
Long-Horizon Direct Model Predictive Control With

Active Balancing of the Neutral Point Potential

Eyke Liegmann, Student Member, IEEE, Petros Karamanakos, Member, IEEE,

Tobias Geyer, Senior Member, IEEE, Toit Mouton, Member, IEEE, and Ralph Kennel, Senior Member, IEEE

Abstract—In this paper we present modifications to the sphere
decoder initially introduced in [1] to include the control of
the neutral point (NP) potential of a three-level neutral point
clamped (NPC) inverter. By linearizing the system model, the
nonlinearities introduced by the dynamics of the NP potential
are discarded. As a result, the optimization problem underlying
direct model predictive control (MPC) can be formulated as an
integer least-squares (ILS) one, and solved in a computationally
efficient manner with a refined sphere decoding algorithm. As
shown, thanks to the utilization of long prediction horizons,
the system performance can be significantly improved. This is
demonstrated with a variable speed drive consisting of a three-
level NPC inverter and a medium-voltage induction machine.

I. INTRODUCTION

In recent years, model predictive control (MPC) [2] has

reached increasing popularity in the field of power electronics

due to its ability to handle nonlinear systems with multiple

inputs and outputs [3]. The control objectives are mapped into

a scalar by an objective function and can be met by solving the

formulated optimization problem. Moreover, incorporation of

soft and hard constraints in the problem facilitates operation

at the physical limitations of the system while ensuring opti-

mal performance and, ultimately, allowing for smaller safety

margins. As the name MPC suggests, a model of the plant is

used to predict its future behavior based on which the optimal

control action is chosen.

In this paper, we focus on the so called finite control set

MPC (FCS-MPC) [3]. According to this method, the control

inputs are modeled as integers that translate directly to the

switch positions of the inverter, bypassing any modulation

stage. This implies that the underlying optimization problem

is an integer program. The latter is most often solved with

the brute-force approach of exhaustive enumeration in which

all candidate solutions are tested before concluding to the

optimal one. With that optimizer, however, and given that

a long horizon is beneficial for the overall performance of

the system under study [4]–[7], the problem can become

computationally intractable since the size of the candidate set
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increases exponentially with the horizon. One possible way

to render the problem computationally feasible is to employ

an effective branch-and-bound method referred to as sphere

decoding [8]. This algorithm excludes a large number of

candidate solutions from the very early stages of the search

process, thus significantly reducing the computational burden.

In previous publications on the sphere decoder [1], [6],

[7]—dealing with a three-level neutral point clamped (NPC)

converter—it is assumed that the neutral point (NP) potential

is fixed. The reason for that is that the sphere decoder can

be employed only if the optimization problem is formulated

as an integer least-squares (ILS) one. To achieve the latter,

the plant should be modeled as a linear dynamical system.

However, this assumption does not fully represent the physical

behavior of a three-level NPC. In reality, the NP floats and its

potential depends on the switch positions as well as the load of

the inverter. Without proper control strategy the NP potential

deviates which can lead to a large voltage unbalance and may

create an overvoltage across one or more of the switches.

To overcome this issue, in this paper the dynamics of the NP

potential are taken into account [9]–[11], and in a subsequent

step are linearized. By doing so, the derived linearized model

can be used to formulate an ILS problem that can be solved by

a modified sphere decoder1. To highlight the effectiveness of

the proposed control strategy, a variable speed drive system,

consisting of a three-level NPC inverter and a medium-voltage

(MV) induction machine (IM), is chosen as a case study. The

simulation results show the improved performance of the plant

as compared to that achieved with the short-horizon FCS-MPC

that utilizes the nonlinear model of the drive.

II. CONTROL MODEL

The problem examined relates to the control of the stator

current of an IM and the NP potential of the three-level NPC

inverter that drives the machine (Fig. 1). In the sequel, the

mathematical model of the system is derived. This task is

performed in the stationary orthogonal αβ-plane. Therefore,

any variable in the abc-plane ξabc = [ξa ξb ξc]
T is mapped

into a two-dimensional vector ξαβ = [ξα ξβ ]
T in the αβ-plane

via the transformation matrix K, i.e., ξαβ =Kξabc
2

K =
2

3

[
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2 − 1
2

0
√
3
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√
3
2

]
. (1)

1A similar optimizer is used in [12] for a linearized system where the NP
potential balancing is included in the control problem.

2Hereafter, the subscript the αβ is dropped from vectors in αβ-plane to
simplify the notation.
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Fig. 1: Three-level three-phase neutral point clamped (NPC) voltage source
inverter driving an induction motor (IM).

A. Nonlinear Model of the Drive System

Using the stator current is and the rotor flux ψr as state

variables, the dynamics of the IM are described by3 [13]

dis
dt

= −
1

τs
is +

(
1

τr
I − ωr

[
0 −1

1 0

])
Xm

D
ψr +

Xr

D
vs

(2a)
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=
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τr
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1

τr
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[
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]
ψr . (2b)

Note that the rotor angular speed ωr is considered to be

a time-varying parameter. The input to the drive system

is the three-phase switch position uabc = [ua ub uc]
T , with

ua, ub, uc ∈ U = {−1, 0, 1}. Moreover, u′ is introduced to

model the componentwise absolute value of the input vector,

i.e.,

u′ =

[
u′α
u′β

]
=K



|ua|

|ub|

|uc|


 . (3)

Moreover, vn is the NP potential, defined as

vn = vdc,lo − vdc,up , (4)

where vdc,lo and vdc,up are the voltages of the lower and upper

dc-link capacitors Cdc, respectively (Fig. 1). Here, the dc-link

voltage Vdc = vdc,lo + vdc,up is assumed to be constant.

As can be seen in (2), the evolution of the stator current

depends on the applied stator voltage vs, i.e., the output

voltage of the inverter, defined as

vs = u
Vdc
2
− u′ vn

2
, (5)

with u =Kuabc.

The evolution of the NP potential depends on the current

flowing into the center point of the capacitor bank [9], i.e.,

dvn
dt

=
1

Cdc
(isa|ua|+isb|ub|+isc|uc|)

(3)
=

1

Cdc
(isαu

′
α+isβu

′
β) .

(6)

B. Linearization and Discretization

The dynamics of the drive system include nonlinearities, as

can be seen in (2) (see (5)) and (6). Specifically, they include

multiplications of the state variables, i.e., vn and is, with

u′, i.e., the absolute value of the input vector. To derive a

linear model of the system—which is a prerequisite for the

3The definition of all parameters in (2) can be found in [1].

optimization problem to be formulated as an ILS one so that

it can be solved in a computational efficient manner [1]—

these nonlinear terms should be removed. To this end, the

aforementioned nonlinear terms are linearized using the first

order Taylor expansion at t = t0. For example, linearizing the

term isα(t)u
′
α(t) in (6) yields

isα(t)u
′
α(t)≈ isα(t0)u

′
α(t0)+isα(t0)∆u

′
α(t)+∆isα(t)u

′
α(t0)

≈ isα(t0)u
′
α(t0)+ isα(t0)∆u

′
α(t)+

(
isα(t)− isα(t0)

)
u′α(t0)

≈ isα(t)u
′
α(t0) + isα(t0)∆u

′
α(t) ,

(7)

where ∆u′α(t)=u
′
α(t)−u

′
α(t0) and ∆isα(t)=isα(t)−isα(t0).

In a similar manner the remaining nonlinear terms iβ(t)u
′
β(t)

in (6) and u′vn in (5) are linearized at time-instant t0.

In a next step, and in order to derive the linearized

state-space model of the drive, we define the state vec-

tor to be x = [isα isβ ψrα ψrβ vn]
T , which consists of the

stator current is, the rotor flux ψr, and the NP poten-

tial vn. Moreover, we introduce the augmented input vector

uaug = [ua ub uc ∆|ua| ∆|ub| ∆|uc|]T , where the first three

entries are the three-phase switch position uabc and last three

entries are defined as the difference of the absolute values of

two consecutive switchings, i.e.,

∆|ux(k)| = |ux(k)| − |ux(k − 1)| , (8)

with x ∈ {a, b, c} and k ∈ N. We refer to these entries in (8)

as “pseudo-inputs”. Since they are fully defined by the current

and previous switch position, they are not independent inputs

to the system. Rather they are introduced to formulate the

system dynamics in a compact state-space representation. Note

that the reasons behind the choice of this—augmented—input

vector will become more apparent in Section III-A. Finally,

the stator current and NP potential are chosen as the output

variables, i.e., y = [isα isβ vn]
T .

Based on the above, the resulting linearized, continuous-

time state-space model is of the form

dx(t)

dt
= F (t0)x(t) +G(t0)uaug(t) , y(t) = C x(t) , (9)

where matrices F (t0), G(t0),
4 and C are defined as

F =




−Xr

2Du
′
α(t0)

F IM −Xr

2Du
′
β(t0)

0

0
1

Cdc

u′α(t0)
1

Cdc

u′β(t0) 0 0 0



, (10)

G =




XrVdc

2D 0 −Xr

2Dvn(t0) 0

0 XrVdc

2D 0 −Xr

2Dvn(t0)

0 0 0 0

0 0 0 0

0 0 1
Cdc

isα(t0)
1

Cdc

isβ(t0)



Kaug,

4Matrices F (t0), and G(t0) are time-varying. To simplify the notation, for
these matrices—as well as all time-varying matrices in this work—the time
dependency is dropped after the first indication.
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Fig. 2: Model predictive current control with reference tracking for the three-
phase three-level NPC inverter with an IM.

Kaug =

[
K 02x3

02x3 K

]
, C =



1 0 0 0 0

0 1 0 0 0

0 0 0 0 1


 .

In (10), the 4 × 4 matrix F IM includes the dynamics of the

IM (2), as defined in the appendix of [1]. Moreover, 0 is

the zero matrix of dimensions defined by the corresponding

subscript.

The next step is to discretize (9). All time-varying

quantities—i.e., u′(t0), is(t0), and vn(t0)—are sampled at

time-instant t0 ≡ k. We assume that the measured quantities

and the resulting matrices remain constant over the prediction

horizon. Note that the switch position is held constant over

one sampling interval which allows for the simplification

u′(t0) = u
′(k).

By using exact Euler discretization, the discrete-time state-

space model of the drive becomes

x(k + 1) = Ax(k) +Buaug(k), y(k) = C x(k) , (11)

where matrices A(k) and B(k) are

A = e
FTs , B =





∫ Ts

0

e
F τdτ G if u′ = 0

− F−1(I −A)G otherwise,

(12)

where I is the identity matrix of appropriate dimensions and

e the matrix exponential. It is important to point out that when

|ua(k)| = |ub(k)| = |uc(k)|, i.e., u′ = 0, the state matrix F

—according to (10)—becomes singular. This is equivalent to

the three-phase switch positions uabc that have no influence

on the NP potential [9]. To overcome this and still be able

to derive B, the latter is calculated in two different ways

depending on u′(k), see (12). Finally, it should be noted

that the linearization and discretization have to be recalculated

whenever the controller is called since the state matrices are

time-varying.

C. Direct MPC With Current Reference Tracking and NP

Potential Balancing

The discussed control algorithm aims to regulate the stator

current is along its reference is,ref with the goal to achieve

as low a current total harmonic distortion (THD) as possible.

Moreover, the voltages over the upper and lower dc-link

capacitors, vdc,up and vdc,lo, respectively, should be kept

balanced by minimizing the deviation of the NP potential vn.

Finally, the aforementioned objectives should be met while

operating the drive at a low switching frequency. The latter

objective is important when MV drives are of concern, since

it is directly related to the switching power losses which have

to be kept low for an increased efficiency of the converter.

As can be seen in Fig. 2, the optimal controller meets all

objectives by computing and applying the control signals (i.e.,

the switch positions) in one stage, i.e., a modulation stage is

not required.

At time step k, the control objectives are mapped into a

scalar by the objective function5

J(k) =

k+N−1∑

ℓ=k

||yref(ℓ+ 1)− y(ℓ+ 1)||2Q + λu||∆uabc(ℓ)||
2
2 .

(13)

Based on the state of the current error and NP potential at

step k, (13) penalizes their evolution over the finite prediction

horizon of N time steps. The term ∆uabc penalizes the

switching effort. The vector yref = [iα,ref iβ,ref vn,ref ]
T ∈ R

3

holds the reference values for the three output variables. The

diagonal entries of the positive definite, diagonal weighting

matrix Q = diag(1, 1, λdc) ∈ R
3x3 penalize the deviation of

the output variables from their respective references, i.e.,

is − is,ref and vn − vn,ref .6 Note that the weighting factors

λu, λdc > 0 are introduced to set the trade-off between the

three terms, i.e., the trade-off between the current tracking

ability of the controller, the NP potential balancing, and the

switching frequency fsw.

To find the optimal sequence of control actions U∗(k) =
[u∗T

aug(k) u
∗T
aug(k+1) . . . u∗T

aug(k+N−1)]
T that results in the

most desirable system behavior, the following problem needs

to be solved in real time

minimize
U(k)∈U

J(k) (14a)

subject to x(ℓ+ 1) = Ax(ℓ) +Buaug(ℓ)

y(ℓ + 1) = Cx(ℓ+ 1)
(14b)

||∆uabc(ℓ)||∞ ≤ 1 , ∀ ℓ = k, . . . , k +N − 1 .
(14c)

In (14), U(k) = [uT
aug(k) u

T
aug(k+1) . . . uT

aug(k+N−1)]
T

is the optimization variable and U = U
N ⊂ Z

n, with n = 6N ,

is the feasible set defined as the N -times Cartesian product

of the set U = U × U × U × U × U × U = U6. Moreover,

constraint (14c) is added to prevent a solution that would cause

a shoot-through in the converter.

Out of the optimal control sequence U∗(k) only the actions

at time-step k, i.e., u∗
aug(k) are of interest. More specifically,

the first three elements u∗
abc(k) of u∗

aug(k) are those that

5Note that ||ξ||2
Q

=̂ ξTQξ denotes the squared norm of the vector ξ

weighted with the positive definite matrix Q.
6The reference for the NP potential vn,ref is zero.



are applied at the current time-step k, whereas all remaining

elements are discarded. Then, the optimization is repeated over

a one time-step shifted horizon based on new measurements

and estimations. This principle is referred to as receding

horizon control [2].

III. EQUIVALENT INTEGER LEAST-SQUARES PROBLEM

In this section, we formulate the optimization problem (14)

in a vector form, and present it as a truncated ILS problem.

A. Optimization Problem in Vector Form

By denoting the output sequence over the prediction horizon

as Y (k) = [yT (k + 1) . . . yT (k +N)], it follows that

Y (k) = Γ(k)x(k) +Υ(k)U(k) , (15)

where the matrices Γ(k) and Υ(k) are given in the appendix.

Since U ∈ U and ||∆uabc(ℓ)||∞ ≤ 1, it is implied that

the difference—in the Euclidean sense—of two consecutive

“pseudo-inputs” yields the same cost as the difference of

the corresponding switch positions, i.e., ||∆uabc(k)||22 =
||∆|uabc(k)| ||22. This allows us to include the full augmented

input vector uaug(k) into the switching effort term of the

function (13). By doing so, however, each switching event

is counted twice. Therefore, the weighting factor is chosen

equal to λ′u = λu/2 in order to keep the contribution of the

switching effort term to the total cost the unchanged. Note

that including the “pseudo-inputs” into the objective function

is important for employing the sphere decoder later on, since

this allows the Hessian matrix in (19) to be nonsingular.

Using (15) and the output reference sequence over the

prediction horizon Y ∗(k), (13) becomes5

J = ||Γx(k) +ΥU(k)− Y ∗(k)||2
Q̃

+ λ′u||SU(k)−Euaug(k − 1)||22 ,
(16)

where
∼
Q = diag(Q, . . . ,Q), is a block diagonal matrix and

E =




L6x6

06x6

...

06x6



, S =




I6x6 06x6 . . . 06x6

−L6x6 I6x6 . . . 06x6

06x6 −L6x6 . . . 06x6

...
...

...

06x6 06x6 . . . I6x6



,

with L :=

[
I3x3 03x3

03x3 03x3

]
.

(17)

After some algebraic manipulations, (16) becomes

J=
(
U(k)+H−1

Θ(k)
)T
H
(
U(k)+H−1

Θ(k)
)
+ const(k),

(18)

where the Hessian matrix H(k) is defined as

H(k) = Υ
T Q̃Υ+ λ′uS

TS (19)

and

Θ(k) = Υ
T Q̃
(
Γx(k)− Y ∗(k)

)
− λ′uS

TEuaug(k − 1) .

Note that the constant term in (18) can be omitted, since it

is independent of U(k) and therefore has no influence on the

optimal solution. The interested reader is referred to [14] for

a more detailed derivation.

B. Solution in Terms of the Unconstrained Solution

By relaxing the feasible set in (14) from U to R
n, and

with similar algebraic manipulations as done in [1], the

problem (14) can be reformulated as a truncated ILS problem

of the form

minimize
U(k)∈U

||Ūunc(k)− V U(k)||22

subject to ||∆u(ℓ)||∞ ≤ 1 , ∀ ℓ = k, . . . , k +N − 1 ,
(20)

with Ūunc(k) = V Uunc(k) and V (k) being a lower

triangular, known as lattice generator matrix defined as

V −1V −T =H−1 [1]. The integer solution U∗(k) of (20)

represents the lattice point with the shortest Euclidean distance

to the unconstrained solution Uunc(k).
To find the solution in a computationally efficient manner,

a branch-and-bound algorithm known as sphere decoding [8]

is utilized. According to its principle, a hypersphere (i.e., n-

dimensional sphere) of radius ρ centered at the unconstrained

solutionUunc(k) is computed. By doing so, only the candidate

solutions inside the sphere have to be evaluated. The goal of

the optimizer is to tighten the radius ρ incrementally until

only the optimal solution remains inside the sphere, whereas

all other candidate solutions are excluded since they constitute

suboptimal options. The initial radius ρini should be chosen

such that the resulting sphere is as small as possible for the

majority of lattice points to be excluded a priori, but not too

small so that at least one lattice point is enclosed. To this end,

the initial radius is computed based on an educated guess U ed,

as introduced in (40) in [1]

ρini(k) = ||Ūunc(k)− V U ed(k)||2 . (21)

Having computed the initial sphere, the optimization process

proceeds by evaluating the lattice points inside the sphere

to extract the optimal solution. A search tree of n levels

is generated, in which the branches resemble the candidate

elements of the solution. The sphere decoder traverses this

tree in a depth-first search manner with a goal to find the

optimal solution as quickly as possible. For more details on

the functionality of the sphere decoder the reader is referred

to [1] and [14].

C. Modified Sphere Decoding Algorithm

The algorithm proposed in [1] is modified to include the

additional “pseudo-inputs” in the implementation. Similar to

the code in [1], the algorithm builds the switching sequence

U component by component. The recursive algorithm pre-

sented in Algorithm 1 is evoked with the initial values of

the arguments U , d2, i, ρ2ini(k), Ūunc(k) and u∗
aug(k−1)

being the empty set ∅, 0, 1, the (squared) initial radius, the

unconstrained solution, and the previously computed optimal

solution, respectively.



Algorithm 1 Modified sphere decoding algorithm

1: function MSPHDEC(U , d2, i, ρ2, Ūunc,u
∗
aug(k−1))

2: utemp =
[
u∗T
aug(k−1) U

T
]T

⊲ append arrays

3: if 1 ≤ mod(i, 6) ≤ 3 then ⊲ i is switch position

4: u← u ∈ U ⊲ U = {−1, 0, 1}
5: else ⊲ i is “pseudo-input”

6: u← ∆|ui| ⊲ |utemp,i+3|−|utemp,i−3|
7: end if

8: for each u do

9: Ui ← u
10: d′2 ← ||ūunc,i − V (i,1:i)U1:i||22 + d2

11: if d′2 ≤ ρ2 then

12: if i < 6N then

13: MSphDec(U ,d′2,i+1,ρ2,Ūunc,u
∗
aug(k−1))

14: else

15: if U meets (14c) then

16: U∗ ← U , ρ2 ← d′2

17: end if

18: end if

19: end if

20: end for

21: end function

According to the pseudocode, the modified sphere decoder

first creates a temporary vector utemp comprised of the previ-

ously calculated optimal solution u∗
aug(k−1) and the currently

assembled switching sequence U . Subsequently, it is checked

if the currently evaluated node i = 1, . . . , 6N is a “pseudo-

input”. If this is not the case, the current node corresponds to

a switch position of one phase leg and all three possibilities

in U will be evaluated. If, on the other hand, the current

node corresponds to a “pseudo-input”, only one value can be

assigned to node i, depending on the difference between the

current and previous phase switch position, as defined in (8).

Note that u∗
aug(k−1) is covering the first six entries of utemp.

The remaining part is identical to the pseudo-code in [1]

except that in its refined version the iteration variable u (line

9) is of dimension one in case of a “pseudo-input”.

IV. PERFORMANCE EVALUATION

The simulation results presented in this section are obtained

based on an MV drive (Fig. 1) consisting of a three-level NPC

with constant dc-link voltage Vdc = 5.2 kV with a dc-link

capacitor value Cdc of 7mF that is connected to a squirrel cage

IM with rated values 3.3 kV, 356A, 2MVA, 50Hz nominal

frequency, and 0.25 p.u. total leakage inductance. For all cases

examined, the sampling interval Ts = 25µs was used. All

results are shown in the p.u. system.

A. Steady-State Operation

The performance of the proposed direct MPC scheme with

the linearized model is examined at steady-state operation

for a five-step (N = 5) prediction horizon, see Fig. 3.

The weighting factors λu and λdc are chosen such that a

switching frequency of approximately 200Hz results and the

NP potential remains balanced, as can be seen in Fig. 3(a).

The three-phase stator currents is,abc and their references are

shown in Fig. 3(b), whereas the resulting harmonic spectra are

presented in Fig. 3(c). As can be seen, the currents accurately

track their reference values; the current THD being equal to

5.49% is relatively low given the low switching frequency.

Finally, Fig. 3(d) depicts the three-phase switch position for

one fundamental period.

In a second step, the influence of the horizon length on

the stator current THD and the rms value of the NP potential

deviation is investigated while the switching frequency is kept

equal to 200Hz. As point of reference, a one-step (N = 1)

horizon MPC, with the nonlinear model solved with exhaustive

enumeration, produces stator current THD of 7.58%, whereas

the rms of the NP potential deviation is 0.0222 p.u.. Fig. 4

summarizes the evolution of (a) the current THD, and (b) the

rms value of vn,err over the horizon length. One can clearly

see significant improvements in both metrics for a horizon

N ≥ 2. For example, when a ten-step horizon is considered,

the current THD decreases by about 27% compared to the

reference case (it becomes 5.47%), while the rms value of the

NP potential is about 60% smaller (0.0080 p.u.).

The presented results indicate that the linearized model

can be effectively utilized by the proposed MPC scheme for

controlling both stator current as well as the NP potential.

Consistent with the findings in [4], [6], [7], a longer prediction

horizon improves the performance of the controller in terms

of stator current THD and the NP potential remains balanced.

B. Discussion of Suboptimality and Calculation Effort

The derived linearized model of the converter introduces a

mismatch between the prediction model used by the control

algorithm and the actual, nonlinear model. Consequently, the

optimal solution acquired based on the linearized model might

differ from that resulting when the exact model is used. To

obtain the optimal solution based on the nonlinear model,

an exhaustive enumeration algorithm—evaluating all possible

switch combinations—is utilized. This issue of suboptimality,

i.e., how often the solutions of MPC with the nonlinear and

the linearized model differ, is examined in the second column

of Table I. For a ten-step horizon (N = 10) a suboptimal

solution is chosen in less than 2.1% of the cases.

The other columns in Table I present a first rough analysis

on the computational complexity of the proposed method in

terms of the nodes visited during the search process before

concluding in the optimal solution. More specifically, the max-

imum number of nodes visited by the proposed sphere decoder

as well as—for comparison purposes—the exhaustive search

algorithm with the nonlinear model are shown. However, the

computational effort required to update the state matrices

F (t0) and G(t0) as well as the subsequent calculation of

the Hessian matrix H(k) and the lattice generator matrix

V (k), is not analyzed in this paper. As can be understood,

the somewhat computationally demanding preprocessing stage

makes the real-time implementation of the proposed method

more challenging.
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Fig. 3: Simulated waveforms produced by the direct model predictive control problem with current
reference tracking and NP potential balancing at steady-state operation, at full speed and rated
torque. A five-step horizon (N = 5) is used, the sampling interval is Ts = 25 µs and the switching
frequency is 200 Hz (λ′

u = 0.02, λdc = 15).
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Fig. 4: Stator current THD and rms value of NP
potential deviation as a function of the prediction
horizon N . The switching frequency is fixed at
200Hz. The data points relate to individual simula-
tions, which were approximated using a polynomial
function of second order.

TABLE I: Second column: The percentage of times the computed solution by
the proposed approach Uappl is the (global) optimal solution U∗ for different
prediction horizons. Other columns: Maximum number of nodes visited by
(a) the exhaustive search algorithm and (b) the proposed algorithm.

Prediction
Uappl = U∗ %

Exhaustive Proposed

Horizon N Search Approach

1 99.9 39 29

2 99.8 517 56

3 99.1 7,371 119

4 99.0 103,518 254

5 98.9 1,455,000 425

7 98.1 > 3 · 108 1,084

10 97.9 > 2 · 1012 2,489

V. CONCLUSIONS

This paper proposes refinements to the sphere decoding

algorithm introduced in [1] to include the balancing of the

neutral point (NP) potential of a three-level NPC inverter to

the control problem. To this end, a linearized model of the

drive system is derived and utilized. By doing so, the sphere

decoder can be employed and consequently the pronounced

computational complexity of the integer problem underlying

long-horizon model predictive control (MPC) can be kept at

bay. As it was shown, thanks to the long horizon—and despite

the simplifications introduced in the system modeling stage—

the proposed algorithm outperforms the conventional one-step

horizon FCS-MPC that uses the accurate (nonlinear) drive

model.

APPENDIX

The matrices used in (15) are the following, with B̂ = BKaug

Γ=




CA

CA2

...

CAN



, Υ=




CB̂ 0 . . . 0

CAB̂ CB̂ . . . 0

...
...

...

CAN−1B̂ CAN−2B̂ . . . CB̂



.

REFERENCES

[1] T. Geyer and D. E. Quevedo, “Multistep finite control set model
predictive control for power electronics,” IEEE Trans. Power Electron.,
vol. 29, no. 12, pp. 6836–6846, Dec. 2014.

[2] J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and

Design. Madison, WI: Nob Hill, 2009.
[3] P. Cortés, M. P. Kazmierkowski, R. M. Kennel, D. E. Quevedo, and

J. Rodrı́guez, “Predictive control in power electronics and drives,” IEEE

Trans. Ind. Electron., vol. 55, no. 12, pp. 4312–4324, Dec. 2008.
[4] T. Geyer, “Computationally efficient model predictive direct torque

control,” IEEE Trans. Power Electron., vol. 26, no. 10, pp. 2804–2816,
Oct. 2011.

[5] P. Karamanakos, T. Geyer, N. Oikonomou, F. D. Kieferndorf, and
S. Manias, “Direct model predictive control: A review of strategies
that achieve long prediction intervals for power electronics,” IEEE Ind.

Electron. Mag., vol. 8, no. 1, pp. 32–43, Mar. 2014.
[6] T. Geyer and D. E. Quevedo, “Performance of multistep finite control

set model predictive control for power electronics,” IEEE Trans. Power

Electron., vol. 30, no. 3, pp. 1633–1644, Mar. 2015.
[7] T. Geyer, P. Karamanakos, and R. Kennel, “On the benefit of long-

horizon direct model predictive control for drives with LC filters,” in
Proc. IEEE Energy Convers. Congr. Expo., Pittsburgh, PA, Sep. 2014,
pp. 3520–3527.

[8] U. Fincke and M. Pohst, “Improved methods for calculating vectors
of short length in a lattice, including a complexity analysis,” Math.

Comput., vol. 44, no. 170, pp. 463–471, Apr. 1985.
[9] H. du T. Mouton, “Natural balancing of three-level neutral-point-

clamped PWM inverters,” IEEE Trans. Ind. Electron., vol. 49, no. 5,
pp. 1017–1025, Oct. 2002.

[10] T. Geyer, “Model predictive direct current control: Formulation of the
stator current bounds and the concept of the switching horizon,” IEEE

Ind. Appl. Mag., vol. 18, no. 2, pp. 47–59, Mar./Apr. 2012.
[11] P. Stolze, P. Karamanakos, R. Kennel, S. Manias, and C. Endisch,

“Effective variable switching point predictive current control for ac low-
voltage drives,” Int. J. of Control, vol. 88, no. 7, pp. 1366–1378, Jul.
2015.

[12] F. Grimm, “Multistep model predictive control of induction machines
and 3 level-NPC with dc-link balancing,” Master’s thesis, Technische
Universität München, 2017.

[13] J. Holtz, “The representation of ac machine dynamics by complex signal
flow graphs,” IEEE Trans. Ind. Electron., vol. 42, no. 3, pp. 263–271,
Jun. 1995.

[14] T. Geyer, Model predictive control of high power converters and

industrial drives. Hoboken, NJ: Wiley, 2016.


