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Abstract—This paper analyses the limitations of a reduced as: selection of references for control, injection of current
order model for Modular Multilevel Converters (MMCs) by  harmonics for voltage ripple reduction or selection of control
elucidating the relation between its accuracy, operating frequency laws for different applications [16].

and converter parameters. A reduced order simplifies the analysis .

of the MMC and thereby may provide additional information Several mO(_jellng approaches for the MMC have been pre-
about the converter behaviour. However, the accuracy of such Sented in the literature. Some of these approaches are designed
model depends on several factors. In this paper, the effect for simulation purposes with various levels of complexity

of approximating the converter as a continuous system by [17]-[19]. The simpler models often neglect some of the
neglecting quantization issues associated with having a finite dynamics of the converter and do not consider power losses,

number of modules is studied in detail. The analysis is done ina th th f i thods to b d
based on Fourier series approximations with which it is possible 9P€NING the path Tor more accurate methods 1o be propose

to elucidate the relationship between the resonant frequencies of [20]. For a more detailed analysis of the converter a more
the MMC and the error of the reduced order model. With the complex model is required. In_[21], [22], models that aim

Fourier approximation, it is also possible to characterize resonant to obtain detailed information about the converter losses and
frequencies of the converter, both numerically and analytically, behaviour in steady state are proposed. However, important

in terms of the converter parameters. The results can serve as a . f fi bout the d . f the MMC t b
tool to identify situations when the reduced order model produces Information abou € dynamics o € cannot be

good and also less accurate approximations especially when a lowobtained. In other works [23]-[27], more detailed continuous
number of modules are available. dynamical models of the MMC are presented. These models

exhibit a reduced number of state space and control variables
while maintaining the nonlinearities of the MMC. In_[28],
[29], these kind of models have been used to determine open-
Recently MMCs have become a popular power convertglop control strategies that use calculated steady state values
topology. Numerous studies have been carried out for thiad estimated voltage ripple values to achieve energy control
converter due to its advantages in high power and high voltag&th asymptotical stability. In general, all these models are
applications. In addition to this, its modularity, low distortionepresented in thabc frame, complicating the analysis of the
and high voltage capabilities are some other characteristics tbahverter due to the multiplication of two time varying signals.
make the MMC a very important topology for industry. Somen [30], a more convenient representation in the frame is
of the industrial applications of the MMC include: wind energyresented. However, the analysis is carried out for a linear case
conversion, HVDC grids, and medium voltage drives [1]-[3lising only up to a second order harmonic.
Due to its relevance, several studies have proposed differenthe current manuscript extends the conceptin [31] further
techniques to improve performance and address importanid analyzes the impact of additional harmonic components
issues. These include: modulation techniqliés [4]-[6], voltage the converter model as well as in the control signals in
balancing techniques |[7], optimal capacitor ripple reductiafiore detail. This is particularly useful in the case where
[8], [9], several control approaches [10]-[13] and energjte number of modules are low and the quantization in the
quality and reliability [14], [[15]. All of these works also aimcontrol signals is neglected in order to obtain a continuous
to understand operation principles of MMCs. system representation. An interesting phenomenon is that the
MMCs are complex power converters that exhibit a highlsiccuracy of the model in[[23] (reduced order model) is
non-linear behaviour. In order to understand their operationgteatly affected when the operating frequency of the converter
principles and analyze the converter, it is important to be abigatches some specific frequencies. Following an analytical
to obtain relatively simple mathematical expressions that, néfocedure, expressions for some of the frequencies where
only describe the converter accurately, but also allow one #ige error of the reduced order model is more significant are
obtain insight into the behaviour of the system. This insigifresented, constituting one of the main contributions of this
can be used as a guideline for different design purposes sw@tk. These frequencies are poorly damped resonant modes

. , N that depend on the converter parameters and the harmonic
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I. INTRODUCTION



The desired waveforms of output currents and voltages of

The current manuscript focuses on analyzing and clarifyinge MMC are sinusoidal and can be defined as
the accuracy of the reduced order model and its relationship . ~
with the converter parameters. I (t) = i cogaxt + @) @

The subsequent ar_lalysis shows that the accuracy of 'Fhe Vi (t) = ¥ cogwt) 2)
reduced order model is low close to the resonant frequencies . )
of the converter due to the additional frequency componedt§ereii is the amplitude of the output current amdepresents
introduced by quantization effects. This produces a modulati§if 6_‘”9“|af frequency. The phase anglend the voltage
effect that displaces the resonant frequencies of the reduéégplitudevi can be calculated depending vy, R andL,.
order model (when continuous signals are used) in comparisof’Sing electrical circuit analysis methods, an MMC (Fig. 1)
with those of the full order MMC (with quantization). ThisWith N submodules per arm can be described by the following
generates differences in where the amplitude peak relatecStdte space model
the resonance is located, producing inaccuracies. With suffi- . e T
cient knowledge about the resonant frequencies, it is possible Xt)=A4 (H (t), ¢ (t)) X(t) + B[Vac  Vad 3)
to determine beforehand if the response of the reduced or

; o . ere

model is accurate enough. This information can be helpfu T
when designing an MMC based on the reduced order model(t) £ [ict) i) W) - W1 Wt - W)

The verification of this analysis in the current manuscript is . ) _ (4)
limited to a simulation environment. is the system state. Ifl(4i}, is the circulating current, whereas

This paper is organized as follows: Sectidis Il 4nd INi andy, represent the capacitor voltages of theth m0(|1ule
.y -

present the MMC and the reduced order model respectivel,the upper ) and lower {) arms. In [(8),['(t) and [ (t)
Section[TV discusses issues related to the application rgpresent the control signals for the modules in the upper
the reduced order model. Sectiond V dnd VI estimate t+f@d lower arms. Each individual component of these control
resonant frequencies of the MMC using an approach bas%jgn_als can take the value of 1 (module inserted) or 0 (module
on linearization and a Fourier series expansion respectivelgt inserted):
Finally, Sectiorf VIl draws conclusions.

OO - WOl w01, ©6)
[I. MODULAR MULTILEVEL CONVERTER
The MMC is a power converter topology which transforms WOE W - ulN(t)}Tv wi(t) € {0,1}. (6)
the waveform of an electrical variable from DC to AC, or vice , ST ) ,
versa (see Fig] 1) [1][[35]. The matrix 4 (iU(t), [ (t)) is defined as
— Ao i) 2
0d.
o 3 [ A11 Ar2 (PU(L), 1 (t))} (7)
; A1 (HU(1), 1 (1)) 0
Vae | with
& —
L
I R R 0
< : L
+ i _ A1 = R+2
:%C L R'z R Modulei 0 _LiZE]
- Vit T loupT Lol )T
L ;sl—J e — At —+(t
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_ ! LcR (1) sch (1)
' Finally, B is given by:

Fig. 1: MMC with N modules per arm. Here; denotes the output

voltage of the converter; stands for the load current amglfor the A 2_1|_ 0 .0 T

circulating currentS, and S, are the positions of the switches and, B= 0 _._2 ... ol - 9)
vi”" and\/iM describe the voltage of the capacitors and the modules, L+ah

respectively.

IIl. REDUCED ORDER MODEL AND ITS APPLICATION TO

In order to control the MMC, the switch positions of each MMCs
module shown in Fid.]1 can be chosen independently to be ondhe MMC is a discontinuous system with multiple switch-
of two possible values: “inserted” or “not-inserted”. A modulable inputs as shown ifl(3). These discontinuities complicate
is considered “inserted” when its voltagé'{) is equal to the the analysis of the converter. In order to simplify the analysis
voltage of its respective capacitor. Conversely, a module aad obtain expressions for the variables of interest, this section
considered “not-inserted” when its voltagé™) is equal to 0. investigates a model introduced and validated[inl [23]) [36]



that reduces the order of the state space model and thpresent the capacitors of all modules with one capacitor per
number of inputs. The obtained reduced-order model is alaom and define aggregated control sigr;aﬁé without using
convenient when one wishes to describe the MMC neglectiagy approximation. All the information about any modulation
the discontinuities. technique used, or about the control inpuTé in general, is
One can start defining the reduced model by considering théw contained iry™' as defined in Eqs[{16) and {17). Thus,
MMC model described ir {3), and assuming that the capacii@ithe voltages of the capacitors are balanced (see Egb. (10)

voltages are balanced, i.e, we have: and [11)), then the full order model and the reduced order
. U,| .
W(t) =Vi(t), Vie{Ll2...,N} (10) model usingu™' provide the same result.
andf V. IMPLICATIONS OF USING THEREDUCED ORDER
_ MODEL
vt)=v(t), Vvie{1,2,... N} (11) A, Using continuous control signals
Then the MMC model[{3) reduces to: In some cases, it may be convenient to express the aggre-
S ATPRN T gated control signals in Eq4.(16) aiid(17) as the sum of an
X(t) = A(” (t),n (t)) X(t) +Blvac Vadl (12) equivalent continuous valued signat'(t) and a quantization
where effect Qn(t), produced by having only a finite number of
s ] . modules in the converter, as follows:
A(u (t),H (t)) = ol ul
_R 0 _1 (1) _ 1 nl (t) Y (t) = ™ (1) + Qn(t). (18)

OL __Rt2R _ 21L i (t) 12L “'(t) (13) If desired,Qn(t) can be neglected using only the continuous
1) LTSE{) L+26' L+2L'0 part p*'(t). In particular, if p%!(t) are smooth, then only
Etﬂ (t) _Z'E{,(t) 0 0 differentiable functions need to be taken into account, easing
NC 2N the analysis. Note that this step implies an approximation and

A4 0 0o o it is specially important when a low number of modules are
B= {26 _2 g9 o0 (14) available Qn(t) comparable withi“! (t)). It is because of this
_ L+2%' approximation that the results of the reduced order model may
and the system state is now given by differ from the ones of the full order MMC.
AT . T Neglecting the quantization allows one to obtain analytical
X(t) = [Ic(t) HORNSON, (t)] ' (15) expressions of variables such as the capacitor voltages. These
In this model, the modulation functions are expressions can then be used for optimization and reference
N design [23]. However, the quantization affects the frequency
p(t) £ > Hi(t), pi(t) €{0,...,N} (16) response of the circuit, leading to inaccuracies when this is
=1 neglected.
and Due to the non-linearity in the model, there is a modulation
N -l 0. N 17 effect that comes from the multiplication of the control signal
r = j;“i ®), H()e{0,....N} A7) with the capacitor voltages, see EQ.]1(12). This effect moves

_ _ the resonant frequencies (i.e. peaks of amplitudi)irof the
These functions represent the number of modules insertecthverter when additional frequency components are consid-
the upper and lower arms respectively, and depend on #®d in the control signals. As shown next, this accentuates the

control law adopted. _ _ ~ error of the reduced order model at some specific frequencies.
A detailed procedure to obtain the previous expressions cang llustrate the effect of the quantization at different
be found in [23]. frequencies, let us consider numerical values of the parameters

As stated before, the reduced-order model [inl (12) usgsthe converter as in Tab I. Moreover, let us define the

the control signals in[(16) and {IL7). Since these aggregatgflowing control inputs:
control signals are the sum of the binary control sigrp#l . smooth control inputs:

they represent quantized signals that only take integer values

between 0 and\. () = N 1+ cogwt)
The reduced order model facilitates the derivation of an- 2

alytical solutions by reducing the number of input variables « quantized control inputs:

and the size of the state vector. This can be used for a more . . 1+ cogat) | _ 1— cogot)
detailed analysis of the converter such as’in [23]] [36]. fi(t) =ni (Nf) J(t) = ni (Ni ;

It is important to note that when the reduced order model (20)
is used, it is implicitly assumed that the voltages in all the  \ynere the operationi(e) approximates the argument to
capacitors are balanced according to Eqsl] (10) (11). the nearest integer.
Note that when this condition is fulfilled,

1—cogqut)

c O =N=—

(19)

it is possible to Fig. [2 shows the response of an open loop MMC to

INote thatw(t) =V (t) is not imposed. Thus the model allows capacitmthe control inputs in Eqs'm-g) and_(20) with fundamental
voltages in the upper to be different from those in the lower arm. frequencyw = 2160. A clear difference between the two cases
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Fig. 2: Effects of the quantization at B@ (Solid lines: without Fig. 3: Effects of the quantization at B& (Solid lines: without
guantization, dashed lines: with quantization) guantization, dashed lines: with quantization)

N A
4 0

freq. (Hz)

04

(with and without quantization) can be observed. Interestingiyfft e J

E

the situation changes when the frequency of the sinusoidaf S
input is changed taw = 2150, see Fig[13. The simulation?g;oa
shows that the difference between the response of the motle;
without the quantization and the model with the quantization® 2
is minimal for this frequency. In Fid.14, a simulation with o _
the error produced by neglecting the quantization effect 6i9- 4: Error produced by the quantization effect using 4, 8 and 12
MMCs with different number of modules is shown. The erro odules for different frequency values. (A) High frequency peaks.
. .. B1) Low frequency peaks.

is calculated as the Root Mean Square of the difference o

the simulated waveforms over one period in steady state. TH&BLE I: Parameter values in p.u. at = 2150 for an MMC (The
simulation shows that a larger error is presented for sorpe!. (per unit) values are normalized with respect to the grid voltage
specific frequencies. We shall give special attention to the pe@R00 V) and the nominal current (650 A))

with the highest frequency since it may be located close tovariable R X o) Xo (& R X, @) Vao Vi N
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the typical operating frequencies of the converterHzG®r  Value Qoo4 0075 Q089 Q01 015 219 1

60H2). This observation shows that the quality of the model
is frequency dependent and motivates our subsequent analysis. _ _

Let us fist define what we shall refer to as the “frequendy; ETTECts of capacitor voltage imbalances
response of the MMC”. Due to the non-linear nature of the Test have shown that the error in the converter currents (i.e.
system, frequencies multiples of the input frequency are likelly and i) of the reduced order model, when compared with
to appear in the converter currents and voltages. This motivéhe foll order model, presents an increment of less than 10%,
us to define the frequency response of the MMC as théth an allowed voltage imbalance of up to 35% of the module
amplitude of the second harmonic of the circulating curremeltage ripple (voltage ripple measured in balanced condition).
ic as a function of the frequency in the control signal§see It is worth noticing that the circulating current is more affected
Egs. [19) and(20)). The reason why the second harmoric oby the voltage imbalances due to the low arm impedance.
is chosen for the analysis is mainly due to the following facts:
(i) this is the lowest order harmonic in the circulating current,\/. ESTIMATION OF THE MMC RESONANT FREQUENCIES
(ii) its amplitude is significantly higher than the amplitude of (LINEARIZATION APPROACH)
the other harmonics, (iii) as shown in Fig. 4, the resonance

of th's_ second order harmomclés more Ilkely_ to mat_ch th|'?1formati0n about the frequency response of the MMC that
operating frequency of the convefiein the following sections uses a linearized version of the reduced order model around

wfeﬂ?re going to f(t)?us our efforts_![?lt(t)hdetermln[[ng the relazlo‘% operation point. The linearization technique is widely used
ot these resonant frequencies wi € converter parame efﬁ'many applications. One of them is design of control laws for

power converters, where it is important that the information
2Note that the resonant frequencies are independent of our choice pd’pVId_ed by the linearized model matches as close as possible
considering the second order harmonid s output variable for the analysis. the original model to guarantee proper performance and good

This section presents a preliminary approach to obtain



stability properties. This approach aims to derive simple anB- Low Frequencies
lytical expressions for the resonant frequencies based on lineagqy, the 1ow frequency cas&® and L are considered as

differential equations that later will be used for comparisqgy Eq. [21) can be used under this consideration to obtain
with more elaborated approaches. This will also serve as;gesonant frequency as:

criteria to determine the accuracy of the linearized model of

the MMC. _ _ )= L : o<f2g£ : (23)
The linear model can be written, based in Eg.] (12), as LC (a2+(17a)2) 4 Juc
follows: N\ o?(1-a)? N

() =AY | ) %) +Bx(0)[vee Vi E'®]T, (21
®) (Ll “) (O +BXO)Nae Vae H ()] (21) V1. ESTIMATION OF THE MMC RESONANT FREQUENCIES

wherel™' represent the control signals in the operational point, (FOURIER APPROACH

ful(t) and X(t) = [ic i W™ ] the incremental variables In order to address the problem of obtaining information
associated with the control signals and the state space ve@®gut the frequency response of the MMC in more detail,
respectively, and3(x(0)) a constant matrix that depends or@n approach using Fourier series approximation that analyzes
the initial conditionsx(0). Since the matrixA (p,f) is in €ach frequency component separately is applied. For detailed
charge of determine the placement of the poles and reson&f@rmation of such techniques please refer(tol [37]. [38]. In
frequencies of the system, we focus our analysis in this tef@®], [40], this Fourier method is applied to an MMC under
of the equation. nominal operating conditions and validated against a fully
To simplify the calculations, let us assume thiR -+ detailed electromagnetic transient model in PSCAD/EMTDC
jol|| < ||R + jwL||. Therefore, the resonant frequencies ca41l-
be analyzed by considering two different cases; a case forl he results in[[39],[[40] show good accuracy of the Fourier
the higher frequencies and an additional case for the lowd§'ies approximation with as low as 2 harmonic compo-
frequencies nents. Moreover, it is also shown that, by increasing the
The following analysis uses this assumption and the ",p_armonic compopents up to 17, the results are considerably
earized model in Eq{21) to derive analytical expressioff@Proved, obtaining a very close match between the model
of the resonant frequencies of the MMC. In Section VI, thi) PSCAD/EMTDC and the approach using Fourier series.
results of the resonant frequencies obtained with the linearizEgerefore, we shall consider the model presented in this
model will be compared with results obtained with mor&€ction can be considered as a good reference for the accuracy
accurate methods, which can be very useful when one wigsessment of the reduced order model.
to evaluate the accuracy of the linearized model specially inUSing the Fourier series approximation, the MMC can be
the case of stability of control loops. Moreover, it will providélescribed by the following equation
more insight into the problem explaining the results in Elg. 4.

M(w)z=U (24)
: . where
A. High Frequencies
Under the assumption§R+ jwlL|| < [[R + jLi, it is M) 2
possible to write the differential equations of the linear syste Rl + ieonl. 0 1y 1y
in Eqg. (21) and, taking into account that the operation lies i —(RI+ jonl) RIR, | - _E u 2 !
the high frequency range (i.¢R + jwl;|| — o or ij = 0), 1 _(L+2L|l| + jonLy) _Lf2L|YU Cron V|
develop analytical expressions for the resonant frequencigs —1cYu WiYu —jwnC 0
of the converter. According to Eq._(21) and considering tha ol s Yl 0 —jwnC
U+ =N andi® = aN, where 0< a < 1 is a constant value (25)
that depends on the linearization point, a value for the resonant 1 T
frequency can be obtained as: a2 |—32Vin 0 00
u= 0 2L Vi 00 (26)
20 Vac
1 V2 1 1
fi= e T 2 Tac <fi< = (22) and ;
N a2 (1-0)2 N N z2lc I VY V] (27)

Due to the fact thait, contains mainly second order harmonare matrices constructed based on the Fourier transformation
ics, an interesting phenomenon occurs. This consists in ®feEd. (12). The diaglonal matrir is defined as follows
resfonance being produced Wh_en th.e.input freguency is equa\l]sé diag([—n ~(h-1) - 0 .. n-1 n]) 28)
to -}. Due to the system non-linearities, this input frequency
produces anic with frequency f1, matching the resonancewheren is the number of frequency components used in the
frequency. Note that this phenomenon is not captured by tReurier series expansion.
linear model analyzed in this section. This will be corroborated The variablesVi, Vie lc, 11, VY and V! are vectors that
and analysed further with the method presented in Setibn Ybntain each of the coefficients of the Fourier series expansion



of the respective variable. As an example, let us assume tha
ic(t) can be written as:

. B n (k) jeont 29 ol
ic(t) = ic & (29)
k=—n

——n=2
——n=4
—=—n=6
—o—n=8
= = =n->inf.

With this, the variabld. can be defined as follows

Amplitude iC (p.u.)

T
2 [iEm L0 i) (30)
whereiéj> represent the coefficient corresponding to fffe 2
multiple of the natural frequency a§. I .
The matricesy; represent the Fourier decomposition of the R v
control inputs and are defined as follows:

Fig. 5. Estimation of the amplitude at using the Fourier series
Y-(O) . Y.(*Zn)' approximation for different values of

<
||>
<
o

j : (31) A. Frequency response analysis with=r2
. In order to begin with the analysis, matricesY, Y, and

Yj<2“) YJ.<°> U in Egs. [1%),[(ZB) and(31) respectively, need to be defined
) ) usingn =2 and the control signals in Eq.(19). These matrices
can be used to defind(w) (see Eq.[(25)) and then to obtain
the solutiorez by applying Eq.[(3R). Consequently, the resonant
frequencies can be obtained using EqJ (33).

After some algebraic manipulations, the following simpli-
fied expressions for the frequencifgsand f, in Fig.[d can be

2= (M(w)"*U. (32) derived

WhereYJ-(k) represent the coefficient corresponding to kie

multiple of the natural frequency of the control signgls
With the previous definitions, the vectar can be found
using the following expression (see EQ.](24))

Since the system described by EGl(24) is linear, it is possible _ (16CLLR? + 16CLPR* —8L3N — 22L.°L /N — 12LLFN
to find the resonant frequencies of the system by solving forr — 32CL2(L2 +4LL, +4|_|2)

w the following equation 1
94 280L2R2+800L2RR+64CL2R,2)2

detM(w)) =0 (33) 32CL2(L2 +4LL +4LD)
(34)
In order to illustrate the results of this method, Fig. 5
shows the frequency responseipffor different numbers of
frequency componenta. It can be seen that the resonant . Re L'N_32CRZ+8\/16CZR14_CL'NRZ (35)
frequencies move and some new ones appear when the valué — 64L|2C

of n is increased. In particular, the peaks marked as "A”

correspond to the resonance of thedzharmonic ofic, "B” whereRe() represents the real part of the argument. Table
to the resonance of theththarmonic, "C” to the resonancefshows a comparison of the numerical values of the resonant
of the &h harmonic. The peaks marked as "D” correspond 9equencies obtained with different methods. It can be seen that
the resonances dominated by the load impedance. the analytical expressions (Egs.(34) and (35)) approximate the
It is possible to obtain analytical expressions for some @fimerical results with an error less than 4%. The approach
the resonant frequencies in terms of the converter componeRigsed on linearization in Sectiéf V gives a very easy method
This can be done by solving_(83) for a given valuenofFor o compute these values, however the accuracy of the result
the sake of simplicity, only the continuous control signals iz compromised. Note that the phenomenon mentioned in
Eq. (19) are going to be considered for this analysis. Section[Y where the resonance dueftois produced when
Note that the frequency response may change, if the amplie input is at% can be seen clearly in this comparison. The
tude or characteristics of these control signals change dudit@arized approach fails to model this phenomenon producing
the nonlinear properties of the system. values forf; that are around twice as high as the actual value.
The results of the analysis of the frequency response usiRgmember also thdt is of special importance since it could
the Fourier series are shown in the sections below. For somatch the operating frequency of the converter and thereby
numerical comparisons, the values of Table | are used producing inaccuracies in the reduced order model.



TABLE II: Comparison of the resonant frequenciés and f, (see

Fig. [B) obtained with different methods far= 2: Actual: Using 14-
Eqg. [33) withn — « and quantized control signals. Fourier (Num.): Noan .
Using Eqg. [[3B) withn = 2 and continuous control signals. Fourier b me L With Qn | 33
(Ana.): Using Eqs.[{34) and(B5). Lin.: Using Eqs.](22) and (23) 30T x 3572
Actual  Fourier (Num.)  Fourier (Ana.) Lin. x:edor
f1  382.6 3614 3624 5824 - 8237

f2 50.4 293 283 0 - 2655

Amplitude iC (p.u.)

<X
]
Siv
S
=

16.125 4

B. Frequency response analysis with=rt

The complexity of the expressions obtained by solving (32) ) S ;
grows exponentially witm. Forn=4 it is possible to obtain I N =
relatively simple analytical expressions only for some low T T ) T T
importance frequencies. Therefore, beyond this point, it is Frequency (»)
necessarily to proceed with numerical solutions.

Fig. 7: Frequency response of the MMC for= 6 with and without
guantization

C. Effects of the quantization,Q) of the control signals

Due to the non-linear nature of the system, the inclusion of
the quantization change the frequency response of the syst@pgplacement in frequency is less pronounced for the other
To take this effect into account, the control signals in Edl (2@¢sonant frequencies.
are used for the following analysis. The difference of the two frequency responses in Eig. 7

Fig.[6 shows a comparison of the frequency response of tfgrresponds to the error caused by neglecting the quantization.
reduced order model calculated with the Fourier approximgince the amplitude peaks are at slightly different locations,
tion for n= 2 with and without the quantization. It can be Seethe difference between the two frequency responses become
how the resonant frequencies change their position and the ajignificant close to them. This explains the peaks obtained in
plitudes of the peaks are slightly attenuated. Unfortunately.tie simulation already shown in Fig. 4, where the error of the
is not possible to obtain analytical expression for the resonafibdel without quantization was illustrated.
frequencies when the quantization is taken into account for
n> 2 due to the complexity of the expressions. However, they VII. CONCLUSIONS
can be obtained numerically by solving EQ.](33). A reduced order model can accurately represent the be-

haviour of the MMC in many situations. However, aspects as

voltage imbalances and quantization can affect its accuracy.
Noan This work analyses the impact of both of these aspects on
the accuracy of the reduced order model showing how voltage
imbalances affect the model error. Moreover, the effect of the
guantization in the control signals for different operation fre-
guencies is also addressed. The current manuscript has exten-
sively analyzed the inaccuracy introduced by the quantization
effect as a function of the frequency of operation showing
that, in frequency ranges close to the resonant frequencies,
the accuracy of the reduced order model is reduced.

This work has developed detailed methods to characterize
resonant frequencies of MMC's by using analytical expres-
sions. This novel analysis allows one to obtain values of
e o o o 2o o s aos as swo the resonant frequencies that have not been identified in the

Frequency (@) current literature, giving additional insight on the MMC. The
results obtained here can be used to estimate beforehand if
the reduced order model produces an accurate representation
of the MMC, and the insight gained is particularly useful when

Fig.[7 shows the results for= 6. For this case, the resonanWorking with control techniques using continuous control
frequencies are also affected by the quantization; especiaflignals.
the amplitude corresponding to the resonance of tfe 4
harmonic (frequency peak between 150 rad/s and 200 rad/s) _ _ _ _
is attenuated significantly once the quantization is taken int@] A. Lesnicar and R. Marquardt, "An innovative modular multilevel
account. Moreover. the resonant frequency with the hiahest converter topology suitable for a wide power range,”Rower Tech

: ) q y g Conference Proceedings, 2003 IEEE Bologwal. 3, June 2003, pp. 6

value is displaced around 7% due to the quantization. This pp. Vol.3—.

X:361.4

v:1383 | | ----- with Qn

Amplitude iC (p.u.)

Fig. 6: Frequency response of the MMC for= 2 with and without
guantization
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