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Abstract— The paper explores a new approach to model
predictive control where both discrete-level input con-
straints and state constraints are expressed in terms of
Gaussian variables with unknown variances. The compu-
tations boil down to repeating Kalman-type recursions,
with linear complexity in the prediction horizon. In con-
sequence, the proposed approach can handle long pre-
diction horizons with both discrete-level input constraints
and state constraints, which has been a largely unresolved
problem. The paper demonstrates and evaluates the ap-
plication of this approach by applying it to the control
problem of a three-level power converter with an LC filter.
In this application, long horizons are mandatory in order to
obtain low harmonic current distortions, and certain state
constraints must be imposed to prevent damage to the
converter. The proposed controller can easily handle 100 or
more time steps and is shown to perform remarkably well,
not only in steady-state, but also in transients and in case
of a phase-to-ground fault.

Index Terms— Finite-control-set model predictive control
(FCS-MPC), control as inference, normals with unknown
variance (NUV), Gaussian message passing

I. INTRODUCTION

D IRECT model predictive control (MPC) schemes, which
directly control the semiconductor switches of power

converters, have recently received significant attention [1], [2].
Particularly promising is finite-control-set MPC (FCS-MPC),
which was first proposed in [3] and [4] with a prediction
horizon of one step and exhaustive enumeration to solve
the underlying optimization problem. For first-order systems,
such as inductive loads, the steady-state performance in terms
of harmonic current distortions and switching frequency is
similar to that of classic linear controllers with carrier-based
pulse width modulation (CB-PWM) [5], provided that certain
design rules are adhered to [6].

For higher-order systems such as converters with LC filters,
long prediction horizons are vital to achieve low current
distortions at acceptable switching frequencies. In the setting
of [7], simulation results indicate that the prediction horizon
should be at least 0.5ms, which (for a sampling interval
of 25µs) translates to 20 time steps. In [7], the resulting
computational problem was eased by increasing the sampling
interval to 125µs, which made the optimization tractable by a
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branch and bound method called sphere decoding [8], [9], but
has a detrimental effect on the harmonic current distortions.

During transients, the high bandwidth of FCS-MPC tends to
produce pronounced spikes in the electrical converter quanti-
ties. In particular the converter currents and the filter capacitor
voltages tend to exceed their nominal values by a factor of
up to two [7]. Such high currents and voltages lead to a trip
of the converter system or even to its damage. To prevent
this, constraints should be imposed on these state variables.
Solving the optimization problem underlying FCS-MPC with
state constraints is straightforward in case of exhaustive enu-
meration [10], but doing so with sphere decoding remains a
largely unresolved problem, see [11] for a first attempt.

An alternative approach is for the controller to manipulate
the switching instants of a pre-computed switching pattern,
such as an optimized pulse pattern [12]. A small-signal lin-
earization around the nominal switching instants leads to a
quadratic program, which is computationally relatively easy
to solve and to which state constraints can be added [13].
Another alternative is to employ indirect MPC, i.e., MPC with
a subsequent PWM stage. Indirect MPC is rarely considered
in the literature, but state constraints can be added relatively
easily, as shown, for example, in [14].

In this paper, we propose an entirely different approach:
we work with a linear-Gaussian state space model, where
constraints are expressed in terms of Gaussian “priors” with
unknown means and variances.

Expressing non-Gaussian variables in terms of Gaussians
with unknown parameters is not a new idea: on the one hand,
expressing sparsifying priors as normals with unknown vari-
ances (NUV) is the key idea of sparse Gaussian learning [15]–
[18]; on the other hand, the idea is closely related to variational
representations of cost functions as in [19], [20]. In this paper,
we specifically use composite-NUV representations of two-
level constraints as in [21], [22] and of half-space constraints
as in [23].

We also note that the approach of this paper may be viewed
as an example of control by inference [24]–[27].

The combination of NUV representations of priors or con-
straints with linear state space models is particularly attractive
as it leads to iterative algorithms with a complexity that is
linear in the length of the prediction horizon [21], [22]. In
consequence, the approach of this paper can easily handle
long horizons of 100 time steps and more. The approach is
not guaranteed to find the best solutions of the underlying
optimization problems, but empirically, it produces very good
solutions. In any case, the ability to use long horizons and
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Fig. 1. Electrical circuit of the grid-connected converter. The left part illustrates the neutral-point clamped converter (green), followed by the LC
filter (red), the transformer (blue) and the grid (yellow).

to impose versatile state constraints far outweighs the lack of
optimality.

Conceptually and mathematically, the approach of this pa-
per was proposed in [21]–[23]. However, this paper is the
first to apply this approach to a real-world control problem.
Consequently, we will not, in this paper, rederive the pertinent
NUV representations and algorithms, but we will describe their
application in sufficient detail for independent implementation
and verification.

The paper is structured as follows. In Section II, a linear
state space representation of the converter model is derived. In
Section III, the underlying control problem is formulated and
the proposed control algorithm is described. In Section IV, the
performance of the proposed control algorithm is evaluated,
where steady-state operation, transient operation, and a phase-
to-ground fault are examined.

The following notation will be used. The identity matrix
of dimension n is denoted by In and the all-zero matrix of
dimension n × m is denoted by 0n×m. A (block-)diagonal
matrix with diagonal elements a1, . . . , an is denoted by
diag (a1, . . . , an). The Gaussian probability density function
in x with mean m and covariance matrix V is denoted by
N (x;m,V ). The superscript (i) is used to represent the
iteration index of an iterative algorithm, e.g., θ(i) identifies the
parameter θ in the iteration i. The discrete-time counterpart of
a continuous-time quantity x(t) is denoted by xk.

II. STATE SPACE MODEL

We will work with a medium-voltage converter system that
is rated at 9MVA and operates at a switching frequency of a
few hundred Hertz; however the results are directly applicable
also to low-voltage converters operating in the kilo Hertz
range.

Consider the grid-connected converter shown in Fig. 1.
The three-phase neutral-point clamped (NPC) converter is
connected via an LC filter and a transformer to a point of
common coupling (PCC). The grid is modeled by a grid
impedance and a grid voltage. The mathematical modeling of
the physical system follows [13, Section 3.3.1], with an ad-
ditional augmentation of the state-space model in preparation
for Section III-D.

To map quantities between the three-phase abc system and
the stationary orthogonal αβ reference frame, we use the re-
duced Clarke transformation [28] ξαβ = Pξabc and its inverse
ξabc = P †ξαβ , respectively, where ξabc =

[
ξa ξb ξc

]T
is

a vector in the abc system and ξαβ =
[
ξα ξβ

]T
is a vector

in the αβ reference frame. The transformation matrices are
defined as

P ≜
2

3

[
1 − 1

2 − 1
2

0
√
3
2 −

√
3
2

]
, and P † ≜

 1 0

− 1
2

√
3
2

− 1
2 −

√
3
2

 . (1)

Furthermore, it is convenient to normalize all quantities
using a per-unit system. Its base values and the system
parameters will be defined in Section IV-B.

A. Physical Model
The (total) DC-link voltage Vd ∈ R is assumed to be constant
and the converter’s neutral point potential is fixed to zero. The
converter output voltage of each phase can take on the three
voltage levels {−Vd

2 , 0, Vd

2 }, depending on the switching state
of the respective phase. The converter voltage is consequently
defined as vc,a(t)vc,b(t)

vc,c(t)

 ≜
Vd

2

ua(t)
ub(t)
uc(t)

 , (2)

where u(t) ≜
[
ua(t) ub(t) uc(t)

]T
is the three-phase

switch position with u(t) ∈ {−1, 0, 1}3. The converter voltage
in the αβ reference frame is

vc,αβ(t) =

[
vc,α(t)
vc,β(t)

]
= P

vc,a(t)vc,b(t)
vc,c(t)

 . (3)

The grid voltage is given by

vg,αβ(t) ≜

√
2

3
Vg,LL

[
sin(ωt)
cos(ωt)

]
, (4)

where Vg,LL ∈ R denotes the line-to-line root mean square
(RMS) grid voltage, and ω ∈ R is the angular funda-
mental frequency of the grid. Furthermore, we introduce in
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the αβ reference frame the converter current ic,αβ(t) =

P
[
ic,a(t) ic,b(t) ic,c(t)

]T
, the grid current ig,αβ(t) =

P
[
ig,a(t) ig,b(t) ig,c(t)

]T
and the filter capacitor voltage

vf,αβ(t) = P
[
vf,a(t) vf,b(t) vf,c(t)

]T
, see Fig. 1. The

transformer is modeled with the transformer inductance Lt

and the resistance Rt. Introducing the state vector

x̃(t) ≜
[
iTc,αβ(t) iTg,αβ(t) vTf,αβ(t) vTg,αβ(t)

]T ∈ R8, (5)

the continuous-time state-space model of the physical system
is described by

dx̃(t)

dt
= Fx̃(t) +Gu(t) (6a)

ỹ(t) = Hx̃(t) (6b)

with matrices

F =


−R+RC

L I2
RC

L I2 − 1
LI2 02×2

RC

Lgt
I2 −Rgt+RC

Lgt
I2

1
Lgt

I2 − 1
Lgt

I2
1
C I2 − 1

C I2 02×2 02×2

02×2 02×2 02×2

[
0 −ω
ω 0

]
 , (7)

G =
Vd

2L


I2

02×2

02×2

02×2

P, and H =


02×2

I2
02×2

02×2


T

, (8)

where we have summarized Rgt ≜ Rg+Rt and Lgt ≜ Lg+Lt.
The three-phase switch position u(t) is the system input and
the grid current ỹ(t) = ig,αβ(t) is the system output.

Note that the grid voltage vg,αβ(t) could also be treated as
an input rather than a state; the choice is a matter of taste and
is immaterial to the algorithm of Section III. The numerical
values of the electrical quantities in (7) and (8) used in the
experiments in Section IV are provided in Table III.

Using exact Euler discretization, the corresponding discrete-
time model for k = 1, 2, 3, . . . , is given by

x̃k = Ãx̃k−1 + B̃uk (9a)
ỹk = C̃x̃k (9b)

with input uk =
[
ua,k ub,k uc,k

]T ∈ {−1, 0, 1}3, output
ỹk = ig,αβ,k,

Ã ≜ exp(FTs), (10)
B̃ ≜ F−1(Ã− I8)G, (11)
C̃ ≜ H, (12)

where exp is the matrix exponential, Ts is the sampling (or
control) interval, uk denotes the discrete-time counterpart of
u(t), x̃k of x̃(t), and ỹk of ỹ(t), respectively. This systematic
notation for discrete-time quantities derived from continuous-
time quantities will also be used elsewhere.

B. Augmented State Space Model

The proposed control algorithm works with an augmented state
space model as follows. The state vector x̃k at time step k is

1 2 ··· M M+1 2M 2M+1 K 3M M+K

1

2

3

Time

Planning domain

Prediction horizon
Applied control

Fig. 2. Receding-horizon control with prediction horizon length K.

MBF smoother
(Table I)

update
parameters θ

(Table II)

control algorithm (IAKE)

converter model

θ

mY
mW

σ2
W

switch positions
û1, . . . , ûM

initial state x0

ref. current ı̆g

Fig. 3. Block diagram illustrating the overall control approach. For each
planning period, the two blocks inside the IAKE block are repeated for a
sufficiently large number of iterations.

augmented with the inputs at the present and the previous time
steps, uk and uk−1, to

xk ≜
[
x̃T
k ua,k ua,k−1 ub,k ub,k−1 uc,k uc,k−1

]T
,

(13)

with xk ∈ R14. The output at time step k is augmented to

yk ≜
[
ỹTk uT

k − uT
k−1 iTc,abc,k vTf,abc,k

]T
, (14)

with yk ∈ R11. Accordingly, the state-space model (9) for
k = 1, 2, 3, . . . , is augmented to

xk = Axk−1 +Buk (15a)
yk = Cxk, (15b)

with matrices

A = diag
(
Ã, A′, A′, A′

)
∈ R14×14, A′ =

[
0 0
1 0

]
, (16)

B =

[
B̃

diag (B′, B′, B′)

]
∈ R14×3, B′ =

[
1
0

]
, (17)

C =

 C̃ 02×6

03×8 diag(C′,C′,C′)[
P † 03×2 03×2 03×2

03×2 03×2 P † 03×2

]
06×6

 ∈ R11×14, (18)

and C ′ =
[
1 −1

]
. The numerical values of A, B, and C are

given in Appendix B.
We further decompose the ternary input uk into a binary

input wk according to

uk ≜ Dwk (19)



4 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. XX, XXXX 2022

with wk ≜
[
wk,1 · · · wk,6

]T ∈ {0, 1}6 and

D ≜

1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1

 . (20)

III. CONTROL METHOD

A. Preliminaries
The proposed algorithm works within a standard receding-
horizon MPC strategy as illustrated in Fig. 2: in the first
planning period, an input sequence

[
û1 . . . ûK

]
is com-

puted, of which only
[
û1 . . . ûM

]
(with M < K) are

actually applied; in the second planning period, a new input
sequence

[
ûM+1 . . . ûM+K

]
is computed, of which only[

ûM+1 . . . û2M

]
are applied; and so on. In the numerical

examples (Section IV), we will use M = 1.

B. Detailed Problem Description
In the following, we consider only a single planning period
with horizon K = {1, . . . ,K}.

The control scheme addresses several potentially opposing
objectives. First and foremost, the controller must determine a
ternary input sequence û ≜

[
û1 · · · ûK

]
(or, equivalently, a

binary input sequence ŵ ≜
[
ŵ1 · · · ŵK

]
according to (19))

such that the grid current ỹk = ig,αβ,k tracks the given
reference current y̆k ≜ ı̆g,αβ,k ∈ R2, i.e., we wish to minimize∑

k∈K

∥ı̆g,αβ,k − ig,αβ,k∥2 =
∑
k∈K

∥y̆k − ỹk∥2. (21)

Accurate tracking of the reference currents minimizes the
current ripple and, consequently, the harmonic distortions of
the grid current. Second, we wish to keep the switching
frequency of the semiconductor switches sufficiently low, in
order to reduce the thermal stress on the semiconductors and
to avoid excessive power losses. Clearly, these two control
objectives oppose each other, i.e., reducing the switching
frequency decreases the tracking performance.

Moreover, in order to avoid damaging the converter or the
LC filter, some electrical quantities of the system must not
exceed predefined bounds. In this case study, we require the
converter currents and the capacitor voltages to be upper- and
lower-bounded (i.e., box-constrained) by

ic,abc,k ∈ [−δi, δi]
3 and vf,abc,k ∈ [−δv, δv]

3, (22)

for all k ∈ K and with bounds δi, δv ∈ R. In summary, we
have the optimization problem

û = argmin
u

1

s2

∑
k∈K

∥y̆k − ỹk∥2 +
1

r2

K∑
k=2

∥uk − uk−1∥2 (23a)

subject to

uk ∈ {−1, 0, 1}3, k ∈ K (23b)
ic,abc,k ∈ [−δi, δi]

3, k ∈ K (23c)
vf,abc,k ∈ [−δv, δv]

3, k ∈ K, (23d)

with u ≜
[
u1 · · · uK

]
, and weight parameters s2 > 0 and

r2 > 0.

-δ δ
z

κBOX(z)

Fig. 4. The penalty function κBOX(z) in (24) and (25).

Numerical experiments have shown that penalizing the L1

norm of the level differences in (23a) does not significantly
increase the control performance. We thus chose the L2 norm
for reasons of lower computational complexity.

C. Outline of Control Algorithm

We will formulate the constrained optimization prob-
lem (23) as an unconstrained statistical estimation problem
based on a linear Gaussian model with unknown parameters.
In particular, the discrete-level constraints (23b) are handled by
binarizing priors as in [21], [22], and the state constraints (23c)
and (23d) are handled by box constraint priors as in [23].

The optimization problem is then solved using an iterative
algorithm (see Section III-E) that alternates between estimat-
ing statistical quantities in a linear Gaussian model (Step 1 in
Section III-E) and updating the unknown means and variances
(Step 2 in Section III-E), which may be viewed as an instance
of iteratively reweighted least squares.

After termination, the first M elements of the computed
input sequence û (solution of the optimization problem (23))
are used to control the physical system (the converter) for M
time steps, cf. Section III-A. A block diagram describing the
overall control approach is given in Fig. 3.

D. Statistical Model

We begin by expressing the constraints (23c) and (23d) by the
penalty functions (see Fig. 4)

κBOX(ic,n,k) ≜ γ
(
|ic,n,k + δi|+ |ic,n,k − δi|

)
(24)

and

κBOX(vf,n,k) ≜ γ
(
|vf,n,k + δv|+ |vf,n,k − δi|

)
(25)

for k ∈ K, n ∈ {a, b, c}. Note that γ is a design parameter
and needs to be chosen sufficiently large to ensure that (23c)
and (23d) hold, cf. Section III-F. The constrained optimization
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problem (23) can then be formulated as

ŵ = argmax
w

∏
k∈K

exp

(
− 1

2s2
∥y̆k−ỹk∥2

)

·
K∏

k=2

exp

(
− 1

2r2
∥uk−uk−1∥2

)
·
∏
k∈K

∏
n∈{a,b,c}

exp
(
−κBOX(ic,n,k)

)
(26)

·
∏
k∈K

∏
n∈{a,b,c}

exp
(
−κBOX(vf,n,k)

)
·
∏
k∈K

∏
n∈{1,...,6}

ρBIN(wk,n, θk,n)

with binary input w ≜
[
w1 · · · wK

]
as in (19). The factors

in line 3 and 4 of (26) are handled by box constraint priors [23]
using the NUV representation

exp
(
−κBOX(z)

)
=

max
σ2
a,σ

2
b

N
(
z;−δ, σ2

a

)
ρ(σ2

a) · N
(
z; δ, σ2

b

)
ρ(σ2

b ), (27)

where ρ(σ2) ≜
√
2πσ2 exp

(
−γ2σ2/2

)
, and σ2

a and σ2
b are

unknown parameters. The factors ρBIN in line 5 of (26) are
binarizing NUV priors as in [21], [22], the discussion of which
is beyond the scope of this paper.

With y ≜
[
y1 · · · yK

]
and y̆ ≜

[
y̆1 · · · y̆K

]
, (26) is

summarized in a statistical model

p(y, w| y̆) ∝ p(y|w)
∏
k∈K

p(wk)p(y̆k |yk), (28)

where p(y|w) is deterministic according to (15) (with known
initial state x0),

∏
k∈K p(wk) is the last line of (26), and∏

k∈K p(y̆k |yk) subsumes all the other factors in (26). The
NUV factors

p(wk) ≜ N
(
wk;

−→mWk
,
−→
VWk

)
, (29)

have the unknown parameters
−→mWk

≜
[−→mWk,1

· · · −→mWk,6

]T
, (30)

−→
VWk

≜ diag
(−→σ 2

Wk,1
, . . . ,−→σ 2

Wk,6

)
, (31)

and the NUV factors

p(y̆k |yk) ≜ N
(
yk;

−→mYk
,
−→
VYk

)
, (32)

have the (partially unknown) parameters
−→mYk

≜ [̆ıg,α,k ı̆g,β,k 0 0 0 −→mic,a,k

−→mic,b,k
−→mic,c,k

−→mvf,a,k

−→mvf,b,k
−→mvf,c,k ]

T, (33)
−→
VYk

≜ diag
(
s2, s2, r2, r2, r2,−→σ 2

ic,a,k
,−→σ 2

ic,b,k
,−→σ 2

ic,c,k
,

−→σ 2
vf,a,k

,−→σ 2
vf,b,k

,−→σ 2
vf,c,k

)
. (34)

We denote the set of all unknown parameters by θ,
which comprises all −→m’s and −→σ 2’s on the right-hand-side
of (30), (31), (33) and (34), for all k ∈ K. Note that for fixed
θ, the model (28) is entirely Gaussian.

(The arrows over symbols in (29)-(34) and in Table I are
consistent with the notation in [21]–[23], [29], where the
underlying theory is described.)

TABLE I
STEP 1 OF IAKE IMPLEMENTED BY MBF MESSAGE PASSING WITH

INPUT ESTIMATION ASSEMBLED FROM [29].

The algorithm consists of a forward recursion followed by a backward
recursion. The former is a standard Kalman filter, but the latter is not
quite standard.

Forward recursion for k = 1, 2, . . . ,K, with −→mXk
∈ R14 and−→

VXk
∈ R14×14, initialized with mean −→mX0

= x0 and covariance
matrix

−→
VX0 = 014×14:

−→mXk
= A

(−→mXk−1
+

−→
VXk−1

CTGk−1(
−→mYk−1

− C−→mXk−1
)
)

+BD−→mWk
(M.1)

−→
VXk

= AFk−1
−→
VXk−1

AT +BD
−→
VWk

DTBT (M.2)
with
Gk−1 = (

−→
VYk−1

+ C
−→
VXk−1

CT)−1 (M.3)

Fk−1 = I14 −−→
VXk−1

CTGk−1C. (M.4)

Backward recursion for k = K,K − 1, . . . , 1, with ξ̃Xk
∈ R14 and

W̃Xk
∈ R14×14, initialized with ξ̃XK+1

= 014×1 and W̃XK+1
=

014×14:

ξ̃Xk
= FT

k ATξ̃Xk+1
− CTGk(

−→mYk
− C−→mXk

) (M.5)

W̃Xk
= FT

k ATW̃Xk+1
AFk + CTGkC. (M.6)

Output: for k ∈ {1, 2, . . . ,K}, the posterior means are

mWk
= −→mWk

−−→
VWk

DTBTξ̃Xk
(M.7)

mYk
= C(−→mXk

−−→
VXk

ξ̃Xk
) (M.8)

and for ℓ ∈ {1, . . . , 6}, the posterior variance is

σ2
Wk,ℓ

=
[−→
VWk

−−→
VWk

DTBTW̃Xk
BD

−→
VWk

]
ℓ,ℓ

. (M.9)

E. Iterative Augmented Kalman Estimation (IAKE)

Given the statistical model (28), the goal is to estimate w, y,
and the unknown parameters θ (recall that the input sequence u
is fully determined by w, see (19)). This statistical estimation
problem is solved by an iterative algorithm, which repeats the
following two steps for the iterations i = 1, 2, 3, . . . :

1) For fixed θ = θ(i−1), compute the posterior means
m

(i)
Wk

, m
(i)
Yk

, and the variances (σ2
Wk,ℓ

)(i), for k ∈ K
and ℓ ∈ {1, . . . , 6}, of Wk and Yk, respectively, using
Table I.

2) From these means and variances, compute new param-
eters θ(i) using Table II.

Note that Step 1 operates with a standard linear Gaussian
model. In consequence, the required means and variances can
be computed by Kalman-type recursions or, equivalently, by
forward-backward Gaussian message passing, with a complex-
ity that is linear in K. A preferred such algorithm is Modified
Bryson–Frazier (MBF) message passing as in [29, Section V],
which amounts to MBF smoothing [30] augmented with input
estimation. The detailed algorithm is given in Table I. Note
that the forward recursion is initialized with mean −→mX0

= x0

and covariance matrix
−→
VX0 = 014×14, where the initial state

x0 is derived from measurements and/or from the previous
planning period.
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TABLE II
UPDATE RULES FOR THE MEAN −→mZ AND THE VARIANCE −→σ2

Z OF THE “PRIOR” p(z) = N
(
z;−→mZ ,−→σ2

Z

)
FOR A CONSTRAINED SCALAR VARIABLE z.

constraint update rule

binary variable z ∈ {a, b}
−→σ 2
Z =

[(
σ2
Z + (mZ − a)2

)−1
+

(
σ2
Z + (mZ − b)2

)−1
]−1

−→mZ = −→σ 2
Z

[
a
(
σ2
Z + (mZ − a)2

)−1
+ b

(
σ2
Z + (mZ − b)2

)−1
]

box constraint a ≤ z ≤ b

−→σ 2
Z = γ−1

(
|mZ − a|−1 + |mZ − b|−1

)−1

−→mZ = γ−→σ 2
Z

(
a |mZ − a|−1 + b |mZ − b|−1

)
half-space constraint a ≤ z

−→σ 2
Z = γ−1 |mZ − a|

−→mZ = a+ |mZ − a|

half-space constraint z ≤ a

−→σ 2
Z = γ−1 |mZ − a|

−→mZ = a− |mZ − a|

In Step 2, the unknown parameters θ are updated according
to Table II, which is assembled from [21]–[23]. The table lists
the update rules for the mean −→mZ and the variance −→σ 2

Z of
a scalar “prior” p(z) = N

(
z;−→mZ ,

−→σ 2
Z

)
expressing different

constraints. The input to these update rules is the posterior
mean mZ and the posterior variance σ2

Z of Z as computed in
Step 1.

Specifically, the parameters −→m(i)
Wk,ℓ

and (−→σ 2
Wk,ℓ

)(i) are up-
dated according to the first row (“binary variable”) of Table II,
with mZ = m

(i)
Wk,ℓ

, σ2
Z = (σ2

Wk,ℓ
)(i), a = 0 and b = 1,

for ℓ ∈ {1, . . . , 6}. The parameters −→m(i)
ic,n,k

and (−→σ 2
ic,n,k

)(i)

are updated according to the second row (“box constraint”)
of Table II, with mZ = m

(i)
ic,n,k

, a = −δi and b = δi,

for n ∈ {a, b, c}. And finally, the parameters −→m(i)
vf,n,k and

(−→σ 2
vf,n,k

)(i) are also updated according to the second row
(“box constraint”) of Table II, with mZ = m

(i)
vf,n,k , a = −δv

and b = δv , for n ∈ {a, b, c}. Note that all m
(i)
ic,n,k

and

m
(i)
vf,n,k , n ∈ {a, b, c}, are determined by m

(i)
Yk

(see (14)),
and all m(i)

Wk,ℓ
, ℓ ∈ {1, . . . , 6}, are determined by m

(i)
Wk

.
The algorithm terminates after some stopping criterion is

satisfied (e.g., after some fixed number of iterations), and the
final estimate of the input sequence is û =

[
û1 · · · ûK

]
,

where ûk is composed according to (19) with wk = m
(i)
Wk

.
Note that û is the solution of the constrained optimization
problem (23) of the present planning period. Only the first M
elements of û are applied to the converter (see Section III-A
and Fig. 2).

F. Constraint Satisfaction

In order to enforce the conditions (23b)–(23d), the three
global parameters γ, s2, and r2 must be chosen sufficiently
large. Since it is not known a priori what “sufficiently
large” means, it needs to be determined experimentally. In
particular, when the algorithm of Section III-E stops, the

conditions (23b)–(23d) must be checked, and, if necessary,
these parameters must be set to larger values.

For the numerical experiments in Section IV, the choice
of γ is uncritical, and γ = 100 was used throughout. As to
s2 and r2, note from (23a) that increasing s2 decreases the
tracking accuracy while increasing r2 allows more frequent
input switches. In our numerical experiments, s2 and r2 were
optimized manually.

G. Further Remarks

• The detailed working principle of the constraints used in
Section III is beyond the scope of this paper. The reader
is referred to [21]–[23].

• Inequality constraints as in the two bottom lines of
Table II were not actually used in this paper, but may
naturally occur in similar control problems.

• The only non-optimality in the proposed approach is
how the discrete-level constraints (23b) are handled. The
proposed algorithm will most likely terminate in a local,
rather than the global, minimum of (23a). Computing the
global minimum is infeasible for large K.

• The required number of iterations depends on K, but
(empirically) saturates for K → ∞ as detailed in Ap-
pendix A.

IV. PERFORMANCE EVALUATION

A. Figures of Merit

The total demand distortion (TDD) of an infinitely long single-
phase current signal i is given by the RMS of i − ı̆, where ı̆
is the fundamental component of i. Assuming that the rated
current has the amplitude 1 per unit, the TDD for one phase
is given by

TDD = lim
K̃→∞

√√√√ 1

K̃

K̃∑
k=1

(ik − ı̆k)2, (35)
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TABLE III
PARAMETERS OF THE CONVERTER SYSTEM.

Symbol Parameter SI value Per-unit value

SR Rated apparent power 9MVA 1
Vg,LL Line-to-line grid voltage 3150V 1.2247
IR Rated converter current 1650A 0.7071
Vd Dc-link voltage 4840V 1.8818
L Filter inductor 350 µH 0.1
R Filter inductor resistance 0.3mΩ 0.00027
C Filter capacitor 420 µF 0.1455
RC Filter capacitor resistance 4mΩ 0.0036
Lt Transformer inductance 526.41 µH 0.15
Rt Transformer resistance 16.54mΩ 0.015
Lg Grid inductance 349.19 µH 0.1
Rg Grid resistance 10.97mΩ 0.010
ω Angular grid frequency 2π50 rad s−1 1

where, in practice, (35) is approximated by a finite K̃ (that
spans the whole simulation). The TDD of a three-phase current
is then the mean value of the TDD of each phase.

The switching frequency in a fixed time interval centered
at time step k can be approximated by counting the number
of on-transitions in this interval and dividing the sum by the
length of the interval. Recalling that an NPC converter has
12 semiconductor switches and that each switching transition
incurs one on-transition, the switching frequency per semicon-
ductor switch at time step k is then

fsw,k ≜
1

12 · 2K̃Ts

K̃∑
i=−K̃

∥uk+i − uk+i−1∥1, (36)

where 2K̃Ts is the interval length with K̃ = 400.

B. Parameters

Rated at 9MVA, the converter’s rated line-to-line voltage is
3150V RMS and its rated current is 1650A RMS. The angular
grid frequency is 2π50 rad s−1. Based on these quantities,
a per-unit system is defined with the base values VB =√
2/3Vg,LL, IB =

√
2IR and ωB = ω. The values of all

parameters are given in Table III. The control interval is
Ts = 25 µs.

C. Computational Burden

Fig. 5 shows the number of double-precision floating-point
arithmetic operations (FLOP) as a function of the horizon
length K and the number of iterations Ni. For short horizons
K, the computational burden is significant, but it scales
only linearly with K. The numbers were obtained using the
performance analyzing tool perf under Linux.

Throughout the simulations, Ni = 350 was used. However,
the algorithm can be stopped much earlier without sacrificing
significant performance. An additional final rounding to the
nearest integer in {−1, 0, 1} may then be needed for each
component of ûk to ensure that ûk ∈ {−1, 0, 1}3.

100 101 102

105

106

107

108

Horizon length K

FL
O

Ps

Ni = 10

Ni = 100

Ni = 1000

Fig. 5. Number of double-precision floating-point arithmetic operations
(FLOPs) as a function of the horizon length K, for Ni iterations. The
number of FLOPs scales linearly with K and Ni.

D. Steady-State Operation

The numerical results shown in Fig. 6 illustrate the steady-
state operation of the converter at rated real power. The dashed
lines in the first plot represent the reference grid current ı̆g,abc,
whereas the solid lines represent the resulting grid current
ig,abc. The converter current ic,abc is shown in the second plot
and the capacitor voltages vf,abc in the third plot. Finally, the
three-phase switch positions u are illustrated in the last plot.

A switching frequency fsw of approximately 317Hz is
obtained with s2 = 10−3 and r2 = 0.1, where, as in (23a), s2

penalizes deviations from the reference (grid) current and r2

penalizes switching transitions in the input sequence (switch
positions). At this switching frequency, a grid current TDD
of 1.89% is achieved. The prediction horizon length was
K = 80, and M = 1.

The harmonic amplitude spectrum of the three grid currents
is shown in Fig. 7. Because the switching pattern is not peri-
odic, the harmonic spectrum includes harmonics at frequencies
that are non-integer multiplies of the fundamental frequency
of f1 = 50Hz. According to the IEEE 519 standard [31], non-
integer harmonics are lumped to the closest integer harmonic
by computing an equivalent RMS value. More specifically,
the amplitude of the grid current harmonic at harmonic order
n is calculated as

√
h2
k + · · ·+ h2

ℓ , where the square root
comprises all spectral amplitude components hk, . . . , hℓ in
the frequency interval [(n − 0.5)f1, (n + 0.5)f1), with f1 =
ω/(2π). The resulting amplitudes of the three grid current
harmonics are shown in per unit in Fig. 7. As can be seen, the
grid current meets the IEEE 519 standard, whose admissible
bounds are depicted as solid black line. Note that different
bounds apply for even and odd harmonics.

Furthermore, the controller seems to be quite robust to small
changes in the grid parameters Lg and Rg (not known to the
controller). For example, halving the grid inductance to L′

g =
0.5 · Lg = 0.05 pu leads to a grid current TDD of 1.99% at
a switching frequency fsw of approximately 328Hz, which is
only marginally higher than the 1.89% obtained with known
Lg .
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Fig. 6. Converter control operating in stationary mode with K = 80,
M = 1, s2 = 10−3 and r2 = 0.1, leading to a switching frequency
of approximately fsw = 317 Hz and a grid current TDD of 1.89%. The
target (reference) current is shown as dashed lines in the top plot.
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Fig. 7. Lumped harmonic amplitude spectrum of the three grid currents
(the different phases are indicated by green, red and blue) for each
harmonic integer order n. The admissible bounds of the IEEE 519
standard are depicted in black.

E. Transients

Fig. 8 shows the response of the controlled system to transients
in the current reference. The current reference makes four
steps: a first step (to 0.5 pu) at 6.75ms, a second step (back
to 1 pu) at 13.5ms, a third step (to zero) at 23.25ms, and a
final step (back to 1 pu) 33.75ms .

Such large steps in the grid current reference tend to incur
high converter currents and/or capacitor voltages that might
lead to a trip of the converter or even to it being damaged,
cf. [7]. In order to avoid excessive converter currents and
capacitor voltages, we impose bounds on both. In particular,
we require |ic,n,k| ≤ δi and |vc,n,k| ≤ δv , for n ∈ {a, b, c}
and k ∈ K, with the bounds δi = 1.2 pu and δv = 1.4 pu, as

−1

0

1

ig,a
ig,b
ig,c

−1

0

1
ic,a
ic,b
ic,c

−1

0

1
vf,a
vf,b
vf,c

0 5 10 15 20 25 30 35 40 45

−1
0
1

−1
0
1

−1
0
1

Time (ms)

ua

ub

uc

Fig. 8. Converter response to four steps in the reference grid current.
The imposed state constraints |ic,n| ≤ 1.2 pu and |vf,n| ≤ 1.4 pu,
with n ∈ {a, b, c}, are always met. The target (reference) current is
shown as dashed lines in the top plot.

introduced in Section III-B. These bounds are illustrated as
dashed black lines in the second and third plot of Fig. 8. (We
also note here that the proposed control method is not limited
to symmetric constraints: arbitrary half-space constraints can
be imposed without increasing the computational complexity.)

It can be seen that the controller quickly regulates the grid
currents to their corresponding references without violating
any of the bounds. During the transients, the switching fre-
quency temporarily increases for about 1ms. As before, the
presented numerical results are obtained with s2 = 10−3 and
r2 = 0.1, and K = 80 and M = 1.

F. Phase-to-Ground Fault
Finally, we consider a phase-to-ground fault. Operating at
rated current, the grid voltage in phase a is set to zero at
10ms. The time of the fault is indicated by a vertical dashed
line in the first plot of Fig. 9.

In this particular example, we distinguish between a system
model and a controller model. The system model (to which the
control inputs are applied) is modified at 10ms to represent
the fault by setting vg,a(t) = 0 for t ≥ 10ms. Because the
controller is unaware of the fault, the controller model remains
unaltered throughout the simulation. After each control period,
the state vector of the system model is measured and used as
initial state for the next control period.

As can be seen, the controller is capable of supplying a
short-circuit current in phase a. Such a capability is often
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Fig. 9. Phase-to-ground fault in phase a at 10ms. The controller
provides a short-circuit current in phase a. The target (reference) current
is shown as dashed lines in the top plot.

mandatory for grid-connected converters in order to support
the identification and isolation of faults by protective equip-
ment. The numerical results are obtained with s2 = 5 · 10−3,
r2 = 0.5, and K = 30 and M = 1.

V. CONCLUSION

We have explored the new approach from [21]–[23] to finite-
control-set model predictive control of power converters. The
proposed algorithm has a computational complexity that scales
linearly with the prediction horizon, which enables the use of
very long horizons. Long horizons are particularly important
for higher-order systems, such as converters with LC filters,
allowing us to obtain low current distortions at acceptable
switching frequencies. Furthermore, the proposed approach
permits imposing state constraints on effectively any model
variable, which is used to keep the converter currents and the
capacitor voltages within their proper limits. We have found
such a controller to perform remarkably well, not only in
steady-state, but also in transients and in case of a phase-
to-ground fault.

APPENDIX

A. Convergence Time
The number of iterations IK until convergence depends on
the prediction horizon K, but empirically, it seems to saturate
at some limit limK→∞ IK , as illustrated in Fig. 10. This
behavior appears to be typical and is observed over a wide

0 200 400 600 800 1,000
0

0.5

1

Prediction horizon K

I K
(n

or
m

al
iz

ed
)

Fig. 10. Convergence time of the proposed algorithm in steady-state
operation as a function of the prediction horizon K.

range of models, constraints, and control goals. In Fig. 10,
IK is defined as

IK ≜ max
{
i ∈ {1, 2, . . . }

∣∣∣ |MSE(i)
ig

−MSE(∞)
ig

|>10−3
}
, (37)

which is the minimal number of iterations needed such that
the tracking error remains bounded by 10−3 around the final
tracking error for all subsequent iterations. The tracking error
in iteration i is given by

MSE(i)
ig

=
1

K

∥∥∥ı̆g,αβ − i
(i)
g,αβ

∥∥∥2 , (38)

where i
(i)
g,αβ denotes the estimate of the grid current in iteration

i. The final tracking error MSE(∞)
ig

is approximated by the
tracking error at a very large iteration number (i = 106).
Fig. 10 is then obtained for the steady-state operation de-
scribed in Section IV-D.

Note that IK as defined in (37) is not the number of iter-
ations required for the numerical experiments in Section IV:
the latter is much smaller, but not sufficiently well defined for
a meaningful plot as in Fig. 10.

B. Numerical Values of Model Matrices

To facilitate the verification of the proposed algorithm, we here
give the numerical values of the model matrices in (9) used
in the experiments of Section IV:

A =



0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.9976 0 0.002407 0 −0.07868 0 −2.676× 10−5 5.546× 10−8

0 0 0 0 0 0 0 0.9976 0 0.002407 0 −0.07868 −5.546× 10−8 −2.676× 10−5

0 0 0 0 0 0 0.000962 0 0.9983 0 0.03143 0 −0.03146 0.0001236
0 0 0 0 0 0 0 0.000962 0 0.9983 0 0.03143 −0.0001236 −0.03146
0 0 0 0 0 0 0.05391 0 −0.05389 0 0.997 0 0.0008488 −2.223× 10−6

0 0 0 0 0 0 0 0.05391 0 −0.05389 0 0.997 2.223× 10−6 0.0008488
0 0 0 0 0 0 0 0 0 0 0 0 1 −0.007854
0 0 0 0 0 0 0 0 0 0 0 0 0.007854 1



(39)

B =



1 0 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0

0.04937 −0.02469 −0.02469
0 0.04276 −0.04276

1.678× 10−5 −8.391× 10−6 −8.391× 10−6

0 1.453× 10−5 −1.453× 10−5

0.001333 −0.0006664 −0.0006664
0 0.001154 −0.001154
0 0 0
0 0 0



(40)
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C =



1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 −0.5 0.866 0 0
0 0 0 0 0 0 0 0 0 0 −0.5 −0.866 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 −0.5 0.866 0 0 0 0 0 0
0 0 0 0 0 0 −0.5 −0.866 0 0 0 0 0 0


(41)
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