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Abstract—This paper presents the computation of three-level
optimized pulse patterns (OPPs) that limit the converter losses
and are robust to power factor variations. By constraining the
switching and conduction losses in the optimization process
the trade-off between converter losses and current harmonic
distortions can be improved. Moreover, to increase the solution
space of the loss-constrained OPP problem, and thus have
more degrees of freedom when establishing the Pareto optimal
solutions, the symmetry properties of conventional OPPs are
relaxed. Additionally, by constraining the losses not only for a
specific power factor but for a range of them, the variation of
the losses is small when varying the power factor. As a result, the
converter efficiency is improved over a wide range of operating
points, as shown with the presented results.

Index Terms—Modulation scheme, pulse width modulation
(PWM), optimized pulse patterns (OPPs), medium-voltage con-
verters, three-level converters

I. INTRODUCTION

Neutral-point-clamped (NPC) converters are typically used

in medium-voltage (MV) drive systems. In such applications,

the switching losses are high due to the high dc-link—and

thus blocking—voltage and commutated currents. To keep

the switching losses low, the switching frequency is usually

kept below 250Hz [1]. This, however, increases the current

harmonic distortions, which in turn lead to increased thermal

losses in the machine. Therefore, the trade-off between the

current harmonic distortions and converter losses is an impor-

tant topic.

Conventional modulation techniques, such as carrier-based

pulse width modulation (CB-PWM) and space vector modula-

tion (SVM), can typically achieve low harmonic distortions for

pulse numbers above 40. For low pulse numbers, however, the

current ripple can be substantial. As a result, the performance

of conventional modulation methods significantly deteriorates

under such operating conditions [2]. Moreover, the switching

losses with such methods are high since switching cannot be

avoided when the commutated current is high.

To address the latter shortcoming of conventional mod-

ulation methods, and thus improve the efficiency of the

converter, discontinuous PWM (DPWM) methods have been

proposed [3]. With DPWM one of the three phases is clamped

to the upper or lower rail of the dc link for one-third of

the fundamental period, effectively reducing the switching

frequency by 33.33%, and thus resulting in decreased switch-

ing losses [4]. To not compromise this feature, no additional

switchings should occur when changing the clamping mode.

For this reason, the voltage vectors need to be rearranged

within the modulation cycle [5]. Additionally, DPWM can be

modified to further minimize the switching losses. By prop-

erly adjusting the clamping intervals, commutations at high

currents can be avoided, thus, further limiting the switching

losses [6]. Moreover, the output quality of the current can

be improved by also clamping the dc-link midpoint instead of

only clamping the upper or lower dc-link rail [7]. Nevertheless,

the quality of the output current remains worse than that of

conventional modulation methods, while the implementation

complexity is also higher.

An improved solution to reduce switching losses is pro-

grammed modulation techniques, such as selective harmonic

elimination (SHE), or optimized pulse patterns (OPPs) [8].

By using OPPs, the switching frequency can be reduced

by up to 25% compared with conventional PWM methods

without sacrificing the harmonic performance [9]. This is due

to the fact that OPPs are computed in an offline optimization

procedure by minimizing the total demand distortion (TDD)

of the stator current, while the switching frequency can be

kept below a maximum switching frequency limit [10].

In [11], the current TDD for a given switching frequency

is improved by relaxing the symmetry properties that are

typically imposed on OPPs. In this work, it is shown that

the trade-off between current TDD and power losses can be

further improved by not only relaxing these properties but

also constraining the losses. By adding a constraint to the

optimization problem that accounts for the converter switching

and conduction losses, an upper bound on them is guaranteed,

ensuring safe operation and better utilization of the thermal

capability of the semiconductor devices [12]. However, the

total losses and therefore the resulting OPPs depend on the

power factor, which is load- and operating-point dependent. To



avoid compromising the aforementioned trade-off—and thus

the efficiency—the robustness of the computed OPPs under

power factor changes must be considered. Hence, robust loss-

constrained OPPs are proposed in this paper to ensure a high

efficiency over a wider range of power factors. The presented

numerical results verify this favorable behavior.

II. THREE-LEVEL OPPS WITH CONSTRAINED POWER

LOSSES

Assuming a three-level converter, the switching signal

u(θ) ∈ {−1, 0, 1} is a 2π-periodic signal with a fundamental

frequency f1. The pulse number is defined as the ratio d = fsw

f1
,

where fsw is the average device switching frequency. The full-

wave switching signal can be described by the 4d switching

angles αi, i ∈ {1, . . . , 4d}, where a switching transition

∆ui = ui − ui−1 ∈ {−1, 1} occurs, with ui ∈ {−1, 0, 1},

i ∈ {0, . . . , 4d}, being the switch position. The switching

angles of the OPPs are computed by minimizing an objective

function that captures the load current TDD ITDD. Note that

the latter is proportional to the weighted sum of the switching

harmonics ûn when an inductive load is assumed. For an

analytical derivation of ITDD, the reader is referred to [11].

Conventional OPPs assume three-phase and quarter- and

half-wave symmetry (QaHWS), while all switch positions in

the first half-period are non-negative, with the first switch

position being zero, i.e., u0 = 0. They can, therefore, be

fully described using only the d switching angles αQ =

[α1 α2 . . . αd]
T ∈ [0, π/2].

The optimization problem to compute OPPs with QaHWS

is

minimize
αQ

J(αQ) =
∑

n=5,7,...

(
bn
n

)2

subject to b1 = m

0 ≤ α1 ≤ α2 ≤ . . . ≤ αd ≤ π
2
,

(1)

where m ∈ [0, 4/π] is the desired modulation index, and bn
are the nonzero Fourier coefficients given by

bn =
4

nπ

d∑

i=1

∆ui cos(nαi) .

Note that even harmonics of QaHWS OPPs are zero, while

triplen harmonics are not considered in the optimization prob-

lem as they do not drive harmonic currents in a three-phase

load with a floating star point.

However, as shown in [11], the trade-off between harmonic

distortions and losses can be improved by dropping the

quarter-wave symmetry. By doing so, half-wave symmetric

(HWS) OPPs result, meaning that 2d switching angles αH =
[α1 α2 . . . α2d]

T
∈ [0, π] are required instead.

Given the above, the optimization problem to compute OPPs

with HWS is

minimize
αH

J(αH) =
∑

n=5,7,...

a2
n
+b2

n

n

subject to a1 = 0

b1 = m

0 ≤ α1 ≤ α2 ≤ . . . ≤ α2d ≤ π ,

(2)
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Fig. 1: A three-level NPC converter driving a machine

TABLE I: Semiconductor parameters for loss calculations

GCT 5SHY 4045L0004 Diode D1961

eon = 1.029 J

eoff = 28.08 J err = 15.2 J

aGCT = 0.97V adiode = 1.19V

bGCT = 0.245 · 10−3 V/A bdiode = 0.395 · 10−3 V/A

where the nonzero an and bn Fourier coefficients are

an = −
2

nπ

2d∑

i=1

∆ui sin(nαi) ,

bn =
2

nπ

2d∑

i=1

∆ui cos(nαi) .

Note that all even harmonics are zero with HWS as well.

A. Power Losses Calculation for an NPC Converter

A three-level NPC converter with a machine is shown in

Fig. 1. In each phase, there are 4 active switches S1 to S4

with their respective freewheeling diodes D1 to D4, and two

clamping diodes D5 and D6. In this work, the switching

devices are the integrated-gate-commutated thyristor (IGCT)

5SHY 4045L0004 and the diode D1961. The parameters

of the semiconductor devices at rated maximum values of

vT = 2.4 kV and iT = 4.5 kA are given in Table I.

Usually, the losses of the converter are quantified by the

switching frequency. However, the placement of the switching

angles can significantly affect the losses as these heavily

depend on the commutated current at the switching events and

between them. For this reason, an analytical calculation of the

losses is considered in this work, as shown in the sequel.

Since OPPs exhibit three-phase symmetry, it suffices to

calculate the losses in one phase leg of the NPC converter.

Additionally, to simplify the computation of the switching

losses, the total dc-link voltage Vdc is assumed constant, and

the fluctuations of the neutral point potential small. As a result,

the blocking voltage of each semiconductor is half the dc-

link voltage vT = Vdc

2
, and the losses depend only on the

instantaneous value of the commutated current. The phase

current ix(t) with x ∈ {a, b, c}, is considered sinusoidal with

frequency f1, i.e., ix(t) = sin(2πf1t − φ), where φ is the

angular displacement between the phase current and voltage.



TABLE II: Switching energy losses in an NPC phase leg.

Polarity of Switching Switching
phase current ix transition energy losses

> 0

0 → 1 eon,S1
+ err,D5

1 → 0 eoff,S1

0 → −1 eoff,S2

−1 → 0 eon,S2
+ err,D4

< 0

0 → 1 eoff,S3

1 → 0 eon,S3
+ err,D1

0 → −1 eon,S4
+ err,D6

−1 → 0 eoff,S4

The IGCTs produce switching (energy) losses eon and eoff in

turn-on and turn-off events, respectively. The switching losses

of the IGCTs are assumed linear in the current, i.e.,

eon = con

Vdc

2
ix , (3a)

eoff = coff

Vdc

2
ix , (3b)

where the coefficients con, coff are derived from the data sheets,

and ix is the instantaneous current at a switching event. On

the contrary, the diodes have only turn-off losses—also called

reverse-recovery losses err—which are nonlinear in the current,

i.e.,

err = crr

Vdc

2
frr(ix) , (4)

where the function frr(ix) and coefficient crr are derived from

the data sheets.

The conduction (energy) losses econ for both IGCTs and

diodes are calculated based on the current. The on-state voltage

drop is assumed affine in the current

vT = a+ bix , (5)

where the parameters aGCT, bGCT, or adiode, bdiode, are selected

for a, b, depending on the conducting device. As a result, the

conduction power losses are given by

pcon = vT (ix)ix = aix + bi2x , (6)

and the conduction energy is

econ =

∫

pcon dt =

∫

aix(t) + bi2x(t) dt . (7)

For the detailed computation of the losses, the reader is

referred to [13, Section 2.3].

Depending on the polarity of the current and the switching

transition, different devices turn on and off. The switching

losses for a phase leg of an NPC converter are reported in

Table II. Similarly, depending on the polarity of the current

and the switch position, different devices conduct the current.

The conduction losses for a phase leg of an NPC converter

are reported in Table III.

In this work, both switching and conduction losses are

taken into account. The total power losses are the average of

the switching and conduction energy losses over the whole

TABLE III: Conduction energy losses in an NPC phase leg.

Polarity of Switch Conduction
phase current ix position energy losses

> 0

1 econ,S1
+ econ,S2

0 econ,S2
+ econ,D5

−1 econ,D3
+ econ,D4

< 0

1 econ,D1
+ econ,D2

0 econ,S3
+ econ,D6

−1 econ,S3
+ econ,S4

fundamental period T1 = 1/f1 in one phase of the NPC

converter, i.e.,

Ptot =

Psw
︷ ︸︸ ︷∑

eon,S1:S4
+ eoff,S1:S4

+ err,D1:D6

T1

+
∑

econ,S1:S4
+ econ,D1:D6

T1
︸ ︷︷ ︸

Pcon

,

(8)

and can be calculated based on the applied OPP, phase current,

and displacement angle φ. Hence, to find Ptot, the switching

and conduction losses need to be calculated based on the

semiconductor switches that commutate the current and the

switching events, as described below.

At every switching angle αi, the polarity of the current

ix(αi) and the switch positions involved ui−1, ui, can be used

to determine which devices turn on and off. For example,

if ix(αi) > 0 and ui−1 = 0, ui = 1, it can be deduced

from Table II that the top outer switch S1 and the upper

clamping diode D5 produce turn-on and reverse-recovery

losses, respectively, calculated based on (3a) and (4).

Assuming that the current does not change polarity between

two consecutive switching angles, αi, and αi+1, the conduc-

tion losses in that interval are calculated by integrating (6)

from αi to αi+1, where the coefficients a, b are selected with

the help of Table III based on the polarity of ix(αi) and the

switch position ui. As a sinusoidal current is assumed for

the loss calculations, it is implied that its polarity changes at

φ + kπ, k ∈ Z. Hence, if the subinterval formed by αi and

αi+1 does not include a current zero-crossing event, then the

conducting devices do not change. As a result, the conduction

losses in this subinterval are

econ =
T1

2π

∫ αi+1

αi

aix(ϑ) + bi2x(ϑ) dϑ . (9)

If, however, the current changes polarity in the subinterval

[αi, αi+1], i.e., αi < φ < αi+1, the corresponding conduction

losses are computed with the help of two subintegrals, i.e.,

econ =
T1

2π

∫ φ

αi

aIix(ϑ) + bIi
2
x(ϑ) dϑ

+
T1

2π

∫ αi+1

φ

aIIix(ϑ) + bIIi
2
x(ϑ) dϑ ,

(10)

where the coefficients aI, bI, and aII, bII are chosen depending

on the conducting devices (see Table III).
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Fig. 2: HWS OPPs (blue) with different constraints on the losses for d = 3

at m = 1 and φ = 35◦ . The phase current (red) is also shown.

B. Relaxed OPP Problem with Limited Power Losses

As shown in [14], OPPs can gain additional features by

introducing suitable constraints to the OPP optimization prob-

lem. Motivated by this, the constraint

Ptot(α, φ) ≤ Plmt , (11)

is added to the optimization problem (1) or (2) such that loss-

constrained OPPs can be computed. In (11), Plmt is the chosen

limit on the total power losses and α is either αQ or αH

depending on whether QaHWS or HWS, respectively, is re-

quired. Note that, as also shown in Section III, different OPPs

result by adjusting Plmt, see, e.g., the illustrative example in

Fig. 2 for φ = 35◦ and m = 1. Specifically, the HWS patterns

in Figs. 2(a) and 2(b) result for the limits Plmt = 10.6 kW

and Plmt = 9.6 kW, respectively. As can be observed, as the

upper limit on the permissible total semiconductor losses in

one phase gets tighter, the switching angles are moved closer to

the zero crossing of the current. However, this comes at a cost

of increased current distortions. In the considered example, the

current TDD increases by 16.6% when the losses are decreased

by 1 kW per phase, i.e., for a 9% relative decrease in the power

losses.

1) Pulse Dropping: According to the optimization prob-

lems (1) and (2), two consecutive switching angles have to

meet constraints of the form

αi ≤ αi+1 . (12)

In the corner case αi = αi+1, the two switching transitions

cancel each other out, and no switching occurs at αi. This

case is referred to as pulse dropping. This feature enables

the computation of OPPs with ≤ 2d switching angles in one

half-period when solving the optimization problem for pulse

number d. This means that if a pattern with d− 1 pulses can

meet the power loss constraint while achieving lower current

TDD than any pattern with d pulses, the unnecessary pulses

are dropped, and it is returned as the optimal solution, without

having to solve the optimization problem for d− 1.

However, even though constraint (12) allows for overlapping

switching angles to be removed, it does not prevent the

existence of pulses of infinitesimal width, i.e., in the range

of a few µs. The voltage-second contribution of such pulses

as well as their effect on the current TDD are insignificant.

On the other hand, their presence can give rise to significant

switching losses. Moreover, such short pulses are not allowed

in a physical system as a minimum on/off time ∆tmin is

required by the devices.

To account for the above, (12) can be modified such

that pulses shorter than ∆tmin are prevented. To this aim,

two consecutive switching angles need to have a minimum

difference, as dictated by the minimum on/off time ∆tmin.

Hence, the following constraint on the switching angles can

be considered

αi + 2π
∆tmin

T1

≤ αi+1 , (13)

where ∆tmin is set to 50µs to define the minimum pulse

width.

However, the (desirable) pulse-dropping feature is removed

with constraint (13). To overcome this issue, an approach

that combines constraint (12) with the minimum pulse width

requirement is eventually adopted. More specifically, pulses

smaller than ∆tmin are not considered in the losses calcula-

tion process, while the corresponding switching angles that

generate such pulses are set equal in the optimization process,

i.e., αi = αi+1. This way, pulses are allowed to drop, as the

pulse-dropping feature is active, while no pattern with pulses

shorter than ∆tmin can be considered optimal.

C. Robust Loss-Constrained OPPs

Since the instantaneous current depends on the displacement

angle φ, the total losses vary with φ. This implies that the

loss-constrained OPP problem needs to be solved for multiple

displacement angles φ. This, however, significantly increases

the computational and memory requirements. As an example,

consider the HWS OPP shown in Fig. 3. This pattern is

computed to achieve total power losses of Ptot = 10.2 kW

when a displacement angle of φ = 35◦ is considered, see

Fig. 3(a). However, as shown in Fig. 3(b), if the displacement

angle changes to φ = 45◦, the same OPP will result in

Ptot = 10.66 kW. This increase in Ptot is due to the narrow

pulse occurring at the current zero crossing (at θ ≈ 35◦) in

Fig. 3(a); when the displacement angle changes to φ = 45◦ the

switching events happen at a nonzero current, thus generating

switching losses. As a result, the losses are redistributed

among the semiconductor devices, see Fig. 3(c). As can be

seen, the switching losses are moved from the outer switches

S1, S4, and clamping diodes D5, D6, to the inner switches

S2, S3, and outer diodes D1, D4, and the total losses are

increased.



Angle θ [rad]
0 π

2
π 3π

2
2π

−1

0

1

(a) At displacement angle φ = 35◦ the total losses are Ptot = 10.20 kW
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(b) At displacement angle φ = 45◦ the total losses are Ptot = 10.66 kW
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(c) Losses distribution. The switching and conduction losses at φ = 35◦

are shown with blue and orange, respectively. The switching and conduction
losses at φ = 45◦ are shown with light blue and light orange, respectively.

Fig. 3: HWS OPP (blue) with d = 3 and m = 1, and phase current (red) at
different displacement angles. The current TDD is ITDD = 13.73%.

Given this, and considering that the power factor changes

during operation, OPPs that can achieve near-optimal perfor-

mance for a range of operating points would be advantageous.

To minimize the variation of the losses when the OPPs are used

with different displacement angles they were optimized for, a

modification in constraint (11) is proposed. More specifically,

the total losses with φ ± ∆φ, where ∆φ is a variation in φ,

are also constrained, thus resulting in the constraint

Ptot(α, φ−∆φ) ≤ Plmt and

Ptot(α, φ) ≤ Plmt and

Ptot(α, φ+∆φ) ≤ Plmt .

(14)

Notice that to ensure robustness, the OPP problem (1) or (2)

is solved with constraint (14) instead of (11). In doing so, the

OPPs are not optimized with respect to one power factor (i.e.,

displacement angle) but over a range of displacement angles.

This increases the robustness of the loss-constrained OPPs,

thus ensuring maximization of the drive efficiency for a given

ITDD over a range of power factors.

To illustrate the robustness of these OPPs, a robust HWS

pattern with φ = 35◦ and ∆φ = 10◦ is considered in Fig. 4.
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(b) At displacement angle φ = 45◦ the total losses are Ptot = 10.20 kW
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(c) Losses distribution. The switching and conduction losses at φ = 35◦

are shown with blue and orange, respectively. The switching and conduction
losses at φ = 45◦ are shown with light blue and light orange, respectively.

Fig. 4: Robust HWS OPP (blue) with d = 3 and m = 1, and phase current
(red) at different displacement angles. The current TDD is ITDD = 14.67%.

This OPP achieves similar losses to the pattern in Fig. 3 when

φ = 35◦. Notice that compared to the pattern in Fig. 3 the

short pulse close to the zero crossing of the current is narrower

and occurs at a bigger angle. As a result, the increase in the

losses is smaller when the pattern is used with displacement

angle φ = 45◦ (∆φ = 10◦). It should be noted that the

robustness feature comes at the expense of a slight increase

in the current TDD; ITDD increases from 13.73% to 14.67%
in the discussed example, i.e., a 6.8% relative increase is

observed. Finally, increasing the robustness of OPPs to power

factor variations also affects the distribution of the losses

among the semiconductor devices, as visualized in Fig. 4(c).

When the pattern optimized for φ = 35◦—while accounting

for a variation of ∆φ = 10◦—is used at displacement angle

φ = 45◦, the switching losses are moved from the outer

switches S1, S4 and clamping diodes D5, D6 to the inner

switches S2, S3 and outer diodes D1, D4, and the total losses

are increased. This increase, however, is smaller than in Fig. 3

because the commutations near the zero crossing of the current

occur at lower currents.
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(a) Loss-constrained HWS OPPs for d = 4
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(b) Robust loss-constrained HWS OPPs for d = 4

Fig. 5: Total power losses versus current TDD at m = 1, φ = 35◦ , and up
to d = 4. Conventional QaHWS OPPs are shown with asterisks, and loss-
constrained HWS OPPs are depicted with solid (blue) circles. The variation
of the power losses with a changing power factor is also shown considering
a variation ∆φ = ±10◦ .

III. NUMERICAL RESULTS

The performance and features of the OPPs in question are

discussed hereafter. All OPPs are computed for an MV drive

system consisting of a squirrel cage induction machine with

3.55 kV rated voltage, 2.2 kA rated current, 50Hz nominal

frequency, 0.23 per unit (p.u.) total leakage reactance, and a

three-level inverter with a dc-link voltage of Vdc = 4.8 kV.

A. Pareto Fronts for Displacement Angle φ = 35◦

This section compares the unconstrained QaHWS OPPs to

HWS OPPs (problem (2)) with (a) the loss constraint (11)

(see Figs. 5(a), 6(a), and 7(a)) and (b) constraint (14) (see

Figs. 5(b), 6(b), and 7(b)) in terms of total power losses and

ITDD. For demonstration purposes, the OPPs are calculated

at modulation indices m = 1, m = 1.1, and m = 1.2, and

φ = 35◦, see Figs. 5, 6, and 7, respectively. The unconstrained

QaHWS OPPs are shown as asterisks with a color indicating

the pulse number, i.e., d = 1 is purple, d = 2 red, d = 3 green,

and d = 4 blue. For the loss-constrained OPPs shown in the

same figures only d = 4 is considered, while Plmt is changed

from 16 to 8 kW with a step of 0.2 kW. The individual loss-

constrained OPPs are shown as solid blue circles, while the

corresponding Pareto front is shown with a black solid line.

The error bars indicate the total loss variation when ∆φ =
±10◦ is considered.
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(a) Loss-constrained HWS OPPs for d = 4
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(b) Robust loss-constrained HWS OPPs for d = 4

Fig. 6: Total power losses versus current TDD at m = 1.1, φ = 35◦ , and
up to d = 4. Conventional QaHWS OPPs are shown with asterisks, and loss-
constrained HWS OPPs are depicted with solid (blue) circles. The variation
of the power losses with a changing power factor is also shown considering
a variation ∆φ = ±10◦ .

For example, considering m = 1, as seen in Fig. 5(a),

by relaxing the QaHWS to HWS, the Pareto front moves

towards the origin. With respect to the unconstrained QaHWS

OPP for d = 2, a reduction in the total losses up to 1 kW

per phase, i.e., 9% relative improvement, can be achieved

without compromising the current TDD, resulting in improved

efficiency, and thus significant energy savings. Equivalently,

compared with the unconstrained QaHWS OPP for d = 2, the

ITDD of the loss-constrained HWS OPPs can be reduced by up

to 13% without increasing the losses, resulting in an improved

overall performance and less thermal losses in the motor. A

similar behavior is observed for m = 1.1, as can be seen in

Fig. 6(a). The loss-constrained HWS OPPs can reduce the total

losses by 1.6 kW per phase compared to the unconstrained

QaHWS OPP for d = 3, i.e., 12% relative improvement,

while producing the same current TDD. Correspondingly, the

loss-constrained HWS OPPs can result in similar losses to the

unconstrained QaHWS OPP for d = 3 while reducing the ITDD

by up to 9.3%. However, as the modulation index increases,

e.g., for m = 1.2, the conventional OPPs become embedded

in the Pareto front of the loss-constrained HWS OPPs due to

the limited degrees of freedom, see Fig. 7(a).

Nevertheless, the losses of the HWS loss-constrained OPPs

vary with the change of the displacement angle φ. For ex-

ample, the OPPs in Fig. 5(a) result in higher losses when φ
changes by ∆φ = ±10◦, e.g., the OPP with ITDD = 13.7% has
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(a) Loss-constrained HWS OPPs for d = 4
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(b) Robust loss-constrained HWS OPPs for d = 4

Fig. 7: Total power losses versus current TDD at m = 1.2, φ = 35◦, and
up to d = 4. Conventional QaHWS OPPs are shown with asterisks, and loss-
constrained HWS OPPs are depicted with solid (blue) circles. The variation
of the power losses with a changing power factor is also shown considering
a variation ∆φ = ±10◦ .

Ptot(φ = 35◦) = 10.2 kW while Ptot(φ = 45◦) = 10.66 kW,

see Fig. 3. As shown in Fig. 5(b), however, this issue is

successfully addressed with the robust OPPs. Specifically,

when the robust OPPs optimized for φ = 35◦ are used for,

e.g., φ = 45◦, the losses do not increase much, see also

the example in Fig. 4, thus, the efficiency remains high even

when the power factor changes. This point is highlighted,

when comparing Figs. 5(a) and 5(b). As can be seen, the

OPPs in Fig. 5(b) exhibit a smaller loss variation, while the

overall performance (i.e., the trade-off between total power

losses Ptot and current distortions ITDD) remains significantly

better compared with that of conventional, i.e., unconstrained

QaHWS, OPPs. Hence, the proposed OPPs not only improve

the converter efficiency for a given ITDD but are also robust to

variations in the power factor. In doing so, the operation of the

drive with as low converter power losses as possible is ensured

over a wide range of operating points. Similar behavior is

exhibited for all three modulations, see Figs. 5 to 7.

B. Pulse Dropping

For the loss-constrained HWS OPPs shown in this work, the

optimization problem is solved only for d = 4, while Plmt is

changed from 16 to 8 kW with a step of 0.2 kW. However, as

the constraint gets tighter, to achieve very low losses, pulses

need to be dropped. More specifically, the conventional OPP

for m = 1 has ITDD = 6.22% and results in total losses
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(a) Conventional (unconstrained QaHWS) OPP with Ptot = 14.42 kW and
ITDD = 6.22%
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(b) Robust loss-constrained HWS OPP with Ptot = 11.95 kW and ITDD =

8.40%
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(c) Robust loss-constrained HWS OPP with Ptot = 10.74 kW and ITDD =

13.12%
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(d) Robust loss-constrained HWS OPP with Ptot = 9.09 kW and ITDD =

17.87%
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(e) Losses distribution. The switching and conduction losses at φ = 35◦

are shown with blue and orange, respectively. The colors from dark to light
correspond to the OPPs from (a) to (d), respectively.

Fig. 8: OPPs with different constraints on the losses for d = 4, m = 1, and
φ = 35◦ along with the phase current (red).



Ptot = 14.42 kW for φ = 35◦, see Fig. 8(a). When reducing

the limit on the total losses, the pulses are rearranged within

the period so that the switching actions occur at low current,

see Fig. 8(b). This way, the total losses can be reduced by

2.47 kW per phase, i.e., a 17.1% relative decrease is achieved,

but at the cost of increased current distortions, with a relative

increase of 35% in ITDD.

The switching and conduction losses of the different patterns

at φ = 35◦ presented in Fig. 8 are shown in Fig. 8(e) with

blue and orange, respectively. As can be seen, when moving

from the pattern of Fig. 8(a) to that of Fig. 8(b), the switching

losses of the outer switches S1, S4 and clamping diodes D5,

D6 get significantly lower. As the upper bound on the permis-

sible losses is further reduced, the pulses get narrower and,

eventually, pulses are dropped such that the switching losses

can be reduced. In the case of Ptot = 10.74 kW, see Fig. 8(c),

the OPP has three pulses, and the total losses are reduced by

3.68 kW per phase, i.e., 25.5% relative reduction compared to

the unconstrained QaHWS OPP. However, the ITDD is roughly

twice that of the conventional OPP with four pulses. If the limit

in the total losses is further decreased, additional pulses are

dropped. To achieve total losses Ptot = 9.09 kW, two pulses

are dropped, resulting in the pulse number d = 2. In that

case, the total losses are merely 63% of the total losses of the

conventional OPP, but the harmonic distortions in the output

current are nearly three times higher. From these results, the

trade-off between the total losses and the harmonic distortions

in the output current is clear.

At this point, it is worth discussing the effectiveness of

the pulse-dropping feature of this optimization problem. All

OPPs discussed in this section are produced by solving the

optimization problem for d = 4. This provides some more

degrees of freedom when more losses are tolerated. However,

as the upper limit becomes tighter, pulses begin to drop,

implying that the same results can be achieved when OPPs

with a smaller pulse number (e.g., d = 3) are computed in the

first place. This behavior implies that it suffices to solve the

loss-constrained OPP problem with as high a pulse number

as possible, since, depending on the value of the power loss

constraint, OPPs with all possible pulse numbers result.

Finally, from Fig. 8(e), it is apparent that the conduction

losses are almost the same regardless of the limit on the

total losses. To achieve a specific modulation index a certain

voltage-second contribution is required. Even when the pulses

are rearranged and the conducting devices change from GCTs

to diodes, the conduction losses are not that different due to the

similar parameters of the two types of devices. This highlights

that for the used devices, the switching losses are those that

affect the converter efficiency. Therefore, to reduce the losses,

first, the pulses are moved closer to the zero crossing of the

current. Following, as the limit on the losses gets tighter, pulses

are dropped to further decrease the switching losses.

IV. CONCLUSION

This paper proposed the computation of OPPs with limited

total losses and robustness to power factor variations. The

relaxation of the OPP symmetry properties allows rearranging

the switching angles within the fundamental period to achieve

switching at low currents, and hence reduce the switching

losses. Additionally, by considering the variation of the power

factor in the optimization problem, the total losses do not vary

significantly with the variation of the displacement angle. As a

result, low losses are guaranteed for a wide range of operating

points. As demonstrated by the presented numerical results,

the proposed OPPs significantly improve the fundamental

trade-off between current distortions and power losses, while

ensuring the highest possible converter efficiency over a wide

range of operating points.

ACKNOWLEDGMENT

This work was supported in part by ABB Oy Drives and in

part by the Academy of Finland.

REFERENCES

[1] A. Edpuganti and A. K. Rathore, “A survey of low switching frequency
modulation techniques for medium-voltage multilevel converters,” IEEE

Trans. Ind. Appl., vol. 51, no. 5, pp. 4212–4228, Sep./Oct. 2015.
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