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Abstract—This paper proposes two alternatives of a direct
model predictive control (MPC) scheme for a three-phase two-
level grid-connected converter with anLCL filter. Although both
approaches are implemented as direct control methods, i.e., they
combine control and modulation in one computational stage,
they operate the converter at a constant switching frequency and
generate a discrete grid current harmonic spectrum. To achieve
this, the first method allows for one switching transition per phase
and sampling interval, implying that a fixed modulation cycle
akin to pulse width modulation (PWM) results. Moreover, by
appropriately designing the objective function of the optimization
problem underlying MPC, grid current distortions similar t o
those of space vector modulation (SVM) are produced. As for
the second approach, two phases are allowed to switch per
sampling interval, emulating the behavior of discontinuous PWM.
Consequently, thanks to the introduced formulations, harmonic
limitations imposed by relevant grid codes can be met with
the proposed methods. Furthermore, owing to the multiple-
input multiple-output (MIMO) nature of both approaches, al l
output variables of the system can be simultaneously controlled.
Finally, the inherent full-state information of MPC render s an
additional active damping loop unnecessary, further simplifying
the controller design. The presented performance assessment
highlights the potential benefits of both proposed MPC-based
algorithms.

Index Terms—Model predictive control (MPC), optimal con-
trol, converter control, pulse width modulation (PWM), har -
monics, MIMO control, active damping, grid-connected power
converters.

I. I NTRODUCTION

CONTROL schemes based on model predictive control
(MPC) [1] were introduced in the power electronics

community as early as in the 1980s, see, e.g., [2]. Nonetheless,
MPC has not gained much attention before early 2000s. With
the aid of ever-increasing computational power, however, this
changed and a renewed interest was developed towards MPC.
As a result, several MPC-based concepts, tailored to the
needs of power electronic systems, have been introduced since
then [3]. The published methods clearly highlight some of the
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inherent characteristics of MPC, such as, system constraint
satisfaction (owing to the underlying constrained optimization
problem) as well as its ability to handle multiple-input and
multiple-output (MIMO) systems with complex, nonlinear
dynamics, and integer manipulated variables.

MPC can be implemented as indirect or direct controller. In-
direct MPC—according to which the control input is translated
into the switching signals via a modulator—is most commonly
implemented in its explicit MPC variant [4]–[7]. However,
explicit MPC is computationally feasible only for systems with
a low-dimensional state where the memory requirements are
not significant. Moreover, it is ill suited to systems with time-
varying references and parameters. Because of the above, ex-
plicit MPC is not favored in the power electronics community.

The most utilized MPC strategy—at least in the academic
community—is direct MPC, also referred to as finite control
set MPC (FCS-MPC) [3]. FCS-MPC, being a direct control
strategy, i.e., the converter switches aredirectly manipu-
lated [8], can achieve fast transients. Furthermore, it inherits
the ease of implementation of direct controllers, such as direct
torque/power control (DTC/DPC). On the other hand, FCS-
MPC suffers from two main drawbacks, namely, the pro-
nounced computational complexity, and the variable switching
frequency.

Regarding the former, since the optimization variable, i.e.,
the switch position, is modeled as an integer, the formulated
optimization problem is a (mixed) integer program [9]. This
means that its computational complexity increases exponen-
tially with the number of candidate solutions, i.e., the se-
quences of switch positions. Although there exist some algo-
rithms that decrease its average computational load [10], [11],
the problem is typically solved by exhaustively enumerating
the possible switching sequences [12], [13]. Moreover, given
that the direct MPC problem has to be solved in real time
within a matter of a few tens of microseconds, it can become
computationally intractable.

As for the second disadvantage of direct MPC, a variable
switching frequency leads to a non-discrete harmonic cur-
rent/voltage spectrum [14]. For machine-connected converters
such a spectrum is not relevant, thus direct MPC is a good
choice. Grid-tied converters, however, have to meet harmonic
grid codes at the point of common coupling (PCC) which
impose stringent limits on even and non-integer harmonics.



Therefore, direct MPC is, in general, not suitable for such
applications [8, Section 11.2.5], [15, Section VIII].

Motivated by the above, some methods have been presented
that deal with the issues of variable switching frequency and/or
non-deterministic harmonic spectra. For example, deadbeat-
based controllers were introduced in [16], [17], according
to which the reference signals are fed into a modulator. By
doing so, the switching frequency is kept constant and the
output current harmonic spectrum is discrete. The presenceof
a modulator, however, slows down the fast transient responses
inherent to direct control schemes. Moreover, such approaches
are not applicable to MIMO systems. An alternative was pro-
posed in [18]. Therein, MPC was augmented with a band-stop
filter with the aim of harmonic spectrum shaping. Although
the energy in undesired harmonics is reduced, a variable
switching frequency—and thus non-deterministic switching
power losses—results.

In a different direction, but with the same objectives as those
aforementioned, works like [19]–[28] propose direct MPC
schemes that allow the switch position to change not only at
the discrete time instants, but also at any time instant within
the sampling interval. To this aim, the notion of “duty cycle”
is adopted, i.e., MPC computes the time instant within the
sampling interval the new switch position should be applied
to the converter. However, methods such as [20], [22]–[25],
[27], are prone to suboptimality since the optimization problem
is solved in two steps, i.e., the optimal switch positions are
computed in the first optimization step, while the second
step derives the “duty cycles”. Furthermore, although the
MPC algorithms in [19], [23], [26], [27] guarantee a constant
switching frequency, they do not generate symmetrical switch-
ing patterns, resulting in non-discrete harmonic spectra.As
for [21], [28], although optimality is ensured, a fixed switching
frequency is not.

To tackle both problems of pronounced computational com-
plexity and variable switching frequency, the notion of pre-
computed switching sequences [29]–[32] was utilized by direct
MPC. The advantage of this is that the optimization variable
is the switching instants of the switching sequence, which
renders the optimization problem computationally tractable.
However, these methods are either limited only to simple,
single-output systems, such as dc-dc converters [32], or the op-
timization problem can be formulated only as an unconstrained
one with respect to time [29]–[31]. As a result, the generated
switching sequences are not necessarily symmetrical, and,
consequently, the harmonic spectra are non-discrete.

To address the shortcomings of the methods discussed
above, a direct MPC scheme for a variable speed drive system
was proposed in [33]. This method manages to operate the
converter at a fixed switching frequency as well as to produce
discrete stator current harmonic spectrum. This is achieved
by forcing each phase leg to switch once per sampling
interval in a specific chronological order. This implies that a
fixed modulation cycle is adopted akin to carrier-based pulse
width modulation (CB-PWM) or space vector modulation
(SVM) [34].

This paper employs the method introduced in [33] to control
a three-phase two-level converter connected to the grid via

an intermediateLCL filter. The algorithm is refined and
implemented as a MIMO approach to meet the multiple
control objectives. To this aim, a linear approximation of
the references of the controlled variables, a longer prediction
horizon and a heavier penalization of the output error at the
discrete time steps are implemented to improve the system
performance. As a result, the grid current harmonics meet the
limits specified by the IEEE 519 grid standard [35]. Moreover,
although the controller operates the converter at a (fixed)
switching frequency of almost twice the resonance frequency,
an outer damping loop—which is most often necessary with
conventional control techniques [36]—is not required thanks
to the full-state control nature of MPC.

In addition, to further reduce the switching frequency while
not violating the harmonic limitations and exciting the reso-
nance frequency, a second formulation of the MPC problem
is proposed that emulates the behavior of 120◦ discontinuous
PWM (DPWM) [34]. More specifically, the presented MPC
algorithm—while utilizing the same refinements mentioned
above—generates switching sequences similar to that of 120◦

DPWM (also known as DPWMMIN) by clamping each phase
leg to the lower dc rail for1/3 of the fundamental period. As
a consequence, the controller can operate the converter at a
switching frequency that is33% lower than that of the MPC
that emulates SVM. Finally, both MPC approaches, owing to
their direct MPC nature, exhibit fast transient responses when
changes in the power references occur.

This paper is structured as follows. Section II introduces the
mathematical model of the case study used in this paper. The
proposed MPC strategies that emulate SVM and DPWMMIN
are presented and analyzed in Sections III and IV, respectively.
In Section V, the performance of the two algorithms is
assessed. Conclusions are drawn in Section VI.

Throughout the paper, unless otherwise stated, the quantities
are normalized and presented in the per unit (p.u.) system. The
modeling of the system and the formulation of the control
problem is done in the orthogonalαβ reference frame. Thus,
any variableξabc = [ξa ξb ξc]

T in the three-phase (abc) system
is transformed into a two-dimensional variableξαβ = [ξα ξβ ]

T

in the stationary (αβ) reference frame using the operation
ξαβ = Kξabc, whereK is the Clarke transformation matrix

K =
2

3

[
1 − 1

2 − 1
2

0
√
3
2 −

√
3
2

]
. (1)

Finally, variables in theabc-plane are denoted with the cor-
responding subscript. For convenience, the subscript of the
variables in theαβ-plane is omitted.

II. M ATHEMATICAL MODEL OF THESYSTEM

The examined system, consisting of a three-phase two-level
grid-connected converter with anLCL filter, is shown in
Fig. 1. The dc-link voltage is assumed to be constant and
equal to its nominal valueVdc. Furthermore, as it is common
with grid-tied converters, anLCL filter is chosen due to
its stronger attenuation of harmonics beyond the resonance
frequency, as compared, e.g., to anL filter. In the following,
the discrete-time state-space model of the system is derived
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Fig. 1: Two-level grid-connected converter with anLCL filter.
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Fig. 2: Equivalent circuit of the grid-connected converterwith anLCL filter
in the stationary (αβ) frame.

that will serve as the internal prediction model for the proposed
MPC methods.

Firstly, the converter model is derived. This can be seen as
a gain. Specifically, each phase leg of the converter in phase
x ∈ {a, b, c} can assume two statesux ∈ U = {−1, 1}.
Consequently, the converter can produce two discrete voltage
levels −Vdc

2 and Vdc
2 , respectively [37]. Thus, the converter

output voltagevconv is given by

vconv =
Vdc

2
Kuabc , (2)

with

uabc =
[
ua ub uc

]T
∈ U3 . (3)

In a next step, the state-space model of the system is derived
based on the differential equations that describe its dynamics.
To this end, the equivalent circuit of the system, depicted in
Fig. 2, is utilized. Moreover, as state variables are chosenthe
converter currenticonv, grid currentig, capacitor voltagevc,
and grid voltagevg. Thus, it follows that

diconv

dt
=

1

Xlc

(
vc − (Rlc +Rc)iconv+Rcig − vconv

)
(4a)

dig
dt

=
1

Xgr

(
vg − (Rgr +Rc)ig +Rciconv− vc

)
(4b)

dvc

dt
=

1

Xc

(ig − iconv) (4c)

dvg

dt
= ωg

[
0 −1

1 0

]
vg , (4d)

where Rlc and Xlc are the converter-side filter resistance
and reactance, respectively.Rgr and Xgr are the grid-side
equivalent resistance and reactance, respectively, equalto
Rgr = Rlg+Rg andXgr = Xlg+Xg, with Rlg (Xlg) andRg

(Xg) being the grid-side filter and grid resistance (reactance),
respectively. Moreover,Xc and Rc are the reactance and

internal resistance of the filter capacitor, respectively.Finally,
ωg is the angular grid frequency.

Based on (4) the continuous-time state-space model is
written as

dx(t)
dt

= Fx(t) +GKuabc(t) (5a)

y(t) = Cx(t) , (5b)

where, as mentioned above, the state vector is

x =
[
iTconv iTg vT

c vT
g

]T
∈ R

8 . (6)

The control input is the three-phase switch positionuabc

as defined by (3). Moreover, the converter and grid current
along with the capacitor voltage are the output variables,
i.e.,y = [iTconv i

T
g vT

c ]
T ∈ R

6. The dynamicsF , inputG and
output matricesC are

F =




−Rlc+Rc

Xlc
I2

Rc

Xlc
I2

1
Xlc

I2 02×2

Rc

Xgr
I2 −

Rgr+Rc

Xgr
I2 − 1

Xgr
I2

1
Xgr

I2

− 1
Xc

I2
1
Xc

I2 02×2 02×2

02×2 02×2 02×2 ωg

[
0 −1

1 0

]




G = −
Vdc

2Xlc

[
I2 02×6

]T
, andC =

[
I6 06×2

]
,

whereI and 0 are identity and zeros matrices, respectively,
the dimensions of which are denoted by the corresponding
subscripts.

Using exact discretization, the discrete-time state-space
model is derived based on (5). This yields

x(k + 1) = Ax(k) +BKuabc(k) (7a)

y(k) = Cx(k) , (7b)

with A = e
FTs andB = −F−1(I8 −A)G, wheree is the

matrix exponential,Ts the sampling interval, andk ∈ N.

III. D IRECT MPC WITH FIXED SWITCHING FREQUENCY

FOR CONTINUOUS MODULATION

The proposed MPC strategy is a direct control method, thus
the converter switches are directly manipulated. In the sequel,
however, it is shown that despite the lack of a modulation
stage, a fixed switching frequency can be achieved.



A. Control Problem

The control objective of the controller is twofold. First,
the controlled (i.e., output) variables need to be regulated
along their reference values with as little deviation as possible.
Second, the controller has to operate the converter at a constant
switching frequency.

The first objective can be interpreted as minimizing the
ripple of the output variables. This means that the weighted
(squared) rms output error can be taken into account. There-
fore, the objective function that captures this can be of the
form1

J =
1

Ts




Ts∫

0

(
yref(t)− y(t)

)T
Q
(
yref(t)− y(t)

)
dt




=
1

Ts




Ts∫

0

‖yref(t)− y(t)‖2Q dt


 ,

(8)

with yref being the output reference vector, i.e.,
yref = [iTconv,ref i

T
g,ref v

T
c,ref]

T ∈ R
6, and Q ≻ 0 ∈ R

6×6

is a diagonal positive definite matrix, the entries of which
prioritize the tracking accuracy among the different controlled
variables. Note that, according to Parseval’s theorem,
minimization of (8) implies minimization of the (squared)
total demand distortion (TDD) of the controlled variablesy

over one sampling intervalTs.
To meet the second objective, thus ensuring a fixed switch-

ing frequency, each phase is forced to switch once per sam-
pling intervalTs. To this end, we introduce the switching time
instantst1, t2 and t3, within a sampling interval such that
0 < t1 < t2 < t3 < Ts. At each of these time instants, a
new switch position is applied to the converter. Specifically,
let uabc(t0) being the three-phase switch position applied at
t0 ≡ 0. This switch position is assumed to be the same as
the one applied to the converter at the end of the previous
sampling interval, i.e.,uabc(t0) = uabc(t

−
0 ). At time instant

t1, the switch positionuabc(t1) is applied which results in one
commutation in one of the three phases. The switch position
changes touabc(t2) at t2 to alter the state in one of the two
yet inactive phases. Finally, att3, the switch positionuabc(t3)
is applied which forces the third—thus far inactive—phase to
switch. To better understand this, the following example is
given.

Example 1. Consider the grid-connected system in Fig. 1.
Assume that the switch position applied at the end of the
previous sampling interval wasuabc(t

−
0 ) = [−1 −1 −1]T , as

shown in Fig. 3(a). This means that at the beginning of
the current sampling interval (t0 ≡ 0), the same switch
position, i.e.,uabc(t0) = uabc(t

−
0 ), is applied. Within the

sampling interval the switch positionsuabc(t1) = [1 −1 −1]T ,
uabc(t2) = [1 −1 1]T and uabc(t3) = [1 1 1]T are applied
at time instantst1, t2, and t3, with 0 < t1 < t2 < t3 < Ts,
respectively, see Fig. 3(a). As a result, the phasesa, c, and b
switch (once) consecutively withinTs.

1The squared norm weighted with the positive (semi)definite matrix W is
given by‖ξ‖2

W
= ξTWξ.

t0 ≡ 0

1

1

1

0

0

0

−1

−1

−1

ua

ub

uc

t1 t2 t3 Ts

t

(a) Three-phase switch position

yi

yi,ref

t0 ≡ 0 t1 t2 t3 Ts

t

m(t0)|yi
m(t1)|yi

m(t2)|yi

m(t3)|yi

(b) Output variableyi

Fig. 3: Example of the evolution of an (arbitrary) controlled variableyi within
oneTs by applying the depicted switching sequenceU , assuminguabc(t0) =
uabc(t

−

0
) = [−1 −1 −1]T and the phase sequencea → c → b.

Based on the above, the vector of switch positionsU ,
i.e., theswitching sequence, and the vector of switching time
instants are defined as

U =
[
uT
abc(t0) uT

abc(t1) uT
abc(t2) uT

abc(t3)
]T

, (9a)

t =
[
t1 t2 t3

]T
. (9b)

The three switching instants divide the switching inter-
val [0, Ts) into four subintervals[0, t1), [t1, t2), [t2, t3) and
[t3, Ts). The three phases can switch in six different chrono-
logical orders, e.g., assuming phasea switches first, either
phaseb has to switch next, followed by phasec, or vice versa.
Considering the different combinations with which all three
phases can switch within onTs, we conclude that six possible
switching sequencesU exist for a givenuabc(t0).

B. Control Method

In a next step, function (8) needs to be minimized for the six
admissible switching sequencesU as defined in (9a) to yield
the corresponding vectors of switching time instantst (9b). To
do so, the evolution of the outputy within the four subintervals
needs to be computed for eachU . To simplify this task, and
given thatTs ≪ T1, whereT1 is the fundamental period, the
assumption that the output variables evolve linearly within Ts

is made. Hence, the evolution of the output variables within



the four subintervals can be described by their corresponding
(constant) gradientsm(t) = dy(t)

dt ∈ R
6, i.e.,

m(ti) =
dy(ti)

dt
= C

dx(ti)
dt

= C
(
Fx(t0) +GKuabc(ti)

)
,

(10)
where i ∈ {0, 1, 2, 3}. It should be noted that in (10),
the gradients att1, t2 and t3 depend on the state at time
instantt0, i.e.,x(t0), (rather than onx(t1), x(t2), andx(t3),
respectively) because of the aforementioned assumption of
constant gradients within the sampling interval.

Example 2. Consider the switching sequenceU depicted
in Fig. 3(a). By applying this sequence, the evolution of
the controlled variables changes, and it can thus be con-
trolled. Assuming piecewise affine output trajectories—and
thus a piecewise constant gradientm(t)—the continuous-
time evolution of one (arbitrary) controlled variableyi, with
i ∈ {1, 2, . . . , 6}, is shown, along with its corresponding
reference, in Fig. 3(b).

With (10), the objective function (8) is simplified. However,
the problem is nonconvex since (8) is a cubic function of
time. To turn the problem into a convex one, we choose to
further simplify (8) by penalizing—instead of the (weighted)
rms error—the deviation of the controlled variables from
their references at the switching instants and at the end of
sampling interval, see [33]. By doing so, the rms output error
is approximated in a coarse yet effective manner. Moreover,by
considering the error only at the switching instants and discrete
time steps, the computational complexity of the problem is
kept modest.

In light of the above approximation, function (8) becomes

J =

3∑

i=1

‖yref(ti)− y(ti)‖
2
Q + ‖yref(Ts)− y(Ts)‖

2
Q , (11)

However, (11) is further modified to improve the tracking
performance of the controller. Specifically, the aim of the
following refinements is to eliminate undesired harmonics
that violate the relevant grid codes, such as the IEEE 519
standard [35].

1) Longer Prediction Horizon:In [38], it is shown that
longer prediction horizons lead to better system performance
by predicting the system behavior further into the future. This
benefit becomes even more evident when considering higher
order MIMO systems, such as the examined case study.

In this work, a two-step prediction horizon is implemented.
Accordingly, the switching sequence and vector of switching
time instants are redefined as

U =
[
UT (k) UT (k + 1)

]T
, (12a)

t =
[
tT (k) tT (k + 1)

]T
. (12b)

where

U(ℓ) =
[
uT
abc

(
t0(ℓ)

)
uT
abc

(
t1(ℓ)

)
uT
abc

(
t2(ℓ)

)
uT
abc

(
t3(ℓ)

)]T
,

and

t(ℓ) =
[
t1(ℓ) t2(ℓ) t3(ℓ)

]T
,

TABLE I: Possible sequences for the single-phase switch transitions for a
two-step horizon

Phases to switch

1st sampling interval 2nd sampling interval

First Second Third First Second Third

a b c c b a

a c b b c a

b a c c a b

b c a a c b

c a b b a c

c b a a b c

1

1

1

0

0

0

−1

−1

−1

ua

ub

uc

t0 ≡ 0 t1(k) t2(k) t3(k) t1(k + 1) t2(k + 1) t3(k + 1) 2Ts

Ts

t

Fig. 4: Example of a prediction horizon over two sampling intervals with six
switching instants.

with ℓ = k, k + 1. As implied by (12a), the number
of possible switching sequences is squared, i.e.,62 = 36
switching sequences should be considered for a two-step
prediction horizon. To keep the computational complexity
at bay, we assume that the switching sequence in the sec-
ond sampling intervalU(k + 1) mirrors that of the first
sampling intervalU(k) with respect toTs, akin, e.g., to
the SVM switching pattern. This means thatU(k + 1) =
[uT

abc

(
t3(k)

)
uT
abc

(
t2(k)

)
uT
abc

(
t1(k)

)
uT
abc

(
t0(k)

)
]T , as de-

picted in Fig. 4. Consequently, the number of possible switch-
ing sequences remains equal to six. The possible switching
sequences for the single-phase switch transitions over a two-
step prediction horizon are given in Table I.

2) Linear Approximation of the References:Since the refer-
ences are sinusoidally varying quantities, the sample-and-hold
approach, i.e., the assumption of constant references at each
sampling interval, similar to SVM or asymmetric regularly
sampled CB-PWM, would result in tracking errors. A better
approximation is to linearly interpolate the references between
two consecutive discrete time steps, i.e., betweenk andk+1
as well as betweenk + 1 andk + 2. This yields

yref(t) = yref(ℓ) +mref(ℓ) t , (13)

where

mref(ℓ) =
yref(ℓ+ 1)− yref(ℓ)

Ts

, (14)

andℓ = k, k + 1. This process is visualized in Fig. 5.

3) Heavier Penalization of the Discrete Time Steps:For
the sake of simplicity—but without loss of generality—a grid-
connected converter with anL filter serves as an example for
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Fig. 6: Equivalent circuit of the grid-connected converterwith an L filter in
the stationary (αβ) frame.

analyzing this concept. Considering the equivalent circuit of
the system,2 as shown in Fig. 6, the differential equation

dig
dt

=
1

Xl +Xg

(vg − vconv). (15)

describes the dynamics of the grid current, whereXl denotes
the filter reactance.

The grid voltage in the stationary (αβ) reference frame is a
vector which rotates counterclockwise with the angular speed
ωg = 2πf1, with f1 being the fundamental frequency. Focus-
ing on one instant of the problem, the following assumptions
are made to enhance the clarity of the analysis that follows3:

• The grid voltagevg is located in the first sector (i.e.,
the triangle formed byv1, v2, andv0,7) of the hexagon
formed by the voltage vectorsvconv that can be produced
by the converter (2), see Fig. 7(a).

• As implied by Figs. 3(a) and 4, at the beginning
of the sampling interval either the switch position
uabc(t0) = [−1 −1 −1]T (i.e., voltage vectorv0), or
uabc = [1 1 1]T (i.e., voltage vectorv7) is applied to the
converter. Assume thatv0 is applied att0.

• The phase sequencea → b → c is implemented. There-
fore, the consecutively applied switch positions within
Ts, uabc(t1), uabc(t2), anduabc(t3), correspond to the
voltage vectorsv1, v2, andv7, respectively.

• The grid currentripple at t0 is zero, i.e.,ig,rip(t0) = 0,
whereig,rip = ig − ig1, with ig1 being the fundamental
component ofig.

Based on the above, if the trajectories of the grid current
dig(vconv)/dt are approximated as linear, then the trajectory
of the grid current rippleig,rip ideally will be as the one shown
in Fig. 7(b). Such a trajectory—which can be produced with,

2Note that due to their small values, the filter and grid resistances are
neglected in the analysis presented.

3Dropping these assumptions so as to generalize the analysisis straightfor-
ward.
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[−1−1 1]T [1−1 1]T

[1 1 1]T

[−1−1−1]T

dig(v1)
dt

dig(v2)
dt

vg

(a) Two-level converter and grid voltage vectors in stationary reference
frame (αβ)
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ig,rip,βv1

v2

v7

v0

(b) Ideal ripple of the current.

ig,rip,α

ig,rip,βv1
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(c) Actual ripple of the current when the dis-
crete time steps are not penalized more heavily.

Fig. 7: Linearized trajectory of the grid current ripple over two consecutive
sampling intervalsTs assuming the depicted vector of the voltage gridvg .
The trajectories over the first and secondTs (modulation half-cycles) are
shown with solid and dashed lines, respectively.

e.g., SVM—indicates that the current error (i.e., ripple) is zero
at the discrete time stepsk, k+1, k+2, . . .. With the proposed
MPC, nonetheless, a zero ripple at the discrete time steps is
not guaranteed since the rms of the output error is chosen to be
minimized instead. Consequently, a current ripple trajectory as
the one depicted in Fig. 7(c) is likely to result, which implies
that undesired low frequency harmonics appear due to the fact
that symmetry in the implemented switching sequences is not
enforced.

To overcome the aforementioned issue, and to thus ensure
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Fig. 8: Direct model predictive control with fixed switchingfrequency for a two-level grid-connected converter with anLCL filter.

that the grid current ripple trajectory returns to the origin of
the plane at the end of each sampling interval (see Fig. 7(b)), it
is proposed to heavily penalize the output error at the discrete
time steps. Therefore, when applying this approach to the
examined case study, i.e., grid-connected converter with an
LCL filter, see Fig. 2, the deviation of all controlled variables
y from their reference values is more heavily penalized at the
discrete time steps.

C. Objective Function

Taking into account all the assumptions and refinements
presented in Section III-B, the objective function is defined
as

J =

k+1∑

ℓ=k

(
3∑

i=1

∥∥yref

(
ti(ℓ)

)
− y

(
ti(ℓ)

)∥∥2
Q
+

+
∥∥∥Λ
(
yref

(
Ts(ℓ)

)
− y

(
Ts(ℓ)

))∥∥∥
2

Q

)
,

(16)

where the references valuesyref are computed based on (13).
Moreover,Λ ≻ 0 ∈ R

6×6 is a diagonal positive definite matrix
the entries of which assign higher priority to the tracking
accuracy at the discrete time steps. Therefore, its nonzero
entries are greater than one.

Utilizing (10), it is straightforward to show that the output
variables can be written as

y
(
ti(ℓ)

)
= y

(
ti−1(ℓ)

)
+m

(
ti−1(ℓ)

) (
ti(ℓ)− ti−1(ℓ)

)
, (17)

with ℓ = k, k + 1, i ∈ {1, 2, 3, 4} and t4 = Ts. As shown
in [33], (16), after some algebraic manipulations, and withthe
aid of (17), can be written in vector form as

J = ‖r −Mt‖2
Q̃

, (18)

where the vector of switching instantst ∈ R
6, as given

by (12b), is the optimization (unknown) variable. Furthermore,
vectorr ∈ R

48 and matrixM are time invariant and given in
the appendix. Finally,̃Q = diag(Q, . . . ,Q).

Algorithm 1 Direct MPC with fixed switching frequency and
continuous modulation

Given uabc(t
−

0
), yref(t0) andx(t0)

0. Compute the corresponding gradient vectorsmz , z ∈ {0, 1, . . . , 6}.

1. Enumerate the possible switching sequencesUz, z ∈ {1, 2, . . . , 6},
starting fromuabc(t

−

0
).

2. For eachUz :

Solve the QP (20). This yieldstz andJz .

3. Solve the trivial optimization problem (21). This yieldst∗ andU∗.

ReturnU∗(k) andt∗(k)

D. Control Algorithm

The block diagram of the proposed direct MPC scheme
is shown in Fig. 8. Moreover, the pseudocode of the control
method is summarized in Algorithm 1. In the sequel of this
section, the algorithm is explained in detail.

Before the control algorithm is executed, the possible gra-
dients that depend on the measured state vectorx(t0) and the
possible switch positionsuabc of the two-level converter are
computed. Hence, seven unique output vector gradientsmz,
with z ∈ {0, 1, . . . , 6}, need to be computed, since the eight
possible switch positionsuabc of the converter yield seven
different voltage vectors in theαβ-plane, see Fig. 7(a). To
this end, (10) is written as

mz = C (Fx(t0) +Guz) , (19)

whereuz refers to the seven different switch positions in the
αβ-plane, i.e.,uz = Kuabc,z.

Having computed the output vector gradients (19), the
controller enumerates the possible three-phase switch positions
within the two sampling intervals based on the previously
applied switch positionuabc(t

−
0 ) and in line with Table I.

This yields the six feasible switching sequencesU z, z ∈
{1, 2, . . . , 6}.

In a second step, the optimization problem

minimize
t∈R6

‖r −Mt‖2
Q̃

subject to 0 < t1(k) < t2(k) < t3(k) < Ts <

< t1(k + 1) < t2(k + 1) < t3(k + 1) < 2Ts.
(20)



is solved for each one of the six sequencesU z. Problem (20)
is a convex quadratic program (QP) [39]. Owing to its small
size (the optimization variable is six-dimensional), it can be
solved efficiently using online QP solvers that can solve such
MPC problems on embedded hardware even in a manner of
microseconds, see, e.g., [40]–[43]. The solution of each QP
is a triplet of switching instantstz (12b), switching sequence
U z (12a), and the associated value of the objective function
Jz (18), with z ∈ {1, 2, . . . , 6}.

In a last step, the algorithm decides which one of the six
triplets {tz,U z, Jz} has the minimal value of the objective
function. This is done by solving the following trivial opti-
mization problem

minimize
z∈{1,2,...,6}

Jz (21)

By doing so, the triplet that meetsJ(U ∗, t∗) = J∗ is the op-
timal one, i.e.,{t∗,U∗, J∗}. Following, and according to the
receding horizon policy [1], only the elements corresponding
to the first sampling interval, i.e.,U∗(k) andt∗(k), are taken
into account, while the rest are discarded. Thus, the first part of
the optimal switching sequence is applied with the appropriate
switching times to the converter, i.e.,

t∗(k)=
[
t∗1(k) t∗2(k) t∗3(k)

]T
(22a)

U∗(k)=
[
u∗T
abc

(
t0(k)

)
u∗T
abc

(
t∗1(k)

)
u∗T
abc

(
t∗2(k)

)
u∗T
abc

(
t∗3(k)

)]T
.

(22b)

At the next sampling interval, the algorithm is repeated based
on new measurements over a prediction horizon shifted by one
sampling interval.

IV. D IRECT MPC WITH FIXED SWITCHING FREQUENCY

FOR DISCONTINUOUSMODULATION

To reduce the converter switching losses and, consequently,
to improve the system efficiency, the switching frequency
needs to be kept low. To meet this goal, DPWM can be
employed to avoid switching in the vicinity of phase current
peaks [44]. The most straightforward approach to achieve this
is to force the three phases to consecutively refrain from
switching for one-third of the fundamental period, i.e., to
keep each phase leg clamped to the negative dc rail for
120◦ of the fundamental cycle. As a result, with DPWMMIN,
as the method is called, the switching frequency—and thus
the switching losses—are reduced by33% compared with
continuous modulation techniques that use the same carrier
frequency. Nonetheless, this comes at the cost of unequal
distribution of the power losses between the upper and the
lower switches of the phase legs [34].

Motivated by the aforementioned attributes of discontinuous
modulation, the direct MPC strategy discussed in Section III
is modified in this section to emulate the switching pattern of
DPWMMIN.

A. Control Problem

Besides the control objectives defined in Section III-A, i.e.,
the minimization of the rms error of the controlled variables

y as well as the converter operation at a fixed switching
frequency, the additional task of the reduced switching fre-
quency is considered. The ultimate goal of the proposed
MPC algorithm is to operate the converter at the lowest
possible switching frequency while meeting the relevant grid
codes [35].

Considering the above, the control problem has similarities
with that discussed in Section III-A. Therefore, the control
principle and introduced concepts, such as the switching se-
quenceU and instantst, remain in place. For MPC, however,
to emulate the switching pattern of DPWMMIN, one of the
three phases has to remain inactive, i.e., clamped to the nega-
tive dc rail, for the whole sampling interval. This implies that
only two different switch positions should be applied to the
converter at two consecutive switching instants within oneTs.
Consequently, for direct MPC with discontinuous modulation,
the switching sequenceU(ℓ) and vector of switching instants
t(ℓ) in (12a) and (12b), respectively, are defined as

U(ℓ) =
[
uT
abc

(
t0(ℓ)

)
uT
abc

(
t1(ℓ)

)
uT
abc

(
t2(ℓ)

)]T
(23a)

t(ℓ) =
[
t1(ℓ) t2(ℓ)

]T
. (23b)

By doing so, it is ensured that only two phases switch within
oneTs. This, however, does not suffice to guarantee that one
phase remains inactive for one third of the fundamental period,
as it is the case with DPWMMIN. To address this, further
modifications are required, as explained in Section IV-B.

B. Control Method

DPWMMIN utilizes only one of the two zero voltage
vectors of a two-level converter (Fig. 9), i.e., the voltagevector
v0. Assume that the proposed MPC algorithm implements
the corresponding switch position at the beginning of the
sampling interval, i.e.,uabc

(
t0(k)

)
= [−1 −1 −1]T . Then,

after applying two switch positions that activate as many
phases at instantst1(k) and t2(k), the single-phaseswitch
position of the third (inactive) phase will still be−1 by the
end of the interval,ux(Ts) = −1.

As can be understood from the above, the proposed algo-
rithm has not only to compute the appropriate switching time
instants and sequence, but also to identify which phase should
be kept inactive within the sampling interval. To achieve the
latter, a deadbeat approach is employed. More specifically,
the ideal converter output voltagevconv,ref(k) that drives the
converter current to its reference within one sampling interval
is computed. Using forward Euler discretization, (4a) can be
written as
iconv(k + 1)− iconv(k)

Ts

=
1

Xlc

(
vc(k)− (Rlc +Rc)iconv(k)+

+Rcig(k)− vconv(k)
)
.

(24)

Setting as a goaliconv(k + 1) = iconv,ref(k + 1), vconv,ref(k) is
given by

vconv,ref(k) = vc(k) +Rcig(k)−
Xlc

Ts

iconv,ref(k + 1)+

+

(
Xlc

Ts

− (Rlc +Rc)

)
iconv(k) .

(25)



α

β

ua

ua

ua

ua

ua

ua

ub

ub

ub

ub

ub

ub

uc

uc

uc

uc

uc

uc

v1

v2v3

v4

v5 v6

v0
v7

sec.1

sec.2

sec.3

sec.4

sec.5

sec.6

Fig. 9: Two-level converter voltage vector diagram and switching patterns per
sector according to DPWMMIN.

Following, the inactive phase is determined based on
the location ofvconv,ref(k) in the αβ-plane, i.e., the angle
∠vconv,ref(k). Specifically, whenvconv,ref(k) is located at sectors
1 or 2, see Fig. 9, phase legc is clamped to the−1 (uc = −1).
Thereby, only phasesa andb are allowed to switch. If, on the
other hand,vconv,ref(k) is at sectors3 or 4, thenua = −1 and
phasesb and c are active. Finally, for the last two sectors,
phasesa andc switch, whileub = −1.

Having determined the phase clamped to the negative dc
rail, the possible switching sequences are generated. Therefore,
by excluding the inactive phase, the two remaining phases can
switch in two possible chronological orders. This means that
at any given instant, only two—in contrast to six, which is
the case with MPC with continuous modulation—switching
sequencesU need to be examined. If, e.g.,vconv,ref(k) is
located at the first sector, the two active phases switch such
that either phasea switches first andb follows, or vice versa.
The active phases, depending on the location ofvconv,ref(k), as
well as the possible sequences over oneTs are summarized in
the first three columns of Table II.

Besides the above-mentioned modifications, the refinements
introduced in Section III-B are utilized with MPC with discon-
tinuous modulation. This means that the switching sequences
over a two-step horizon (Np = 2) are again mirrored with
respect toTs; the resulting possible switching sequences are
shown in Table II. As seen in the table, the total number of
possible switching sequences remains the same as with MPC
with continuous modulation. However, as explained above,
only two are taken into account each time.

TABLE II: Possible sequences for the single-phase switch transitions for a
two-step horizon when emulating the switching pattern of DPWMMIN

Location of
vconv,ref(k)

Phases to switch
1st sampling interval 2nd sampling interval
First Second First Second

Sectors1 or 2
a b b a

b a a b

Sectors3 or 4
b c c b

c b b c

Sectors5 or 6
a c c a

c a a c

Algorithm 2 Direct MPC with fixed switching frequency and
discontinuous modulation

Given uabc(t
−

0
), yref(t0) andx(t0)

0. Compute the corresponding gradient vectorsmz , z ∈ {0, 1, . . . , 6}.

1a. Identify the sector of the desired converter output voltage vector
vconv,ref(k) based on∠vconv,ref(k).

1b. Enumerate the possible switching sequencesUz , z ∈ {1, 2},
starting fromuabc(t

−

0
).

2. For eachUz :

Solve the QP (27). This yieldstz andJz .

3. Solve the trivial optimization problem (21) forz ∈ {1, 2}. This yields
t∗ andU∗.

ReturnU∗(k) andt∗(k)

Given the above, the objective function is

J =

k+1∑

ℓ=k

(
2∑

i=1

∥∥yref

(
ti(ℓ)

)
− y

(
ti(ℓ)

)∥∥2
Q
+

+
∥∥∥Λ
(
yref

(
Ts(ℓ)

)
− y

(
Ts(ℓ)

))∥∥∥
2

Q

)
.

(26)

Finally, function (26) can be written in the same vector
form as in (18). However, the size of the optimization problem
underlying MPC is smaller. This is due to the fact that the
optimization variable, i.e., the switching instantst (23b), is a
four-dimensional vector. Moreover,r ∈ R

36, and matrixM
is of appropriate dimensions.

C. Control Algorithm

As in Section III-D, in a preprocessing step, the possible
output gradientsmz, with z ∈ {0, 1, . . . , 6}, are computed
based on (19).

Subsequently, the location of the desired converter output
voltage (25) is identified, and the two candidate switching
sequences are determined according to Table II. Depending on
uabc(t

−
0 ), the controller enumerates the two feasible switching

sequencesU z , with z ∈ {1, 2}.
Following, for each one of the two given switching sequence

the optimization problem

minimize
t∈R4

‖r −Mt‖2
Q̃

subject to 0 < t1(k) < t2(k) < Ts <

< t1(k + 1) < t2(k + 1) < 2Ts.

(27)

is solved. As before (see Section III-D), the solution of the
QP is a triplet{tz,U z, Jz}, with tz andU z given by (23).



TABLE III: Rated values of the system

Parameter Symbol SI Value

Voltage VR 400V
Current IR 18A

Angular grid frequency ωgR 2π50 rad/s
Short-circuit ratio ksc 20

Grid impedance ratio kXR = X/R 7

TABLE IV: System parameters

Grid Reactance Xg 0.0490

Resistance Rg 0.0071

LCL filter Grid-side reactance Xlg 0.0735

Grid-side resistance Rlg 0.0055

Converter-side reactance Xlc 0.0808

Converter-side resistance Rlc 0.0078

Capacitance reactance Xc 0.0355

Capacitance resistance Rc 0.0623 · 10−3

Converter Dc-link Vdc 1.9902

Finally, a similar problem to (21) is solved, with the differ-
ence that the controller has to choose between two—instead of
six—values of the objective function to determine the minimal
one. In doing so, the optimal triplet{t∗z,U

∗
z, J

∗
z } is found,

and, in line with the receding horizon policy,u∗
abc(t

∗
1(k)) and

u∗
abc(t

∗
2(k)) are applied to the converter at the appropriate time

instants.
The pseudocode of the proposed direct MPC with discon-

tinuous modulation is presented in Algorithm 2. The block
diagram is similar to that shown in Fig. 8, with the difference
that the angle∠vconv,ref(k) needs to be fed into the MPC block.

V. PERFORMANCEEVALUATION

In this section the performance of the proposed direct MPC
schemes is assessed on a simulation basis. The rated values
as well as the p.u. parameters of the chosen case study (see
Fig. 1) are given in Tables III and IV, respectively. The setup
is assumed to be ideal, i.e., second-order effects, such as
controller delays, deadtimes, measurement noise, parameter
variations, model imperfections, disturbances, etc., arene-
glected. The chosen sampling interval isTs = 175.43µs. The
weighting matrices for MPC with continuous and discontin-
uous modulation are chosen asQ = diag(1, 1, 9, 9, 0.9, 0.9)
and Q = diag(1, 1, 9, 9, 1.1, 1.1), respectively, both prior-
itizing the grid current error. Moreover, matrixΛ for the
two methods was chosen asΛ = diag(9.5, 9.5, 10, 10, 10, 10)
andΛ = diag(5.8, 5.8, 5.5, 5.5, 5.5, 5.5), respectively. In the
sequel, before presenting the performance evaluation, a brief
description of the filter characteristics and the IEEE 519 grid
standard is provided.

A. LCL Filter

The frequency response of theLCL filter considered in
this work is shown in Fig. 10. The filter has two resonance
frequencies; the dominant one is given by (in SI)

fres= fB
1√

Xc
Xlc(Xlg+Xg)
Xlc+Xlg+Xg

≈ 1203.3 Hz ,

Frequency [Hz]

M
ag

n
itu

d
e

[d
B

]

101 102 103 104
−100

−80

−60

−40

−20

0

20

40

60

(a) Bode magnitude plot

Frequency [Hz]

P
h

as
e

[d
eg

]

101 102 103 104
−180

−135

−90

−45

0

45

90

135

180

(b) Bode phase plot

Fig. 10: Frequency response of theLCL filter.
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Fig. 11: Current harmonic limits at the PCC based on the IEEE 519 standard
for short circuit ratioksc = 20.

where fB = 50Hz is the base (rated) frequency. As seen
in the figure,LCL filters—being third-order systems—can
attenuate the harmonics beyond their resonance frequency at
a rate of−60 dB/dec. Nonetheless, the harmonics around the
dominant resonance frequency are usually excited due to the
low impedance of the filter at the vicinity offres. Thus, passive
and/or active damping techniques are often used to provide
sufficient damping of the filter resonance [45], [46].

B. IEEE 519 Grid Code

Grid codes are a set of regulations that define minimum
requirements for the interconnection of facilities to the grid
in order to ensure safe and secure operation of the system.
The IEEE 519 grid standard [35] imposes limits on the current
harmonics at the PCC. The latter is “usually taken as the point
in the power system closest to the user where the system owner
or operator could offer services to another user” [35] and is
shown in Fig. 1.

For systems rated between120V and 69 kV, such as this
case study, the maximum current harmonic limits at PCC are
given in [35] as a percentage of the maximum fundamental
frequency component of the current. The limits vary for
different short-circuit ratios of the gridksc. For ksc = 20
considered in this work, the limits are depicted in Fig. 11. As
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(b) Three-phase grid currentsig,abc (solid lines)
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(c) Three-phase capacitor voltagesvc,abc (solid
lines) and their references (dash-dotted lines).
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Fig. 12: Simulated waveforms produced by direct MPC with continuous modulation during steady-state operation and unity power factor (fsw = 2850Hz).
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Fig. 13: Simulated waveforms produced by asymmetric regularly sampled CB-PWM with min/max common-mode signal injection (fsw = 2850Hz).

can be seen, the limits on even and higher-order harmonics
are particularly stringent.

C. Direct MPC with Continuous Modulation

The closed-loop behavior of the system is examined while
being controlled with the proposed direct MPC scheme with
continuous modulation. With the chosen sampling interval of
Ts = 175.43µs a fixed switching frequency offsw = 2850Hz
results. The steady-state system performance when operating
under unity power factor (pf), i.e.,P = 1p.u. andQ = 0p.u.,
is shown in Fig. 12 for one fundamental period. The controlled
variables track their reference values accurately, as can be
seen in Figs. 12(a)–12(c), while operation under unity power
factor is achieved (see Figs. 12(d) and 12(e)). The grid current
TDD is as low as0.69%, thanks to the effective attenuation
of the harmonics achieved by MPC with the chosen objective
function (16) and theLCL filter. Moreover, as can be seen
in Fig. 12(f), where the grid current harmonic spectrum is
shown, its harmonics appear at odd non-triplen multiples of
the fundamental frequency with the more pronounced being at
the vicinity of the switching frequency. Comparing with the

harmonic limitations imposed by the IEEE 519 standard (see
Fig. 11), it can be concluded that the produced grid current
does not violate them. Furthermore, it is observed, that the
harmonics in the vicinity of the resonance frequency are not
excited despite the absence of an active damping loop and the
low ratio fsw/fres, which is ≈ 2.37. Therefore, the proposed
method can operate the converter at relatively low switching
frequencies, and, thus, the switching losses can be reduced.

For comparison purposes, asymmetric regularly sampled
CB-PWM with min/max common-mode signal injection is
implemented. Note that this leads to equivalence between CB-
PWM and SVM [34, Section 6.3]. Such a method can be
interpreted as a closed-loop linear controller with a very low
bandwidth. As before, nonidealities and second-order effects
that appear in a real-world setting are neglected. Thus, the
steady-state performance of this benchmark case corresponds
to its theoretically best achievable performance. Moreover,
owing to the harmonic energy distribution of SVM, lower
harmonic distortion levels can be achieved while exploiting
an extended linear modulation range [34]. Finally, for a fair
and meaningful comparison, the carrier signal has the same
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(a) Three-phase converter currentsiconv,abc (solid
lines) and their references (dash-dotted lines).
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(b) Three-phase grid currentsig,abc (solid lines)
and their references (dash-dotted lines).
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(c) Three-phase capacitor voltagesvc,abc (solid
lines) and their references (dash-dotted lines).
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(d) Real powerP (solid line) and its reference
(dash-dotted line).
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Fig. 14: Power reference steps for direct MPC with continuous modulation.

frequency as the switching frequency of MPC, i.e.,2850Hz.
The three-phase modulating signal and the triangular carrier

waveform are shown in Fig. 13(a). Moreover, Figs. 13(b)
and 13(c) illustrate the harmonic spectrum of the converter
(differential-mode) output voltage and grid current, respec-
tively. As seen in Fig. 13(c), the grid current harmonics appear
at the same frequencies, but they are of different amplitudes
compared with those produced by MPC (see Fig. 12(f)). The
TDD of the grid current is0.67%. Hence, the proposed direct
MPC achieves a grid current TDD which is almost equal to
that produced by SVM.

Finally, the transient behavior of the proposed direct MPC
with continuous modulation is examined during changes in
real and reactive power references. Att = 5ms, both real and
reactive power references are changed from the nominal op-
erating point (P = 1 andQ = 0 p.u.) to0.5p.u., and changed
back att = 15ms to regain nominal operation. These steps
on the power references are translated into the corresponding
steady-state references of the controlled variablesy, i.e., the
converter and grid currents, and capacitor voltage.

During power transients, there is an energy exchange be-
tween the converter, filter and grid. As a result, the magnitude
and phase of the converter and grid current are changed. The
same applies to the phase of the capacitor voltage. Despite all
these changes, the controlled variables, and consequentlythe
powers, track their references accurately with short settling
times, see Fig. 14. Since the proposed MPC algorithm is
implemented as a direct controller, it makes decisions suchthat
the deviation of the controlled variables from their references
is alleviated as quickly as possible. In effect, the dynamic
response of MPC is limited by the available voltage margin.
For example, due to the smaller voltage margin available when
operating under unity pf, the dynamics are slower during
the step-down—compared to the step-up—change in the real

power.

D. Direct MPC with Discontinuous Modulation

When direct MPC emulates DPWMMIN (see Section IV)
and the same sampling interval is used, i.e.,Ts = 175.43µs,
then the resulting switching frequency is two-thirds of that in
Section V-C. Therefore, the switching frequency for MPC with
discontinuous modulation isfsw = 2

3 · 2850 = 1900Hz. The
steady-state performance of the system at the same operating
point as in Section V-C, i.e.,P = 1 and Q = 0p.u., is
examined. The results are shown in Fig. 15. As can be seen
in Figs. 15(d) and 15(e), operation under unity power factoris
achieved. This implies, that the controlled variables accurately
track their desired values (Figs. 15(a)–15(c)), albeit with
slightly higher ripple due to the lower switching frequency.
The increased ripples are also reflected in the grid current
harmonic spectrum, see Fig. 15(f). As expected, the grid
current TDD is slightly increased to0.87%. As can be seen in
Fig. 15(f), harmonic energy is distributed not only among odd
non-triplen multiples of the fundamental frequency, but also
over even harmonics, since quarter- and half-wave symmetries
are compromised with discontinuous modulation. Notwith-
standing the foregoing, the produced grid current harmonics
abide by the limitations imposed by the IEEE 519 standard.
Furthermore, despite the ratio between the switching and
resonance frequency being≈ 1.58, i.e., considerably low, the
harmonics around the resonance frequency are not excited.
Therefore, as can be seen, the proposed direct MPC, thanks
to the full-state information (see (5) or (7)) and the refine-
ments discussed in Section III-B (e.g., the long horizon [38]),
effectively mitigates the adverse effect of the filter resonance,
rendering an additional damping loop unnecessary. Thus, MPC
with discontinuous modulation can operate the converter at
even lower switching frequencies compared with MPC and
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Fig. 15: Simulated waveforms produced by direct MPC with discontinuous modulation during steady-state operation and unity power factor (fsw = 1900Hz).
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Fig. 16: Simulated waveforms produced by asymmetric regularly sampled DPWMMIN (fsw = 1900Hz).

continuous modulation. As a result, the switching power losses
can be further reduced.

As a benchmark, asymmetric regularly sampled DPWM-
MIN is implemented for operation at the same switching
frequency, i.e.,fsw = 1900Hz. Fig. 16(a) illustrates the
three-phase modulating signal and the triangular carrier wave-
form, while Figs. 16(b) and 16(c) show the spectrum of the
converter (differential-mode) output voltage and grid current,
respectively. As can be seen in Fig. 16(c), the harmonics
produced by DPWMMIN are of the same order, but slightly
different amplitude, compared with those produced by direct
MPC. Despite these small differences, the grid current TDD
is 0.87%, i.e., equal to the one obtained with the proposed
method.

As a last performance assessment, the dynamic behavior
of the proposed scheme is examined during step changes in
the power references, see Fig. 17. While operating at nominal
operating conditions (pf= 1), the real and reactive power
references are changed to0.5p.u. at t = 5ms, and changed
back to their values that correspond to nominal operation at
t = 15ms. The controlled variables—and hence the powers—

follow their references accurately. Since only two—ratherthan
three—phases at a time are involved in switching, the tran-
sients are slightly slower compared with MPC with continuous
modulation, see Section V-C. Nevertheless, the settling times
are as short as possible, limited only by the available voltage
margin.

VI. CONCLUSIONS

This paper presents a direct MPC strategy for a three-
phase two-level grid-connected converter with anLCL filter.
In contrast to conventional direct MPC (FCS-MPC) algo-
rithms, where the harmonic spectra are non-deterministic,
with the harmonic energy spread over the whole range of
frequencies, the proposed controller produces a discrete grid
current harmonic spectrum. This is achieved by introducing
a fixed modulation cycle and symmetrical switching patterns
computed with the presented optimization problem underlying
direct MPC. In doing so, the grid standards—such as IEEE
519—can be met since the stringent limits on harmonics,
especially of even order and interharmonics, are adhered to,
while the grid current TDD is very close to that of asymmetric
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Fig. 17: Power reference steps for direct MPC with discontinuous modulation.

regularly sampled CB-PWM with min/max common-mode
signal injection (i.e., SVM). Moreover, by exploiting the
inherent full-state-control mechanism of MPC, an additional
active damping loop is redundant. Furthermore, owing to
the adopted MIMO approach, MPC manages to successfully
control all output variables not only at steady-state operating
conditions, but also during transients. As a result, the fast
transient responses that characterize direct control schemes,
as the proposed one, are still present.

In an attempt to further reduce the switching frequency of
the converter, the algorithm is modified to emulate the behav-
ior of 120◦ discontinuous PWM. By doing so, the switching
frequency is reduced by33% compared with MPC with
continuous modulation. Moreover, albeit the lower switching
frequency, the grid current harmonics still adhere to the grid
codes, while the grid current TDD is the same as the one
achieved with asymmetric regularly sampled DPWMMIN.
Further, it is shown that even when a discontinuous switching
pattern is implemented by MPC the dynamic behavior of the
system does not deteriorate.

It can be concluded, that both of the proposed direct
MPC approaches can operate the system even when the ratio
between the switching frequency and the resonance frequency
is as small as two. This is thanks to the high bandwidth
of the controller(s), which is higher than that of indirect
control methods, such as vector control with SVM/DPWM.
Therefore, owing to the proposed direct MPC approach, one
can increase the efficiency of the converter by reducing the
switching frequency, and, consequently, the switching losses,
while the harmonic output spectrum meets the grid standards,
e.g., [35]. Alternatively, one can reduce the size of theLCL
filter by increasing the frequency of the filter resonance.

APPENDIX

Vector r and matrixM in (18) are given by

r =




yref(t0)− y(t0)

yref(t0)− y(t0)

yref(t0)− y(t0)

Λ
(
yref(Ts)− y(t0)−m(t3(k))Ts

)

yref(Ts)− y(t0)

yref(Ts)− y(t0)

yref(Ts)− y(t0)

Λ
(
yref(2Ts)− y(t0)−m(t3(k + 1)) 2Ts

)




,

and

M =




mt0 06 06 06 06 06

m0 mt1 06 06 06 06

m0 m1 mt2 06 06 06

Λm0 Λm1 Λm2 06 06 06

m0 m1 m2 m̃t0 06 06

m0 m1 m2 m̃0 m̃t1 06

m0 m1 m2 m̃0 m̃1 m̃t2

Λm0 Λm1 Λm2 Λm̃0 Λm̃1 Λm̃2




,

with

mti = m(ti(k))−mref(k) ,

m̃ti = m(ti(k + 1))−mref(k + 1) ,

mi = m(ti(k))−m(ti+1(k)) ,

m̃i = m(ti(k + 1))−m(ti+1(k + 1)) ,

wherei ∈ {0, 1, 2}, andt0(k + 1) = Ts.
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