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Abstract—The computational complexity of Model Predictive
Pulse Pattern Control (MP3C) and its real-time requirements
have so far limited the deployment of this optimisation-based
control method for power electronic systems. In this paper, we
present an FPGA implementation, which uses the Fast Gradient
Method for solving the quadratic program underlying MP3C.
The proposed method can solve the control problem in less than
the required 25 µs with sufficient accuracy.

I. INTRODUCTION

During the past decade, model predictive control (MPC) [1],

[2] has received significant attention by the power electronics

community [3]. Despite the ever increasing computational

power available today, MPC is still widely considered to

be a control method with too high a computational burden,

precluding its applicability to power electronics products. As

a consequence, experimental results have been reported so

far mostly for simplistic MPC schemes, such as schemes

with a prediction horizon of one step [3]. Longer prediction

horizons—as shown in simulations—provide significant per-

formance improvements at steady-state operating conditions,

but experimental results are scarce [4].

One promising approach to achieve long prediction horizons

is to pre-compute offline an optimised pulse pattern (OPP) [5]

and to modify it online to achieve fast closed-loop control,

adopting the notion of an event-based horizon. We refer to this

concept as model predictive pulse pattern control (MP3C) [6].

MP3C has been proposed for controlling induction machines

in a variable speed drive setting, by regulating the machine’s

stator flux vector along an optimal flux trajectory, which is

the integral of the OPP. MP3C uses prediction horizons of

up to a sixth of the fundamental period and manipulates the

time instants of the switching transitions within this horizon,

with the objective to eliminate the stator flux error. This

formulation results in a mathematical optimisation problem,

a so called quadratic program (QP), which needs to be solved

in real-time. So far, only a simplified version of MP3C based

on a deadbeat control approach has been implemented and

successfully tested on a 1.1 MVA 5-level medium-voltage

inverter drive system [7].

This paper proposes a computational method that solves the

QP underlying MP3C in less than 25 µs, thus enabling the use

of the quadratic programming version of MP3C for industrial

medium-voltage drives. More specifically, we employ the Fast

Gradient Method (FGM) [8] for solving the QP. The potential

of this method for solving input-constrained linear quadratic

MPC problems was only recently recognised by Richter et

al. in [9]. The main benefits of the FGM are its conceptual

simplicity and its low execution times. The recent trend of

employing Field Programmable Gate Arrays (FPGAs) for

high-speed realisations of MPC [10], [11] inspired the authors

of this paper to propose an FPGA implementation of the

FGM for solving MPC problems with box-constrained inputs

in [12]. In the paper at hand, we present an adaptation of the

aforementioned implementation to the specific properties and

requirements of MP3C.

II. PROBLEM DEFINITION

A. MP3C problem and principle

Closed-loop control of an electrical machine based on OPPs

can be achieved by controlling the stator flux vector along

its reference trajectory [13]. The magnitude of the stator flux

trajectory determines the magnetisation current of the machine,

while the angle between the stator and the rotor flux linkage

vectors determines the electromagnetic torque. At a given time

instant, the flux error vector

ψs,err = ψ∗

s − ψs

is the difference between the reference flux vector ψ∗

s and the

actual stator flux vector of the machine ψs. The flux vectors

and the error vector are visualised in Fig. 1, in which ψr

denotes the rotor flux vector. The reference of the stator flux

trajectory is shown as the dashed (blue) piecewise linear line.

The flux error can be addressed by manipulating the switch-

ing instants of the pulse pattern. As an example, consider

phase a. With the stator flux being the integral of the voltage

applied to the stator windings of the machine, shifting the

switching transition by the time ∆ta modifies the stator flux

in phase a by

∆ψsa(∆ta) = −Vdc

2
∆ua∆ta ,
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Fig. 1. Stator flux vector ψs, reference stator flux vector ψ∗

s
, stator flux error

vector ψs,err and rotor flux vector ψr in stationary orthogonal coordinates

where Vdc refers to the dc-link voltage of the inverter, and

∆ua = ua(t
∗

a)− ua(t
∗

a − dt) denotes the switching transition

in phase a, with ∆ua ∈ {−1, 1}. The nominal switching time

is given by t∗a and dt is an infinitesimally small time step.

An example is shown in Fig. 2. Delaying the negative

switching transition ∆ua = −1 by ∆ta increases the volt-

seconds and thus the stator flux in this phase. Advancing the

switching event has the opposite effect, i.e. it decreases the

flux amplitude in the direction of phase a. The same holds for

phases b and c.

Optimality, i.e. minimal total harmonic distortion (THD) of

the stator currents, is achieved when accurately tracking the

reference stator flux trajectory. Optimality is thus defined in

terms of the reference flux trajectory rather than in terms of

the steady-state voltage waveform of the OPP. As a result,

the control objective is to regulate the stator flux vector along

its reference trajectory, by modifying the switching instants

of the OPP within the prediction horizon as little as possible.

This results in fast closed-loop control. We refer to this control

concept as model predictive pulse pattern control (MP3C).

B. Quadratic programming problem

The MP3C problem is formulated in stationary orthogonal

coordinates, with the α and β axes. The stator flux error

vector at the discrete time-step k, ψs,err(k), is the difference

between the stator flux reference and the estimated stator

flux. In phase a, t∗ai, i = 1, . . . , N , denote the nominal

switching times of the switching transitions, tai the corrected

times and ∆tai = tai − t∗ai the correction in time. The

switching times for phases b and c are defined accordingly.

The switching time corrections can be aggregated in the vector

∆t = [∆ta1 . . .∆taN ∆tb1 . . .∆tbN ∆tc1 . . .∆tcN ]T . The
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Fig. 2. Delaying the negative switching transition ∆ua = −1 in phase a
by ∆ta, with regard to the nominal switching time t∗

a
, increases the stator

flux component in this phase by 0.5Vdc∆ta

vectors t and t∗ are defined in an analogous manner. By

manipulating the switching times, a stator flux correction

vector ψs,corr results, which is a linear function of ∆t, the

dc-link voltage and the switching transitions.

MP3C eliminates the stator flux error by adding an ap-

propriate flux correction vector ψs,corr, while modifying the

switching times as little as possible. The latter can be achieved

by adding a small penalty Q on ∆t. The switching times are

linearly constrained by the neighbouring switching times, see

Fig. 3.

Using the notation and variables introduced above, the

control problem can be recast as the optimisation problem

min
∆t

||ψs,err − ψs,corr(∆t)||22 +∆tTQ∆t (1a)

s.t. 0 ≤ ta1 ≤ ta2 ≤ · · · ≤ taN ≤ t∗a(N+1) (1b)

0 ≤ tb1 ≤ tb2 ≤ · · · ≤ tbN ≤ t∗b(N+1) (1c)

0 ≤ tc1 ≤ tc2 ≤ · · · ≤ tcN ≤ t∗c(N+1) . (1d)

The derivation of (1) is explained in detail in [6].

The stator flux correction in the orthogonal coordinate

system can be written as

ψs,corr(∆t) = −V ∆t , (2)

with the voltage matrix defined by (3) at the top of this page.

With (2) the objective function (1a) can be rewritten as

J(∆t) = (ψs,err + V∆t)T (ψs,err + V∆t) + ∆tTQ∆t ,

which can be further simplified, leading to the optimisation

problem

min
∆t

∆tT (V TV +Q)∆t+ 2ψT
s,errV∆t+ ψT

s,errψs,err (4a)

s.t. (1b) − (1d) . (4b)

After dropping the constant term ψT
s,errψs,err, (4) can be

posed as a quadratic optimisation problem in the generic form

min
z

f(z) := zTHz + gT z (5a)

s.t. z + t∗ ∈ Z, (5b)
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Fig. 3. Model predictive pulse pattern control (MP3C) problem for a three-
phase three-level pulse pattern. The lower and upper bounds for the nominal
switching instants are depicted by arrows

where z = ∆t ∈ R
3N , H = V TV + Q and g = 2V Tψs,err.

The constraint set Z corresponds to the set described by the

inequalities (1b)–(1d). Note that since the matrix V depends

on the future switching transitions of the pre-computed pulse

pattern, H and g are time-varying and have to be recomputed

at every sampling instant.

C. Fast gradient method

The fast gradient method (FGM) [8, Section 2.2.4] is

restated here as Algorithm 1. The gradient ∇f(z) of the

Algorithm 1 Fast gradient method for constrained minimisa-

tion

Require: Initial point z0 ∈ Z , y0 = z0, number of

iterations imax, Lipschitz constant L, scaling factors

β0, . . . , βimax−1

1: for i = 0 : imax − 1 do

2: v = yi − 1
L
∇f(yi) = yi − 1

L
(2Hyi + g) =Myi + g̃

3: zi+1 = ΠZ(v)
4: yi+1 = zi+1 + βi(zi+1 − zi)
5: end for

quadratic objective function (5a) is given by 2Hz + g, the

operator ΠZ in line 3 of Algorithm 1 denotes the orthogonal

projection on the constraint set Z . L denotes the Lipschitz

constant of the gradient of the objective function (or an upper

bound of it). The scaling factors βi depend on L and a lower

bound on the eigenvalues of H , which are computed according

to [8]. Since they can be pre-computed, the algorithm is com-

pletely division-free (under the assumption that no divisions

are required in the projection step) and hence amenable for a

fast implementation in hardware.

III. SOLVING MP3C WITH THE FAST GRADIENT METHOD

A key requirement to achieve fast execution times with

the FGM is an efficient projection on the constraint set [8].

The feasible set associated with the defining inequalities (1b)–

(1d) is usually referred to as a (truncated) monotone order

cone. Although there exist efficient algorithms for performing

a projection on such a set in higher dimensions (see, e.g.

[14]), we choose a different approach: Richter et al. suggested

already in their seminal paper [9] to consider multi-parametric

programming [15] for computing the projection on such a

set. The orthogonal projection of a point t̂ ∈ R
3N onto the

polyhedral constraint set can be posed as the multi-parametric

quadratic program

ΠZ(t̂) := argmin
t

||t̂− t||22
s.t. (1b) − (1d),

with parameters being t̂, t∗
a(N+1), t

∗

b(N+1) and t∗
c(N+1).

Multi-parametric programming computes the solution of

an optimisation problem as a function of its parameters. It

was shown in [15] that the optimiser of a multi-parametric

quadratic program (MP-QP) is a continuous piecewise-affine

function defined over a polyhedral partition of the parameter

space. Hence, the projection may be obtained by evaluating

t =















E1p+ e1 if F1p ≤ f1,
...

Ekp+ ek if Fkp ≤ fk,

(6)

for some matrices Ei, Fi and vectors ei and fi and p denoting

the vector of parameters.

The parametric solution (6) can be pre-computed off-line

using, for example, the Multi-Parametric Toolbox (MPT) for

MATLAB [16]. The on-line problem reduces to identifying

the polyhedron in which the parameter resides and then

to evaluate the associated affine function. One of the most

efficient approaches for solving this so-called point location

problem is based on a pre-computed binary search tree [17]:

the method employs the hyperplanes defining the polyhedral

regions to build a search tree whose leaves identify univocally

the affine map that describes the optimiser. At each parent

node of the tree a hyperplane is evaluated and depending on

which side the parameter vector resides, the corresponding

child node is explored. Finally, each leave node is associated

with one of the affine maps Eip+ ei.

The main limitation of multi-parametric programming is

the complexity of the solution, which—in the worst case—

grows exponentially with the number of parameters [15].

Fortunately, in the case of MP3C, already a small number of

transitions (e.g. three) per phase yield an acceptable control

performance [6]. Furthermore, the monotonicity constraints

on the switching times of different phases are decoupled.

Consequently, the multi-parametric solution of the projection

can be computed separately for each phase, and it comprises

N + 1 parameters.



The dimension of the problem can be further reduced by

one using a result from Németh et al. who proved in [14]

that the orthogonal projection on a truncated monotone order

cone can be obtained by first performing a projection on the

monotone order cone {t ∈ R
N | t1 ≤ t2 ≤ · · · ≤ tN} and

subsequently setting each coordinate that violates the bounds

of the truncated cone to the respective limit.

IV. FPGA IMPLEMENTATION

In this section we describe the proposed FPGA implemen-

tation of the FGM. It is based on the architecture presented

in [12], which we tailored to the particularities of the MP3C

problem. The FGM system receives the error in the stator

flux vector and the switching times of the pre-computed pulse

pattern as inputs, executes the necessary calculations and

returns the modified switching times to the modulator.

We employ fixed-point arithmetic because of several rea-

sons: Firstly, if the dynamic range of the numbers is small,

processing fixed-point numbers is faster, needs less energy

and less area due to the reduced data word size in comparison

to floating-point arithmetic [18]. Experimental inspection of

the numbers arising during the execution of Algorithm 1 for

the MP3C problem confirmed their small dynamic range. Sec-

ondly, the projection onto the bounded constraint set ensures

that all numbers arising during the execution remain bounded

and hence overflows can be easily avoided. Thirdly, fixed-

point numbers have the advantage to be processed mostly

like integer numbers. Multiplication operations can be mapped

efficiently to simple DSP blocks available even on low-cost

FPGAs.

A. Description of FPGA units

The block diagram of the proposed architecture is shown in

Fig. 4. In the following, we provide a high-level description

of the units involved. For more details, we refer the reader

to [12] and [19].

1) Finite state machine: The finite state machine generates

the necessary sequence of control signals to make all other

units work together.

2) Matrix units: In a first step, the Matrix Units (MU)

compute the matrices M = I− 2
L
(V TV +Q) and K = − 2

L
V .

These matrices need to be recomputed at each sampling

instant, since V depends on the upcoming switching transitions

and is thus time-varying. Since a transition is either positive or

negative, the construction of the matrices requires only little

arithmetic logic in the FPGA. The matrices are then delivered

to the matrix-vector multiplication units (see below).

3) Matrix-vector multiplication unit: The Matrix-Vector

Multiplication (MVM) units are responsible for the compu-

tation of the vector g̃ = KΨs,err and for the gradient descent

step Myi + g̃ in line 2 of Algorithm 1. At the beginning of

each sampling instant, the MVM units are used to update g̃.

Afterwards they compute the gradient steps required in each

iteration of the algorithm.

The structure of a single MVM unit is basically an ar-

ray of 3N DSP-like components (Multiply-Accumulate Units

(MAC)), one for each row of the matrix. At each cycle a new

column of the matrix and the corresponding element of the

input vector are fed to the unit, the vector-scalar multiplication

is computed and the result accumulated in a register.

Since in MP3C the size of the involved column vectors (and

hence the number of required MAC resources) is relatively

small compared to the hundreds of hardware DSP blocks

available in today’s FPGAs, our design allows to use several

MVM units in parallel to further accelerate the matrix vector

multiplication.

4) Adder tree: The adder tree takes as input the interme-

diate results of the MVM units and sums them up to obtain

the full matrix vector product. Moreover, the adder tree is

used to add the nominal switching times t∗ to obtain the

corrected switching times t needed for the projection unit.

With an increasing number of MVM units, pipeline stages

must be inserted to avoid the adder tree becoming the critical

path, which implies more clock cycles added to the whole

computation time. For this reason, there is an architecture

trade-off between the speed-up gained via the parallelism in

the number of MVM units and the increased delay contributed

by the adder tree.

5) Buffer unit: The buffer unit marks the limit between

heavy parallelism (MVM) and serial processing pipeline (pro-

jection and beta units). Its architecture consists of a shift

register that takes the output vector of the adder tree as an

input and feeds its elements to the post-processing pipeline.

6) Projection unit: The projection unit executes line 3 of

Algorithm 1 and comprises three stages: In the first stage,

the decision and leave nodes of the binary search tree are

computed in parallel. The second stage is used for multiplexing

and scaling the results. In the third stage, upper and lower

bounds of the constraints are applied and t∗ is subtracted to

obtain again the pulse correction times ∆t.
7) Beta unit: Finally the beta unit is responsible for per-

forming line 4 of Algorithm 1. The beta-corrected optimisation

variables are fed back to the MVM, where the next iteration

of the FGM is started.

V. SIMULATION RESULTS

We evaluated the accuracy and computational performance

of the FGM and its fixed-point arithmetic implementation in

VHDL through simulations. For this, we used a benchmark

example, which comprises 2000 instances of the MP3C QP for

N = 3 switching instants per phase. We employed MATLAB’s

QP solver quadprog to compute reference solutions, which

we used to compare our results (obtained from the FGM)

against.

Embedded MATLAB was used as hardware programming

language because it benefits directly from MATLAB’s ad-

vanced simulation, testing and debugging capabilities. Each

unit of the system is realised as a user-defined function block

in Simulink and initiated from MATLAB scripts. Ultimately,

we employed MathWorks’ HDL Coder for translating the

Embedded MATLAB functions into VHDL. The FGM im-

plementation was compiled for the Altera Cyclone V 5CEA7
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using the software tool Quartus II 12.0sp2 Web Edition. The

FPGA frequency estimated by the tool was 99 MHz for the

design comprising 9 MVM units. In total 2411 cycles are

required for 300 FGM iterations which amount to an execution

time of 24.4 µs.

In a first experiment, we assessed the effectiveness of the

FGM for solving the MP3C problem in comparison to the

active-set method of quadprog. Fig. 5 compares the absolute

error of the objective values of 500 instances for a varying

number of FGM iterations using double precision floating

point arithmetic. For 300 iterations, the absolute error in the

objective values is less then 10−8 in all problem instances. The

worst-case error in the switching time correction ∆t is shown

in Fig. 6. With 300 iterations the error in time is less than

10 µs. In the MP3C problem, a high quality of the solution

with respect to optimality is needed to ensure a sufficiently

small error in the optimiser. This is due to the relatively small

weight Q on the time modifications to give high priority to the

correction of the stator flux error. Consequently, a suboptimal

distribution of the volt-second corrections among the switching

times has only a minor impact on the objective value.

Finally, Fig. 7 shows the results obtained with our hardware

implementation using fixed-point arithmetic (18 and 27 bits)

and compares them with the results obtained using double

precision floating point numbers. We used two bits for the

integer part which are enough to guarantee that no overflow

occurs. The simulation results suggest that for 300 iterations

27 bits are sufficient to obtain solutions of a quality similar to

the one obtained with double precision.

VI. CONCLUSIONS

Using an event-based horizon, MP3C is a model predictive

control method for power electronics, which facilitates long

prediction horizons and yields a superior steady-state per-

formance. The mathematical optimisation problem underlying

MP3C can be recast as a quadratic program (QP) with input

constraints, which needs to be solved in real-time—typically

every 25 µs. Due to its conceptual simplicity, fast execution
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300 (green) FGM iterations using double precision arithmetic.
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Fig. 6. Maximum errors in the switching times ||∆t||∞ for 100 (red), 200
(blue) and 300 (green) FGM iterations using double precision arithmetic.
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using double precision (red) and 27 bit (blue) and 18 bit (green) fixed-point
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times and avoidance of divisions, the fast gradient method

(FGM) constitutes a promising approach to solve the QP. As

shown in this paper, the FGM can be implemented on an

Cyclone V FPGA, solving the QP with a sufficient accuracy

in less than the required 25 µs. This enables the use of the full

MP3C version, which relies on a QP, rather than the simplified

deadbeat version, for high-performance multi-level MV drive

systems.
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