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SUMMARY

Direct Torque Control (DTC) is a state of the art control methodology for electric motor drives which
features favorable control performance and implementation properties. In DTC, the core of the control
system is the inverter switching table, and any efforts to enhance the system’s performance aim at
improving its design. This issue is addressed in this paper, where we propose a new design procedure
for the DTC problem. The DTC drive, comprising a two- or three-level dc-link inverter driving a
three-phase induction motor, is modelled in the hybrid Mixed Logical Dynamical (MLD) framework,
and a constrained finite time optimal control problem is set up and solved over a receding horizon
using Model Predictive Control (MPC). Simulation results are provided and compared to the current
industrial standard demonstrating the potential for notable performance improvements. Copyright
c© 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

During the last decades, the development of power semiconductor devices has enabled the
increased use of adjustable speed induction motor drives in a variety of applications. In these
systems, DC-AC inverters are used to drive induction motors as variable frequency three-phase
voltage or current sources. One of the various methods that are used for controlling the motor’s
torque and speed is Direct Torque Control (DTC), first introduced in 1985 by Takahashi and
Noguchi [1]. Nowadays it is a well established industrial standard for induction motor drives [2].

The basic principle of DTC is to exploit the fast stator flux dynamics and to manipulate
the stator flux vector such that the desired torque is produced. This is achieved by choosing
an inverter switch combination that drives the stator flux vector to the desired position by
directly applying the appropriate voltages to the motor windings. This choice is made usually
with a sampling time Ts = 25µs using a pre-designed switching table that, depending on the
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application, addresses a number of different control objectives. These primarily concern the
induction motor - more specifically, the stator flux and the electromagnetic torque need to be
kept within pre-specified hysteresis bounds around their references. In high power applications,
where three-level neutral-point clamped inverters are used, the control objectives are extended
to the inverter, and include the minimization of the average switching frequency and the
balancing of the inverter’s neutral point potential around zero.

The reasons that have motivated the use of DTC are the performance benefits it features,
since the dynamic responses achieved in terms of torque are rapid and accurate throughout
the whole operating range of the machine. On the other hand, its basic disadvantages are the
high current and torque ripple, and the fact that the average inverter switching frequency is
not directly controllable [3]. For addressing these issues, several different approaches have been
proposed in the literature [4, 5], which mainly aim at improving the design of the switching
table. Although these methods are well suited for two-level inverters, their extension to more
complex problems featuring a larger number of available choices for the manipulated variables
remains a difficult task [6].

The main reason for this difficulty is the fact that the DTC drive constitutes a hybrid
system, i.e. a system incorporating both continuous and discrete dynamics - in particular
discrete-valued manipulated variables. Additionally, constraints on states, inputs and outputs
are present imposing further complications on the controller design, since the underlying
mathematical problems are intrinsically complex and hard to solve. The main purpose of
this paper is to investigate the potential benefits, in terms of performance and control design
flexibility and extendability, that can be brought by employing model-based predictive control
methodologies for hybrid systems as a solution approach for the DTC problem.

As shown in [7], the research community has recently started to consider predictive control
schemes as a way of introducing performance improvements in induction (and synchronous)
motor drives. Even though DTC itself can be interpreted as a predictive control strategy, it
lacks the fundamental notions of a prediction model and a cost function; such elements are
present in the more recent approaches [9], [10], and [11]. However, these schemes still differ in
several aspects from the approach that will be presented in this paper. More specifically, (i) the
prediction horizon is set to one, and there is no mention of a possible use of a larger (control)
horizon combined with a receding horizon policy, (ii) the control problem is formulated as a
reference tracking problem, and there are no hysteresis bounds on the controlled variables,
(iii) the control objectives do not include the minimization of the switching frequency of the
inverter, resulting to a simpler control problem, (iv) only two-level inverters are considered,
and (v) linear (or locally linearized) models, which do not adequately capture the hybrid nature
of the problem, are used as prediction models.

In this paper, a theoretical investigation of the DTC problem of three-phase induction motors
is presented. Our goal is to investigate the existing potential for performance improvement
in the currently used industrial DTC schemes, by employing hybrid modelling and optimal
control techniques. Specifically, the DTC drive is modelled as a hybrid system where emphasis
is given to the fast stator flux dynamics and the inverter switch positions are represented by
integer variables. Nonlinearities are approximated by piecewise affine (PWA) functions, and
the complete system including constraints is described in the Mixed Logical Dynamical (MLD)
framework [12]. Based on the derived hybrid model, a constrained finite time optimal control
problem over a receding horizon is set up and solved. The control strategy used is Model

Predictive Control (MPC) [13], which is well suited for the optimal control of hybrid systems
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described in the MLD framework [14]. We will refer to this approach as Optimal DTC.
As the computation times needed for solving the optimal control problem online are

well beyond the 25µs sampling time of DTC, the proposed controller cannot be directly
implemented. A possible way to overcome this obstacle is the calculation of the explicit state-
feedback control law [15] by pre-computing offline the solution to the optimal control problem
for the whole state-space using Dynamic Programming and multi-parametric programming.
The resulting control law is a PWA state-feedback control law defined over a polyhedral
partition of the state-space which can be stored in a look-up table. In this paper, we present
the derivation and explore the complexity of such an explicit controller for the case of the
two-level inverter.

The design procedure is demonstrated by applying the proposed approach to two cases,
namely to DTC drives featuring a two- and a three-level inverter. In both cases, the design
procedure remains essentially the same, and the extension to other inverter topologies with
more degrees of freedom (like 5-level inverters) is straightforward. Concerning the potential
performance improvements, we focus on the case of the three-level inverter considering ABB’s
ACS6000 DTC drive [16] containing a squirrel-cage rotor induction motor and a three-level
neutral-point clamped dc-link inverter. The performance of the Optimal DTC scheme is
evaluated through simulations and compared with ABB’s DTC strategy showing a performance
improvement in terms of a reduction of the switching frequency in the range of 20 %.

The paper is organized in the following way. Starting in Section 2 with basic terminology and
the physical model of the DTC drive, Section 3 details the derivation of a low-complexity hybrid
model that is used as internal prediction model for the optimal control problem formulated in
Section 4, where we also compute the explicit state-feedback control law for a DTC drive with
a two-level inverter. Simulation results for all considered cases are given in Section 5 using the
above mentioned detailed ABB model of the drive. Finally, Section 6 concludes the paper with
a summary and an outlook.

Throughout the paper, we will use the normalized time scale t with one time unit
corresponding to 1/ωb seconds, where ωb is the base angular velocity used to calculate the
inductive reactances of the motor. Additionally, we will use x(t), t ∈ R, to denote continuous-
time variables, and x(k), k ∈ N, to denote discrete-time variables with the sampling time
Ts = 25µs. The state estimation of the motor was performed by an observer designed and
provided by ABB, a detailed description of which is beyond the scope of this paper and has
not been included.

2. MODELLING PRELIMINARIES

2.1. The dq0 Reference Frame

For the modelling of the DTC drive, all variables are transformed from the three-phase system
(abc) to an orthogonal dq0 reference frame with a direct (d), a quadrature (q) and a zero (0)
axis, that can be either stationary or rotating. Details regarding reference frame theory can
be found in the relevant literature [17]. For the needs of this paper, the transformation of a
vector ξabc = [ξa ξb ξc]

T from the three-phase system to the vector ξdq0 = [ξd ξq ξ0]
T in the

dq0 frame is carried out through [17]

ξdq0 = P(ϕ)ξabc , (1)
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Figure 1: The equivalent representation of a three-phase two-level inverter driving an induction motor, and the
voltage vectors produced by a two-level inverter on the dq plane, together with the corresponding values of the
integer variables (switch positions)
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If the frame is rotating with the angular speed ωfr, then ϕ = ωfrt+ ϕ0 with ϕ0 denoting the
initial angle; otherwise, if the frame is stationary, ϕ is time-invariant. Note that the selected
transformation matrix is orthonormal, i.e.

P(ϕ)PT (ϕ) = I . (3)

2.2. Model of the Two-level Inverter

An equivalent representation of a three-phase two-level inverter driving an induction motor is
shown in Fig. 1(a). The inverter can produce two different voltages −Vdc

2 , Vdc

2 at each phase,
where Vdc denotes the voltage of the dc-link. The switch positions of the inverter can be
described using the integer variables ua, ub, uc ∈ {−1, 1}, where each variable corresponds to
one phase of the inverter, and the values −1, 1 correspond to the phase potentials −Vdc

2 , Vdc

2 ,
respectively. There are 23 = 8 different vectors of the form uabc = [ua ub uc]

T . Using (1) these
vectors can be transformed in vectors in the dq0 frame shown in Fig. 1(b), where they are
mapped into the two-dimensional dq plane.

2.3. Model of the Three-level Inverter

The equivalent representation of a three-phase three-level inverter driving an induction motor
is shown in Fig. 2(a). The additional feature of the three-level inverter is that it can also
produce a 0 phase voltage resulting in a total of three different possible voltages −Vdc

2 , 0, Vdc

2 at
each phase. The switch positions of the three-level inverter are now described using the integer
variables ua, ub, uc ∈ {−1, 0, 1}. As with the two-level inverter, each variable corresponds to one
phase of the inverter, and the values −1, 0, 1 correspond to the phase potentials −Vdc

2 , 0, Vdc

2 ,
respectively. Similarly, there exist 33 = 27 different vectors of the form uabc = [ua ub uc]

T ,
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Figure 2: The equivalent representation of a three-phase three-level inverter driving an induction motor, and
the voltage vectors produced by a three-level inverter on the dq plane, together with the corresponding values
of the integer variables (the three zero vectors (+1, +1, +1), (0, 0, 0) and (−1,−1,−1) in the origin of the dq
frame have been omitted due to the lack of space)

that can be transformed accordingly using (1), resulting in vectors in the dq0 frame shown in
Fig. 2(b), where they are mapped into the dq plane.

Introducing υn as a real state, the neutral point potential of the inverter (see fig. 2(a)) is
described in continuous-time by

υ̇n = −
1

2xc

[(1 − |ua|)ias + (1 − |ub|)ibs + (1 − |uc|)ics] , (4)

with ias, ibs, ics being the phase stator currents and xc one of the two symmetric capacitors of
the dc-link. Taking into account that ias + ibs + ics = 0, and by transforming the vectors into
the dq0 frame while taking advantage of (3), it is straightforward to derive

υ̇n =
1

2xc

uT
|dq0|is,dq0 , (5)

where is,dq0 is the stator current expressed in the dq0 frame and u|dq0| is the transformation
of the vector |uabc| = [|ua| |ub| |uc|]

T . Note that the absolute value is defined componentwise.
For more details about the nature of the neutral point potential and the related balancing
problem see [18].

2.4. Model of the Induction Motor

The dynamics of the squirrel-cage rotor induction motor are modelled in the dq0 reference
frame that is rotating synchronously with the rotor with the angular speed ωr. The d- and q-
components of the stator and rotor flux linkages per second ψds , ψqs , ψdr and ψqr, respectively,
and the rotor’s rotational speed ωr are used as state variables. The 0-axis components are
neglected, since they do not contribute to the electromagnetic torque and are decoupled from
the dynamics in the d- and q-axis. The input voltages vds and vqs are the transformation of
the voltages applied to the stator into the dq0 frame. The state equations are [17]

ψ̇s = (Fsr + ωrFω)ψs + Fsmψr + vs (6a)

ψ̇r = Frmψs + Frsψr (6b)

ω̇r = cH
(

cTψs ×ψr − Tℓ

)

, (6c)
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where ψs =
[

ψds ψqs

]T
, ψr =

[

ψdr ψqr

]T
, and vs =

[

vds vqs

]T
. The matrices Fsr, Fsm,

Frm, Frs, and Fω and the coefficients cH and cT are constants that depend on the motor
parameters, while Tℓ is the load torque of the motor. Finally, the electromagnetic torque is
proportional to the external product of the two flux vectors

Te = cTψs ×ψr = cT (ψqsψdr − ψqrψds) . (7)

For a more elaborate presentation of the induction motor’s model see [17].

3. LOW COMPLEXITY DISCRETE-TIME MODELLING FOR CONTROLLER DESIGN

3.1. Symmetrical Properties of the System

The voltage vectors that can be produced by both a two- and a three-level inverter exhibit
strong symmetrical properties in the dq plane. As can be seen from Figs. 1(b) and 2(b), a
certain pattern is repeated with an angle spread of π

3 . Defining such a pattern as a sector
leads to the formation of six sectors. On the dq plane, rotating any sector by π

3 yields the
vectors of the neighboring sector. This does not hold for the dq0 space, however, where the
corresponding voltage vectors of neighboring sectors have opposite zero components. More
formally, the voltage vectors of the µ sector can be used to produce the vectors of the ν sector
through

u
(ν)
dq0 = Πν−µu

(µ)
dq0 (8)

using the rotation matrix

Π =





cos π
3 − sin π

3 0
sin π

3 cos π
3 0

0 0 −1



 , (9)

that takes the mapping of the zero component properly into account. This relationship can
be also applied to the switch positions ua, ub and uc given in the three-pase system (abc) by
transforming the quantities to the dq0 reference frame, rotating them there from the µ to the
ν sector, and transforming them subsequently back.

u
(ν)
abc = P(ϕ)−1 Πν−µ P(ϕ)u

(µ)
abc (10)

3.2. Stator Flux Dynamics Model

In order to derive a low-complexity model of the induction motor that is suitable for the
optimal control problem formulation, two basic characteristics of DTC have to be taken into
account. Firstly, the stator flux dynamics are significantly faster than the dynamics of the
rotor flux and the rotational speed. Thus, the application of a certain voltage vector to the
machine terminals has an immediate effect only on the stator flux, turning it rapidly to the
position required by the torque demand, while the rotor speed ωr and the length of the rotor
flux vector remain constant during several control cycles.

The second characteristic is that the control objectives concerning the motor, namely the
maintenance of the length of the stator flux vector and the electromagnetic torque within the
specified bounds, are only affected by the relative (and not the absolute) position of the stator
and rotor flux vectors. This is because the electromagnetic torque is the external product of
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these two vectors. Exploiting the symmetrical properties of the voltage vectors, it is sufficient to
map the fluxes into the 0 sector, to solve the control problem in this sector, and to subsequently
rotate the result back into the original sector yielding the voltage vector to be actually applied
to the motor terminals.

To ease the modelling, we align the d-axis of the reference frame with the rotor flux vector.
This is achieved by a rotation of the flux vectors that can be carried out in two stages. The
first stage maps the problem into the 0 sector by rotating the flux vectors clockwise by an
integer multiple of π

3 , whereas the second stage is an anti-clockwise rotation of the reference
frame by an angle ϕ ∈ [0, π

3 ], that aligns the rotor flux vector with the d-axis of the reference
frame. Assume that the rotor flux initially lies in sector ν. Rotating the fluxes by the angle
ϑ = νπ

3 + ϕ yields the rotated flux vectors which are defined as

ψϑ
s =

[

ψϑ
ds ψϑ

qs

]T
, ψϑ

r =
[

ψϑ
dr ψϑ

qr

]T
. (11)

Given the fact that this rotation aligns the rotor flux vector with the d-axis of the rotating
frame, and recalling the slow dynamics of the rotor flux vector, one introduces only a negligible
error by assuming that ψϑ

dr is constant and ψϑ
qr = 0 during several sampling intervals. Since the

rotational speed dynamics are even slower, also ωr remains constant.The stator flux dynamics
can be described using a reference frame that is rotating synchronously with the rotor by a
set of affine state equations

ψ̇
ϑ

s (t) = (Fsr + ωrFω)ψϑ
s (t) + Fsmψ

ϑ
r +

Vdc

2
P(ϕ(k))uabc(t) , (12)

that regard ωr and ψϑ
dr as parameters.

To derive the discrete-time mapping of the stator fluxes from the beginning of the sampling
interval to its end, note that the voltage vector applied to the motor terminals remains constant
within one sampling interval. The discrete-time model of the stator flux dynamics is then
obtained by solving (12) from t = kTs to t = (k + 1)Ts. Note that the matrix P(ϕ(k))
performing the transformation of the inverter voltages into the rotating dq0 frame is time-
varying. In particular, it depends on the angle ϕ

ϕ(k + 1) = ϕ(k) + ωrTs , (13)

that captures the evolution of the rotating reference frame. The two outputs of the model are
the electromagnetic torque and the length of the stator flux vector

Te(k) = cTψ
ϑ
drψ

ϑ
qs(k) , Ψs(k) =

√

(ψϑ
ds(k))

2 + (ψϑ
qs(k))

2 . (14)

3.3. Discrete-time Model of the Three-level Inverter

The aspect of the neutral point potential must be addressed when using a three-level inverter
and thus needs to be modelled properly. The neutral point potential that is described in
continuous-time by (5) depends on u|dq0| and is,dq0. The d- and q-components of the stator
current is,dq0 are linear combinations of the d- and q-components of the stator and rotor flux
vectors (see [17] for details and for the definition of the coefficients crr and cm), and the
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0-component is always zero†.

is,dq0 =
[

crrψ
T
s − cmψ

T
r 0

]T
. (15)

Recalling that the fluxes initially lie in the ν sector, and since the optimal control problem
will be formulated and solved in the 0 sector, the obtained voltage vector has to be rotated
counter-clockwise for ν sectors using (10), to yield the voltage vector that will be actually
applied to the drive. For the componentwise absolute voltage vectors, the following non-trivial
relation can be shown to hold

|u
(ν)
abc| = (−1)ν P(ϕ)−1 Πν P(ϕ) |u

(0)
abc|, (16)

stating that a voltage vector in the 0 sector and its corresponding vectors in the even sectors
have the same componentwise absolute vectors. On the other hand, a voltage vector in the 0
sector and its equivalents in the odd sectors have opposite componentwise absolute vectors.
Therefore, (5) can be written in discrete-time as

υn(k + 1) = υn(k) + (−1)ν Ts

2xc

uT
|dq0|(k) is,dq0(k), (17)

where (−1)ν accounts for property (16) of the componentwise absolute voltage vectors.

3.4. Mixed Logical Dynamical Framework

The existence of integer system inputs calls for appropriate modelling using hybrid
methodologies. We employ the Mixed Logical Dynamical (MLD) framework, since it allows
for convenient modelling using the HYbrid Systems DEscription Language Hysdel [19], and
is well-suited for optimal control, namely Model Predictive Control (MPC). The general MLD
form of a hybrid system is

x(k + 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k) (18a)

y(k) = Cx(k) + D1u(k) + D2δ(k) + D3z(k) (18b)

E2δ(k) + E3z(k) ≤ E4x(k) + E1u(k) + E5 , (18c)

where k ∈ N is the discrete time-instant, and x ∈ R
nc × {0, 1}nℓ denotes the states,

u ∈ R
mc × {0, 1}mℓ the inputs and y ∈ R

pc × {0, 1}pℓ the outputs, with both real and binary
components. Furthermore, δ ∈ {0, 1}rℓ and z ∈ R

rc represent binary and auxiliary continuous
variables, respectively. For details on the MLD framework, the reader is referred to [12].

3.5. Hybrid Model of the DTC Drive with a Two-level Inverter

The overall MLD model of the DTC drive includes the two submodels of the induction motor
and the two-level inverter. The motor state equations of the stator flux given in (12) have
two states. A third state is needed to account for the rotating reference frame. Rather than
introducing ϕ(k), we choose cos(ϕ(k)) as third state as this proves to be beneficial in terms of
the model complexity as detailed below. Rewriting (13), the corresponding state equation is

α(k + 1) = cos(ωrTs)α(k) − sin(ωrTs)β(k) , (19)

†This follows from (1), taking into account that ias + ibs + ics = 0.
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(a) Induction motor model

Nonlinear Function Argument Number of Regions

(ψϑ
ds)

2 ψϑ
ds ∈ [0.8, 1.5] 5

(ψϑ
qs)

2 ψϑ
qs ∈ [0, 0.7] 5

β α ∈ [0.5, 1] 4

(b) Three-level inverter model

Nonlinear Function Arguments Number of Regions
u|ds| · ids (u|ds|, ids) ∈ [−0.85, 0.85] × [0.1, 0.7] 8
u|qs| · iqs (u|qs|, iqs) ∈ [−0.85, 0.85] × [0, 1.5] 8

Table I: PWA approximations of nonlinearities used in the MLD model of the DTC drive

where α(k) = cos(ϕ(k)), β(k) = sin(ϕ(k)) . The overall state vector amounts to

x(k) =
[

ψϑ
ds(k) ψϑ

qs(k) α(k)
]T

. (20)

The model outputs are the electromagnetic torque Te and the length of the stator flux vector

Ψs yielding the output vector y(k) =
[

Te(k) Ψs(k)
]T

, while the model inputs are the integer
variables ua, ub and uc

u(k) =
[

ua(k) ub(k) uc(k)
]T

∈ {−1, 1}3 . (21)

The model of the DTC drive contains several nonlinearities, namely the length of the stator
flux vector and the matrix P(ϕ(k)) (2) with the components sin(ϕ(k)) and cos(ϕ(k)). As
the MLD framework does not allow for modelling general nonlinear functions, they need to
be approximated by PWA functions. To account for the evolution of the rotating reference
frame, it would be straightforward to introduce ϕ(k) as a state and to use (13) to describe its
evolution. This, however, would necessitate the approximation of sin(ϕ(k)) and cos(ϕ(k)) as
a function of ϕ(k). Instead, we choose α(k) = cos(ϕ(k)) as a state and approximate β(k) as a
function of α(k) thus avoiding the approximation of one nonlinearity.

Additionally, we use in the MLD model the squared length of the stator flux vector rather
than its length, thus turning the nonlinearity (14) with two arguments into two nonlinearities
with one argument each. This leads to a more accurate and less complex PWA approximation.
Table I(a) summarizes the PWA approximations together with the function domains and the
number of regions used. The domains cover the whole range of operation which is smaller
than [−1, 1] due to the rotation of the fluxes into the 0 sector, while the number of regions
results from a trade-off between the required model accuracy and the increase in the model
complexity. For the problem considered here, the maximum approximation error was chosen
to be smaller than 1 %.

The above procedure yields an MLD system with 3 real states, 55 z-variables, 21 δ-variables
and 225 inequality constraints. The derivation of the MLD system is performed by the compiler
Hysdel generating the matrices of the MLD system starting from a high-level description of
the system. The matrices are not explicitly provided here due to space limitations, but are
available from [20].
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3.6. Hybrid Model of the DTC Drive with a Three-level Inverter

For a DTC drive with a three-level inverter (17) is added as a state equation leading to the
overall state vector

x(k) =
[

ψϑ
ds(k) ψϑ

qs(k) α(k) υn(k)
]T

. (22)

The model outputs are augmented by the neutral point potential resulting in y(k) =
[

Te(k) Ψs(k) υn(k)
]T

, and the model inputs are the integer variables ua, ub and uc

u(k) =
[

ua(k) ub(k) uc(k)
]T

∈ {−1, 0, 1}3 . (23)

The state equation (17) of the neutral point potential contains two multiplications which are
approximated as summarized in Table I(b), where u|dq0| = [u|ds|, u|qs|, u|0s|]

T and is,dq0 =
[ids, iqs, i0s]

T . As i0s = 0, the third multiplication is always zero. As in the previous case,
the function domains are chosen such that the whole range of operation is covered. As the
neutral point potential does not need to be controlled with a high precision, a relatively large
approximation error is tolerable. Therefore, a maximal approximation error of 5 % was chosen
leading to eight regions. The above procedure yields an MLD system with 4 (real) states,
91 z-variables, 61 (integer) δ-variables and 477 inequality constraints, and the corresponding
MLD matrices are available from [20].

4. OPTIMAL DIRECT TORQUE CONTROL

4.1. Control Problem

The most prominent control objective concerning the induction motor is to keep the
electromechanical torque close to its reference, which is set either directly by the user or
by an additional speed control loop based on a PI controller. In order to avoid the saturation
or demagnetization of the motor, the amplitude of the stator flux has to be kept between
certain pre-specified bounds around the reference which are in general time-invariant. The
main control objective concerning the inverter is to minimize the average switching frequency.
In the case of the three-level inverter, the control objectives are extended to keeping the neutral
point potential of the inverter within certain limits around zero.

The physical setup, i.e. the inverter driving the induction motor with discrete voltage vectors,
makes it impossible to regulate and keep the torque and the stator flux arbitrarily close to
their reference with a finite switching frequency. At steady state, reducing the torque ripple
can only be achieved by increasing the switching frequency and vice versa. This results in a
fundamental trade-off between the amplitude of the torque ripple and the switching frequency.
As the switch transitions lead to heat losses in the inverter, the maximal switching frequency
is limited by the technology of the inverter. Thus, instead of trying to regulate the torque to its
reference, this control objective is relaxed in DTC, and the controller rather aims at keeping
the torque and the stator flux within certain bounds around their references.

4.2. Optimal Direct Torque Control

Our controller is based on constrained finite-time optimal control with a receding horizon
policy, more specifically on MPC. In MPC, the current control input is obtained by solving at
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each sampling instant an open-loop constrained optimal control problem over a finite horizon
using the current state of the plant as the initial state. The underlying optimization procedure
yields an optimal control sequence that minimizes a given objective function. By only applying
the first control input in this sequence and by recomputing the control sequence at the next
sampling instant, a receding horizon policy is achieved. A major advantage of MPC is its ability
to cope with hard constraints on manipulated variables, states and outputs. Furthermore, as
introduced in [12], the MLD framework can be straightforwardly embedded in MPC allowing
one to use hybrid models given in the MLD form as prediction models for MPC.

4.3. Controller Objectives

Next, we formulate the controller objectives which can be classified in three priority levels.
The main objective is to keep the torque and the magnitude of the stator flux within the
pre-specified bounds, and to also retain the neutral point potential within bounds that are
typically symmetric around zero. As these bounds must not be (significantly) violated, we
assign to them the highest priority, and express them in the objective function using soft
constraints which reflect the bounds.

The control objective with secondary priority is to minimize the average switching frequency.
This is approximated by minimizing the number of switch transitions within the prediction
interval. Due to the limited length of the prediction interval, one needs to enforce that switch
transitions are only performed if absolutely necessary, i.e. when refraining from switching
would lead to a violation of the bounds on the controlled variables within one time-step.
This is implemented by associating a time-decaying penalty with the switch transitions, where
switch transitions within the first time-step of the prediction interval result in larger penalties
then those that are far in the future.

In particular for short prediction intervals, for a given state, two or more control inputs may
have the same associated costs according to the two penalty levels introduced above. In the
presence of such ambiguities, the control input is preferable that moves some of the controlled
variables closest to their references, in particular the stator flux and the neutral point potential.
We account for that by adding a third, low priority penalty level on the deviation of the stator
flux and the neutral point potential from their respective references. For the torque, however,
it is preferable to take full advantage of the window width. Thus we refrain from adding such
a penalty term to the torque.

4.4. Objective Function

Based on the controller objectives, we establish next the mathematical expression of the
objective function, which comprises a number of cost expressions. The soft constraints on the
upper and lower torque bounds Te,max and Te,min, respectively, lead for the electromagnetic
torque to the cost expression

εT (ℓ) =







qT (Te(ℓ) − Te,max) if Te(ℓ) ≥ Te,max

qT (Te,min − Te(ℓ)) if Te(ℓ) ≤ Te,min

0 else ,
(24)

where qT ≫ 0 is the weight on the soft constraints and ℓ is the discrete time instant within
the prediction horizon. The cost expression for the length of the stator flux vector is defined
similarly using the upper and lower flux bounds Ψs,max and Ψs,min, respectively, with an
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12 G. PAPAFOTIOU, T. GEYER AND M. MORARI

additional term penalizing the deviation from the reference Ψs,ref

εΨ(ℓ) =







qF (Ψs(ℓ) − Ψs,max) if Ψs(ℓ) ≥ Ψs,max

qF (Ψs,min − Ψs(ℓ)) if Ψs(ℓ) ≤ Ψs,min

qf |Ψs(ℓ) − Ψs,ref | else ,
(25)

with the weights qF and qf , qF ≫ qf > 0, on the soft constraints and on the deviation from
the reference, respectively. The switch transitions are penalized using a time-varying weight
qu(ℓ) > 0 and the 1-norm

εu(ℓ) = qu(ℓ)‖u(ℓ) − u(ℓ− 1)‖1 . (26)

The above stated cost expressions are the same for the two- and the three-level inverter. For
the three-level inverter, however, the penalty for the neutral point potential needs to be added.
The cost ευ(k) is defined according to (25) with the respective bounds υn,max and υn,min, the
reference 0, and the weights qN and qn.

Finally, we define ε = [εu εT εΨ]T for the case of the two-level inverter and ε = [εu εT εΨ ευ]T

for the three-level inverter, and consider the objective function

J(x(k),u(k − 1),U(k)) =

N−1
∑

ℓ=0

‖ε(k + ℓ|k)‖1 ,

which penalizes the predicted evolution of ε(k+ℓ|k) over the finite horizon N using the 1-norm.

4.5. Constrained Finite Time Optimal Control Problem

The control input at time-instant k is then obtained by minimizing the objective function (27)
over the finite sequence of control inputs U(k) = [(u(k))T , . . . , (u(k+N−1))T ]T subject to the
evolution of the MLD model and its mixed-integer linear inequality constraints, the integrality
constraints on U(k) and the cost expressions (24)-(26). This amounts to the constrained finite
time optimal control problem (CFTOC)

U∗(k) = arg min
U(k)

J(x(k),u(k − 1),U(k)) (27a)

subj. to (18), (21), (24) − (26) (27b)

yielding the sequence of optimal control inputs U∗(k) = [(u∗(k))T , . . . , (u∗(k+N − 1))T ]T , of
which only the first input u∗(k) is applied to the inverter. At the next sampling interval, k is
set to k + 1, a new state measurement (or estimate) is obtained, and the CFTOC problem is
solved again over the shifted horizon according to the receding horizon policy. As we are using
the 1-norm in all cost expressions, the CFTOC problem amounts to solving an Mixed-Integer

Linear Program, for which efficient solvers exist.
The optimal control problem posed above is intended to capture the average switching

frequency. Therefore, a long prediction interval is beneficial. However, the computational
complexity explodes as the prediction interval is increased. To account for that, we propose
to use a short prediction horizon N , while still capturing the behavior of the system over a
longer time interval. This is achieved by using multiple-rate prediction models, finely sampling
the prediction model with 25µs only for the first steps in the horizon, but more coarsely with
a multiple of 25µs for steps further in the future, employing an approach similar to utilizing
blocking control moves [21].
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(a) Rated Values

Induction Motor

V 3300 V I 356A
P 1.587 MW S 2 MVA
f 50 Hz ωr 596 rpm

Inverter

Vdc 4294 V I 500A

(b) Parameters

Induction Motor

rs 0.0108 p.u. rr 0.0091 p.u.
xls 0.1493 p.u. xlr 0.1104 p.u.
xm 2.3489 p.u.

Inverter

Vdc 1.5937 p.u. xc 4.3715 p.u.

Table II: Induction motor and inverter rated values and parameters

4.6. The Explicit State-Feedback Control Law

A possible solution to the problem of the large computation times occurring when solving the
optimal control problem online is the pre-computation of the optimal state-feedback control
law offline for all feasible states using the state vector as a parameter. The optimal control law
can be obtained by using the algorithm described in [22], where the solution is generated
by combining dynamic programming with multi-parametric programming and some basic
polyhedral manipulations.

The resulting optimal state-feedback control law u∗(k) is a PWA function of the state x(k).
More specifically, the state-space is partitioned into polyhedral sets and for each of these sets
the optimal control law is given as an affine function of the state. In this case, as the CFTOC
is also a function of the last control input, we need to extend [22] slightly by fixing u(k − 1)
to a feasible integer combination before solving (27). In particular, when solving the CFTOC
problem explicitly, we will get as many state-feedback control laws and polyhedral partitions
as we have feasible binary input combinations. For the two-level inverter, we therefore expect
eight, for the three-level inverter 27 different controllers.

5. SIMULATION RESULTS

The simulation results presented in this section illustrate the performance of the Optimal DTC
scheme for the two- and the three-level inverter, respectively. The parameter values used in
the simulations are given in the Tables II(a) and II(b). In all graphs, the units are normalized
and the time scaling is in ms.

5.1. Optimal DTC with a Two-level Inverter

For a DTC drive featuring a two-level inverter, the optimal control problem was solved for the
objective function (27) using a prediction horizon of N = 2. Employing a single-rate prediction
model, all steps were set equal to the usual DTC sampling time of 25µs. According to the
prioritization of the control objectives, the penalties on the soft constraints were chosen to
be qT = qF = 3000 for the torque and stator flux. The switch transitions are penalized with
qu(0) = 14, exponentially decaying within the prediction horizon. The deviation of the stator
flux from its reference is penalized with qf = 0.01.

Initially, the motor is running with a speed of ωr = 0.8 p.u. under a load torque of
Tℓ = 0.1 p.u., when a step in the torque reference Te,ref is applied from 0.1 p.u. to 0.8 p.u.. As
the simulation results in Fig. 3 show, the torque response under Optimal DTC is rapid, while
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Figure 3: Closed-loop simulation of the Optimal DTC scheme during a step change in the torque reference for
a DTC drive with a two-level inverter

u(k − 1) norg nmer reduc. [%]
[−1 − 1 − 1]T 5246 709 86.5
[−1 − 1 + 1]T 5325 753 87.6
[−1 + 1 − 1]T 4737 486 89.7
[−1 + 1 + 1]T 5292 625 88.2
[+1 − 1 − 1]T 7019 930 86.8
[+1 − 1 + 1]T 8512 880 90.0
[+1 + 1 − 1]T 5425 631 88.4
[+1 + 1 + 1]T 6295 617 90.2

Table III: Overview of the state-feedback
control law for the DTC drive with a two-level
inverter

ψϑ
ds(k)

ψ
ϑ q
s
(k

)

1.04 1.08 1.12 1.16 1.2 1.24

0.26

0.28

0.3

0.32

Figure 4: The explicit state-feedback control law
for the DTC drive with a two-level inverter for
u(k − 1) = [+1 − 1 − 1]T and α(k) = 0.95, where
the colors correspond to the control inputs u(k)
ordered as in Table III: red, black, green, cyan,
yellow, blue, magenta and red

the length of the stator flux remains within the specified bounds. Note that for the benefit
of visualization, two different time scales were used, showing the step response between 35 ms
and 45 ms in greater detail. The average switching frequency of the inverter was 515 Hz. The
computation times required for the solution of the optimal control problem online at each
time-step are in the range of 50ms running CPLEX [23] on a 2.8 GHz Pentium PC.

To simplify the derivation of the explicit state-feedback control law, we only consider the
case where the drive is operating at steady state at a fixed operating point. For this, we
choose the operating point shown in Fig. 3 from 40 ms on, which is given by the speed
ωr = 0.8 p.u., the load torque Tℓ = 0.8 p.u., and the torque bounds Te,max = 0.88 p.u. and
Te,min = 0.72 p.u.. The reference of the stator flux is Ψs,ref = 0.97 p.u. and the corresponding
bounds are Ψs,max = 1.0198 p.u. and Ψs,min = 0.9025 p.u.. The control problem formulation
is the same as for the online optimization set-up.

The procedure described in Section 4.6 yields for each of the eight last control inputs (discrete
states) a PWA state-feedback control law defined on the three-dimensional real state-space.
Running subsequently the optimal merging algorithm [24] reduces the complexity of the control
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Figure 5: Closed-loop simulation of the Optimal DTC scheme during a step change in the torque reference for
a DTC drive with a three-level inverter

law, as the overview in Table III shows. For each last control input u(k− 1), this table depicts
the number of polyhedra of the original control law norg, the number of polyhedra of the merged
controller nmer, the percentage reduction in the number of polyhedra, the computation time
for the derivation of the explicit control law texpl in hours, and the computation time for the
optimal merging algorithm tmer in hours. All computations where run on a 2.8 GHz Pentium
with Linux using Matlab 6.5.

Figure 4 shows a two-dimensional cut through the polyhedral partition of the control law.
For a geometrical interpretation of the result, the reader is referred to [8]. For completeness, we
mention that choosing the same initial state at time 40 ms, both the on-line computation and
the evaluation of the state-feedback control law yield the same closed-loop simulation results.

5.2. Optimal DTC with a Three-level Inverter

For the case of a DTC drive featuring a three-level inverter, the simulations were carried out
using ABB’s Matlab/Simulink model of the ACS6000 drive [16], where the look-up table with
ABB’s DTC strategy was replaced by a function solving at each time-step the optimal control
problem online. The bounds for the torque and the stator flux depend on the operating point
and are imposed by an outer control loop in the Matlab/Simulink model. A particularity of
the specific inverter considered here is that restrictions on the switch transitions are present.
These restrictions stem from technicalities regarding the construction of the inverter, and are
easily taken into account in the Optimal DTC scheme by introducing additional constraints
on the integer manipulated variables.

The optimal control problem was solved for the objective function (27) using a prediction
horizon of N = 3. Using multiple rate prediction models, the first two steps were set equal to
the sampling time of 25µs and the remaining one was equal to 100µs. The models were time-
discretized accordingly. To allow for a comparison of ABB’s DTC with the proposed Optimal
DTC scheme, the penalties on the soft constraints were chosen such that the resulting ripples
for the torque, flux and neutral point potential are the same. This led to qT = 800 for the
torque, qF = 700 for the stator flux and qN = 4500 for the neutral point potential. The
switch transitions are penalized with qu(0) = 16, exponentially decaying within the prediction
horizon. The deviations from the references are penalized with qf = qn = 0.04 for the stator
flux and the neutral point potential, respectively. The computation times required for the
solution of the optimal control problem at each time-step were in the range of 100ms running
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CPLEX [23] on a 2.8 GHz Pentium PC.

Initially, the motor is running with a speed of ωr = 0.4 p.u. under a load torque of
Tℓ = 0.1 p.u., when a step in the torque reference Te,ref is applied from 0.1 p.u. to 0.8 p.u..
Fig. 5 depicts the closed-loop behavior of the torque, the stator flux and the neutral point
potential under Optimal DTC. As can be seen, the Optimal DTC scheme achieves rapid
dynamic responses, while the bounds imposed on the torque, stator flux and neutral point
potential are only slightly violated. This degree of the violation of the bounds is a design
parameter adjustable by the penalties on the soft constraints. Most important, the average
switching frequency for Optimal DTC is only 196 Hz compared to the 256 Hz achieved by
ABB’s scheme for the same case. This improvement amounts to a reduction of the average
switching frequency in the range of 20 %, which translates into an equivalent reduction of the
switching losses.

6. CONCLUSIONS AND OUTLOOK

The scope of this paper is to investigate the potential improvements that can be achieved using
optimal control methodologies for the hybrid control problem of DTC. The crucial ingredient
for this is a hybrid model of the DTC drive that is of low complexity but yet sufficient accuracy,
based on which the optimal control problem can be formulated and solved. The latter is tailored
to the peculiarities of the DTC problem employing three different penalty levels, time-decaying
penalty for the switch transitions and multiple rate prediction models. The proposed Optimal
DTC approach is based on a systematic design procedure allowing one to easily adapt it to
other inverter topologies. This is shown in the paper by applying the scheme to both the two-
and the three-level inverter. Furthermore, this approach clearly demonstrates the potential for
improving the performance of DTC with respect to state of the art industrial DTC look-up
tables, as the comparison with ABB’s ACS6000 drive emphasizes.

However, when solving the underlying optimization problem online to derive the control
input, the corresponding computation times exceed the sampling time of DTC. Therefore, the
proposed controller cannot be directly implemented and experimentally verified. One possible
solution to this problem is the computation of the (explicit) state-feedback control law leading
to an optimal look-up table. In this paper, for a DTC drive with a two-level inverter, this
computation is carried out using dynamic programming, and the resulting state-feedback
controller is analyzed in terms of its complexity. For the case of the three-level inverter, the
combinatorial nature of the problem and the higher complexity of the model make the problem
untractable using standard computational power at hand, and a different approach needs to
be engineered. For this, preliminary results have been obtained featuring a complexity that is
feasible for a practical implementation.
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