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Abstract—This paper investigates the computation of three-
level optimized pulse patterns (OPPs) with zero common-mode
voltage (CMV). To do so, a set of linear constraints that guarantee
zero CMV is derived, and a systematic way of implementing it
is presented. Moreover, to alleviate the increased computational
demands of the associated optimization problem, a method that
can reduce the computational time of three-level OPPs with zero
CMV by up to 99% is proposed. Finally, to mitigate the increased
current harmonics due to the CMV elimination, the symmetry
requirements of the OPPs are relaxed. In doing so, as shown
by the presented numerical results, the current quality can be
improved, but alas, only marginally and over a limited range of
modulation indices.

Index Terms—Optimized pulse patterns (OPPs), modulation
scheme, pulse width modulation (PWM), voltage source converter
(VSC), multilevel converter, common-mode voltage.

I. INTRODUCTION

The common-mode voltage (CMV) and its rapid dv/dt
changes are associated with bearing currents that damage the

motor bearings [1]. Additionally, the CMV is the main cause

of leakage currents that stress the motor insulation. Therefore,

eliminating the CMV can improve the lifetime of the motor.

The idea of eliminating the CMV in three-level converters

was first presented in [2]. Traditionally, space vector modula-

tion (SVM) uses the three nearest voltage vectors to generate

the desired voltage. As shown in [3], by only using the voltage

vectors that produce zero CMV, the CMV can be kept zero.

In this direction, several SVM techniques have been presented

that have different features, such as power losses, switching

frequency, distribution of the load, etc. Such methods are

characterized by the selection of the voltage vectors used, e.g.,

three medium vectors (3MV), three medium vectors with 120◦

disposition (3MV120), or two medium voltage vectors and the

zero vector (2MV1Z) [4]. Compared with conventional three-

level SVM, all the aforementioned methods increase current

distortions as well as the switching events per modulation

cycle, thus resulting in higher power losses. At the same

time, the dc-link voltage utilization is limited to 78.5%, as

the maximum achievable modulation index is mmax = 1 (out

of 4/π) [5].

To partly mitigate the above disadvantages, an alternative

SVM technique is proposed in [6], and [7]. With conven-

tional (continuous) SVM the switching patterns are typically

symmetrical with respect to the modulation half-cycle. In

these works, however, an asymmetric pattern with twice the

sampling frequency is implemented. In doing so, the amount

of switching events per modulation cycle does not increase.

Additionally, the harmonics are moved to higher frequencies,

therefore, improving the harmonic performance.

Despite the improvement achieved with the above-

mentioned modulation methods, the pitfalls of SVM-based

strategies for zero CMV are still prominent. Optimized pulse

patterns (OPPs) can address these issues to a greater extent.

This pulse width modulation (PWM) technique can achieve

the minimum harmonic distortions by computing the optimal

switching angles (i.e., switching time instants) of a pulse

pattern for a given modulation index in an offline optimization

procedure [8]. Moreover, different objectives can be taken

into account by modifying the OPP optimization problem.

This feature is used in e.g., [9] and [10] to compute OPPs

with limited CMV. More specifically, the former proposes

the computation of OPPs with zero CMV. To do so, the

switching angles are divided into pairs that are appropriately

constrained. This, however, can become very challenging as

the dimension of the problem increases (i.e., as the number

of switching angles grows). However, these OPPs not only

produce lower current distortions per switching frequency

compared with the SVM counterparts but also the available

voltage is utilized up to 86.6% as the maximum modulation

index is mmax = 2
√
3/π (out of 4/π). It is worth noting that

this modulation index is the maximum achievable with zero

CMV since the long voltage vectors cannot be used.

Contrary to [9], [10] proposes the partial elimination of

the CMV. More specifically, [10] calculates the exact CMV

in the time domain and limits it below a desired value.

However, as simultaneous switching in two phases is required

to achieve zero CMV, this renders this method unsuitable for

CMV complete elimination due to numerical issues associated

with this feature. Nevertheless, [10] showed that relaxing the

symmetry properties of the OPPs with limited CMV increases

the search space, and as a result, a deterioration in the current

quality can be avoided.

Motivated by the above, this work proposes the fast compu-

tation of three-level OPPs with zero CMV. To do so, a set of

linear constraints for the switching angles is derived based on

a strategy that identifies a priori the relevant constraints. As

a result, the proposed strategy can solve the zero-CMV OPP

optimization problem by up to 99% faster than the procedure

proposed in [9]. Moreover, in line with [10], the symmetry



requirements of the OPP are relaxed to mitigate the increased

current harmonics. As shown by the numerical results for a

medium-voltage drive, even though this approach adds degrees

of freedom to the solution process, it can only marginally

improve the harmonic distortions and only over a limited range

of modulation indices. This is due to the strict switching

requirements for zero CMV that inherently limit the search

space.

II. OPPS WITH ZERO COMMON-MODE VOLTAGE

Assuming a three-level converter with a device switching

frequency fsw, the OPP is a 2π–periodic signal u(θ) ∈
{−1, 0, 1}, with a fundamental frequency f1, where θ is the

angle of the pulse pattern. The full-wave switching signal can

be described by the 4d switching angles αi, i ∈ {1, . . . , 4d},

where the pulse number d is defined as the ratio d = fsw/f1.

At every switching angle αi a switching transition ∆ui =
ui − ui−1 ∈ {−1, 1} occurs.

The OPP is computed by minimizing an objective function

that captures the load current total demand distortion (TDD).

Assuming an inductive load, the current TDD is given by

ITDD =
1√

2Inomω1L

Vdc

2

√

√

√

√

∑

n6=1

(

ûn

n

)2

= c
√
J . (1)

The parameter c in (1) depends on the nominal current Inom,

angular fundamental frequency ω1, load inductance L, and

dc-link voltage Vdc. Hence, from a mathematical optimization

point of view, it can be considered as an offset and it can

thus be discarded as it does not affect the optimization result.

This means that the objective function J of the OPP problem

accounts only for the voltage harmonics ûn, weighted by their

harmonic order. Note that the amplitude of the nth harmonic is

given by ûn =
√

a2n + b2n, with an and bn being the Fourier

coefficients of the periodic OPP waveform. For the analytical

expressions of the Fourier coefficients, the reader is referred

to [11].

A. Traditional OPP Problem

Traditional OPPs have the following properties:

(P1) Three-phase symmetry, i.e., if the OPP for phase

a is ua(θ) = u(θ), then ub(θ) = u
(

θ − 2π
3

)

and

uc(θ) = u
(

θ + 2π
3

)

are the OPPs for phases b and

c, respectively;

(P2) Half-wave symmetry, i.e., u(θ) = −u(θ + π) ∀θ ∈
[0, π];

(P3) Quarter-wave symmetry, i.e., u(θ) = u(π − θ) ∀θ ∈
[

0, π
2

]

;

(P4) Unipolar switching, i.e., u(θ) ≥ 0, ∀θ ∈
[

0, π
2

]

,

whereas the first switch position is always zero, i.e.,

u0 = 0.

An OPP with all the above properties, hereafter referred

to as quarter- and half-wave symmetric (QaHWS) OPP, can

be fully described by using only the d switching angles

α1, . . . , αd ∈ [0, π/2] of ua. Such an OPP is shown in
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Fig. 1: Examples of OPPs with different symmetry properties for d = 6 at
modulation index m = 0.8.

Fig. 1(a). QaHWS OPPs are computed by solving the fol-

lowing nonlinear optimization problem

minimize
αQ

J1(αQ) =
∑

n=5,7,...

(

bn
n

)2

subject to b1 = m
0 ≤ α1 ≤ α2 ≤ . . . ≤ αd ≤ π

2
,

(2)

where αQ = [α1 α2 . . . αd]
T

, and m ∈ [0, 4/π] is the

desired modulation index. Note that due to the QaHWS,

the an Fourier coefficients are zero, while harmonics triplen

odd harmonics (i.e., common-mode harmonics) do not drive

harmonic current. As a result, only non-triplen, odd harmonics

are relevant and are thus considered in the objective function

of (2).

B. Common-Mode Voltage

Let vx denote the output voltage of the inverter in phase

x, with x ∈ {a, b, c}. The CMV is defined as the average

of the three single-phase output voltages. Since it holds that

vx = Vdc

2
ux, it directly follows that the common-mode (CM)

switch position uo is defined as

uo(θ) =
ua(θ) + ub(θ) + uc(θ)

3
. (3)

The CM switch position uo is a 2π
3

–periodic signal, and in-

herits the symmetry properties of the OPP. Due to the QaHWS,

uo can be constructed based on the information included in

the three-phase OPP uabc(ϑ) = [ua(ϑ) ub(ϑ) uc(ϑ)]
T for

ϑ ∈
[

0, π
6

]

, which can be derived from the single-phase OPP

u(θ), θ ∈
[

0, π
2

]

as follows:

• ua(ϑ) is identical to the first π
6

-segment of u(θ), see the

blue segment in Fig. 2.

• ub(ϑ) is identical to the third π
6

-segment of −u(θ). This

means that when a switching transition occurs in u(θ)
at αi, where αi ∈

[

π
3
, π
2

]

, then the opposite switching
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Fig. 2: Illustration of QaHWS OPP with zero CMV for d = 6 at modulation
index m = 0.8

transition happens in ub at αi − π
3

, see the red segment

in Fig. 2.

• uc(ϑ) is identical to the mirrored second π
6

-segment of

u(θ). This means that when a switching transition occurs

in u(θ) at αi, where αi ∈
[

π
6
, π
3

]

, then the mirrored

switching transition happens in uc at π
3
− αi, see the

green segment in Fig. 2.

C. QaHWS OPPs with Zero Common-Mode Voltage

From the above description of the CMV, it is evident that

to keep it zero, two phases must switch simultaneously in the

opposite direction. Note that due to the unipolar switching see

property (P4) in Section II-A), two switching angles αi, αk ∈
[0, π

2
] correspond to switching transitions ∆ui = ∆uk if

(i+ k) mod 2 = 0.

Based on the above, four cases can be defined depending on

which phases switch simultaneously and when, with αi ≤ αk:

• Phases a and b switch simultaneously in the opposite

direction if αi = αk− π
3

and ∆ui = ∆uk, see α2 and α6

in u—or, equivalently, α2 in ua and α6− π
3

in ub—shown

in Fig. 2. This case can be described as αk − αi = π
3

where αi ∈
[

0, π
6

]

, αk ∈
[

π
3
, π
2

]

, and (i+ k) mod 2 = 0.

• Phases b and c switch simultaneously in the opposite

direction if αk − π
3
= π

3
− αi and ∆ui = −∆uk, see α4

and α5 in u—or, equivalently, π
3
− α4 in uc and α5 − π

3

in ub—visualized in Fig. 2. This means that this case

can be described as αk + αi =
2π
3

, where αi ∈
[

π
6
, π
3

]

,

αk ∈
[

π
3
, π
2

]

, and (i+ k) mod 2 = 1.

• Phases a and c switch simultaneously in the opposite

direction if αi =
π
3
−αk and ∆ui = ∆uk, see α1 and α3

in u—or α1 in ua and π
3
− α3 in uc—shown in Fig. 2.

Therefore, this case can be described as αk + αi = π
3

,

where αi ∈
[

0, π
6

]

, αk ∈
[

π
6
, π
3

]

, and (i+ k) mod 2 = 0.

Algorithm 1 Selection of groups of switching angle pairs

for each group of switching angle pairs do

success = 1
for each switching angle pair {αi, αk} in the group do

Select the possible constraints based on (i + k) mod 2
if quarter-wave symmetry (see property (P3)) then

Arrange the switching angles αi, αk in their respective π

6
-segment

of u(θ) for the selected constraint
else

Arrange the switching angles αi, αk in their respective π

3
-segment

of u(θ) for the selected constraint
end if
if switching angles are not in ascending order then

success = 0
break

end if
end for

if success = 1 then

Save the derived constraints
end if

end for

• As a corner case, setting ak = π
2

in the first two options

results in αi = π
6

, where i can be odd or even. This

means that for odd d, there will be one switching angle

without a pair that should be set to π
6

.

Based on the cases defined above, the constraints presented

in [9] are refined in this work by using the information about

the location of each switching angle in a π
6

-segment of u(θ).
With this information, the optimization problem to compute

OPPs with zero CMV is formulated as described in the sequel

in this section.

First, the d switching angles need to be divided into pairs.

There are d!/(2⌊
d
2
⌋⌊d

2
⌋!) possible ways to do so. For example,

the possible pairs of switching angles for d = 4 are

(G1) {α1, α2}, {α3, α4}
(G2) {α1, α3}, {α2, α4}
(G3) {α1, α4}, {α2, α3}
As can be seen, a set of pairs gives rise to what is hereafter

referred to as group of switching angle pairs, see, e.g., (G1)–

(G3).

In a next step, once the groups of pairs are defined, the

appropriate constraints are selected. More specifically, for a

pair {αi, αk} the suitable constraints are chosen based on the

result of (i + k) mod 2. Given the cases defined above, there

are two possible constraints when (i+ k) mod 2 = 0. This

means that multiple constraints correspond to a given group

of switching angles. However, not all constraints are relevant.

To exemplify this, consider group (G2) from above. For this

group, constraints α3 − α1 = π
3

and α2 + α4 = π
3

require

α1 ∈
[

0, π
6

]

, α3 ∈
[

π
3
, π
2

]

and α2 ∈
[

0, π
6

]

, α4 ∈
[

π
6
, π
3

]

.

This, in turn, means that α4 ≤ α3, resulting in α3 = α4 = π
3

.

This, however, implies that one switching transition is skipped,

i.e., one pulse is dropped, which subsequently decreases the

switching frequency, and thus increases the current TDD. As

such behavior is not desired, all sets of equality constraints that

cannot be met with the switching angles in ascending order

α1 < α2 < . . . < αd are discarded a priori according to the

procedure described in Algorithm 1.



TABLE I: Equality constraints that need to be evaluated for QaHWS OPPs

d Total constraints Constraints after selection

2 1 1
3 4 3
4 6 4
5 30 6
6 42 8
7 312 20
8 456 38
9 4,200 66
10 6,120 128
11 69,120 288
12 101,520 716

As can be understood from the above, multiple constraints

achieve zero CMV. This implies that the corresponding opti-

mization problem

minimize
αQ

J1(αQ) =
∑

n=5,7,...

(

bn
n

)2

subject to b1 = m
0 ≤ α1 ≤ α2 ≤ . . . ≤ αd ≤ π

2

AeqαQ − beq = 0 ,

(4)

needs to be solved multiple times for a given pulse number d,

i.e., once for each one of the different equality constraints. Tak-

ing d = 4 and group (G2) as an example, one set of relevant

constraints includes α1+α3 = π
3

and α4−α2 = π
3

. Therefore

the corresponding equality constraints in problem (4) are

Aeq =

[

1 0 1 0
0 −1 0 1

]

, beq =

[

π
3
π
3

]

. (5)

The number of relevant equality constraints that need to be

evaluated (i.e., the number of optimization problems that need

to be solved) is shown in Table I.

In a last step, the global optimal solution is found in a

post-processing stage by assessing the solutions obtained when

solving (4) for the different constraints.

D. OPPs with Symmetry Relaxation

As recently shown in [10], relaxing the OPP symmetry

properties helped mitigate the increase in the current TDD

caused by the CMV limitation. This is thanks to the increased

search space of the three-level OPP problem. Motivated by

this, in this work, we relax the symmetry property (P3).

By doing so, only half-wave symmetric (HWS) OPPs are

considered, meaning that 2d switching angles need to be

computed, as opposed to the d angles computed for QaHWS

OPPs, see problem (2). An example of HWS OPP is depicted

in Fig. 1(b).

Considering the symmetry properties of HWS OPPs, the

necessary information to compute uabc(ϑ), ϑ ∈
[

0, π
3

]

is

included in the single-phase OPP u(θ) for θ ∈ [0, π] as the

following hold:

• ua(ϑ) is identical to the first π
3

-segment of u(θ), see the

blue segment in Fig. 3.

• ub(ϑ) is identical to the second π
3

-segment of −u(θ).
Therefore, when a switching transition occurs in u(θ)
at αi, where αi ∈

[

π
3
, 2π

3

]

, then the opposite switching
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Fig. 3: Illustration of HWS OPP with zero CMV for d = 6 at modulation
index m = 0.8.

transition happens in ub at αi − π
3

, see the red segment

in Fig. 3.

• uc(ϑ) is identical to the third π
3

-segment of u(θ). Hence,

when a switching transition occurs in u(θ) at αi, where

αi ∈
[

2π
3
, π

]

, then the same switching transition happens

in uc at αi − 2π
3

, see the green segment in Fig. 3.

The angle constraints for the case of HWS OPPs can be

derived by following a similar approach to that for QaHWS

OPPs. This means that, as previously, different cases are

defined based on which phases switch simultaneously with

αi ≤ αk, i.e.,

• Phases a and b switch simultaneously in the opposite

direction if αi = αk − π
3

and ∆ui = ∆uk, see α1

and α7—or, equivalently, α1 in ua and α7 − π
3

in

ub—in Fig. 3. Hence, this case can be described as

αk − αi = π
3

, where αi ∈
[

0, π
3

]

, αk ∈
[

π
3
, 2π

3

]

, and

(i+ k) mod 2 = 0.

• Phases b and c switch simultaneously in the opposite

direction if αi − π
3

= αk − 2π
3

and ∆ui = ∆uk, see

α6 and α10—or α6 − π
3

in ub and α10 − 2π
3

in uc—in

Fig. 3. Thus, this case corresponds to αk−αi =
π
3

, where

αi ∈
[

π
3
, 2π

3

]

, αk ∈
[

2π
3
, π

]

, and (i+ k) mod 2 = 0.

• Phases a and c switch simultaneously in the opposite

direction if αi = αk − 2π
3

and ∆ui = −∆uk, see α2

and α11—or α2 in ua and α11 − 2π
3

in uc—in Fig. 3.

This means this case is governed by αk+αi =
2π
3

, where

αi ∈
[

0, π
3

]

, αk ∈
[

2π
3
, π

]

and (i+ k) mod 2 = 1.

As with QaHWS OPPs, to reformulate the optimization

problem the 2d switching angles need to be divided into pairs.

There are (2d)!/(2dd!) possible ways to do so. Subsequently,

the constraints are selected for each group of switching

angle pairs. Note that there is only one possible constraint

αk − αi = π
3

for a pair {αi, αk} with (i+ k) mod 2 = 0,



TABLE II: Equality constraints that need to be evaluated for HWS OPPs

d Total constraints Constraints after selection

2 3 2
3 15 6
4 105 23
5 945 97
6 10,395 513

but, at the same time, two ways of arranging the switching

angles in u(θ), i.e., (a) αi ∈
[

0, π
3

]

and αk ∈
[

π
3
, 2π

3

]

, or (b)

αi ∈
[

π
3
, 2π

3

]

and αk ∈
[

2π
3
, π

]

. This means that the final

number of constraints is equal to the number of groups of

switching angle pairs, significantly increasing the complexity

of the zero-CMV HWS OPP problem.

Notwithstanding the foregoing, not all the resulting con-

straints are relevant. Therefore, similar to the QaHWS OPPs

case, the relative location of the switching angles in u(θ) is

used to discard all constraints that lead to pulse dropping.

To do so, the procedure described in Algorithm 1 is adopted.

Note that even though this procedure is similar to the case

of QaHWS OPPs, the constraints are different. Moreover, for

QaHWS OPPs the first π
2

-segment of u(θ) is divided into

three π
6

-segments, whereas the first π-segment of HWS u(θ)
is divided into three π

3
-segments.

Given the above, the number of relevant equality constraints

that need to be evaluated for HWS OPPs is shown in Table II.

Based on these constraints, the optimization problem that

needs to be solved for each set of constraints to compute HWS

OPPs with zero CMV is

minimize
αH

J1(αH) =
∑

n=5,7,...

a2

n+b2n
n2

subject to a1 = 0, b1 = m
0 ≤ α1 ≤ α2 ≤ . . . ≤ α2d ≤ π
AeqαH − beq = 0 ,

(6)

where αH = [α1 α2 . . . α2d]
T

. Note that due to the HWS,

both an and bn Fourier coefficients are nonzero for the non-

triplen, odd harmonics, except for the fundamental component,

where it is desired that a1 = 0 such that the phase of the

fundamental component is zero.

III. NUMERICAL RESULTS

In this section, the optimization results for (a) traditional

QaHWS OPPs (see problem (2)); (b) QaHWS with zero CMV

(see problem (4)), and (c) HWS OPPs with zero CMV (see (6))

are presented. OPPs in the (b) category are hereafter referred

to as QaHWS CMZ OPPs, while those in category (c) as

HWS CMZ OPPs. All OPPs are computed for a medium-

voltage (MV) drive system, i.e., a three-level inverter with a

dc-link voltage of Vdc = 5.2 kV that drives a 3.3 kV, 50Hz

squirrel-cage induction machine with rated current 2.12 kA

current and total leakage reactance of 0.255 per unit (p.u.).

For demonstration purposes, OPPs with d = 4, 5, and 6 are

considered, see Figs. 4 to 6.

As can be seen in all cases examined, the maximum

modulation index is mmax = 1.1 when the CMV is eliminated.

The available dc-link voltage cannot be fully utilized, since

the long voltage vectors result in nonzero CMV. Moreover, the
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Fig. 4: QaHWS and HWS OPPs for d = 4 without and with the CMV
constraint. The solid (blue) line corresponds to the traditional QaHWS OPPs,
the dashed (red) line to QaHWS OPPs with zero CMV (QaHWS CMZ OPPs),
and the dotted (green) line to HWS OPPs with zero CMV (HWS CMZ OPPs).
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Fig. 5: QaHWS and HWS OPPs for d = 5 without and with the CMV
constraint. The solid (blue) line corresponds to the traditional QaHWS OPPs,
the dashed (red) line to QaHWS OPPs with zero CMV (QaHWS CMZ OPPs),
and the dotted (green) line to HWS OPPs with zero CMV (HWS CMZ OPPs).

elimination of the CMV occurs at a cost of an increased current

TDD, as can be observed in Figs. 4(a) to 6(a). Nevertheless,

it is worth noting that for pulse numbers d = 4 and 6,

relaxing the quarter-wave symmetry (i.e., property (P3) in

Section II-A) leads to slightly improved results compared to

QaHWS CMZ OPPs. This can be observed in the modulation

index range 0.90 ≤ m ≤ 1.07 for pulse number d = 4,
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Fig. 6: QaHWS and HWS OPPs for d = 6 without and with the CMV
constraint. The solid (blue) line corresponds to the traditional QaHWS OPPs,
the dashed (red) line to QaHWS OPPs with zero CMV (QaHWS CMZ OPPs),
and the dotted (green) line to HWS OPPs with zero CMV (HWS CMZ OPPs).

and in the modulation index range 0.76 ≤ m ≤ 1.06 for

pulse number d = 6, where the OPPs do not exhibit QaHWS,

see Figs. 4(b) and 6(b). Nevertheless, this difference in the

current TDD is minute when the CMV-constrained OPPs are

benchmarked against traditional QaHWS OPPs. As shown, a

significant increase in ITDD caused by the elimination of CMV

is unavoidable, with the TDD of the zero-CMV OPPs being

two to five times greater than that of the traditional ones.

This implies that relaxing the QaHWS not only increased the

computational burden by up to 64 times for d = 6 (compare

Tables I and II), but also provided almost no benefit.

Nevertheless, despite the unavoidable increase in the current

TDD, zero CMV may be still desirable in several applications.

Hence, OPPs with zero CMV can be considered the best

option for such cases as they compromise the current TDD

the least, while they are utilizing the dc-link voltage to the

greatest—physically possible—degree. With this in mind, the

proposed systematic approach to compute OPPs with zero

CMV presented can be beneficial. Specifically, thanks to

the presented methodology the computation of, e.g., QaHWS

CMZ OPPs can become significantly faster. More specifically,

by only selecting the relevant equality constraints, the OPP

problem needs to be solved significantly fewer times, while

still guaranteeing optimality. Thanks to this, when comparing

with the approach proposed in [9], the computational time can

be reduced up to 99% for d = 12, see Table III.

IV. CONCLUSIONS

This paper presented the computation of three-level OPPs

with zero CMV. Considering the benefits attributed to zero

CMV, a systematic method was presented that allows com-

puting zero-CMV OPPs significantly faster than the existing

TABLE III: Reduction in computational time of QaHWS CMZ OPPs with
the proposed method

d Speedup [%]

3 25.00
4 33.33
5 80.00
6 80.95
7 93.59
8 91.67
9 98.43

10 97.91
11 99.58
12 99.29

solution, e.g., the computational time can be decreased by

more than 90% when high pulse numbers are concerned.

Moreover, both QaHWS and HWS OPPs were considered,

and the associated features were assessed. As shown, relaxing

the quarter-wave symmetry leads to only a marginal decrease

in the current TDD, indicating that HWS OPPs do not offer

significant benefits. Considering that HWS OPPs are more

computationally demanding to compute, it can be concluded

that QaHWS OPPs are the best option.
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