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Abstract—This paper analyses the limitations of a reduced
order model for Modular Multilevel Converters (MMCs) by
elucidating the relation between its accuracy, operating frequency
and converter parameters. A reduced order simplifies the analysis
of the MMC and thereby may provide additional information
about the converter behaviour. However, the accuracy of such
model depends on several factors. In this paper, the effect
of approximating the converter as a continuous system by
neglecting quantization issues associated with having a finite
number of modules is studied in detail. The analysis is done
based on Fourier series approximations with which it is possible
to elucidate the relationship between the resonant frequencies of
the MMC and the error of the reduced order model. With the
Fourier approximation, it is also possible to characterize resonant
frequencies of the converter, both numerically and analytically,
in terms of the converter parameters. The results can serve as a
tool to identify situations when the reduced order model produces
good and also less accurate approximations especially when a low
number of modules are available.

I. I NTRODUCTION

Recently MMCs have become a popular power converter
topology. Numerous studies have been carried out for this
converter due to its advantages in high power and high voltage
applications. In addition to this, its modularity, low distortion
and high voltage capabilities are some other characteristics that
make the MMC a very important topology for industry. Some
of the industrial applications of the MMC include: wind energy
conversion, HVDC grids, and medium voltage drives [1]–[3].
Due to its relevance, several studies have proposed different
techniques to improve performance and address important
issues. These include: modulation techniques [4]–[6], voltage
balancing techniques [7], optimal capacitor ripple reduction
[8], [9], several control approaches [10]–[13] and energy
quality and reliability [14], [15]. All of these works also aim
to understand operation principles of MMCs.

MMCs are complex power converters that exhibit a highly
non-linear behaviour. In order to understand their operational
principles and analyze the converter, it is important to be able
to obtain relatively simple mathematical expressions that, not
only describe the converter accurately, but also allow one to
obtain insight into the behaviour of the system. This insight
can be used as a guideline for different design purposes such
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as: selection of references for control, injection of current
harmonics for voltage ripple reduction or selection of control
laws for different applications [16].

Several modeling approaches for the MMC have been pre-
sented in the literature. Some of these approaches are designed
for simulation purposes with various levels of complexity
[17]–[19]. The simpler models often neglect some of the
dynamics of the converter and do not consider power losses,
opening the path for more accurate methods to be proposed
[20]. For a more detailed analysis of the converter a more
complex model is required. In [21], [22], models that aim
to obtain detailed information about the converter losses and
behaviour in steady state are proposed. However, important
information about the dynamics of the MMC cannot be
obtained. In other works [23]–[27], more detailed continuous
dynamical models of the MMC are presented. These models
exhibit a reduced number of state space and control variables
while maintaining the nonlinearities of the MMC. In [28],
[29], these kind of models have been used to determine open-
loop control strategies that use calculated steady state values
and estimated voltage ripple values to achieve energy control
with asymptotical stability. In general, all these models are
represented in theabc frame, complicating the analysis of the
converter due to the multiplication of two time varying signals.
In [30], a more convenient representation in thedq frame is
presented. However, the analysis is carried out for a linear case
using only up to a second order harmonic.

The current manuscript extends the concept in [31] further
and analyzes the impact of additional harmonic components
in the converter model as well as in the control signals in
more detail. This is particularly useful in the case where
the number of modules are low and the quantization in the
control signals is neglected in order to obtain a continuous
system representation. An interesting phenomenon is that the
accuracy of the model in [23] (reduced order model) is
greatly affected when the operating frequency of the converter
matches some specific frequencies. Following an analytical
procedure, expressions for some of the frequencies where
the error of the reduced order model is more significant are
presented, constituting one of the main contributions of this
work. These frequencies are poorly damped resonant modes
that depend on the converter parameters and the harmonic
content of the inputs. In [32], [33], it is shown that these
poorly damped modes can generate instability in a closed
loop control strategy. The method presented in this work is
a straightforward alternative to identify such frequencies and
therefore, it has also potential use for stability analysis [34].



The current manuscript focuses on analyzing and clarifying
the accuracy of the reduced order model and its relationship
with the converter parameters.

The subsequent analysis shows that the accuracy of the
reduced order model is low close to the resonant frequencies
of the converter due to the additional frequency components
introduced by quantization effects. This produces a modulation
effect that displaces the resonant frequencies of the reduced
order model (when continuous signals are used) in comparison
with those of the full order MMC (with quantization). This
generates differences in where the amplitude peak related to
the resonance is located, producing inaccuracies. With suffi-
cient knowledge about the resonant frequencies, it is possible
to determine beforehand if the response of the reduced order
model is accurate enough. This information can be helpful
when designing an MMC based on the reduced order model.
The verification of this analysis in the current manuscript is
limited to a simulation environment.

This paper is organized as follows: Sections II and III
present the MMC and the reduced order model respectively,
Section IV discusses issues related to the application of
the reduced order model. Sections V and VI estimate the
resonant frequencies of the MMC using an approach based
on linearization and a Fourier series expansion respectively.
Finally, Section VII draws conclusions.

II. M ODULAR MULTILEVEL CONVERTER

The MMC is a power converter topology which transforms
the waveform of an electrical variable from DC to AC, or vice
versa (see Fig. 1) [1], [35].
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Fig. 1: MMC with N modules per arm. Here,vl denotes the output
voltage of the converter,i l stands for the load current andic for the
circulating current.Si

1 and Si
2 are the positions of the switches and,

vu,l
i andVM

i describe the voltage of the capacitors and the modules,
respectively.

In order to control the MMC, the switch positions of each
module shown in Fig. 1 can be chosen independently to be one
of two possible values: “inserted” or “not-inserted”. A module
is considered “inserted” when its voltage (VM

i ) is equal to the
voltage of its respective capacitor. Conversely, a module is
considered “not-inserted” when its voltage (VM

i ) is equal to 0.

The desired waveforms of output currents and voltages of
the MMC are sinusoidal and can be defined as

i l (t) = î l cos(ωt +φ) (1)

vl (t) = v̂l cos(ωt) (2)

whereî l is the amplitude of the output current andω represents
the angular frequency. The phase angleφ and the voltage
amplitude ˆvl can be calculated depending onv∗ac, Rl andLl .

Using electrical circuit analysis methods, an MMC (Fig. 1)
with N submodules per arm can be described by the following
state space model

ẋ(t) = A

(

~µu(t),~µl (t)
)

x(t)+B [vdc v∗ac]
T (3)

where

x(t),
[

ic(t) i l (t) vu
1(t) · · · vu

N(t) vl
1(t) · · · vl

N(t)
]T

(4)
is the system state. In (4),ic is the circulating current, whereas
vu

i andvl
i represent the capacitor voltages of thei− th module

of the upper (u) and lower (l ) arms. In (3),~µu(t) and~µl (t)
represent the control signals for the modules in the upper
and lower arms. Each individual component of these control
signals can take the value of 1 (module inserted) or 0 (module
not inserted):

~µu(t),
[

µu
1(t) · · · µu

N(t)
]T

, µu
i (t) ∈ {0,1}, (5)

~µl (t),
[

µl
1(t) · · · µl

N(t)
]T

, µu
i (t) ∈ {0,1}. (6)

The matrixA
(

~µu(t),~µl (t)
)

is defined as

A

(

~µu(t),~µl (t)
)

,
[

A1,1 A1,2
(

~µu(t),~µl (t)
)

A2,1
(

~µu(t),~µl (t)
)

0

] (7)

with

A1,1 =

[

−R
L 0

0 −R+2Rl
L+2Ll

]

A1,2

(

~µu(t),~µl (t)
)

=

[ − 1
2L~µ

u(t)T − 1
2L~µ

l (t)T

− 1
L+2Ll

~µu(t)T 1
L+2Ll

~µl (t)T

]

A2,1

(

~µu(t),~µl (t)
)

=

[ 1
C~µ

u(t) 1
2C~µ

u(t)
1
C~µ

l (t) − 1
2C~µ

l (t)

]

(8)

Finally, B is given by:

B ,

[ 1
2L 0 · · · 0
0 − 2

L+2Ll
· · · 0

]T

. (9)

III. R EDUCED ORDER MODEL AND ITS APPLICATION TO

MMCS

The MMC is a discontinuous system with multiple switch-
able inputs as shown in (3). These discontinuities complicate
the analysis of the converter. In order to simplify the analysis
and obtain expressions for the variables of interest, this section
investigates a model introduced and validated in [23], [36]



that reduces the order of the state space model and the
number of inputs. The obtained reduced-order model is also
convenient when one wishes to describe the MMC neglecting
the discontinuities.

One can start defining the reduced model by considering the
MMC model described in (3), and assuming that the capacitor
voltages are balanced, i.e, we have:

vu
i (t) = vu(t), ∀i ∈ {1,2, . . . ,N} (10)

and1

vl
i (t) = vl (t), ∀i ∈ {1,2, . . . ,N} (11)

Then the MMC model (3) reduces to:

ẋ(t) = A
(

µ̌u(t), µ̌l (t)
)

x(t)+B[vdc v∗ac]
T , (12)

where

A
(

µ̌u(t), µ̌l (t)
)

,








−R
L 0 − 1

2L µ̌u(t) − 1
2L µ̌l (t)

0 −R+2Rl
L+2Ll

− 1
L+2Ll

µ̌u(t) 1
L+2Ll

µ̌l (t)
1

NCµ̌u(t) 1
2NC µ̌u(t) 0 0

1
NCµ̌l (t) − 1

2NC µ̌l(t) 0 0









(13)

B,

[ 1
2L 0 0 0
0 − 2

L+2Ll
0 0

]T

(14)

and the system state is now given by

x(t),
[

ic(t) i l (t) vu(t) vl (t)
]T

. (15)

In this model, the modulation functions are

µ̌u(t),
N

∑
j=1

µu
j (t), µ̌u(t) ∈ {0, . . . ,N} (16)

and

µ̌l (t),
N

∑
j=1

µl
j(t), µ̌l (t) ∈ {0, . . . ,N} (17)

These functions represent the number of modules inserted in
the upper and lower arms respectively, and depend on the
control law adopted.

A detailed procedure to obtain the previous expressions can
be found in [23].

As stated before, the reduced-order model in (12) uses
the control signals in (16) and (17). Since these aggregated
control signals are the sum of the binary control signalsµu,l

j ,
they represent quantized signals that only take integer values
between 0 andN.

The reduced order model facilitates the derivation of an-
alytical solutions by reducing the number of input variables
and the size of the state vector. This can be used for a more
detailed analysis of the converter such as in [23], [36].

It is important to note that when the reduced order model
is used, it is implicitly assumed that the voltages in all the
capacitors are balanced according to Eqs. (10) and (11).
Note that when this condition is fulfilled, it is possible to

1Note thatvu(t) = vl (t) is not imposed. Thus the model allows capacitor
voltages in the upper to be different from those in the lower arm.

represent the capacitors of all modules with one capacitor per
arm and define aggregated control signalsµu,l

j without using
any approximation. All the information about any modulation
technique used, or about the control inputsµu,l

j in general, is
now contained in ˇµu,l as defined in Eqs. (16) and (17). Thus,
if the voltages of the capacitors are balanced (see Eqs. (10)
and (11)), then the full order model and the reduced order
model using ˇµu,l provide the same result.

IV. I MPLICATIONS OF USING THEREDUCED ORDER

MODEL

A. Using continuous control signals

In some cases, it may be convenient to express the aggre-
gated control signals in Eqs. (16) and (17) as the sum of an
equivalent continuous valued signalµu,l(t) and a quantization
effect Qn(t), produced by having only a finite number of
modules in the converter, as follows:

µ̌u,l (t) = µu,l (t)+Qn(t). (18)

If desired,Qn(t) can be neglected using only the continuous
part µu,l(t). In particular, if µu,l (t) are smooth, then only
differentiable functions need to be taken into account, easing
the analysis. Note that this step implies an approximation and
it is specially important when a low number of modules are
available (Qn(t) comparable withµu,l (t)). It is because of this
approximation that the results of the reduced order model may
differ from the ones of the full order MMC.

Neglecting the quantization allows one to obtain analytical
expressions of variables such as the capacitor voltages. These
expressions can then be used for optimization and reference
design [23]. However, the quantization affects the frequency
response of the circuit, leading to inaccuracies when this is
neglected.

Due to the non-linearity in the model, there is a modulation
effect that comes from the multiplication of the control signal
with the capacitor voltages, see Eq. (12). This effect moves
the resonant frequencies (i.e. peaks of amplitude inic) of the
converter when additional frequency components are consid-
ered in the control signals. As shown next, this accentuates the
error of the reduced order model at some specific frequencies.

To illustrate the effect of the quantization at different
frequencies, let us consider numerical values of the parameters
of the converter as in Table I. Moreover, let us define the
following control inputs:

• smooth control inputs:

µu(t) = N
1+ cos(ωt)

2
, µl (t) = N

1− cos(ωt)
2

. (19)

• quantized control inputs:

µ̌u(t) = ni

(

N
1+ cos(ωt)

2

)

, µ̌l (t) = ni

(

N
1− cos(ωt)

2

)

,

(20)
where the operationni(•) approximates the argument to
the nearest integer.

Fig. 2 shows the response of an open loop MMC to
the control inputs in Eqs. (19) and (20) with fundamental
frequencyω= 2π60. A clear difference between the two cases



Fig. 2: Effects of the quantization at 60Hz (Solid lines: without
quantization, dashed lines: with quantization)

(with and without quantization) can be observed. Interestingly,
the situation changes when the frequency of the sinusoidal
input is changed toω = 2π50, see Fig. 3. The simulation
shows that the difference between the response of the model
without the quantization and the model with the quantization
is minimal for this frequency. In Fig. 4, a simulation with
the error produced by neglecting the quantization effect for
MMCs with different number of modules is shown. The error
is calculated as the Root Mean Square of the difference of
the simulated waveforms over one period in steady state. The
simulation shows that a larger error is presented for some
specific frequencies. We shall give special attention to the peak
with the highest frequency since it may be located close to
the typical operating frequencies of the converter (50Hz or
60Hz). This observation shows that the quality of the model
is frequency dependent and motivates our subsequent analysis.

Let us fist define what we shall refer to as the “frequency
response of the MMC”. Due to the non-linear nature of the
system, frequencies multiples of the input frequency are likely
to appear in the converter currents and voltages. This motivate
us to define the frequency response of the MMC as the
amplitude of the second harmonic of the circulating current
ic as a function of the frequency in the control signalsω (see
Eqs. (19) and (20)). The reason why the second harmonic ofic
is chosen for the analysis is mainly due to the following facts:
(i) this is the lowest order harmonic in the circulating current,
(ii) its amplitude is significantly higher than the amplitude of
the other harmonics, (iii) as shown in Fig. 4, the resonance
of this second order harmonic is more likely to match the
operating frequency of the converter2. In the following sections
we are going to focus our efforts into determining the relation
of these resonant frequencies with the converter parameters.

2Note that the resonant frequencies are independent of our choice of
considering the second order harmonic ofic as output variable for the analysis.

Fig. 3: Effects of the quantization at 50Hz (Solid lines: without
quantization, dashed lines: with quantization)
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Fig. 4: Error produced by the quantization effect using 4, 8 and 12
modules for different frequency values. (A) High frequency peaks.
(B) Low frequency peaks.

TABLE I: Parameter values in p.u. atω = 2π50 for an MMC (The
p.u. (per unit) values are normalized with respect to the grid voltage
(3800 V) and the nominal current (650 A))

Variable R XL (ωL) XC ( 1
ωC ) Rl XLl (ωLl ) vdc v∗ac N

Value 0.004 0.075 0.089 0.01 0.15 2.19 1 8

B. Effects of capacitor voltage imbalances

Test have shown that the error in the converter currents (i.e.
ic and i l ) of the reduced order model, when compared with
the foll order model, presents an increment of less than 10%,
with an allowed voltage imbalance of up to 35% of the module
voltage ripple (voltage ripple measured in balanced condition).
It is worth noticing that the circulating current is more affected
by the voltage imbalances due to the low arm impedance.

V. ESTIMATION OF THE MMC RESONANT FREQUENCIES

(L INEARIZATION APPROACH)

This section presents a preliminary approach to obtain
information about the frequency response of the MMC that
uses a linearized version of the reduced order model around
an operation point. The linearization technique is widely used
in many applications. One of them is design of control laws for
power converters, where it is important that the information
provided by the linearized model matches as close as possible
the original model to guarantee proper performance and good



stability properties. This approach aims to derive simple ana-
lytical expressions for the resonant frequencies based on linear
differential equations that later will be used for comparison
with more elaborated approaches. This will also serve as a
criteria to determine the accuracy of the linearized model of
the MMC.

The linear model can be written, based in Eq. (12), as
follows:

˙̃x(t) = A
(

µ̄u, µ̄l
)

x̃(t)+B(x(0))[vdc v∗ac µ̃u,l(t)]T , (21)

whereµ̄u,l represent the control signals in the operational point,
µ̃u,l (t) and x̃(t) = [ĩc ĩ l ṽu ṽl ] the incremental variables
associated with the control signals and the state space vector
respectively, andB(x(0)) a constant matrix that depends on
the initial conditionsx(0). Since the matrixA

(

µ̄u, µ̄l
)

is in
charge of determine the placement of the poles and resonant
frequencies of the system, we focus our analysis in this term
of the equation.

To simplify the calculations, let us assume that‖R+
jωL‖≪ ‖Rl + jωLl‖. Therefore, the resonant frequencies can
be analyzed by considering two different cases; a case for
the higher frequencies and an additional case for the lower
frequencies

The following analysis uses this assumption and the lin-
earized model in Eq. (21) to derive analytical expressions
of the resonant frequencies of the MMC. In Section VI, the
results of the resonant frequencies obtained with the linearized
model will be compared with results obtained with more
accurate methods, which can be very useful when one wish
to evaluate the accuracy of the linearized model specially in
the case of stability of control loops. Moreover, it will provide
more insight into the problem explaining the results in Fig. 4.

A. High Frequencies

Under the assumptions‖R+ jωL‖ ≪ ‖Rl + jωLl‖, it is
possible to write the differential equations of the linear system
in Eq. (21) and, taking into account that the operation lies in
the high frequency range (i.e.‖Rl + jωLl‖ → ∞ or i l = 0),
develop analytical expressions for the resonant frequencies
of the converter. According to Eq. (21) and considering that
µ̄u+ µ̄l = N andµ̄u = αN, where 0< α < 1 is a constant value
that depends on the linearization point, a value for the resonant
frequency can be obtained as:

f1 =
1

√

2LC
N

1
α2+(1−α)2

,

√
2

2
1

√

2LC
N

≤ f1 <
1

√

2LC
N

(22)

Due to the fact thatic contains mainly second order harmon-
ics, an interesting phenomenon occurs. This consists in the
resonance being produced when the input frequency is equals
to f1

2 . Due to the system non-linearities, this input frequency
produces anic with frequency f1, matching the resonance
frequency. Note that this phenomenon is not captured by the
linear model analyzed in this section. This will be corroborated
and analysed further with the method presented in Section VI.

B. Low Frequencies

For the low frequency case,R and L are considered as
0. Eq. (21) can be used under this consideration to obtain
a resonant frequency as:

f2 =
1

√

LlC
N

(

α2+(1−α)2
α2(1−α)2

)

, 0< f2 ≤
√

2
4

1
√

LlC
N

(23)

VI. ESTIMATION OF THE MMC RESONANT FREQUENCIES

(FOURIER APPROACH)

In order to address the problem of obtaining information
about the frequency response of the MMC in more detail,
an approach using Fourier series approximation that analyzes
each frequency component separately is applied. For detailed
information of such techniques please refer to [37], [38]. In
[39], [40], this Fourier method is applied to an MMC under
nominal operating conditions and validated against a fully
detailed electromagnetic transient model in PSCAD/EMTDC
[41].

The results in [39], [40] show good accuracy of the Fourier
series approximation with as low as 2 harmonic compo-
nents. Moreover, it is also shown that, by increasing the
harmonic components up to 17, the results are considerably
improved, obtaining a very close match between the model
in PSCAD/EMTDC and the approach using Fourier series.
Therefore, we shall consider the model presented in this
section can be considered as a good reference for the accuracy
assessment of the reduced order model.

Using the Fourier series approximation, the MMC can be
described by the following equation

M(ω)z= U (24)

where

M(ω),








−(RI + jωnL) 0 − 1
2Yu − 1

2Y l

0 −(R+2Rl
L+2Ll

I + jωnLl ) − Ll
L+2Ll

Yu
1

L+2Ll
Y l

1
NCYu

1
2NCYu − jωnC 0

1
NCY l − 1

2NCY l 0 − jωnC









(25)

U ,

[

− 1
2V in 0 0 0
0 2Ll

L+2Ll
V∗

ac 0 0

]T

(26)

and
z,

[

Ic I l Vu V l
]T

(27)

are matrices constructed based on the Fourier transformation
of Eq. (12). The diaglonal matrixn is defined as follows

n , diag
([

−n −(n−1) · · · 0 . . . n−1 n
])

(28)

wheren is the number of frequency components used in the
Fourier series expansion.

The variablesV in , V∗
ac, Ic, I l , Vu and V l are vectors that

contain each of the coefficients of the Fourier series expansion



of the respective variable. As an example, let us assume that
ic(t) can be written as:

ic(t) =
n

∑
k=−n

i(k)c ejωnt. (29)

With this, the variableIc can be defined as follows

Ic ,
[

i(−n)
c . . . i(0)c . . . i(n)c

]T
. (30)

where i( j)
c represent the coefficient corresponding to thejth

multiple of the natural frequency ofic.
The matricesY j represent the Fourier decomposition of the

control inputs and are defined as follows:

Y j ,





















Y(0)
j . . . Y(−2n)

j
. . .

... Y(0)
j

...
. . .

Y(2n)
j . . . Y(0)

j





















(31)

whereY(k)
j represent the coefficient corresponding to thekth

multiple of the natural frequency of the control signalsµj .
With the previous definitions, the vectorz can be found

using the following expression (see Eq. (24))

z= (M(ω))−1U. (32)

Since the system described by Eq. (24) is linear, it is possible
to find the resonant frequencies of the system by solving for
ω the following equation

det(M(ω)) = 0 (33)

In order to illustrate the results of this method, Fig. 5
shows the frequency response ofic for different numbers of
frequency componentsn. It can be seen that the resonant
frequencies move and some new ones appear when the value
of n is increased. In particular, the peaks marked as ”A”
correspond to the resonance of the 2nd harmonic ofic, ”B”
to the resonance of the 4th harmonic, ”C” to the resonance
of the 6th harmonic. The peaks marked as ”D” correspond to
the resonances dominated by the load impedance.

It is possible to obtain analytical expressions for some of
the resonant frequencies in terms of the converter components.
This can be done by solving (33) for a given value ofn. For
the sake of simplicity, only the continuous control signals in
Eq. (19) are going to be considered for this analysis.

Note that the frequency response may change, if the ampli-
tude or characteristics of these control signals change due to
the nonlinear properties of the system.

The results of the analysis of the frequency response using
the Fourier series are shown in the sections below. For some
numerical comparisons, the values of Table I are used

Fig. 5: Estimation of the amplitude ofic using the Fourier series
approximation for different values ofn

A. Frequency response analysis with n= 2

In order to begin with the analysis, matricesn, Yu, Y l and
U in Eqs. (14), (28) and (31) respectively, need to be defined
usingn= 2 and the control signals in Eq. (19). These matrices
can be used to defineM(ω) (see Eq. (25)) and then to obtain
the solutionz by applying Eq. (32). Consequently, the resonant
frequencies can be obtained using Eq. (33).

After some algebraic manipulations, the following simpli-
fied expressions for the frequenciesf1 and f2 in Fig. 5 can be
derived

f1 =

(

16CLLl R2+16CL2
l R

2−8L3N−22L2Ll N−12LL2
l N

32CL2(L2+4LLl +4L2
l )

−

28CL2R2+80CL2RRl +64CL2R2
l

32CL2(L2+4LLl +4L2
l )

)

1
2

,

(34)

f2 = Re







√

√

√

√

Ll N−32CR2
l +8

√

16C2R4
l −CLl NR2

l

64L2
l C






. (35)

whereRe(∗) represents the real part of the argument. Table
II shows a comparison of the numerical values of the resonant
frequencies obtained with different methods. It can be seen that
the analytical expressions (Eqs. (34) and (35)) approximate the
numerical results with an error less than 4%. The approach
based on linearization in Section V gives a very easy method
to compute these values, however the accuracy of the result
is compromised. Note that the phenomenon mentioned in
Section V where the resonance due tof1 is produced when
the input is at f1

2 can be seen clearly in this comparison. The
linearized approach fails to model this phenomenon producing
values for f1 that are around twice as high as the actual value.
Remember also thatf1 is of special importance since it could
match the operating frequency of the converter and thereby
producing inaccuracies in the reduced order model.



TABLE II: Comparison of the resonant frequenciesf1 and f2 (see
Fig. 5) obtained with different methods forn = 2: Actual: Using
Eq. (33) withn→ ∞ and quantized control signals. Fourier (Num.):
Using Eq. (33) withn = 2 and continuous control signals. Fourier
(Ana.): Using Eqs. (34) and (35). Lin.: Using Eqs. (22) and (23)

Actual Fourier (Num.) Fourier (Ana.) Lin.
f1 382.6 361.4 362.4 582.4 - 823.7
f2 50.4 29.3 28.3 0 - 265.5

B. Frequency response analysis with n> 4

The complexity of the expressions obtained by solving (32)
grows exponentially withn. For n= 4 it is possible to obtain
relatively simple analytical expressions only for some low
importance frequencies. Therefore, beyond this point, it is
necessarily to proceed with numerical solutions.

C. Effects of the quantization Qn(t) of the control signals

Due to the non-linear nature of the system, the inclusion of
the quantization change the frequency response of the system.
To take this effect into account, the control signals in Eq. (20)
are used for the following analysis.

Fig. 6 shows a comparison of the frequency response of the
reduced order model calculated with the Fourier approxima-
tion for n= 2 with and without the quantization. It can be seen
how the resonant frequencies change their position and the am-
plitudes of the peaks are slightly attenuated. Unfortunately, it
is not possible to obtain analytical expression for the resonant
frequencies when the quantization is taken into account for
n≥ 2 due to the complexity of the expressions. However, they
can be obtained numerically by solving Eq. (33).

Fig. 6: Frequency response of the MMC forn= 2 with and without
quantization

Fig. 7 shows the results forn= 6. For this case, the resonant
frequencies are also affected by the quantization; especially,
the amplitude corresponding to the resonance of the 4th

harmonic (frequency peak between 150 rad/s and 200 rad/s)
is attenuated significantly once the quantization is taken into
account. Moreover, the resonant frequency with the highest
value is displaced around 7% due to the quantization. This

Fig. 7: Frequency response of the MMC forn= 6 with and without
quantization

displacement in frequency is less pronounced for the other
resonant frequencies.

The difference of the two frequency responses in Fig. 7
corresponds to the error caused by neglecting the quantization.
Since the amplitude peaks are at slightly different locations,
the difference between the two frequency responses become
significant close to them. This explains the peaks obtained in
the simulation already shown in Fig. 4, where the error of the
model without quantization was illustrated.

VII. C ONCLUSIONS

A reduced order model can accurately represent the be-
haviour of the MMC in many situations. However, aspects as
voltage imbalances and quantization can affect its accuracy.
This work analyses the impact of both of these aspects on
the accuracy of the reduced order model showing how voltage
imbalances affect the model error. Moreover, the effect of the
quantization in the control signals for different operation fre-
quencies is also addressed. The current manuscript has exten-
sively analyzed the inaccuracy introduced by the quantization
effect as a function of the frequency of operation showing
that, in frequency ranges close to the resonant frequencies,
the accuracy of the reduced order model is reduced.

This work has developed detailed methods to characterize
resonant frequencies of MMC’s by using analytical expres-
sions. This novel analysis allows one to obtain values of
the resonant frequencies that have not been identified in the
current literature, giving additional insight on the MMC. The
results obtained here can be used to estimate beforehand if
the reduced order model produces an accurate representation
of the MMC, and the insight gained is particularly useful when
working with control techniques using continuous control
signals.
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