational power available and recent advances in im-
plementing QP solvers on embedded system architectures, solving the QP in real-
time for power electronics applications poses a highly challenging problem. When
using sampling intervals in the µs range, the computation times needed to solve the
QP typically exceed the sampling interval—often by one or two orders of magni-
tude. Rather than solving the mathematical optimization problem in real-time for the
given state vector at the current time-step, the optimization problem can be solved
offline for all possible states. Specifically, the so-called (explicit) state-feedback
control law can be computed for all states x(k) ∈ X [9]. The explicit control law
can be stored in a look-up table and the optimal control input can be read from the
look-up table in a computationally efficient manner. We refer to this methodology
as explicit MPC, in contrast to MPC, which has traditionally been solved entirely
online.

4.2.1 The State-Feedback Control Law

Using the coordinate transformation

z(k) = u(k)+H−1FT x(k) , (41)

(39) can be rewritten as

min
z(k)

V (z(k)) = zT (k)Hz(k) (42a)

subj. to Gz(k)≤ w+Sx(k) (42b)

with S = E+GH−1FT . Note that the optimization variable z(k) includes, in a linear
manner, the control sequence u(k) and the state vector x(k). Moreover, the con-
straints in (42b) depend linearly on the state vector x(k).

As previously, for a given x(k), the optimizer zopt(k) can be computed. Using
the notion of sensitivity analysis, we are interested in exploring the sensitivity of
zopt(k) to small perturbation in x(k). In general, unless the set of active constraints
changes in (42b), a small perturbation in x(k) will lead to a small variation in zopt(k).
Because of the linear dependency in (41), in a small neighborhood around x(k), the
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variation in zopt(k) depends linearly on the modification in x(k). As a result, in this
neighborhood, zopt(k) is a linear function of x(k) plus an offset, a so called affine
function. Rewriting (41) to express uopt(k) as a function of the optimizer and the
state vector, we conclude that the control sequence is also affine in the state vector.

We refer to the neighborhood around x(k), in which zopt(k) is an affine func-
tion of x(k), as a critical region. Using the Karush-Kuhn-Tucker (KKT) conditions
for optimality [63,69], the critical region and its shape can be computed. Due to the
linearity of (42b), the boundaries of the critical region are hyperplanes. More specif-
ically, it can be shown that the critical region is a polyhedron, with its facets being
defined by the active constraints. An algorithm can be constructed, which iteratively
explores the whole set of states, X, computes all critical regions and the associated
affine control laws. By doing so, we treat the state vector as a parameter, which gives
rise to multi-parametric programming and yields the state-feedback control law. In
particular, (42) is a multi-parametric quadratic program (mp-QP).

Hereafter, the main results of mp-QP are recapitulated. For this, a number of
definitions are required.

Definition 3 (Polyhedron). A polyhedron P is a set that is equal to the intersection
of a finite number of half-spaces defined by hyperplanes.

Definition 4 (Polyhedral Partition). A collection of polyhedra

Pi ⊆ X, i ∈ {1,2, . . . ,n},

is a polyhedral partition of the polyhedron X, if and only if
⋃n

i=1 Pi = X and Pi∩
P j is lower dimensional ∀i 6= j.

Theorem 2. The solution to the mp-QP in (42) is a state-feedback control law
uopt(k) that is a continuous and piecewise affine function of the state vector x(k)
defined on a polyhedral partition of the feasible state-space X.

More specifically, the feasible state-space is partitioned into polyhedra, and for each
polyhedron the optimal control law uopt(k) is given as an affine function of the state.
Note that uopt(k) is the first element in uopt(k), as defined in (7).

Theorem 3. The value function V opt(x(k)) = V (x(k),uopt(k)) of the mp-QP (42) is
continuous, convex and piecewise quadratic in the state.

More details about multi-parametric programming for QPs and the proofs of the
above theorems can be found in [9, 121]. Related results were obtained in [116].
When the cost function in (42a) is linear, a multi-parametric linear program (mp-
LP) results. The state-feedback control law is, as in the mp-QP case, continuous and
piecewise affine in the state. The value function, on the other hand, is convex and
piecewise affine. For more details on mp-LPs, the reader is referred to [7,13]. Multi-
parametric programs can be solved efficiently using the multi-parametric toolbox
(MPT) [71]. This versatile and numerically robust toolbox is available for free on
http://control.ee.ethz.ch/ mpt/.
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4.2.2 Implementation Aspects

The state-feedback control law, which is the result of mp-LP or mp-QP, is of the
form

uopt(k) =





K1x(k)+ f1 if G1x(k)≤ g1
...

...
Knx(k)+ fn if Gnx(k)≤ gn

(43)

with Kix(k)+ fi denoting the ith affine control law and Gix(k)≤ gi the correspond-
ing polyhedron. Such a state-feedback controller can be easily implemented and
evaluated online. In a first step, given the state vector x(k), the polyhedron needs
to be determined, in which the estimated or measured state lies. The brute force
approach is to go through all polyhedra and to check the corresponding inequali-
ties. An alternative approach is to build a binary search tree as proposed in [122].
Such a search tree reduces the online computational demand at the expense of an in-
creased memory requirement. In a second step, after the correct polyhedron has been
identified, the affine control law is read out and the optimal control input uopt(k) is
computed.

In general, polyhedra with the same control law form convex unions and can thus
be merged and replaced by their unions. This leads to an equivalent piecewise affine
control law that features a lower number of polyhedra and thus a reduced complex-
ity. From an implementation point of view, such a representation is highly desirable,
since it relaxes the memory requirements and reduces the computational burden. In-
deed, by adopting the notion of hyperplane arrangements, an equivalent piecewise
affine control law can be derived that is minimal in the number of polyhedra [48].
We refer to this concept as optimal complexity reduction. For control laws with hun-
dreds of polyhedra, the number of polyhedra can often be reduced by an order of
magnitude.

4.2.3 An Illustrative Example of the State-Feedback Control Law

To further illustrate the derivation and properties of the explicit state-feedback con-
trol law of MPC, consider a dc-dc buck converter, as shown in Fig. 7. Using the
classic technique of averaging between the on and off modes of the circuit, the
discrete-time system model

x(k+1) = Ax(k)+Bvsd(k) (44)

can be obtained, where vs denotes the unregulated input voltage and d(k) the duty
cycle. The state vector contains the inductor current i` and the output voltage vo, i.e.
x = [i` vo]

T . The continuous-time system matrices are



Predictive Control in Power Electronics and Drives: basic concepts, theory and methods 23

Fig. 7 Topology of the step-down synchronous converter

F =

[
−R`

L − 1
L

Ro
Ro+Rc

L−RcR`C
LC − 1

Ro+Rc
L+RcRoC

LC

]
, G =

[ 1
L

Ro
Ro+Rc

Rc
L

]
, (45)

and their discrete-time representations are given by

A = eFh , B =
∫ h

0
eFτ Gdτ , (46)

where h denotes the sampling interval. Adopting the per unit (pu) system, the pa-
rameters in (45) are the inductor L = 3 pu, capacitor C = 20 pu and output resistor
Ro = 1 pu. The internal resistor of the inductor is R` = 0.05 pu and the equivalent
series resistance of the capacitor is Rc = 0.005 pu. The nominal input voltage is
assumed to be vs = 1.8 pu.

To allow for variations in the input voltage, it is convenient to scale the system
equations by vs, as proposed in [42]. To this end, we define ĩ` = i`/vs, ṽo = vo/vs
and x̃ = [ĩ` ṽo]

T , and rewrite (44) as

x̃(k+1) = Ax̃(k)+Bd(k) (47)

Note that, unlike (44), (47) is linear in the state vector and the duty cycle.
The control objective is to regulate the output voltage to its reference v?o and to

maintain the inductor current below its maximal allowed limit i`,max by manipulating
the duty cycle. The latter is bounded between zero and one. This control problem
can be captured by the optimization problem (cf., (29))

V (x̃(k),u(k)) =
k+N−1

∑
`=k

{
(x̃′(`)− x̃?)T Q(x̃′(`)− x̃?)+R(u′(`))2

}
,

x̃′(`+1) = Ax̃′(`)+Bu′(`),

x̃′(`) ∈ X, u′(`) ∈ U, ` ∈ {0,1, . . . N},

(48)

where we set Q = diag(0,1), R = 0.1, X = [−ĩ`,max, ĩ`,max]× [−10,10] and U =
[0,1]. Note that ĩ`,max = i`,max/vs and u = d. To facilitate the regulation of the output
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Fig. 2 Explicit state-feedback control law for the dc-dc buck converter over the state-space X
spanned by the scaled inductor current ĩ!(k) and the scaled output voltage ṽo(k)

the duty cycle. The latter is bounded between zero and one. This control problem
can be captured by the optimization problem

V (x̃(k),u(k)) =
k+N−1

∑
!=k

{
(x̃(!)− x̃ref)

T Q(x̃(!)− x̃ref)+Ru2(!)
}
,

x̃(!+1) = Ax̃(!)+Bu(!),

x̃(!) ∈ X, u(!) ∈ U, ! ∈ {0,1, . . . N},

(16)

where we set Q = diag(0,1), R = 0.1, X = [−ĩ!,max, ĩ!,max] × [−10,10] and U =
[0,1]. Note that ĩ!,max = i!,max/vs and u = d. To facilitate the regulation of the output
voltage to a non-zero reference, we define x̃ref = [0, ṽo,ref]

T with ṽo,ref = vo,ref/vs.
We assume ṽo,ref = 0.5 and choose the horizon N = 3.

The explicit control law can be computed using the MPT toolbox [46]. The two-
dimensional state-space is partitioned into 20 polyhedra. Using optimal complex-
ity reduction [32], an equivalent control law with 11 polyhedra can be derived, as
shown in Fig. 2(a). The corresponding state-feedback controller uopt(k) is shown in
Fig. 2(b). Note that the duty cycle is limited by zero and one as a result of the design
procedure. An additional patch, such as an anti-windup scheme, is not required.

A similar MPC scheme was proposed in [51]. This rather basic controller can be
enhanced in various ways. In the context of dc-dc converters, it is usually preferred
to penalize the change in the duty cycle rather than the duty cycle as such, by intro-
ducing ∆u(k) = u(k)− u(k − 1) and penalizing R(∆u(!))2 rather than R(u(!))2 in
(16). To enhance the voltage regulation at steady-state by removing any dc offset,
an integrator state can be added [51]. Load variations can be addressed by a Kalman
filter, see [29].

(a) Polyhedral partition of the state-space X
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the duty cycle. The latter is bounded between zero and one. This control problem
can be captured by the optimization problem

V (x̃(k),u(k)) =
k+N−1

∑
!=k

{
(x̃(!)− x̃ref)

T Q(x̃(!)− x̃ref)+Ru2(!)
}
,

x̃(!+1) = Ax̃(!)+Bu(!),

x̃(!) ∈ X, u(!) ∈ U, ! ∈ {0,1, . . . N},

(16)

where we set Q = diag(0,1), R = 0.1, X = [−ĩ!,max, ĩ!,max] × [−10,10] and U =
[0,1]. Note that ĩ!,max = i!,max/vs and u = d. To facilitate the regulation of the output
voltage to a non-zero reference, we define x̃ref = [0, ṽo,ref]

T with ṽo,ref = vo,ref/vs.
We assume ṽo,ref = 0.5 and choose the horizon N = 3.

The explicit control law can be computed using the MPT toolbox [46]. The two-
dimensional state-space is partitioned into 20 polyhedra. Using optimal complex-
ity reduction [32], an equivalent control law with 11 polyhedra can be derived, as
shown in Fig. 2(a). The corresponding state-feedback controller uopt(k) is shown in
Fig. 2(b). Note that the duty cycle is limited by zero and one as a result of the design
procedure. An additional patch, such as an anti-windup scheme, is not required.

A similar MPC scheme was proposed in [51]. This rather basic controller can be
enhanced in various ways. In the context of dc-dc converters, it is usually preferred
to penalize the change in the duty cycle rather than the duty cycle as such, by intro-
ducing ∆u(k) = u(k)− u(k − 1) and penalizing R(∆u(!))2 rather than R(u(!))2 in
(16). To enhance the voltage regulation at steady-state by removing any dc offset,
an integrator state can be added [51]. Load variations can be addressed by a Kalman
filter, see [29].

(b) Control law uopt(k)

Fig. 8 Explicit state-feedback control law for the dc-dc buck converter over the state-space X
spanned by the scaled inductor current ĩ`(k) and the scaled output voltage ṽo(k)

voltage to a non-zero reference, we define x̃? = [0, ṽ?o]
T with ṽ?o = v?o/vs. We assume

ṽ?o = 0.5 and choose the horizon N = 3.
The explicit control law can be computed using the MPT toolbox [71]. The two-

dimensional state-space is partitioned into 20 polyhedra. Using optimal complex-
ity reduction [48], an equivalent control law with 11 polyhedra can be derived, as
shown in Fig. 8(a). The corresponding state-feedback controller uopt(k) is shown in
Fig. 8(b). Note that the duty cycle is limited by zero and one as a result of the design
procedure. An additional patch, such as an anti-windup scheme, is not required.

A similar MPC scheme was proposed in [80]. This rather basic controller can be
enhanced in various ways. In the context of dc-dc converters, it is usually preferred
to penalize the change in the duty cycle rather than the duty cycle as such, by intro-
ducing ∆u(k) = u(k)− u(k− 1) and penalizing R(∆u(`))2 rather than R(u(`))2 in
(48). To enhance the voltage regulation at steady-state by removing any dc offset,
an integrator state can be added [80]. Load variations can be addressed by a Kalman
filter, see [43].

4.2.4 Application Examples of the State-Feedback Control Law

In the context of power electronics and drives applications, the notion of the state-
feedback control law of MPC formulations has been studied extensively. One of
the earliest references is [75], which proposes an explicit MPC controller in a field-
oriented controller setting for an electrical drive. These initial results are extended
in [81]. In [10], the speed and current control problem of a permanent-magnet syn-
chronous machine is solved using MPC. Drives with flexible shafts are considered
in [23] and active rectifier units with LC filters in [82].
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4.3 Linear Quadratic MPC with a Finite Control Set

As for the continuous control set case studied above, when the control set is con-
strained to a finite set, the use of horizons larger than one will often give significant
performance gains. This is well known in other application areas, where the use
of MPC with finite decision variables has been examined; see, e.g., [57, 93, 100,
102, 105–107]. However, only few results have been documented in the literature
regarding power converters, see [22, 45, 46, 101, 118].

We will next examine how to use prediction horizons longer than one for MPC
formulations where the plant inputs are constrained to belong to a finite set U. As
in (48), we will focus on linear plant models and quadratic cost functions with ref-
erence tracking. To address computational issues, we will exploit the geometrical
structure of the underlying MPC optimization problem and presents a practical opti-
mization algorithm. The algorithm uses elements of sphere decoding [54] to provide
optimal switching sequences, requiring only little computational resources, thus, en-
abling the use of longer prediction horizons [45, 46]. We will illustrate the ideas on
a variable speed drive application consisting of a three-level neutral point clamped
voltage source inverter driving an induction machine. Our results show that using
prediction horizons larger than one does, in fact, provides significant performance
benefits. In particular, at steady-state operation the current distortions and/or the
switching frequency can be reduced considerably with respect to direct MPC with
horizon one, as presented in Section 3.

The methods proposed and results obtained are directly applicable to both the
machine-side inverter in an ac drive setting, as well as to grid-side converters. The
ideas can also be used for other converter topology and are particularly promising
for topologies with a high number of voltage levels.

4.3.1 Physical Model

As an illustrative example of a medium-voltage power electronic system, we con-
sider a variable speed drive consisting of a three-level neutral point clamped (NPC)
voltage source inverter (VSI) driving an induction machine (IM), as depicted in
Fig. 9. The total dc-link voltage Vdc is assumed constant and the neutral point po-
tential N is fixed.

Let the integer variables ua, ub, uc ∈ {−1,0,1} denote the switch positions in
the three phase legs, corresponding to the phase voltages −Vdc

2 ,0, Vdc
2 , respectively.

Thus, the voltage applied to the machine terminals in orthogonal coordinates is

vs,αβ =
1
2

Vdc uαβ =
1
2

Vdc Pu

with

P , 2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]
, u ,




ua
ub
ub


 ∈ U, U, {−1,0,1}3. (49)
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Fig. 1: Three-level three-phase neutral point clamped voltage source inverter driving an induction motor with a fixed neutral point potential

Vector Norms: The 1-norm of a vector ξ ∈ Rn is defined as ||ξ||1 !
∑n

i=1 |ξi|, where ξi denotes the ith

element of ξ. The squared Euclidean norm of ξ is defined as ||ξ||22 ! ξT ξ =
∑n

i=1 ξ2
i , and the squared norm

weighted with the positive definite matrix Q is given by ||ξ||2Q ! ξT Qξ. The infinity norm of ξ is defined as

||ξ||∞ ! maxi |ξi|.

II. DRIVE SYSTEM CASE STUDY

Whilst the ideas of the present work can be applied to a variety of power electronics systems, we will focus

our exposition on the setup described below.

A. Physical Model of the Inverter

As an illustrative example of a medium-voltage power electronic system, consider a variable speed drive

consisting of a three-level neutral point clamped (NPC) voltage source inverter (VSI) driving an induction

machine (IM), as depicted in Fig. 1. The total dc-link voltage Vdc is assumed to be constant and the neutral

point potential N is fixed.

Let the integer variables ua, ub, uc ∈ U denote the switch positions in the three phase legs, where for a

three-level inverter the constraint set is given by

U ! {−1, 0, 1} . (2)

In each phase, the values −1, 0, 1 correspond to the phase voltages −Vdc
2 , 0, Vdc

2 , respectively. Thus, the voltage

applied to the machine terminals in orthogonal coordinates is

vs,αβ =
1

2
Vdc uαβ =

1

2
Vdc P u (3)

with u ! [ua ub uc]
T . The voltage vectors are shown in Fig. 2 with their 0-component being neglected.

B. Physical Model of the Machine

The state-space model of a squirrel-cage induction machine in the stationary αβ reference frame is summa-

rized hereafter. For the current control problem at hand, it is convenient to choose the stator currents isα and

isβ as state variables. The state vector is complemented by the rotor flux linkages ψrα and ψrβ , and the rotor’s

angular velocity ωr. The model input are the stator voltages vsα and vsβ . The model parameters are the stator
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Fig. 9 Three-level three-phase neutral point clamped voltage source inverter driving an induction
motor with a fixed neutral point potential

The state-space model of a squirrel-cage induction machine in the stationary αβ

reference frame is summarized hereafter. For the current control problem at hand,
it is convenient to choose the stator currents isα and isβ as state variables. The state
vector is complemented by the rotor flux linkages ψrα and ψrβ , and the rotor’s an-
gular velocity ωr. The model input are the stator voltages vsα and vsβ . The model
parameters are the stator and rotor resistances Rs and Rr, the stator, rotor and mu-
tual reactances Xls, Xlr and Xm, respectively, the inertia J, and the mechanical load
torque T`. All rotor quantities are referred to the stator circuit. In terms of the above
quantities, the continuous-time state equations are [56, 68]

dis
dt

=− 1
τs

is +

(
1
τr
−ωr

[
0 −1
1 0

])
Xm

D
ψr +

Xr

D
vs (50a)

dψr

dt
=

Xm

τr
is−

1
τr

ψr +ωr

[
0 −1
1 0

]
ψr (50b)

dωr

dt
=

1
J
(Te−T`) , (50c)

where we have used7

Xs , Xls +Xm

Xr , Xlr +Xm

D , XsXr−X2
m.

(51)

The transient stator time constant and the rotor time constant are equal to

τs ,
XrD

RsX2
r +RrX2

m
and τr ,

Xr

Rr
,

7 To simplify the notation, in (50) we dropped αβ from the vectors is, ψr and vs.
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whereas the electromagnetic torque is given by

Te =
Xm

Xr
(ψrα isβ −ψrβ isα) . (52)

4.3.2 MPC formulation

The control problem is formulated in the αβ reference frame. Let

i∗s ,
[

i∗sα

i∗sβ

]

denote the reference of the instantaneous stator current. The objective of the cur-
rent controller is to manipulate the three-phase switch position u, by synthesizing
a switching sequence, such that the stator current is closely tracks its reference. At
the same time, the switching effort, i.e., the switching frequency or the switching
losses, are to be kept small.

It is convenient to describe the system by introducing the following state vector
of the drive model:

x ,




isα

isβ

ψrα

ψrβ


 . (53)

The stator current is taken as the system output vector, i.e., y = is. The switch posi-
tion uαβ in the orthogonal coordinate system constitutes the input vector, which is
provided by the controller. Discretization of (50) yields a linear system model of the
form

x(k+1) = Ax(k)+Bu(k).

To penalise current errors and the control effort, we adopt the cost function:

V (x(k),u(k)) =
k+N−1

∑
`=k

(i′e,αβ
(`+1))T (i′e,αβ

(`+1))+λu(∆u′(`))T
∆u′(`) , (54)

where

i′e,αβ
, i∗s,αβ

− i′s,αβ

∆u′(`), u′(`)−u′(`−1)

and subject to (see (49))

u(k) ∈ UN

‖∆u′(`)‖∞ ≤ 1, ∀` ∈ {k,k+1, . . . ,k+N−1}. (55)
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The latter constraint is imposed since in each phase switching is only possible by
one step up or down.

4.3.3 Obtaining the Switch Positions via Exhaustive Search

Due to the discrete nature of the decision variable u, minimizing (54) subject to (55)
is difficult, except for short horizons. In fact, as the prediction horizon is enlarged
and the number of decision variables is increased, the (worst-case) computational
complexity grows exponentially, thus, cannot be bounded by a polynomial, see also
[104]. The difficulties associated with minimizing J become apparent when using
exhaustive search. With this method, the set of admissible switching sequences u(k)
is enumerated and the cost function evaluated for each such sequence. The switching
sequence with the smallest cost is (by definition) the optimal one and its first element
is chosen as the control input. At every time-step k, exhaustive search entails the
following procedure:

1. Given the previously applied switch position u(k− 1) and taking into account
(55), determine the set of admissible switching sequences over the horizon.

2. For each of these switching sequences, compute the cost V according to (54).
3. Choose the switching sequence, uopt(k), which minimizes the cost. Apply its first

element, uopt(k), to the converter.

It is easy to see that exhaustive search is computationally feasible only for very
small horizons N, such as one or two. For N = 5, assuming a three-level converter,
the number of switching sequences amounts to 1.4 ·107.

Techniques from vector quantization [31] and from mathematical programming,
such as branch and bound [36, 72, 85], can be used to reduce the computational
burden. In particular, following akin to the method described in Section 3.2, an
explicit state-feedback control law for FCS-MPC can be obtained which, as for the
convex case in Section 4.2, induces a partition of the state-space [104]. In addition,
off-the-shelf solvers such as CPLEX [58], include a wealth of smart heuristics and
methods. However, none of the general methods take advantage of the particular
structure of (54) and the fact that in MPC the solution is implemented in a moving
horizon manner.

4.4 An Efficient Algorithm for Finite-Control Set MPC

We will next present a method for calculating the optimal switching sequences in
FCS-MPC. The algorithm requires only little computations and is thereby attractive
for applications in power electronics and drives.
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4.4.1 Modified Sphere Decoding Algorithm

Direct algebraic manipulations akin to those mentioned in Sections 4.1 and 4.2 (see
also [50, 104]), give that minimization of (54) amounts to finding

uopt(k) = argmin
u

(z−Hu)T (z−Hu), subject to (55), (56)

where H is an invertible lower-triangular matrix. In (56),

z = Huuc,

where uuc is the sequence obtained from optimizing (54) without constraints, i.e.,
with U = R3. Thus, we have rewritten the MPC optimization problem as a (trun-
cated) integer least-squares problem. Interestingly, various efficient solution algo-
rithms for (56) subject to finite-set constraints have been developed in recent years;
see, e.g., [1, 54] and references therein. We will next show how to adapt the sphere
decoding algorithm [27, 54] to find the optimal switching sequence uopt(k).

The basic idea of the algorithm is to iteratively consider candidate sequences, say
u ∈ UN , which belong to a sphere of radius ρ(k)> 0 centered in z,

(z−Hu)T (z−Hu)≤ ρ(k). (57)

Especially in the case of multi-level converters (where U has many elements; see,
e.g., [74]), the set of candidate sequences satisfying the above conditions is much
smaller than the original constraint set UN . Not surprisingly, computation times can
be drastically reduced compared to exhaustive search.

A key property used in sphere decoding is that, since H is triangular, for a given
radius, identifying candidate sequences which satisfy (57) is very simple. In partic-
ular, for the present case, H is lower triangular, thus (57) can be rewritten as

ρ
2(k)≥ (z1−H(1,1)u1)

2 +(z2−H(2,1)u1−H(2,2)u2)
2 + . . . (58)

where zi denotes the i-th element of z, ui is the i-th element of u, and H(i, j) refers to
the (i, j)-th entry of H. Therefore, the solution set of (57) can be found by proceed-
ing in a sequential manner akin to Gaussian elimination, in the sense that at each
step only a one-dimension problem needs to be solved; for details, see [54].

The algorithm requires an initial value for the radius used at time k to determine
u. On the one hand, the radius ρ(k) should be as small as possible, enabling us to
remove as many candidate solutions a priori as possible. On the other hand, ρ(k)
must not be too small, to ensure that the solution set is non-empty. We propose
to choose the initial radius by using the following educated guess for the optimal
solution:
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usub(k) =




0 I 0 . . . 0

0 0 I
. . .

...
...

. . . . . . 0
0 . . . . . . 0 I
0 . . . . . . 0 I




uopt(k−1), (59)

which is obtained by shifting the previous solution by one time-step and repeating
the last switch position. This is in accordance with the moving horizon optimization
paradigm. Since the optimal solution at the previous time-step satisfies the con-
straint, usub(k) is a feasible solution candidate of (54). Given (59), the initial value
of ρ(k) is then set to:

ρ(k) = (z−Husub(k))T (z−Husub(k)). (60)

At each time-step k, the controller first uses the current system state x(k), the
future reference values, the previous switch position u(k−1) and the previous opti-
mizer uopt(k−1) to calculate usub(k), ρ(k) and z. The optimal switching sequence
uopt(k) is then obtained by invoking Algorithm 1:

uopt(k) = MSPHDEC( /0,0,1,ρ2(k),z), (61)

where /0 is the empty set8.

Algorithm 1 Modified sphere decoding algorithm
function uOPT(k) = MSPHDEC(u, d2, i, ρ2, z)

for each u ∈ {−1,0,1} do
ui← u
d′2← (zi−H(i,1:i)u1:i)

T (zi−H(i,1:i)u1:i)+d2

if d′2 ≤ ρ2 then
if i < 3N then

MSPHDEC(u,d′2, i+1,ρ2,z)
else

if u meets (55) then
uopt← u
ρ2← d′2

end if
end if

end if
end for

end function

8 The notation H(i,1:i) refers to the first i entries of the i-th row of H; similarly, u1:i are the first
i elements of the vector u. Note that the matrix H is time-invariant and does not change when
running the algorithm. Therefore, H can be computed once offline before the execution of the
algorithm.
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As can be seen in Algorithm 1, the proposed modification to sphere decoding
operates in a recursive manner. Starting with the first component, the switching
sequence u is built component by component, by considering the admissible single-
phase switch positions in the constraint set {−1,0,1}. If the associated squared
distance is smaller than the current value of ρ2, then we proceed to the next com-
ponent. If the last component,i.e., u3N , has been reached, meaning that u is of full
dimension 3N, then u is a candidate solution. If u meets the switching constraint
(55) and if the distance is smaller than the current optimum, then we update the
incumbent optimal solution uopt and also the radius ρ .

The computational advantages of this algorithm stem from adopting the notion
of branch and bound [72,85]. Branching is done over the set of single-phase switch
positions {−1,0,1}; bounding is achieved by considering solutions only within the
sphere of current radius. If the distance d′ exceeds the radius, a certificate has been
found that the branch (and all its associated switching sequences) provides only so-
lutions worse than the incumbent optimum. Therefore, this branch can be pruned,
i.e., removed from further consideration without exploring it. During the optimiza-
tion procedure, whenever a better incumbent solution is found, the radius is reduced
and the sphere thus tightened, so that the set of candidate sequences is as small as
possible, but non-empty. The majority of the computational burden relates to the
computation of d′ via evaluating the terms H(i,1:i)u1:i. Thanks to (58), d′ can be
computed sequentially, by computing only the squared addition due to the ith com-
ponent of u. In particular, the sum of squares in d, accumulated over the layers 1 to
i−1, does not need to be recomputed.

4.4.2 Performance Evaluation

Whilst the main advantages of using MPC, when compared to other methods such as
optimized pulse patterns (OPPs), see e.g. [14], lie in the handling of transients, we
will focus on the steady-state behaviour. We consider a three-level voltage source
inverter driving an induction machine with a constant mechanical load. A 3.3kV
and 50Hz squirrel-cage induction machine rated at 2MVA with a total leakage in-
ductance of 0.25 pu is used as an example of a typical medium-voltage induction
machine. The dc-link voltage is Vdc = 5.2kV and assumed to be constant.

The key control performance criteria are the device switching frequency fsw and
the current THD ITHD. In addition, we will also investigate the empirical closed-
loop cost, Vcl, which in accordance with (54) captures the squared RMS current
error plus the weighted averaged and squared switching effort. In a first step, the
steady-state performance of MPC tracking the current reference is illustrated, using
the sampling interval h = 25 µs. The controller uses the cost function J with predic-
tion horizon N = 10 and weighting factor λu = 103 ·10−3. This results in an average
device switching frequency of fsw = 300 Hz, which is typical for medium-voltage
applications, and a current THD of ITHD = 5.03%. Fig. 10(a) illustrates three-phase
stator current waveforms along with their (dash-dotted) references over one fun-
damental period. The colours blue, green and red correspond to phase a, b and c,
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Fig. 3: Simulated waveforms for MPC with the horizon N = 10, the sampling interval Ts = 25 µs and the weight λu = 103 · 10−3

reduction of 42%. Both examples are indicated by the red arrows in Fig. 2. For high switching frequencies,

however, the performance benefit of OPPs compared to SVM becomes marginal. For fsw > 600Hz and pulse

numbers greater than 12, the difference is very small. Moreover, the optimization process to compute the OPP

becomes computationally very demanding. As a result, OPPs have only been computed up to pulse number 15,

or equivalently a switching frequency of 750Hz.

With the above as a background and recalling that OPPs exhibit to some extent optimal steady-state behaviour,

in the sequel, we will quantify the relative merits of MPC by normalizing the current THD to the one obtained

by OPPs.1 Specifically, we introduce

δTHD =
ITHD − ITHD,OPP

ITHD,OPP
, (2)

which is the relative current THD degradation, normalized to the current THD of OPPs and given in percent.

The normalization is done with regard to the polynomial approximation of the OPPs included in Fig. 2. For

switching frequencies beyond 750Hz, SVM is used as a baseline, since OPPs were computed only up to this

frequency.

III. PERFORMANCE EVALUATION

In this section, we adopt the framework described in the two preceding sections and present simulation

results on the performance and computational burden of direct MPC with horizons larger than one. We use the

modified sphere decoding algorithm described in [1] and also investigate a simple suboptimal method.

A. Trade-Offs for Sampling Interval Ts = 25 µs

In a first step, the steady-state performance of MPC tracking the current reference is illustrated, using the

sampling interval Ts = 25 µs. The controller uses the cost function J with prediction horizon N = 10 and

weighting factor λu = 103 · 10−3. This results in an average device switching frequency of fsw = 300Hz,

which is typical for medium-voltage applications, and a current THD of ITHD = 5.03%. Fig. 3(a) illustrates

three-phase stator current waveforms along with their (dash-dotted) references over one fundamental period.

The colours blue, green and red correspond to phase a, b and c, respectively. The spectrum of the stator current,

1Traditional closed-loop control using a modulator with OPPs has very low bandwidth, whereas MPC often achieves fast transient
response.
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which is typical for medium-voltage applications, and a current THD of ITHD = 5.03%. Fig. 3(a) illustrates

three-phase stator current waveforms along with their (dash-dotted) references over one fundamental period.

The colours blue, green and red correspond to phase a, b and c, respectively. The spectrum of the stator current,

1Traditional closed-loop control using a modulator with OPPs has very low bandwidth, whereas MPC often achieves fast transient
response.
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(c) Stator current spectrum

Fig. 10 Simulated waveforms for MPC with horizon N = 10 and the weight λu = 103 ·10−3

respectively. The spectrum of the stator current, computed with a Fourier transfor-
mation, is shown in Fig. 10(c). The three-phase switching sequence is depicted in
Fig. 10(b). As can be seen, unlike PWM, the switching pattern lacks symmetry and
repetitiveness, resulting in a non-discrete and predominantly flat spectrum. Never-
theless, non-tripled odd-order current harmonics such as the 5th, 7th, 11th, 13th and
19th harmonics are clearly identifiable.

Next, the influence of λu on the switching frequency, the current THD and the
cost is investigated. For each of the horizons N = 1, 3, 5 and 10 and for more than
1000 different values of λu, ranging between 0 and 0.5, steady-state simulations
were run. Focusing on switching frequencies between 100 Hz and 1 kHz, and cur-
rent THDs below 20%, the results are shown in Fig. 11, using a double logarithmic
scale. Each simulation corresponds to a data point. Polynomial functions are over-
laid, which approximate the individual data points. Figs. 11(a) and 11(b) suggest
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Fig. 5: Trade-off between the relative current THD and the switching frequency for MPC with the prediction horizons N = 1, 3, 10 and

the sampling interval Ts = 25 µs

computed with a Fourier transformation, is shown in Fig. 3(b). The three-phase switching sequence is depicted

in Fig. 3(c). As can be seen, unlike PWM, the switching pattern lacks symmetry and repetitiveness, resulting

in a non-discrete and predominantly flat spectrum. Nevertheless, non-triplen odd-order current harmonics such

as the 5th, 7th, 11th, 13th and 19th harmonics are clearly identifiable.

Next, the influence of λu on the switching frequency, the current THD and the cost is investigated. For

each of the horizons N = 1, 3, 5 and 10 and for more than 1000 different values of λu, ranging between 0

and 0.5, steady-state simulations were run. Focusing on switching frequencies between 100Hz and 1 kHz, and

current THDs below 20%, the results are shown in Fig. 4, using a double logarithmic scale. Each simulation

corresponds to a data point. Polynomial functions are overlaid, which approximate the individual data points.

Figs. 4(a) and 4(b) suggest that, for small prediction horizons, the relationship between λu and the performance

variables is approximately linear in double logarithmic scale; for larger values of N , the relationship is more

complicated, but still monotonic.

Fig. 4(c) illustrates the empirical closed-loop costs obtained, see (1). Clearly, the cost is reduced as the

prediction horizon is increased, suggesting the use of horizons larger than one. For example, with λu = 0.01

and N = 1, we have Jcl ≈ 50, whereas with horizon N = 3, the closed-loop cost can be reduced to Jcl ≈ 3!
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computed with a Fourier transformation, is shown in Fig. 3(b). The three-phase switching sequence is depicted

in Fig. 3(c). As can be seen, unlike PWM, the switching pattern lacks symmetry and repetitiveness, resulting

in a non-discrete and predominantly flat spectrum. Nevertheless, non-triplen odd-order current harmonics such

as the 5th, 7th, 11th, 13th and 19th harmonics are clearly identifiable.

Next, the influence of λu on the switching frequency, the current THD and the cost is investigated. For

each of the horizons N = 1, 3, 5 and 10 and for more than 1000 different values of λu, ranging between 0

and 0.5, steady-state simulations were run. Focusing on switching frequencies between 100Hz and 1 kHz, and

current THDs below 20%, the results are shown in Fig. 4, using a double logarithmic scale. Each simulation

corresponds to a data point. Polynomial functions are overlaid, which approximate the individual data points.

Figs. 4(a) and 4(b) suggest that, for small prediction horizons, the relationship between λu and the performance

variables is approximately linear in double logarithmic scale; for larger values of N , the relationship is more

complicated, but still monotonic.

Fig. 4(c) illustrates the empirical closed-loop costs obtained, see (1). Clearly, the cost is reduced as the

prediction horizon is increased, suggesting the use of horizons larger than one. For example, with λu = 0.01

and N = 1, we have Jcl ≈ 50, whereas with horizon N = 3, the closed-loop cost can be reduced to Jcl ≈ 3!
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computed with a Fourier transformation, is shown in Fig. 3(b). The three-phase switching sequence is depicted

in Fig. 3(c). As can be seen, unlike PWM, the switching pattern lacks symmetry and repetitiveness, resulting

in a non-discrete and predominantly flat spectrum. Nevertheless, non-triplen odd-order current harmonics such

as the 5th, 7th, 11th, 13th and 19th harmonics are clearly identifiable.

Next, the influence of λu on the switching frequency, the current THD and the cost is investigated. For

each of the horizons N = 1, 3, 5 and 10 and for more than 1000 different values of λu, ranging between 0

and 0.5, steady-state simulations were run. Focusing on switching frequencies between 100Hz and 1 kHz, and

current THDs below 20%, the results are shown in Fig. 4, using a double logarithmic scale. Each simulation

corresponds to a data point. Polynomial functions are overlaid, which approximate the individual data points.

Figs. 4(a) and 4(b) suggest that, for small prediction horizons, the relationship between λu and the performance

variables is approximately linear in double logarithmic scale; for larger values of N , the relationship is more

complicated, but still monotonic.

Fig. 4(c) illustrates the empirical closed-loop costs obtained, see (1). Clearly, the cost is reduced as the

prediction horizon is increased, suggesting the use of horizons larger than one. For example, with λu = 0.01

and N = 1, we have Jcl ≈ 50, whereas with horizon N = 3, the closed-loop cost can be reduced to Jcl ≈ 3!
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(c) Closed-loop cost

Fig. 11 Key performance criteria of MPC for the prediction horizons N = 1,3,5,10. The switching
frequency, current THD and closed-loop cost are shown as a function of the tuning parameter
λu, using a double logarithmic scaling. The individual simulations are indicated using dots, their
overall trend is approximated using dash-dotted polynomials

that, for small prediction horizons, the relationship between λu and the performance
variables is approximately linear in double logarithmic scale; for larger values of N,
the relationship is more complicated, but still monotonic. Fig. 11(c) illustrates the
empirical closed-loop costs obtained. Clearly, the cost is reduced as the prediction
horizon is increased, suggesting the use of horizons larger than one. For example,
with λu = 0.01 and N = 1, we have Jcl ≈ 50, whereas with horizon N = 3, the
closed-loop cost can be reduced to Jcl ≈ 3! We note that, for this value of λu, the
empirical closed-loop cost achieved is almost optimal.
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Prediction Sphere decoding Exhaustive search
horizon N avg. max. avg. max.

1 1.18 5 11.8 18
2 1.39 8 171 343
3 1.72 14 2350 4910
5 2.54 35 467’000 970’000
10 8.10 220

Table 1 Average and maximal number of switching sequences that need to be considered by the
sphere decoding and exhaustive search algorithms to obtain the optimal result, depending on the
length of the prediction horizon

4.4.3 Computational Burden

We next compare the computational burden of the algorithm presented in Section 4.4
with that of exhaustive search, see Section 4.3.3. The weight λu is tuned such that
approximately the same switching frequency of fsw = 300 Hz is obtained, irrespec-
tive of the chosen prediction horizon. As a measure of the computational burden,
the number of switching sequences, which are investigated by the algorithm at
each time-step when computing the optimum, is considered. Over multiple funda-
mental periods, the average as well as the maximal number of sequences is mon-
itored, as summarized in Table 1. The table shows that, as the prediction horizon
is increased, initially, the computational burden associated with Algorithm 1 grows
slowly, despite being exponential, whilst exhaustive search becomes computation-
ally intractable already for horizons of five and longer.

4.5 MPC for Switched Systems

Power electronic systems are hybrid systems, featuring different dynamics for dif-
ferent sets of binary switch positions. When considering currents, fluxes and volt-
ages, power electronic systems constitute switched linear systems. However, when
an electromagnetic torque, flux magnitude, or real and reactive power expression is
used, the system turns into a switched nonlinear system. The switched linear behav-
ior of power electronic systems can be directly captured by polyhedral piecewise
affine (PWA) systems as described below. PWA systems also allow the approxi-
mation of switched nonlinear behavior with an arbitrary accuracy. Alternatively,
solution approaches are available that directly address the switched nonlinear op-
timization problem, albeit in an approximate manner, as shown at the end of this
section.
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4.5.1 Piecewise Affine Systems

Polyhedral PWA systems [55, 117] are defined by partitioning the state-input space
into polyhedra and associating with each polyhedron an affine state-update and out-
put function

x(k+1) = Ai(k)x(k)+Bi(k)u(k)+ fi(k) (62a)

y(k) =Ci(k)x(k)+Di(k)u(k)+gi(k) (62b)

with i(k) such that [xT (k) uT (k)]T ∈Pi(k), (62c)

where x ∈ X, u ∈ U, y ∈ Y denote the state, input and output vectors, respectively.
The state vector x = [xT

r xT
b ]

T encompasses, in general, real-valued components xr ∈
Xr ⊆Rnr as well as binary components xb ∈Xb ⊆ {0,1}nb . The same applies to the
inputs and outputs.

The polyhedra Pi(k) define a set of polyhedra {Pi}i∈I on X×U, and the real
matrices Ai(k), Bi(k), Ci(k), Di(k) and real vectors fi(k), gi(k) with i(k) ∈ I, I finite, are
constant and have suitable dimensions. We refer to i(k) as the mode of the system,
which is associated with a binary state and a binary input.

PWA systems are so called linear hybrid systems. These are heterogenous sys-
tems that incorporate both continuous-valued components governed by difference
equations, as well as discrete-valued components, such as finite state machines, if-
then-else rules and on/off switches. PWA systems switch between different operat-
ing modes, with each mode being governed by a discrete-time affine dynamical law.
Mode transitions are triggered by inputs or states crossing specific affine thresholds.
PWA constraints can be imposed on states and inputs.

Modelling complex hybrid systems in PWA form is, in general, a tedious and
highly non-trivial task. To facilitate the modelling process, the HYbrid Systems
DEscription Language (HYSDEL) has been developed, which allows the designer
to describe a hybrid system on a textual basis [123]. The HYSDEL modelling lan-
guage is an integral part of the MPT toolbox. Tools, such as the mode enumeration
algorithm, are available to translate HYSDEL code into PWA form [49].

Within the class of linear hybrid systems, a number of modelling frameworks
are available, which are equivalent to each other [55]. Apart from PWA systems,
another major representative is the mixed logical dynamical (MLD) framework [8].
The MLD framework extends linear discrete-time systems by augmenting the state
and output equations by auxiliary real and binary variables and a mixed-integer
linear inequality constraint. MLD models are very suitable for online MPC, since
the equality and inequality constraints of the MLD model can be easily included
in the optimization problem. Depending on whether the cost function is linear or
quadratic, the optimization problem is either a mixed-integer linear or quadratic
program (MILP or MIQP).
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The State-Feedback Control Law

PWA models are the starting point to derive off-line the state-feedback control
law [11]. Indeed, the notion of multi-parametric programming can be extended to
PWA systems. Specifically, the formulation of a linear cost function subject to a
PWA model gives rise to a multi-parametric mixed-integer linear program (mp-
MILP). As proposed in [11,12], the state-feedback control law can be computed, by
augmenting mp-LP with dynamic programming, i.e. by moving backwards in time
using mp-LP.

Theorem 4. The solution to mp-MILP is a state-feedback control law uopt(k) that is
a piecewise affine function of the state vector x(k) defined on a polyhedral partition
of the feasible state-space X.

Theorem 5. The value function V opt(x(k)) = V (x(k),uopt(k)) of the mp-MILP is
convex and piecewise affine in the state.

The related proofs and additional details can be found in [26] for mp-MILPs,
and in [11, 25] for mp-MIQPs. Furthermore, [12] provides an in-depth analysis and
description of multi-parametric programming for MILPs and MIQPs.

Application Examples

Consider the direct torque control (DTC) problem of ac machines, first addressed
in [120]. In DTC, the electromagnetic torque T and the stator flux magnitude Ψ are
directly controlled without using a modulator. A suitable voltage vector is selected
that keeps the torque and flux magnitude within upper and lower bounds, which
are imposed around their references. For a neutral point (NP) clamped three-level
inverter, also the NP potential is to be balanced around zero. By approximating
the nonlinearities relating to the torque, flux magnitude, machine rotation and NP
potential by PWA functions, the DTC problem can be cast in the MLD framework
using HYSDEL, as shown in [94], and then translated into PWA form.

Let Ψmax and Ψmin denote the upper and lower flux magnitude bounds, respec-
tively, and Ψ ∗ its reference. We introduce the non-negative term

εΨ (`) =





qF(Ψ(`)−Ψmax) if Ψ(`)≥Ψmax
qF(Ψmin−Ψ(`)) if Ψ(`)≤Ψmin
q f |Ψ(`)−Ψ ∗(`)| else

(63)

that uses soft constraints with the weight qF to heavily penalize violations of the
bounds. A small penalty q f , with q f � qF , is added to penalize deviations from the
reference. Similarly, for the torque and the NP potential, the terms εT and ευ can be
defined. The switching transitions are penalized by

εu(`) = qu(`)‖u(`)−u(`−1)‖1 , (64)
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Fig. 1 The explicit state-feedback control law for the DTC drive with a two-level inverter for
u(k − 1) = [+1 − 1 − 1]T and a given angular position of the dq reference frame, where the
colours correspond to the unique switch positions

The state vector includes the stator flux components in a rotating dq reference frame,
the angular position of the reference frame and the NP potential. Minimizing (4)
subject to the integer constraints on the switch positions and the PWA model re-
sults in an MILP, which can be solved off-line by computing the state-feedback
control [28]. A move blocking strategy [7] reduces the complexity of the solution,
albeit it remains high. Considering a two-level inverter for the ease of visualization,
Fig. 1 depicts the state-feedback control law in the stator flux plane for a specific
angular position and for u(k − 1) = [+1 − 1 − 1]T . The colours refer to distinct
switch positions u(k), as explained in detail in [28]. In particular, the large (yellow)
region refers to u(k) = u(k − 1). In this region, to maintain the controlled variables
within their bounds, switching is not required and thus avoided.

Recognizing that the DTC problem of keeping the torque and stator flux magni-
tude within given bounds strongly relates to feasibility, by computing a semi-explicit
control law a controller of lower complexity can be derived [16].

Similarly, also dc-dc converters can be modelled as PWA systems, and an MPC
problem with a linear cost function can be formulated for the buck converter [18].
A Kalman filter can be used to account for load changes, and closed-loop stability
can be proven by deriving a piecewise quadratic Lyapunov function [19]. The state-
feedback control law can be easily computed and implemented on a DSP to obtain
experimental results [17]. Similar results are available for boost converters [1, 26].

Fig. 12 The explicit state-feedback control law for the DTC drive with a two-level inverter for
u(k− 1) = [+1 − 1 − 1]T and a given angular position of the dq reference frame, where the
colours correspond to the unique switch positions

where q f < qu(`)< qF is a time-varying weight that decays exponentially within the
prediction horizon, providing an incentive to further reduce the switching frequency
by postponing switching until at least one soft constraint is about to be violated.

Aggregating these terms results in the piecewise linear cost function

V (x(k),u(k),u(k−1)) =
k+N−1

∑
`=k
‖
[
ε ′T (`+1) ε ′

Ψ
(`+1) ε ′υ(`+1) ε ′u(`)]

]T ‖1 .

(65)
The state vector includes the stator flux components in a rotating dq reference frame,
the angular position of the reference frame and the NP potential. Minimizing (65)
subject to the integer constraints on the switch positions and the PWA model re-
sults in an MILP, which can be solved off-line by computing the state-feedback
control [95]. A move blocking strategy [16] reduces the complexity of the solution,
albeit it remains high. Considering a two-level inverter for the ease of visualization,
Fig. 12 depicts the state-feedback control law in the stator flux plane for a specific
angular position and for u(k− 1) = [+1 − 1 − 1]T . The colours refer to distinct
switch positions u(k), as explained in detail in [95]. In particular, the large (yellow)
region refers to u(k) = u(k−1). In this region, to maintain the controlled variables
within their bounds, switching is not required and thus avoided.
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Recognizing that the DTC problem of keeping the torque and stator flux magni-
tude within given bounds strongly relates to feasibility, by computing a semi-explicit
control law a controller of lower complexity can be derived [40].

Similarly, also dc-dc converters can be modelled as PWA systems, and an MPC
problem with a linear cost function can be formulated for the buck converter [42].
A Kalman filter can be used to account for load changes, and closed-loop stability
can be proven by deriving a piecewise quadratic Lyapunov function [43]. The state-
feedback control law can be easily computed and implemented on a DSP to obtain
experimental results [41]. Similar results are available for boost converters [6, 79].

4.5.2 Switched Nonlinear Systems

Solving MPC problems involving switched nonlinear systems in real-time is a
highly challenging task, since this amounts to solving a mixed-integer nonlinear
program. Computing an explicit solution for such problems remains largely an open
problem.

Optimization Problem

Nevertheless, for a subclass of MPC problems with switched nonlinear systems, an
optimization algorithm can be constructed, which features a computational com-
plexity that is suitable for implementation, albeit it solves the MPC problem only
in an approximative manner. More specifically, consider a nonlinear system with
integer inputs, whose output variables are to be regulated along given trajectories,
by keeping the outputs within upper and lower bounds around their references. The
second control objective is to minimize the switching effort, i.e. the switching fre-
quency or the switching losses.

The (short-term) switching frequency is captured by the objective function

V (x(k),u(k),u(k−1)) =
1
N

k+N−1

∑
`=k
||∆u′(`)||1 , (66)

which represents the sum of the switching transitions (number of commutations)
over the prediction horizon divided by the length of the horizon. Alternatively, the
switching (power) losses can be directly represented through

V (x(k),u(k),u(k−1)) =
1
N

k+N−1

∑
`=k

Esw(x′(`),u′(`),u′(`−1)) , (67)

which is the sum of the instantaneous switching (energy) losses Esw over the pre-
diction horizon9.

9 Note that, Esw is a function of the inverter current i, which in turn is either a state variable or a
linear combination of the state vector x.
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Fig. 2 Linear extrapolation of the torque and stator flux trajectories using the samples at time-steps
k and k + 1. For each of the three switch positions u(k) the trajectories are extrapolated until one
of them hits a bound

When using inductor currents, fluxes or capacitor voltages as states, the state-update
equation is typically linear in power electronic systems, while the outputs y, such as
the torque, stator flux magnitude and the NP potential, are a nonlinear function g(·)
of the state vector. The outputs are to be maintained within their bounds, described
by the set Y or, if a bound is violated, brought closer to this set at every time-step
within the horizon.

An Algorithm based on Enumeration and Extrapolation

Attempting to solve the optimization problem (7) for a long horizon, say 80, leads
for a three-level inverter to as many possible switching sequences as there are
atoms in the observable universe, which is clearly a futile endeavour. By consid-
ering switching transitions only when one of the output variables is close to one
of its bounds, the number of switching sequences to be considered can be greatly
reduced. Depending on the horizon length, a few tens to a few thousand sequences
are to be investigated. Since the switching effort is to be minimized, this heuristic
turns out to have only a minor effect on the solution2.

Between switching instants, the concept of extrapolation is used, which is similar
to an adaptive move blocking scheme. The notion of linear extrapolation is high-
lighted in Fig. 2, where two output variables are considered along with their—in
this case—constant bounds. At time-step k, the model (7b)–(7c) is used to compute
y(k + 1) for three different switching inputs u(k). For each u(k), based on y(k) and
y(k+1), extrapolation is used to compute the number of steps a switch position can

2 Indeed, as shown in [12], optimality is only mildly affected, which is evidenced by the fact
that the closed-loop performance in terms of the current THD and switching losses is, at least for
very long prediction horizons, effectively equal to the one obtained by offline computed optimized
pulse patterns [5]. The latter are widely considered to provide at steady-state operating conditions
the upper bound in terms of achievable performance.

Fig. 13 Linear extrapolation of the torque and stator flux trajectories using the samples at time-
steps k and k+1. For each of the three switch positions u(k) the trajectories are extrapolated until
one of them hits a bound

For a drive system as in the previous section, for example, the optimization prob-
lem can be stated as

uopt(k) = argmin
u(k)

V (x(k),u(k),u(k−1)) (68a)

s. t. x′(`+1) = Ax′(`)+Bu′(`) (68b)
y′(`+1) = g(x′(`+1)) (68c)
y′(`+1) ∈ Y or ε

′
y(`+1)< ε

′
y(`) (68d)

u′(`) ∈ U , ||∆u′(`)||∞ ≤ 1 (68e)
∀`= k, . . . ,k+N−1 , (68f)

When using inductor currents, fluxes or capacitor voltages as states, the state-update
equation is typically linear in power electronic systems, while the outputs y, such as
the torque, stator flux magnitude and the NP potential, are a nonlinear function g(·)
of the state vector. The outputs are to be maintained within their bounds, described
by the set Y or, if a bound is violated, brought closer to this set at every time-step
within the horizon.

An Algorithm based on Enumeration and Extrapolation

Attempting to solve the optimization problem (68) for a long horizon, say 80, leads
for a three-level inverter to as many possible switching sequences as there are
atoms in the observable universe, which is clearly a futile endeavour. By consid-
ering switching transitions only when one of the output variables is close to one of
its bounds, the number of switching sequences to be considered can be greatly re-
duced. Depending on the horizon length, a few tens to a few thousand sequences are
to be investigated. Since the switching effort is to be minimized, this heuristic turns
out to have only a minor effect on the solution. Indeed, as shown in [35], optimality
is only mildly affected, which is evidenced by the fact that the closed-loop perfor-
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mance in terms of the current THD and switching losses is, at least for very long
prediction horizons, effectively equal to the one obtained by offline computed opti-
mized pulse patterns [14]. The latter are widely considered to provide steady-state
operating conditions that upper bound achievable performance.

Between switching instants, the concept of extrapolation is used, which is similar
to an adaptive move blocking scheme. The notion of linear extrapolation is high-
lighted in Fig. 13, where two output variables are considered along with their—in
this case—constant bounds. At time-step k, the model (68b)–(68c) is used to com-
pute y(k+1) for three different switching inputs u(k). For each u(k), based on y(k)
and y(k + 1), extrapolation is used to compute the number of steps a switch po-
sition can be applied to the inverter before a bound is violated. This operation is
computationally very cheap.

Using enumeration of all possible switching transitions, an algorithm using ex-
trapolation can be easily constructed, which relies on three key concepts:

1. The optimization problem is formulated in an open, rather than in a closed, form.
The set of admissible switching sequences is constructed sequentially, and the
corresponding output trajectories are computed forward in time.

2. In between of the switching events, the output trajectories are either computed
using a model of the drive system or by extrapolating them. Typically, quadratic
extrapolation is used, even though linear extrapolation is often sufficiently accu-
rate.

3. The set of admissible switching sequences is controlled by the so-called switch-
ing horizon, which is composed of the elements ”S” and ”E” that stand for switch
and extrapolate (or more generally extend), respectively.

It is important to distinguish between the switching horizon (number of switching
instants within the horizon, i.e., the degrees of freedom) and the prediction horizon
(number of time steps MPC looks into the future). Between the switching instants,
the switch positions are frozen and the drive behavior is extrapolated until a bound
is hit. The concept of extrapolation gives rise to long prediction horizons (typically,
30–200 time steps), while the switching horizon is short (usually one to three). Note
that the prediction horizon directly relates to the steady-state performance, which,
in this case, is the ratio between the switching effort and the current THD. The
switching horizon, on the other hand, is proportional to the computational burden.

For an in-depth description and analysis of this algorithm, the reader is referred
to [44] and [33]. It’s roots can be traced back to the 1980s [115]. Branch and
bound techniques can be used to reduce the computation time by an order of mag-
nitude [36]. Smart extrapolation methods can be used to increase the accuracy of
the predictions [126]. Infeasible states, so called deadlocks, can be largely avoided,
by adding terminal weights and terminal constraints [15]. A deadlock resolution
strategy was proposed in [96]. Closed-loop and robust stability can be shown [38].
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Application Examples

The algorithm described above was first proposed as model predictive direct torque
control (MPDTC) to address the DTC problem of medium-voltage induction motor
drives. During the past few years, MPDTC has been extended into the model pre-
dictive direct control family (MPDxC) with x∈ {T,C,P,B}, representing the torque,
current, power and balancing control problem, respectively.

More specifically, model predictive direct torque (MPDTC) was proposed in
2005 [32, 44] as a successor of DTC, tested on a 2.5 MVA drive in 2007 [96] and
generalized in 2009 to arbitrary switching horizons [33]. At steady-state operating
conditions, MPDTC provides switching losses and current distortions similar to the
ones typically achieved by optimized pulse patterns [14], while during transients,
its dynamic response is as fast as the one of DTC [35]. Model predictive direct
current control (MPDCC) is a derivative of MPDTC [37], while model predictive
direct power control (MPDPC) is the adaptation of MPDTC to grid-connected con-
verters [47, 115]. Model predictive direct balancing control (MPDBC) is the most
recent member of the family, being used to control the internal voltages of multi-
level converters [65].

A control approach similar to MPDTC can be also applied to dc-dc boost convert-
ers. As shown in [61], the voltage control problem can be tackled with one control
loop, by adopting the concepts of enumeration, move blocking as well as penalties
on the tracking error and switching effort.

5 Conclusions

In this chapter, basic aspects and methods underlying model predictive control have
been discussed. To clarify the concepts, horizon-one controllers have been analyzed
in detail, including a derivation of the optimal solution and establishing relationships
to dead-beat controllers. For MPC formulations with longer horizons, we have pre-
sented optimization algorithms, which allow one to implement long-horizon MPC
in practical applications in power electronics and drives.

The presentation in this chapter has been kept at a basic system-theoretic level
and illustrated on simple converter topologies. Some configurations like, e.g., Active-
Front-End converters [99], require a more careful consideration of both control the-
oretic tools and also physical system knowledge for the design of high-performance
model predictive controllers. Subsequent chapters in this book will serve to illustrate
the synergy required.
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