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Abstract—This paper presents the computation of three-level
optimized pulse patterns (OPPs) that limit the common-mode
voltage (CMV) and generate currents with low harmonic dis-
tortions. This is achieved by relaxing the symmetry properties
of conventional OPPs and by reformulating the associated opti-
mization problem accordingly. As demonstrated by the presented
numerical results for a three-level converter driving a medium-
voltage (MV) induction machine, the computed OPPs not only
limit the CMV but also produce very low harmonic distortions,
in some cases even lower than those of conventional OPPs.
Experimental results based on a scaled-down, low-voltage (LV)
drive system serve as a proof of concept, highlighting the benefits
of the proposed OPPs.

Index Terms—Optimized pulse patterns (OPPs), three-level
converters, synchronous optimal pulse width modulation,
quarter-wave symmetry, half-wave symmetry, medium-voltage
(MV) drives.

I. INTRODUCTION

THREE-level converters, such as the neutral-point-

clamped (NPC) converter, are widely used in high-

power electronics applications [1]. Their switched three-phase

output voltage is typically generated by means of pulse width

modulation (PWM). Intrinsically, this voltage has a common-

mode (CM) component that has adverse effects on the load. In

drive systems, e.g., the common-mode voltage (CMV) is the

main cause of parasitic bearing currents, which can damage the

bearings [2]. The CMV also increases the stress on the motor

insulation. In transformer-less photovoltaic (PV) converter-

based systems, the CMV leads to leakage currents that can

deteriorate the system performance while posing potential

safety risks [3], [4]. Hence, PWM methods that can effectively

limit the CMV are advantageous.

Different PWM techniques that achieve complete elimina-

tion of the CMV were proposed in [5]. These techniques utilize

only the voltage vectors that produce zero CMV. In all these

modulation techniques the linear modulation range is limited

to 1 (out of 4/π). Additionally, the harmonic distortions and

switching events per modulation cycle are increased, leading

to an increase in power losses. Furthermore, the short voltage

vectors are not used, meaning there are no redundant states

that could be used for balancing the neutral point potential of
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an NPC converter. Finally, as simultaneous switching in two

phases is required for zero CMV, elaborate techniques for the

deadtime compensation are required [6], [7].

For these reasons, partial elimination of the CMV is a

good compromise between a low CMV and less adverse

effects on the harmonics and dc-link voltage utilization. To

this aim, carrier-based PWM (CB-PWM) with phase-opposite

disposition (POD-PWM) was proposed for three- and five-

level converters in [8] and [9], respectively. By limiting the

CMV, however, this PWM method significantly increases the

total demand distortion (TDD) of the current compared with

CB-PWM. Moreover, as this method allows two phases to

switch simultaneously the switching devices may be damaged.

This pitfall, nevertheless, can be addressed by modifying the

carriers of the three-level PWM as shown in [10]. Furthermore,

to improve the current TDD while still limiting the CMV,

modified space vector modulation (SVM) methods can be

employed [11]. Such methods imitate two-level SVM while

selecting only these voltage vectors that keep the CMV low.

This principle, however, leads to the underutilization of the dc-

link voltage as the maximum achievable modulation index—

similar to CB-PWM methods—is limited to 1 (out of 4/π).

The SVM methods proposed in [12] and [13], however, tackled

this issue, and thus reached the maximum modulation index

that can be achieved with SVM, i.e., 2/
√
3, by adopting

different voltage-vector sequences. In doing so, however, the

harmonic distortions either significantly increase [12], or more

switching commutations per modulation cycle are required

when comparing with conventional SVM, thus resulting in

higher switching losses [13]. Additionally, there are discon-

tinuous space vector-based PWM strategies that manage to

limit the CMV [14]. However, this feature is achieved only

for a limited range of modulation indices, while the inherent

disadvantages of SVM techniques, such as the limited utiliza-

tion of the dc-link voltage and poor harmonic performance at

very low switching frequencies, are also present.

As an alternative to CB-PWM and SVM, programmed

PWM methods, such as selective harmonic elimination

(SHE) [15] and optimized pulse patterns (OPPs) [16], can be

considered as they can produce lower harmonic distortions.

Regarding SHE, the switching angles (i.e., switching time

instants) of the switching pattern are computed in an offline

procedure by solving a system of nonlinear equations that

aims to eliminate specific harmonics. As the to-be-eliminated

harmonics can be freely chosen, the SHE problem can be

formulated such that the CMV is limited. As shown in [17],

this can be achieved by eliminating the low-order triplen
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harmonics. The absence of CM harmonics, however, limits the

range of operation, as the maximum achievable modulation

index is 1. The SHE method in [18] manages to partially

eliminate the CMV while expanding the modulation index

range from [0, 1] to [0, 2/
√
3] by means of optimal third-

harmonic injection at high modulation indices. A derivative

of SHE, namely hybrid selective harmonic mitigation (SHM),

that achieves CMV reduction was proposed in [19]. By elimi-

nating the low-order triplen harmonics and mitigating the low-

order non-triplen harmonics the rms of the CMV is reduced,

while the current TDD is improved compared with that of SHE

with limited CMV. Nevertheless, similarly to [17], since the

low-order CM harmonics are eliminated the dc-link voltage is

not fully utilized as a modulation index greater than 1 cannot

be achieved.

As for the OPPs, these are a PWM method that produces the

lowest possible harmonic distortions [16]. The optimal PWM

patterns (in terms of switching angles and switch positions) are

computed in an offline procedure by minimizing an objective

function that accounts for the TDD of the load current. In

doing so, the harmonic motor losses and the peak current are

also reduced [20]. Hence, OPPs are a very good candidate

for limiting the CMV while still producing currents of high

quality.

In this direction, and when considering three-level OPPs,

only a few works have been presented that compute OPPs

with limited CMV, see e.g., [21] and [22]. In [21], complete

elimination of the CMV was proposed. As with other PWM

methods, this is achieved at the cost of underutilization of the

dc-link voltage as the modulation index is limited to 2
√
3/π,

while at least two phases have to switch simultaneously. On

the contrary, [22] aims to keep the CMV below a desired

(nonzero) value. To do so, the finite sum of CM harmonics is

kept bounded. However, since this sum merely approximates

the CMV (instead of providing its exact value), and the upper

bound on the CMV is heuristically chosen, suboptimal OPPs

may be computed.

In both of the aforementioned works the benefits of OPPs

are not fully exploited as the limitation of the CMV occurs at

the expense of increased harmonic distortions. To mitigate this

issue, this work reformulates the OPP optimization problem by

dropping artificial restrictions of the conventional OPP prob-

lem. Specifically, as presented in [23], relaxing the symmetry

properties of the OPPs with limited CMV increases the search

space of the optimization problem, and as a result, a deteriora-

tion in the current quality can be avoided. The resulting OPPs

have current TDDs that are very close to—if not lower than—

those of the conventional unconstrained OPPs, while keeping

the CMV limited over the whole range of modulation indices,

i.e., while fully utilizing the available dc-link voltage. This

paper extends this work by providing more insight into the

features of the proposed OPPs acquired based on a medium-

voltage (MV) drive consisting of a three-level inverter and

an induction machine. To this end, more numerical results

are provided and discussed. Moreover, to better highlight the

advantages of the proposed optimal modulation method, it is

compared with other methods that limit the CMV. Finally, to

assess their effectiveness in a real-world setting, the computed

OPPs are applied to a scaled-down, low-voltage (LV) drive

system.

This paper is structured as follows. Section II presents

the CMV along with the strategy adopted to limit it. Sub-

sequently, the relevant OPP optimization problem is derived.

In Section III, the associated numerical results are presented

and discussed in detail. Section IV offers a comparison with

CB-PWM methods that reduce the CMV in terms of current

TDD. Moreover, the real-world performance verification of the

computed OPPs in a LV drive setup is presented in Section V.

Finally, Section VI concludes this paper.

II. OPPS WITH REDUCED COMMON-MODE VOLTAGE

Assume a three-level converter and let θ denote the angle

of the pulse pattern. The pulse number d is defined as the

ratio between the device switching frequency fsw and the

fundamental frequency f1, i.e., d = fsw

f1
. With the above,

a 2π (i.e., full-wave) periodic switching waveform u(θ) is

fully described by 4d + 1 switch positions ui ∈ {1, 0,−1}
with i ∈ {0, . . . , 4d}, and 4d primary switching angles

αi, i ∈ {1, . . . , 4d}. At each switching angle ai a switching

transition ∆ui = ui − ui−1 ∈ {1,−1} occurs. Note that due

to the 2π–periodicity, the initial and the last switch positions

are the same, i.e., u0 = u4d.

A. Objective Function

OPPs are computed by minimizing an objective function

that captures the load current TDD. Assuming an inductive

load, the current TDD is given by

ITDD =
1√

2Inomω1X

Vdc

2
︸ ︷︷ ︸

constant

√
∑

n6=1

(
ûn

n

)2
= c

√
J .

(1)

The term c depends only on the converter and load parameters,

namely, the nominal current Inom, the fundamental angular

frequency ω1, the load reactance X , and the dc-link voltage

Vdc. Hence, c can be considered a (constant) scaling factor.

Thus, it can be discarded as it does not affect the optimization

result. In doing so, the objective function J of the OPP

problem accounts only for the (weighted) harmonics of the

pulse pattern. The amplitude of the nth harmonic is given by

ûn =
√

a2n + b2n, with an and bn being the Fourier coefficients

of the periodic OPP waveform. For the analytical expressions

of the Fourier coefficients, the reader is referred to [24].

B. Conventional OPP Problem

Conventional OPPs have the following properties: (P1)

three-phase symmetry, i.e., if the OPP for phase a is ua(θ) =
u(θ), then ub(θ) = u

(
θ − 2π

3

)
and uc(θ) = u

(
θ + 2π

3

)
are

the OPPs for phases b and c, respectively; (P2) half-wave

symmetry, i.e., u(θ) = −u(θ+π) ∀θ ∈ [0, π]; and (P3) quarter-

wave symmetry, i.e., u(θ) = u(π−θ) ∀θ ∈
[
0, π

2

]
. Moreover a

fourth property (P4) relates to the switching sequence, namely

unipolar switching is assumed while the first switch position

is always zero, i.e., u(θ) ≥ 0, ∀θ ∈
[
0, π

2

]
, and u0 = 0. An

OPP with these properties is shown in Fig. 1(a).
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Fig. 1: Examples of OPPs with different symmetry properties for d = 4 at
modulation index m = 0.8.

The above properties imply that for the computation of

conventional OPPs, hereafter referred to as quarter- and half-

wave symmetric (QaHWS) OPPs, only the d switching angles

α1, . . . , αd ∈ [0, π/2] of ua are required to fully characterize

the three-phase OPP. Hence, the corresponding optimization

problem is of the form

minimize
αQ

J1(αQ) =
∑

n=5,7,...

(
bn
n

)2

subject to b1 = m

0 ≤ α1 ≤ α2 ≤ . . . ≤ αd ≤ π
2
,

(2)

where αQ = [α1 α2 . . . αd]
T

, and m ∈ [0, 4/π] is the

desired modulation index. Note that due to the QaHWS, the an
Fourier coefficients are zero. Moreover, triplen harmonics are

not considered as they do not drive harmonic current when

the star point of the load floats [24]. As a result, only the

harmonics at non-triplen, odd multiples of the fundamental

frequency are taken into account in (2).

C. Common Mode

The CMV is defined as the average of the three single-phase

output voltages of the inverter vx, with x ∈ {a, b, c}, and it can

assume values ±zVdc/6, with z = 0, 1, 2, 3, when three-level

converters are considered. Since it holds that vx = Vdc

2
ux, it

directly follows that the common-mode (CM) switch position

uo is defined as

uo(θ) =
ua(θ) + ub(θ) + uc(θ)

3
, (3)

with uo = ±z/3. The CM switch position uo is a 2π
3

–periodic

signal, and inherits the symmetry properties of the OPP.

Consider an OPP with half-wave symmetry (HWS). This

implies that the CM switch position uo exhibits HWS as well.

As a result, the necessary information to compute uo based

on the three-phase OPP uabc(ϑ) = [ua(ϑ) ub(ϑ) uc(ϑ)]
T ,

with ϑ ∈
[
0, π

3

]
, is included in the single-phase OPP u(θ) for

θ ∈ [0, π] as the following hold:

• ua(ϑ) is identical to the first π
3

-segment of u(θ), see the

blue segment in Fig. 2.

• ub(ϑ) is identical to the second π
3

-segment of −u(θ),
see the red segment in Fig. 2. Therefore, ub(ϑ) =
−u

(
ϑ+ π

3

)
, ϑ ∈

[
0, π

3

]
.
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Fig. 2: Illustration of CMV calculation of HWS OPP for d = 4 at modulation
index m = 0.8

• uc(ϑ) is identical to the third π
3

-segment of u(θ), see the

green segment in Fig. 2. Hence uc(ϑ) = u
(
ϑ+ 2π

3

)
, ϑ ∈

[
0, π

3

]
.

In a similar fashion, if the OPP is QaHWS then uo

exhibits QaHWS too, and uo can be constructed based on

the information included in the three-phase OPP uabc(ϑ) for

ϑ ∈
[
0, π

6

]
, which can be derived from the single-phase OPP

u(θ), θ ∈
[
0, π

2

]
as follows:

• ua(ϑ) is identical to the first π
6

-segment of u(θ), see the

blue segment in Fig. 3.

• ub(ϑ) is identical to the third π
6

-segment of −u(θ), see

the red segment in Fig. 3. This means that ub(ϑ) =
−u

(
ϑ+ π

3

)
, ϑ ∈

[
0, π

6

]
.

• uc(ϑ) is identical to the mirrored second π
6

-segment of

u(θ), see the green segment in Fig. 3. This means that

uc(ϑ) = u
(
π
3
− ϑ

)
, ϑ ∈

[
0, π

6

]
.

D. Common-Mode Constraint

To reduce the bearing currents, the magnitude of the CMV,

its rate of change dvo/dt as well as the frequency of the

changes in CMV must be low [25]. When three-level OPPs are

applied to a converter the value of dvo/dt is fixed to Vdc/6,

assuming that two switches do not switch at the same time,

while the CMV value changes 4d times within the fundamental

period of the CMV. This means that magnitude of the CMV

is the only variable that can be manipulated, i.e., reduced.

Since complete elimination of the CMV has the disadvantages

of limited use of the available voltage and high harmonic

distortions, we aim to limit the CMV to Vdc/6. Therefore,

a constraint of the form

max
(
|uo(θ)|

)
≤ 1

3
, (4)

is added to the OPP optimization problem (2). For the imple-

mentation of (4), the maximum absolute value of uo needs to
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Fig. 3: Illustration of CMV calculation of QaHWS OPP for d = 4 at
modulation index m = 0.8

Algorithm 1 Constraint on common-mode switch position

For OPPs with QaHWS:

1. Given u(θ), with θ ∈ [0, π

2
], construct the three-phase OPP uabc(θ)

for θ ∈ [0, π

6
], based on symmetry properties (P1)–(P3).

2. Sort the d switching angles of uabc in ascending order.

3. Calculate uo by cumulative summing up the corresponding switching

transitions ∆u(αi) for 0 ≤ αi ≤
π

6
.

Return uo(θ) for θ ∈
[

0, π

6

]

.

For OPPs with HWS:

1. Given u(θ), with θ ∈ [0, π], construct the three-phase OPP uabc(θ)

for θ ∈ [0, π

3
], based on symmetry properties (P1)–(P2).

2. Sort the 2d switching angles of uabc in ascending order.

3. Calculate uo by cumulative summing up the corresponding switching

transitions ∆u(αi) for 0 ≤ αi ≤
π

3
.

Return uo(θ) for θ ∈
[

0, π

3

]

.

be calculated during the OPP computation process. To do so,

the procedure described in Algorithm 1 is adopted. Neverthe-

less, the introduction of (4) compromises the current TDD, as

a degree of freedom in the minimization of ITDD is removed,

as also demonstrated in the numerical results presented in

Section III. To address this issue, the optimization problem

that computes OPPs with constrained CMV is reformulated,

as discussed in the following section.

E. OPP Problem with Common-Mode Constraint

As recently shown in [24], relaxing the OPP properties

increases the search space of the three-level OPP problem,

and thus the degrees of freedom during the OPP computation

process. Motivated by this, in this work, we relax the sym-

metry and switching properties. Namely, we drop properties

(P3) and (P4). By dropping (P3), half-wave symmetric (HWS)

OPPs result, meaning that 2d switching angles need to be

computed, as opposed to the d angles computed for QaHWS

OPPs. A HWS OPP is depicted in Fig. 1(b). Relaxing the

unipolar switch positions and u0 = 0 (see property (P4)), i.e.,

allowing for multipolar switching, gives rise to more than one

candidate pulse pattern that is considered in the conventional

OPP problem. Specifically, it can be shown that there are

2d+1 − 1 candidate HWS OPPs. This implies that the HWS

OPP optimization problem besides being non-convex (such as

problem (2)), is also a mixed integer problem.

With the aforementioned changes, the revised optimization

problem that accounts for the CMV constraint becomes

minimize
αH ,uH

J(αH ,uH) =
∑

n=5,7,11,...
a2

n+b2n
n2

subject to a1 = 0, b1 = m

0 ≤ α1 ≤ α2 ≤ . . . ≤ α2d ≤ π

ui ∈ {−1, 0, 1} and

ui+1 − ui ∈ {−1, 1} ∀i ∈ {0, . . . , 2d− 1}
u2d = −u0

max (|uo(θ)|) ≤ 1/3 ,
(5)

where the HWS CM switch position uo is calculated according

to the procedure provided in Algorithm 1. Note that in (5),

αH = [α1 α2 . . . α2d]
T

is the vector of the 2d switching

angles, and uH = [u0 u1 . . . u2d−1]
T

is the switching

sequence under consideration. Moreover, as with problem (2),

only odd non-triplen harmonics are considered since even

harmonics are zero due to the HWS, while triplen harmonics

do not affect the current. Nevertheless, a1 = 0 such that the

phase of the fundamental component is zero.

Finally, to avoid solving the mixed integer optimization

problem (5), a single non-convex optimization problem is in-

stead solved for each candidate pulse pattern. Subsequently, in

a post-processing step, the switching angles and corresponding

switching sequence with the minimum cost are selected as the

global solution.

III. NUMERICAL RESULTS

This section shows the optimization results for (a) QaHWS

OPPs without limitations on the CMV (see problem (2)),

(b) QaHWS OPPs with reduced CMV, (see problem (2)

augmented with constraint (4)), and (c) HWS OPPs with

reduced CMV (see problem (5)). OPPs in the (b) category

are hereafter referred to as QaHWS CMV OPPs, while those

in category (c) as HWS CMV OPPs. All OPPs are computed

by considering an MV drive system consisting of a three-level

inverter and a squirrel cage induction machine. The machine

has a rated voltage of 3.3 kV, 2.12 kA rated current, 50Hz

nominal frequency, 0.25 per unit (p.u.) total leakage reactance,

while the dc-link voltage of the inverter is Vdc = 5.2 kV.

A. Effect on Current TDD

The maximum CM switch position of QaHWS OPPs with

d = 5 and 6 are shown in Figs. 4(a) and 5(a), respectively,

see the (blue) solid line. As can be seen, when the CMV is

not constrained, the maximum value of the CM position is

max(|u0|) = 2/3 over a wide range of modulation indices,
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Fig. 4: QaHWS and HWS OPPs for d = 5 without and with the CMV
constraint. The solid (blue) line corresponds to the conventional QaHWS
OPPs, the dashed (red) line to QaHWS CMV OPPs, and the dotted (green)
line to HWS CMV OPPs.

namely m ∈ [0.434, 0.719] ∪ [0.869, 1.193] for d = 5 and

m ∈ [0.344, 1.218] for d = 6. When the CMV constraint

is implemented, the resulting QaHWS CMV OPPs reduce the

CMV for all the aforementioned values of m. Additionally, the

rms value of the CM switch position is also limited below 1/3,

as can be seen in Figs. 4(b) and 5(b) for the above-mentioned

modulation index ranges. This, however, occurs at a cost of

an increased current TDD, as can be observed in Figs. 4(c)

and 5(c). Yet, for even pulse numbers, HWS CMV OPPs not

only effectively reduce the CMV over the whole range of
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Fig. 5: QaHWS and HWS OPPs for d = 6 without and with the CMV
constraint. The solid (blue) line corresponds to the conventional QaHWS
OPPs, the dashed (red) line to QaHWS CMV OPPs, and the dotted (green)
line to HWS CMV OPPs.

modulation indices, but also do not significantly deteriorate

the current TDD compared with conventional QaHWS OPPs.

To further investigate this, we define the relative current

TDD as the normalized difference between the current TDD

of CMV-constrained OPPs and conventional OPPs, i.e.,

I rel
TDD =

ITDD,CMV − ITDD,QaHWS

ITDD,QaHWS

. (6)

As can be seen in Fig. 4(e), when odd pulse numbers are of

interest, e.g., d = 5, the OPPs computed with problem (5)
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Fig. 6: Relative current TDD of QaHWS CMV OPPs (dashed red line) and
HWS CMV OPPs (dotted green line) for d = 5.
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Fig. 7: Relative current TDD of QaHWS CMV OPPs (dashed red line) and
HWS CMV OPPs (dotted green line) for d = 6.

do not exhibit HWS; QaHWS OPPs are returned over the

whole range of modulation indices. As a result, the symmetry

relaxations do not offer any advantages, leading to a maximum

relative increase in ITDD of 34.02% at m = 0.564, see Fig. 6.

In general, the current TDD is compromised over a wide range

of modulation indices, as anticipated.

In contrast to that, the symmetry relaxations offer significant

advantages when even pulse numbers are considered, such as

d = 6. As can be seen in Fig. 7, the maximum relative increase

in ITDD is 59.4% at m = 0.619 when d = 6. This significant

current TDD deterioration is because HWS CMV OPPs are

not effective for modulation indices m < 0.68 since QaHWS

is observed in this range, see Fig. 5(e). However, at modulation

indices where the HWS is active (m ≥ 0.68), the maximum

relative increase in ITDD is only 23.42% at m = 0.914. This is

in contrast to the 43.02% increase in ITDD of QaHWS CMV

OPPs at m = 0.959, see Fig. 7. More impressively, compared

with QaHWS OPPs, HWS CMV OPPs manage to reduce

the current TDD for d = 6 and modulation indices in the

range [0.704, 0.794]. This is thanks to the additional degrees

of freedom of problem (5), as it can distribute 2d angles over

a wider range of values. This point is highlighted in Fig. 5(e).

B. Symmetry Relaxations

As can be seen in Fig. 4(e), the switching angles of the

HWS CMV OPPs for d = 5 (i.e., odd pulse numbers) exhibit

QaHWS, with the symmetry relaxation providing no benefits.

On the other hand, relaxing the quarter-wave symmetry leads

to improved results for even pulse numbers. For m < 0.68,

the OPPs with minimum ITDD exhibit QaHWS, whereas OPPs

exhibit QaHWS or HWS for m ≥ 0.68. Moreover, QaHWS

CMV OPPs drop one pulse in this range of modulation indices,

see Fig. 5(d). This pulse-dropping feature of QaHWS CMV

OPPs is due to the limitations imposed by properties (P1)–

(P4). More specifically, for QaHWS OPPs, the pulse number

determines if the phase-a switch position of QaHWS OPPs is

000

00+

0−+

+0+

0−0

+−+

+−0

+00

u
∗

Fig. 8: Voltage vectors and corresponding three-phase switch positions of
Example 1.

0 or 1 at θ = π/2, i.e., ua(
π
2
) = 0 or ua(

π
2
) = 1, depending on

whether d is even or odd, respectively. The results presented in

this work suggest that for odd pulse numbers d (e.g., d = 5),

the restriction of ua(
π
2
) = 1 respects the CMV constraint,

and, therefore, lifting the quarter-wave symmetry property (P3)

does not lead to improved results. On the other hand, it leads

to a noteworthy improvement in the current TDD in the case

of d = 6. This implies that the relaxation of the quarter-

wave symmetry property (P3) is expected to lead to improved

results when d is even. This is due to the restrictions that

QaHWS poses to the CMV-constrained OPP problem when d
is even. Specifically, as explained in the following example,

these limitations lead to pulse dropping at high modulation

indices.

Example 1. Consider QaHWS OPP with m > 2

3
. Assuming

θ = π
6

, the fundamental component of the OPP u
∗ in the

αβ-plane is shown in Fig. 8. As can be seen, u∗ is aligned

with the short vectors that correspond to the switch positions

“0−0” and “+0+” as well as with the long vector with switch

position “+−+”. Based on the observations presented in the

appendix, the voltage sequence for the first π/6 radians must

end with a voltage vector on the symmetry axis. Given the sym-

metry property (P2), ub(ϑ) = −u
(
ϑ+ π

3

)
, with ϑ ∈

[
0, π

3

]
,

holds. This means that the phase-b switch position is 0 or −1
at θ = π/6, i.e., ub(

π
6
) = 0 or ub(

π
6
) = −1, depending on

whether d is even or odd, respectively, since ua(
π
2
) = 0 or

ub(
π
2
) = 1. In the former case, the possible voltage vectors

that can be used to synthesize the desired modulation index

require ub(
π
6
) = 0 and are shown as blue circles in Fig. 8. In

the unconstrained problem, the voltage vector that corresponds

to “+0+” is preferred, since it is the closest voltage vector to

u
∗ that satisfies the above requirements. However, this switch

position cannot be used in the CMV-constrained problem since

it has |uo| = 2/3. In that case, the switch position to be

applied at θ = π
6

will be the “000” one to satisfy the problem

symmetries, see the appendix. However, when the modulation

index is m > 2

3
then the modulating signal is outside the

inner hexagon. As a result, using the switch position “000”

leads to a major deviation between the output and desired

voltage, giving rise to significant current distortions. If a pulse

is dropped instead, the resulting OPP will have d − 1 (i.e.,

an odd number of) pulses meaning that the possible voltage

vectors that can be used to synthesize the desired modulation
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index require ub(
π
6
) = −1 and are shown as green circles

in Fig. 8. This way, the voltage vectors that correspond to

switch positions “0−0” and “+−+” can be used to better

approximate the desired modulation index.

For this reason, pulse dropping is preferred for QaHWS

CMV OPPs to enable the use of a voltage vector that decreases

the current distortions. HWS CMV OPPs, on the other hand,

do not have to resort to pulse dropping as they can freely

distribute the switching angles over π rads, and they can

thus employ those voltage vectors that guarantee the lowest

possible harmonics distortions.

Finally, it is worth mentioning that even though bipolar

switching patterns are allowed in problem (5), the computed

HWS CMV OPPs are exclusively unipolar patterns. As it turns

out, bipolar switching leads to either infeasible or suboptimal

patterns. This observation can be exploited to significantly

reduce the computational complexity of problem (5), as it

needs to be solved only for unipolar switching.

C. Feasibility

As shown, when the CMV constraint is added the resulting

QaHWS CMV OPPs reduce the CMV for all values of m. An

important advantage of the proposed approach that limits the

CMV (see Section II-D) is that OPPs with limited CMV can

be computed for all pulse numbers d ≥ 1 over the whole range

of modulation indices, i.e., the dc-link voltage is fully utilized

even when the CMV is limited. If during the optimization

process, the OPP with d pulses is suboptimal compared to

that with d− 1 pulses, unnecessary switching transitions (i.e.,

pulses) are avoided, and the (optimal) OPP with d− 1 pulses

is returned. Indeed, as mentioned before, QaHWS CMV OPPs

with d = 6 drop pulses for m ≥ 0.68, see Fig. 5(d). In doing

so, it is ensured that CMV-constrained OPPs are available for

the whole range of modulation indices, and they produce as

low harmonic distortions as possible.

IV. COMPARISON WITH CB-PWM

This section compares the current harmonic performance

of the computed OPPs with limited CMV with that of PWM

techniques that can also limit the CMV. To this aim, phase-

opposite disposition CB-PWM (PODPWM) is implemented

along with the CB-PWM strategy proposed in [10], referred to

as zero redundant state PWM (ZRSPWM). Both of these CB-

PWM methods have a maximum CM switch position of 1/3
over the whole operating range. Additionally, optimal third-

harmonic injection is considered for both PWM methods to

extend the range of achievable modulation indices from [0, 1]
to [0, 2/

√
3] without affecting the maximum CMV. For a direct

and fair comparison in terms of produced current TDD, all

examined PWM methods are designed to achieve synchronous

modulation and generate pulse patterns with the same pulse

number, namely d = 6.1 As the SVM techniques that limit the

CMV (see [11]–[13]) cannot achieve synchronous modulation

1To achieve this, the carrier-to-fundamental frequency ratio fc/f1, where
fc is the frequency of the carrier, is set to be an integer multiple of three [26],
while the initial phase of the carriers is set such that QaHWS results [27].
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Fig. 9: Comparison of current TDD with different modulation techniques.

Parameter Symbol SI value

Rated line-to-line voltage VR 400 V

Rated stator current IR 5.8A

Rated angular stator frequency ωR 2π50 rad/s

Dc-link voltage Vdc 650 V

Total leakage inductance Lσ 13mH

TABLE I: System parameters for experimental setup

with six pulses, they are excluded from the comparisons

presented in the sequel of the section.

For the framework described above, Fig. 9 shows the current

TDD produced by each modulation method. From this figure,

two main observations can be made. First, the CB-PWM meth-

ods result in comparable current TDD at lower modulation

indices, while the performance of PODPWM improves as m
increases. Moreover, the third harmonic injection deteriorates

the current quality of both CB-PWM methods. Nevertheless,

all CB-PWM methods produce currents of significantly lower

quality than OPPs, regardless of the symmetry properties of

the latter.

The second observation relates to the utilization of the dc-

link voltage. As can be seen in Fig. 9, the examined CB-PWM

methods underutilize the dc-link voltage as they can at most

reach up to a modulation index of 2/
√
3 with a third-harmonic

injection, while limiting the CM switch position to 1/3. This

is in contrast to OPPs, which, as also shown in Section III, can

be used over the whole range of modulation indices. Therefore,

OPPs that limit the CMV not only produce currents of much

higher quality than the CB-PWM methods, but can also fully

utilize the available dc-link voltage.

Based on the above, the presented results clearly demon-

strate the potential of OPPs that can achieve both load-friendly

operation—in terms of limited CMV and less thermal losses

in the machine due to the low current harmonic distortions—

and utilize the available hardware. Such features imply that

considerable cost and energy savings can be achieved, making

the proposed OPPs very relevant for MV drive systems.

V. EXPERIMENTAL RESULTS

The numerical results presented in Section III for an MV

drive system are experimentally verified hereafter with a

scaled-down LV prototype. The real-world setup consists of

a squirrel-cage induction machine and a three-level NPC

SKiiP28MLI07E3V1 SEMIKRON converter. The system pa-

rameters are summarized in Table I. Note that the deadtime

of the converter switches amounts to 3.4µs. To assess the
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(b) Three-phase and CM voltage

Fig. 10: Steady-state performance of an LV drive at m = 0.75 when QaHWS
OPPs with d = 6 are used.
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Fig. 11: Voltage spectrum at m = 0.75 for QaHWS OPPs with d = 6.
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(a) Theoretical spectrum; ITDD = 13.42%
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(b) Experimental spectrum; ITDD = 14.55%

Fig. 12: Current spectrum at m = 0.75 for QaHWS OPPs with d = 6.
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Fig. 13: Steady-state performance of an LV drive at m = 0.75 when QaHWS
CMV OPPs with d = 6 are used.
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Fig. 14: Voltage spectrum at m = 0.75 for QaHWS CMV OPPs with d = 6.
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Fig. 15: Current spectrum at m = 0.75 for QaHWS CMV OPPs with d = 6.
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(b) Three-phase and CM voltage

Fig. 16: Steady-state performance of an LV drive at m = 0.75 when HWS
CMV OPPs with d = 6 are used.
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Fig. 17: Voltage spectrum at m = 0.75 for HWS CMV OPPs with d = 6.
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Fig. 18: Current spectrum at m = 0.75 for HWS CMV OPPs with d = 6.

performance of the computed OPPs in a closed-loop set-

ting, conventional scalar control is employed. To this aim, a

dSPACE SCALEXIO system with a 2.8 GHz Intel i7-6820EQ

processor and a Xilinx Kintex-7 field-programmable gate array

(FPGA) serves as the control platform. The OPPs are stored

as lookup tables (LUTs) in the processor of the dSPACE, and

they are retrieved by the FPGA. Finally, the switch positions

are generated in the FPGA and received by the inverter via

digital inputs.

The examined OPPs have pulse number d = 6. For demon-

stration purposes, the steady-state performance of the LV

drive is investigated at two different operating points, namely,

m = 0.75 and m = 1, while rated torque is considered.

Figs. 10 to 18 relate to the first operating point, while Figs. 19

to 27 to the second. For each operating point, three different

types of OPPs are assessed, i.e., QaHWS, QaHWS CMV, and

HWS CMV OPPs.

Starting with the operating point that corresponds to mod-

ulation index m = 0.75, the performance of conventional

QaHWS OPPs is examined first. As can be seen in Fig. 10(b),

the CMV reaches a maximum value of max(|vo|) = 2

3
·

Vdc

2
= Vdc

3
, verifying the results in Fig. 5(a). The harmonic

spectrum of the experimentally measured phase voltage is

very close to the theoretical one, see Fig. 11, validating the

correct implementation of the OPPs. As for the stator current

(Fig. 10(a)), the profiles of the theoretical and experimental

harmonic spectra look similar, see Fig. 12. Regarding the

former, it is computed based on the theoretical OPP and the

total leakage inductance reported in Table I. This leads to

a spectrum where only non-triplen odd harmonics appear.

Nevertheless, as second-order effects—such as deadtimes,

measurement noise, common-mode current paths, machine

parameter variations—exist in the experimental environment,

some differences emerge in the spectrum of the experimen-

tally measured phase current. These manifest themselves as

additional low-order harmonics, albeit of low amplitude.2

Therefore, despite the anticipated nonidealities of the real-

world setting, the differences between the two spectra remain

small.

As for the proposed CMV OPPs, whether they have QaHWS

or HWS, the instantaneous CMV is limited to 1

3
· Vdc

2
= Vdc

6
, see

Figs. 13(b) and 16(b), respectively. Interestingly, as the chosen

operating point relates to the modulation index m = 0.75, i.e.,

above the corner value of 0.68 (see Section III-C), and the

pulse number is even, QaHWS CMV OPPs resort to pulse

dropping to keep the CMV limited without sacrificing the

current quality much. This feature can be clearly seen in

Fig. 13(b), where five (instead of six) pulses appear in each

half of the fundamental period. This feature, however, does

not appear in HWS CMV OPPs as the switching angles can

be spread over π (instead of π/2) rads, thus allowing for a

more flexible distribution of the switching events. As a result,

six pulses appear in the HWS CMV OPPs, see Fig. 16(b).

This symmetry relaxation has also a positive impact on the

current TDD. More specifically, the amplitude of the current

2It is noteworthy that the stator resistance of LV machines cannot be
considered negligible. This also introduces small differences between the
theoretical and actual amplitudes of the current harmonics.
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harmonics produced by HWS CMV OPPs (Fig. 18) is not

only lower than those of QaHWS CMV OPPs (Fig. 15), as

also quantified by the current TDD values (13.13% compared

with 14.68%), but they are also lower than those of the

conventional QaHWS OPPs (Fig. 12). Thus, these results

clearly demonstrate that the symmetry relaxations allow for

the effective limitation of the CMV, while (occasionally)

enabling the reduction of the current TDD. Therefore, it can

be concluded that despite the small discrepancies between

theoretical and experimental current harmonic spectra, the

relative experimental performance of the different types of

OPPs fully supports the theoretical analysis and numerical

results presented in Sections II and III.

With regards to the second operating point, similar obser-

vations can be made. For instance, the conventional QaHWS

OPPs do not produce the desired CMV as the maximum value

is 2

3
· Vdc

2
= Vdc

3
, see Fig. 19(b). Hence, as shown in Fig. 21,

even though the current TDD is as low as 11.33%, load-

friendly operation is not fully achieved as the adverse effects

of CMV are not mitigated. On the other hand, the proposed

CMV OPPs can address the CMV-related negative effects as

they successfully limit the CMV even at high modulation

indices such as the chosen one, see Figs. 22(b) and 25(b)

for the QaHWS and HWS CMV OPPs, respectively. Thus,

even though this occurs at the expense of somewhat higher

current distortions compared to the conventional OPPs, since

QaHWS and HWS CMV OPPs produce current TDD of

16.03% and 13.99%, respectively, see Figs. 24 and 27, the

benefits of the proposed OPPs remain in place as they provide

the best possible compromise between the lowest possible

current distortions and a limited CMV. Finally, it is worth

noting that the symmetry relaxation again benefits the CMV

OPPs as HWS allows for lower current distortions than those

of QaHWS, see Figs. 27 and 24, respectively.

VI. CONCLUSIONS

This paper presented the implementation of a constraint to

limit the CMV of both QaHWS and HWS OPPs. Both types

of OPPs successfully kept the CMV below a desired value.

Moreover, as shown, the proposed symmetry relaxations not

only enabled the mitigation of the anticipated—due to the

CMV limitation—increase in the harmonic distortions but also

improved the current TDD over a limited range of modulation

indices. Alas, these improvements apply only to OPPs with

even pulse numbers. Nevertheless, regardless of the pulse

number, when comparing with other PWM methods that also

limit the CMV, the current TDD improvement that is achieved

with the proposed CMV OPPs can be impressive. Moreover,

and in contrast to existing PWM methods, the proposed OPPs

are suitable for the whole range of operating points. Hence,

not only load-friendly operation is achieved—as demonstrated

by the lower current distortions and limited CMV—but also

full utilization of the dc-link voltage, thus enabling energy and

cost savings. Finally, the effectiveness of the computed OPPs

was verified with an LV prototype. As shown, the second-order

effects that can affect the proposed modulation technique have

small impact on the current quality.
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(b) Three-phase and CM voltage

Fig. 19: Steady-state performance of an LV drive at m = 1 when QaHWS
OPPs with d = 6 are used.
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Fig. 20: Voltage spectrum at m = 1 for QaHWS OPPs with d = 6.
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Fig. 21: Current spectrum at m = 1 for QaHWS OPPs with d = 6.
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Fig. 22: Steady-state performance of an LV drive at m = 1 when QaHWS
CMV OPPs with d = 6 are used.
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Fig. 23: Voltage spectrum at m = 1 for QaHWS CMV OPPs with d = 6.
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Fig. 24: Current spectrum at m = 1 for QaHWS CMV OPPs with d = 6.

i
s
,a
bc

[A
]

Time

−10

−5

0

5

10

0 T1/4 T1/2 3T1/4 T1

(a) Three-phase stator current

Time
v a

v b
v c

v o

0

0

0

0

T1/4

T1/4

T1/4

T1/4

T1/2

T1/2

T1/2

T1/2

3T1/4

3T1/4

3T1/4

3T1/4

T1

T1

T1

T1

−Vdc

2

−Vdc

2

−Vdc

2

0

0

0

Vdc

2

Vdc

2

Vdc

2

−Vdc

3

0

Vdc

3

(b) Three-phase and CM voltage

Fig. 25: Steady-state performance of an LV drive at m = 1 when HWS CMV
OPPs with d = 6 are used.
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Fig. 26: Voltage spectrum at m = 1 for HWS CMV OPPs with d = 6.
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Fig. 27: Current spectrum at m = 1 for HWS CMV OPPs with d = 6.
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Fig. 28: Illustration of the calculation of the CM position uo corresponding
to the QaHWS OPP for d = 4 at modulation index m = 0.8

APPENDIX

The CM switch position uo, and thus the CMV vo, inherit

the symmetry properties of a three-phase OPP presented in

Section II-B. Specifically, if the OPP exhibits QaHWS then

uo will also exhibit QaHWS. It should be noted that these

properties are also reflected in the sequence of voltage vectors

in the αβ-plane. For demonstration purposes, consider the

QaHWS OPP for d = 4 and m = 0.8. The single-phase

QaHWS OPP u is shown in the top subfigure of Fig. 28,

while the CM switch position uo over π/3 radians, i.e., a

half of its fundamental period, is depicted in the bottom

subfigure.3 Finally, the three-phase OPP uabc over a sixth of its

fundamental period is shown in between the above-mentioned

subfigures.

As can be seen, the sequence of switch positions of the

three-phase OPP uabc within the first π/6 radians is “0−+”
at π/3−α3−−−−−−→ “0−0”

at π/3−α2−−−−−−→ “0−+”
at α1−−−→ “+−+”

at α4−π/3−−−−−−→
“+0+”. The sequence of the corresponding voltage vectors is

shown in Fig. 29 with blue colors. The sequence of switch

positions of the three-phase OPP uabc within the second

π/6 radians is “+0+”
at 2π/3−α4−−−−−−−→ “+−+”

at π/3−α1−−−−−−→ “+−0”
at α2−−−→ “0−0”

at α3−−−→ “+−0”, see also Fig. 29 where the

sequence of corresponding voltage vectors is shown with green

colors. We observe that these two sequences are symmetric as

they are mirrored with respect to the axis aligned with the

short vectors that correspond to the switch positions “0−0”

and “+0+” as well as the long vector resulting from the switch

position “+−+”. This means that the sequence of voltage

vectors in the first quarter of the fundamental period of the

CM switch position must end in one of the voltage vectors on

the said symmetry axis.

3Note that due to the QaHWS of the OPP, the full information of uo is
included in π/6 radians. For illustration purposes, however, the CM switch
position is depicted for half of its fundamental period.
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