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Abstract— This paper presents a new solution approach to the
optimal control problem of fixed frequency switch-mode dc-dc
converters using hybrid systems methodologies. In particular,
the notion of the N -step model is introduced to capture the
hybrid nature of these systems, and an optimal control problem
is formulated, which allows one to easily incorporate in the
controller design safety constraints such as current limiting. The
optimal control problem is solved offline resulting in the explicit
state-feedback controller that can be stored in a look-up table
and used for the practical implementation of the control scheme.
Simulation results are provided that demonstrate the prospect of
this approach.

I. INTRODUCTION

The problems associated with the analysis and design of
the control loop for switch-mode dc-dc converters have at-
tracted a wide research interest, and the quest for efficient
control techniques is of interest for both the research and
the industrial community. The difficulties in controlling dc-
dc converters arise from their hybrid nature. In general, they
feature three different modes of operation, where each mode
has an associated linear continuous-time dynamic. Further-
more, constraints are present which result from the converter
topology. In particular, the manipulated variable (duty cycle)
is bounded between zero and one, and in the discontinuous
current mode a state (inductor current) is constrained to be
nonnegative. Additional constraints may be imposed as safety
measures, such as current limiting or soft-starting, where the
latter constitutes a constraint on the maximal derivative of
the current during start-up. The control problem is further
complicated by gross operating point changes due to input
voltage and output load variations, and model uncertainties.

In this paper, we focus on fixed-frequency PWM dc-dc con-
verters, where the semiconductor switch is driven by a pulse
sequence that has a constant frequency (period), the switching
frequency fs (switching period Ts), which characterizes the
operation of the converter. The dc component of the output
voltage can be regulated through the duty cycle d that is
defined by d = ton

Ts
, where ton represents the interval within

the switching period during which the switch is in conduction.
Given this principle of operation, the main control objective

is to drive the semiconductor switch with a duty cycle such that
the dc component of the output voltage is equal to its reference.
This regulation needs to be maintained despite variations in the
load or the input voltage. The different control techniques that
are used in practice have all in common the employment of
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PI-type controllers that are tuned based on linearized average
models [23], [10]. Simple rules are applied, such as selecting
a cross-over frequency an order of magnitude smaller than the
switching frequency and a phase margin in the range of 45 to
60 degrees.

In the literature, a wide range of different strategies has
been proposed for improved controller design. The methods
introduced vary from Fuzzy Logic [14] to Linear Quadratic
Regulators (LQR) [20], [21], [11], and from non-linear control
techniques [24], [25], [16] to feedforward control [17], [18].
The common element in all these approaches is the use of
simplified models for the description of the dynamic behavior
of switch-mode dc-dc converters. It is obvious that approxi-
mations like the use of averaged or locally linearized models
do not allow to capture the complex dynamics that stem from
the hybrid nature of dc-dc converters, and unavoidably narrow
the space of the explored phenomena, thus producing results
of limited validity. In particular, for the LQR design in [20],
[21] discrete-time models linearized around an operating point
are used, and for the nonlinear design in [24], [25], [16] the
hybrid nature of the dc-dc converters is bypassed by using an
averaged model. Furthermore, none of the proposed controllers
allows one to explicitly incorporate constraints in the design
procedure.

Motivated by these difficulties, we present in this paper
a novel approach to the modelling and controller design
problem for dc-dc converters, using a synchronous step-down
dc-dc converter as an illustrative example. The converter is
modelled as a hybrid system using the Mixed Logic Dynamic
(MLD) [4] framework. This leads to a model that is valid for
the whole operating regime and captures the evolution of the
state variables within the period. Based on the hybrid model,
we formulate a finite time optimal control problem, which is
solved offline, using Dynamic Programming (DP) [6], produc-
ing an explicit state-feedback control law that is parameterized
over the whole state-space. This controller can be stored in a
look-up table and used for the practical implementation of the
proposed control scheme.

The paper is organized in the following way: In Section II,
the basic notions that will be used for the hybrid modelling of
the converter are introduced. In Section III, the synchronous
step-down converter is modelled as a hybrid system by in-
troducing the notion of the N -step model. In Section IV, an
optimal control problem incorporating the above mentioned
control objectives is formulated. The derivation of the explicit
state-feedback control law is treated in Section V. Simulation
results illustrating various aspects of the system’s behavior are
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given in Section VI. Finally, conclusions and further research
directions are discussed in Section VII.

II. PRELIMINARIES ON HYBRID MODELS

The term hybrid systems refers to dynamical systems that
contain both analog (continuous) and logical (discrete) com-
ponents. A number of different subclasses has been intro-
duced for the development of appropriate analysis and design
techniques. For the needs of this paper, we focus on two
of these subclasses: Mixed Logical Dynamic (MLD) and
Piece-Wise Affine (PWA) systems. The MLD formulation
is used for the convenient modelling of the converter as a
hybrid system, using the compiler HYSDEL (HYbrid System
DEscription Language) [27] that produces the matrices of the
MLD system starting from a high-level description of the
model. Additionally, a PWA representation of the model will
be needed at a later stage to precompute offline the explicit
state-feedback law for the whole state space that renders the
optimal controller applicable for online implementations with
sampling times in the range of several µs [7].

A. The Mixed Logical Dynamic Framework

The Mixed Logical Dynamic (MLD) framework is a mod-
elling scheme for discrete-time hybrid systems that is well-
suited for optimal control, namely Model Predictive Control
(MPC) [22] computations. The general MLD form of a hybrid
system introduced in [4] is

x(k + 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k) (1a)

y(k) = Cx(k) + D1u(k) + D2δ(k) + D3z(k) (1b)

E2δ(k) + E3z(k) ≤ E4x(k) + E1u(k) + E5 , (1c)

where k ∈ N is the discrete time-instant, and x ∈ R
nc ×

{0, 1}n� denotes the states, u ∈ R
mc × {0, 1}m� the inputs

and y ∈ R
pc ×{0, 1}p� the outputs, with both real and binary

components. Furthermore, δ ∈ {0, 1}r� and z ∈ R
rc represent

binary and auxiliary continuous variables, respectively. These
variables are introduced when translating propositional logic
or PWA functions into linear inequalities. All constraints on
states, inputs and auxiliary variables are summarized in the
mixed-integer linear inequality constraint (1c). Note that (1a)
and (1b) are linear; the nonlinearity is hidden in the integrality
constraints over the binary variables.

We consider MLD systems that are completely well-
posed [4], i.e. for given x(k) and u(k), the values of δ(k)
and z(k) are uniquely defined by the inequality (1c). This
assumption is not restrictive and is always satisfied when real
plants are described in the MLD form [4]. Note that the MLD
framework allows one to describe automata, propositional
logic, if . . . then . . . else statements and PWA functions.
General nonlinear functions, however, can not be modelled,
and have to be thus approximated by PWA functions.

B. Piece-Wise Affine Systems

Piece-Wise Affine (PWA) systems [26] are defined by
partitioning the state-space into convex polyhedra and associ-
ating with each polyhedron an affine state-update and output
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Fig. 1. Topology of the step-down synchronous converter

function

x(k + 1) = fj(k)(x(k),u(k)) (2a)

y(k) = gj(k)(x(k),u(k)) (2b)

with j(k) such that
[

x(k)
u(k)

]
∈ Pj(k), (2c)

where x(k), u(k), y(k) denote at time k the real and binary
states, inputs and outputs, respectively, the polyhedra Pj(k)

define a set of polyhedra {Pj}j∈J on the state-input space,
and the real time-invariant functions fj(k) and gj(k) are affine
in the states and inputs, with j(k) ∈ J , J finite.

As shown in [15], for a given well-posed MLD model
exists always an equivalent PWA representation. Equivalence
implies, that for all feasible initial states and for all feasible
input trajectories, both models yield the same state and output
trajectories. Efficient conversion tools are available to trans-
form MLD models into piecewise affine (PWA) models, using
the mode enumeration algorithm presented in [12].

III. MODELLING THE SYNCHRONOUS CONVERTER

A. Continuous-Time Model

The circuit topology of the synchronous step-down con-
verter is shown in Fig. 1. Using normalized quantities, ro

denotes the output load which we assume to be ohmic, rc

the ESR of the capacitor, r� is the internal resistance of
the inductor, x� and xc represent the inductance and the
capacitance of the low-pass filtering stage, and vs denotes the
input voltage. For every period k, a duty cycle d(k) which
is bounded between zero and one is chosen by the controller.
Defining x(t) = [i�(t) vc(t)]

T as the state vector, the system
is described by a set of continuous-time state-space equations
of the form

ẋ(t) =

{
Fx(t) + fvs, kTs � t < (k + d(k))Ts

Fx(t), (k + d(k))Ts � t < (k + 1)Ts
, (3)

where the matrices F and f are given by

F =

[
− 1

x�

(r� + rorc

ro+rc
) − 1

x�

ro

ro+rc

1
xc

ro

ro+rc
− 1

xc

1
ro+rc

]
, f =

[
1
x�

0

]
.(4)

The output voltage vo(t) is expressed as a function of the
states through

vo(t) = gT x(t) (5)

with
g =

[
rorc

ro+rc

ro

ro+rc

]T
. (6)
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The output variable which is of main interest from a control
point of view is the output voltage error which is obtained by
integrating the difference between the output voltage and its
reference over the k-th switching period, i.e.

vo,err(k) =

∫ (k+1)Ts

kTs

(vo(t) − vo,ref ) dt, (7)

where vo,ref denotes the reference of the output voltage.

B. N -step Discrete-Time Hybrid Model

The goal of this section is to derive a model of the
synchronous step-down converter that is suitable as a predic-
tion model for the optimal control problem which we will
formulate in Section IV. This model should have the following
properties. First, it is natural to formulate the model and the
controller in the discrete-time domain, as the manipulated
variable given by the duty cycle is constant within the period
Ts and changes only at every time-instant kTs, k ∈ N. Second,
it is beneficial to capture the evolution of the states also within
one period, as this enables us to impose constraints not only
on the states at time-instants kTs but also on intermediate
values. This is particularly important for the inductor current
which can vary drastically within one period and would allow
us to impose a constraint on its peaks. Third, the model needs
to yield an approximation of the output voltage error. Most
important, as the converter is intrinsically hybrid in nature,
we aim to retain the structure of the two operation modes and
account for the hybrid character.

Motivated by these considerations, we introduce the N -
step modelling approach that accounts for all the above
requested properties by dividing the period of length Ts into
N subperiods of length τs = Ts/N with N ∈ N, N ≥ 2.
This concept is illustrated in Fig. 2. We denote the states
within a subperiod sampled with τs by ξ(n), and we refer
to the discrete time-instants of the subperiods by n, where
n ∈ {0, 1, . . . , N−1}. Furthermore, by definition, ξ(0) = x(k)
and x(k + 1) = ξ(N − 1).

Next, we introduce N binary variables

σn = true ⇐⇒ d(k) ≥
n

N
, n = 0, . . . , N − 1 (8)

which represent the sampled switch position of S1 at time-
instants nτs. Recall that the switch S2 is dually operated with
respect to S1.

For each subperiod, we introduce the two modes discussed
above (switch closed and open, respectively) plus an additional
third mode that captures the transition from mode 1 to 2. More
specifically, the modes are (i) the switch S1 remains closed
for the whole subperiod, (ii) the switch S1 is open for the
whole subperiod, and (iii) the switch S1 is opening within
the subperiod. Hence, for the n-th subperiod, the state-update
equations amount to

ξ(n+1) =




Φ ξ(n) + Ψ, if σn ∧ σn+1,
Φ ξ(n), if σ̄n,
Φ ξ(n) + Ψ(Nd(k) − n), if σn ∧ σ̄n+1,

(9)
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(b) Position of the switch S1 and the mode which is
active in the respective subperiod

Fig. 2. The N -step modelling approach visualized for the k-th period. The
evolution of the states of the continuous-time nonlinear model (solid lines)
is compared with the sequence of states of the discrete-time hybrid model
(dashed lines) using N = 10 subperiods, where the saw tooth shaped line
represents i� and the smooth curve is vc.

where Φ and Ψ are the discrete-time representations of F and
f as defined in (4) with sampling time τs. The third (auxiliary)
mode refers to the mode transition where the switch S1 opens
within a subperiod. Note that if we are in the third mode, i.e.
σn ∧ σ̄n+1 holds, Nd(k) − n is bounded by zero and one.
Thus, the third mode constitutes a weighted average of modes
one and two. The error introduced by averaging can be made
arbitrarily small by increasing N .

Using the sampled output voltage given by

vo(n) = gT ξ(n), (10)

we approximate the voltage error integral (7) for the k-th
period in the following way.

vo,err(k) =

N−2∑
n=0

vo(n) + vo(n + 1)

2(N − 1)
− vo,ref (11)

In summary, the N -step modelling approach provides a de-
scription of the state evolution within one period. In particular,
the discrete-time sequence of ξ(n), n = 0, . . . , N − 1 is an
accurate sampled representation of the continuous-time evolu-
tion of x(t) for t ∈ [kTs, (k + 1)Ts]. The only approximation
that has been introduced appears in the third mode of (9) when
the switch S1 is turned off.

The number N of the subperiods is a design parameter that
can be chosen depending on the desired model accuracy. In
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Fig. 3. Accuracy of the state-update of the N -step model

Fig. 3, the 2-norm of the state-update error of the N -step
model is plotted versus the duty cycle for various values of
N . The choice of N = 1 yields the standard average model
that is predominately used for the controller design for dc-dc
converters. As one can see, setting N = 2 already improves
significantly the accuracy of the model.

C. The N -step Model in the MLD Framework

The three modes of the N -step model call for appropriate
modelling using hybrid methodologies. Employing the MLD
framework described above, one can conveniently model the
converter using HYSDEL (HYbrid System DEscription Lan-
guage) [27]. The derivation of the MLD system is performed
by the compiler, which generates the matrices of the MLD
system starting from a high-level description. For the N -
step model the above procedure yields an MLD system with
two states, 7N + 3 z-variables, N δ-variables and 24N + 18
inequality constraints.

D. The N -step Model as a PWA System

For the computation of the explicit state-feedback law, it
is necessary to transform the N -step model into PWA form.
For this, efficient tools are available based on the mode
enumeration algorithm presented in [12].

In the case considered, the hybrid model of the converter
can be described as a PWA system that is defined over N
polyhedra in the state-input space, where N is the number of
subperiods used in the previous sections. This partitioning is
shown in Fig. 4, where one can observe that the regions are
divided along the d axis.

IV. OPTIMAL CONTROL

A. Model Predictive Control (MPC)

Model Predictive Control (MPC) [22] has been used suc-
cessfully for a long time in the process industry and recently
also for hybrid systems. As shown in [4], MPC is well suited
for the control of hybrid systems described in the MLD
framework. The control action is obtained by minimizing an
objective function over a finite or infinite horizon subject to the
mixed-integer linear inequality constraints of the MLD model

i�
vc
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Fig. 4. The polyhedral partition of the converter’s PWA model

(1) and the physical constraints on the manipulated variables.
Depending on the norm used in the objective function, this
minimization problem amounts to solving a Mixed-Integer
Linear Program (MILP) or Mixed-Integer Quadratic Program
(MIQP).

The major advantage of MPC is its straight-forward design
procedure. Given a (linear or hybrid) model of the system, one
only needs to set up an objective function that incorporates the
control objectives. Additional hard (physical) constraints can
be easily dealt with by adding them as inequality constraints,
whereas soft constraints can be accounted for in the objective
function using large penalties. For details concerning the set
up of the MPC formulation in connection with MLD models,
the reader is referred to [4] and [2]. Details about MPC can
be found in [22].

B. Optimal Control Problem

The control objectives are to regulate the average output
voltage to its reference as fast and with as little overshoot as
possible, or equivalently, to minimize the output voltage error
vo,err(k), despite changes in the input voltage vs or changes
in the load resistance ro, to achieve operation under a constant
duty cycle at steady state, and to respect the safety constraint
on the inductor current.

To express these control objectives in a cost function, we
introduce the penalties q1, q2, q3 with q1, q2, q3 ∈ R

+ and
define the following costs. First, for the minimization of the
output voltage error we set

εv(k) = q1vo,err(k) (12)

Consecutively, in order to induce a steady state operation
under a constant duty cycle, we denote with ∆d(k) = d(k)−
d(k − 1) the difference between two consecutive duty cycles,
and we associate with ∆d(k) the cost

εd(k) = q2∆d(k) (13)

Finally, to account for the bound i�,max on the inductor
current, we introduce the variable εi(k) that describes the cost
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of violating this constraint.

εi(k) =

{
0, if i�(k) ≤ i�,max,
q3(i�(k) − i�,max), else

(14)

By associating a large penalty with εi(k), the upper bound
on the inductor current is modelled as a soft constraint. (Note
that for (14) an additional binary variable is not needed as it
can be represented by a slack variable.)

Define the vector ε(k) = [εv(k) εd(k) εi(k)]T , and consider
the objective function

J(D(k),x(k), d(k − 1)) =

L−1∑
�=0

‖ε(k + �|k)‖1 (15)

which penalizes the predicted evolution of ε(k + �|k) from
time-instant k on over the finite horizon L using the 1-
norm. The control law at time-instant k is then obtained by
minimizing the objective function (15) over the sequence of
control moves D(k) = [d(k), . . . , d(k+L−1)]T subject to the
mixed-integer linear inequality constraints of the MLD model
(1), the physical constraint on the duty cycles

0 ≤ d(�) ≤ 1 , � = k, ..., k + L − 1 (16)

and the expressions (12)–(14). This amounts to the constrained
finite-time optimal control problem (CFTOC)

D∗(k) = arg min
D(k)

J(D(k),x(k), d(k − 1)) (17a)

subj. to (1), (16), (12) − (14), (17b)

leading to the sequence of optimal duty cycles D∗(k) =
[d∗(k), . . . , d∗(k+L−1)]T , of which only the first duty cycle
d∗(k) is applied to the converter. At the next sampling interval,
k is set to k + 1, a new state measurement (or estimate) is
obtained, and the CFTOC problem is solved again over the
shifted horizon according to the receding horizon policy. As
we are using the 1-norm in all cost expressions, the CFTOC
problem amounts to solving a Mixed-Integer Linear Program
(MILP) for which efficient solvers exist.

V. THE STATE-FEEDBACK LAW

In this section, we provide some information regarding
the explicit state-feedback controller. More specifically, in
Section V-A, we refer to the work that has been done in the
development of algorithms for deriving such controllers and
highlight some of the fundamental properties of the obtained
controller. In Section V-B some implementation issues are
briefly discussed.

A. Algorithm and Properties

Recall that the objective function (15) is linear, and rewrite
the CFTOC (17) by replacing the MLD model by the equiv-
alent PWA model (2)

D∗(k) = arg min
D(k)

J(D(k),x(k), d(k − 1)) (18a)

subj. to (2), (16), (12) − (14). (18b)

Note that the CFTOC problem is not only a function of the
state vector x(k), but also of the last control move d(k−1), as
we are penalizing the changes of the duty cycle in the objective
function. The optimal control move for the problem (18) may
be obtained by solving a mixed-integer optimization problems
online or by solving offline a number of multi-parametric
linear programs.

By multi-parametric linear programming, a linear optimiza-
tion problem is solved offline for a range of parameters.
In [5], the authors show how to reformulate a discrete-time
CFTOC problem as a multi-parametric program by treating
the state vector as a parameter and propose an algorithm
for its solution. Basic ideas from [5] for linear systems with
quadratic cost are extended in [3] to linear systems with linear
cost expressions, and in [1], [9], [19], [7] to PWA systems.
The details about the algorithm computing the explicit state-
feedback control law can be found in [1], where the authors
report an algorithm that generates the solution by combining
dynamic programming with multi-parametric programming
and some basic polyhedral manipulations.

Next, we restate the main result about the solution to
the CFTOC problem (18) proven in [7]. The optimal state-
feedback control law d∗(k) is a PWA function of the state
x(k) defined on a polyhedral partition of the feasible state-
space. In our case, as the CFTOC is also a function of the
last control input, we need to extend the state vector by
d(k−1). Furthermore, the value function J(x(k), d(k−1)) :=
J(D∗(k),x(k), d(k−1)) is also PWA in the state and the last
control input.

B. Implementation

As a result, such a state-feedback controller can be imple-
mented online, since computing the control input amounts to
the following two steps. First, the polyhedron needs to be
determined in which the measured state lies. A brute force
approach would be to go through (in the worst case the whole)
set of polyhedra and to check the corresponding inequalities of
the polyhedra. A smarter technique has been proposed in [8]
exploiting the properties of the value function.

In general, polyhedra with the same control law form a
convex union and can thus be merged and replaced by their
union. This leads to an equivalent PWA control law with less
polyhedra and thus reduced complexity. Such a representation
is highly preferable as it allows one to relax the memory
requirements and to reduce the computational burden for
the controller hardware. Indeed, it is possible to derive an
equivalent PWA control law that is minimal in the number of
polyhedra by merging polyhedra associated to the same control
law in an optimal way [13].

VI. SIMULATION RESULTS

The results presented here concern initially the explicit
state-feedback controller that was derived for the set of con-
verter and control problem parameters provided in Table I. In
the sequel, we examine two aspects of the system’s dynamic
behavior. In the first case, the behavior of the converter during
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TABLE I

PARAMETERS USED FOR THE SIMULATION RESULTS

Parameters of the Converter

xc 70 p.u. x� 3 p.u. i�,max 3 p.u.

rc 0.001 p.u. r� 0.05 p.u. ro 1 p.u.

Parameters of the Control Problem

N 3 L 2

q1 4 q2 0.1 q3 1000 p.u.

start-up is investigated, while in the second case the system’s
response to changes of the input voltage is examined. The
simulations were carried out using the nonlinear model of the
converter as the real plant, closing the loop with the explicit
state-feedback controller. The states of the converter and the
input voltage were regarded to be ideally measurable. All units
in the following figures are normalized, including the time
scale where one time unit is equal to one switching period.

A. The Explicit State-feedback Controller

As mentioned above, the formulation of the control prob-
lem presented here is expected to lead to an explicit state-
feedback control law that is defined in a 3-dimensional space.
This is due to the fact that the cost function penalizes the
changes in the duty cycle and therefore the controller action
depends on d(k − 1) as well. However, in order to account
for changes of the input voltage, one additional parameter
needs to be introduced, leading to a 4-dimensional problem.
Using a straightforward approach, one could use the input
voltage as a parameter in the CFTOC, which would result in
a problem of increased complexity, since vs enters the state-
update equations (9) in a nonlinear fashion (multiplied with
the duty cycle).

In order to avoid this complexity increase, we use the
reference voltage vref as a parameter instead. For this to be
possible, one just needs to norm the measurements acquired at
the beginning of each period to the input voltage, and adopt the
reference accordingly. Using this strategy, the problem is still
4-dimensional but no additional nonlinearities are introduced.
This procedure resulted in a state-feedback controller defined
on 325 polyhedral regions in a 4-dimensional space. Using
the merging algorithm presented in [13], the controller was
simplified to 100 regions. Figure 5 shows a cut through the
control law along the control d(k−1) = 0.5 and vref = 0.556,
where one can observe the control input d(k) as a PWA
function of i� and vc.

B. Case 1: Start-up

The first case presented in Fig. 6 shows the step response
of the converter in nominal operation during start-up. The
initial state is given by x(0) = [0 0]T , the input voltage is
vs = 1.8 p.u. and the reference for the output is vo,ref = 1 p.u.
The output voltage reaches its steady state within 10 switching
periods with an overshoot that does not exceed 3%. The
current constraint is respected by the peaks of the inductor
current during start-up, and the small deviations observed

−1

d(k)

i�(k)

vc(k)

0
0

0

0.2

0.4

0.6

0.8

1

1
10.5

1.5

Fig. 5. The state-feedback controller for d(k − 1) = 0.5 and vo,ref =
0.556 p.u

are due to the approximation error introduced by the coarse
resolution chosen for the N -step model. The same holds for
the small -in the range of 0.5%- steady-state error that is
present in the output voltage.

C. Case 2: Response to input voltage changes

In the second case, we examine the behavior of the converter
under step changes in the input voltage. In the examples
presented, the converter is initially at steady state when a step
change in the input voltage is applied at time-instant k = 5.

In the first example shown in Fig. 7, the input voltage
changes from vs = 1.8 p.u. to vs = 3 p.u.. As can be seen
from Fig. 7, the output voltage remains practically unaffected
and the controller finds the new steady-state duty cycle very
quickly (within 4 switching periods). In the second example
depicted in Fig. 8, the input voltage changes from vs = 1.8 p.u.
to vs = 1.2 p.u.. Similar to the previous case, the output
voltage remains practically unaffected, and the relatively large
undershoot results from the physical limitation of the duty
cycle, as can be seen by the graph in Fig. 8(b).

VII. CONCLUSIONS AND OUTLOOK

In this paper, we have presented a new solution approach to
the optimal control problem of fixed frequency switch-mode
dc-dc converters using hybrid systems methodologies. A novel
N -step hybrid model was introduced, and an optimal control
problem was formulated and solved offline, yielding an explicit
state-feedback controller defined over a polyhedral partition of
the state-space that allows for the practical implementation
of the proposed scheme. The use of MPC has allowed us
to explicitly take into account during the controller design
physical constraints, such as the restriction of the duty cycle
between zero and one, and safety constraints, such as current
limiting. Simulation results have been provided demonstrating
that this approach leads to a closed-loop system with very
favorable dynamical properties.

However, this study has been so far limited to the case where
the states of the converter, namely the inductor current and
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Fig. 6. Closed-loop simulation of the converter during start-up

the capacitor voltage, are considered to be ideally measurable.
This assumption represents a shortcoming that in the course of
further research needs to be addressed. Moreover, the issue of
the variations of the converter’s load has not been addressed
in this paper. Nevertheless, the preliminary results that have
been obtained show that the proposed scheme can be adopted
to handle these variations, without becoming too complex for
a practical application.
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