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Abstract—A new model predictive torque and flux controller
is proposed, which controls the electromagnetic torque andthe
rotor (rather than the stator) flux magnitude. Analytical expres-
sions for the weighting factors are derived that ensure thatthe
proposed controller achieves the same closed-loop performance
as predictive current control. In particular, the same low current
and torque distortions result, without requiring an outer fi eld-
oriented control loop.

Index Terms—Model predictive control, finite control set, cost
function, penalty weights, tuning, torque and flux control,current
control, power converters, variable speed drives.

I. I NTRODUCTION

Model predictive torque and flux control (MPTFC) is a
direct control method, i.e., it does not require a modulator[1].
The control objective is to regulate the two main quantities
of an electrical machine—the electromagnetic torque and the
magnetization of the machine—along their reference values.
To this aim, a corresponding objective function is minimized
online subject to an inverter and machine model. This yields
the optimal switch position (i.e., the control input) whichis
applied to the power converter [2].

The design simplicity, the straightforward implementation,
and the intuitive concept are among the advantages of this
model predictive control (MPC) method. Moreover, akin to
direct torque control (DTC) [3], fast transients are achieved.
On the downside, the choice of the weighting factors—and
thus the tuning procedure—may be difficult, because one
has to decide on the relative importance between the torque
error and the flux magnitude error. This also affects the
current distortions, which are typically higher than with model
predictive current control (MPCC) [2], [4].

The recent paper [5] provides a first insight into MPTFC.
Therein, the value of the weighting factors that minimize
the current distortions are analytically derived. However,
MPCC [6] still achieves lower current distortions, particularly
at non-zero torque references and low switching frequencies.
As shown in [5], this difference results from the different
shape of the level sets of the objective functions of the two
controllers; the level sets of MPTFC are elliptical in contrast
to the circular ones of MPCC.

This paper proposes a slight modification to MPTFC. By
tracking therotor instead of the stator flux magnitude, MPTFC
is madeequivalent to MPCC with circular level sets. As a
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result, both controllers issue the same switching sequences and
achieve the same current and torque trajectories. With thisnew
approach, the advantages of MPTFC remain in place. Among
them, there is no need for a field-oriented control loop to adjust
the current references in a rotating reference frame, which
greatly simplifies the design procedure. As with conventional
model predictive torque control [1], [5], however, the proposed
MPTFC requires rotor parameters.

Normalized quantities are used throughout the paper. To this
end, we introduce a per unit system using as base quantities
the peak value of the rated phase voltage of the machine, the
peak value of the rated machine current, and the rated funda-
mental frequency. Moreover, all variablesξabc = [ξa ξb ξc]

T

in the three-phase (abc) system are mapped into the variables
ξdq = [ξd ξq]

T in the dq plane, which is an orthogonal, two-
dimensional coordinate system that rotates with the angular
speedωfr. We defineξdq =K(ϕ)ξabc, whereϕ is the angle
between thed- and thea-axis. If the orthogonal plane is
stationary (ωfr = 0), then the plane is referred to as theαβ
plane, and the performed mapping isξαβ =K(0)ξabc, with
ξαβ = [ξα ξβ ]

T . Vectors in theabc anddq planes are denoted
with the corresponding subscript. For vectors in theαβ plane,
the subscript is omitted.

II. M ODELING

Consider a variable speed drive based on a three-level neu-
tral point clamped (NPC) inverter and an induction machine
(IM). To simplify the analysis presented hereafter, the neutral
point potential is assumed to be fixed and equal to zero. The
dynamics of the squirrel-cage IM can be described in terms of
the stator current vectoris and the stator flux linkage vector
ψs. The differential equations of interest can be derived based
on the so-called T-equivalent circuit of a squirrel-cage IM, see
Fig. 1. The differential equations are [7]
dis
dt

=
(

ωrQ−
Φ

D
I
)

is +
(Rr

D
I − ωrQ

Xr

D

)

ψs +
Xr

D
vs

(1a)
dψs

dt
= −Rsis + vs , (1b)

whereωr is the electrical angular speed of the rotor. The
machine parameters are the statorRs and rotorRr resistances,
as well as the statorXls, rotorXlr and mutualXm reactances.
Based on these, the stator and rotor self-reactances are defined
as Xs = Xls +Xm and Xr = Xlr + Xm, respectively.
We also defineΦ = RsXr + RrXs, D = XsXr −X2

m,

Q =

[

0 −1

1 0

]

, and the two-dimensional identity matrixI.
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Fig. 1: T-equivalent circuit representation of a squirrel-cage induction machine
driven by a three-level neutral point clamped inverter in the αβ plane (top:
α-axis, bottom:β-axis).

The output voltage of the inverter is equal to the stator voltage

vs =
Vdc

2
K(0)uabc , (2)

with Vdc being the dc-link voltage anduabc = [ua ub uc]
T ∈

U = U3 the three-phase switch position. Thesingle-phase
switch positionux ∈ U , with x ∈ {a, b, c}, assumes integer
values depending on the output voltage levels of the inverter.
For a three-level NPC inverter, e.g., we haveU = {−1, 0, 1}.

The electromagnetic torqueTe can be expressed in terms of
the state variables as

Te =
1

pf
ψs × is =

1

pf
(ψsαisβ − ψsβisα) , (3)

where pf denotes the power factor.

We define the state vectorx = [isα isβ ψsα ψsβ ]
T ∈ R

4,
and the three-phase switch position as the system input
u = uabc. The discrete-time state-space model of the drive
used by the MPC algorithm as prediction model is then

x(k + 1) = Ax(k) +Bu(k) (4a)

y(k) = g
(

x(k)
)

. (4b)

The matricesA and B are calculated using exact Eu-
ler discretization, i.e., they are of the formA = e

ETs and
B = −E−1(I −A)F ,1 whereE andF are the continuous-
time matrices, which can be easily derived from (1). In here,e

is the matrix exponential,Ts the sampling interval, andk ∈ N.
The (non)linear functiong : R4 → R

2 maps the state variables
to the outputs. Depending on the control scheme, the outputs
are the stator currents, i.e.,y = is, the torque and stator flux
magnitude, i.e.,y = [Te Ψs]

T , or, as proposed here, the torque
and rotor flux magnitude, i.e.,y = [Te Ψr]

T .

1B is time-invariant, thus it can be computed offline. If the computation of
A is too computationally intensive, forward Euler approximation can be used
instead, i.e.,A = I +ETs andB = FTs. For small sampling intervalsTs

and a one-step prediction horizon, forward Euler approximation is sufficiently
accurate [2].

III. O BJECTIVE FUNCTIONS

A. MPCC

The block diagram of MPCC can be found in [5, Fig. 4].
The objective function in MPCC is of the form

J1 = JI + JuI , (5)

with

JI = ||i∗s(k + 1)− is(k + 1)||22 , (6a)

JuI = λuI ||∆uabc(k)||1 , (6b)

where i∗s is the stator current reference and∆uabc(k) =
uabc(k) − uabc(k − 1) is the difference between two con-
secutive switch positions. As shown in [5, Appendix A],
(5) minimizes the stator current distortions (viaJI ) and the
switching frequency (viaJuI ). The trade-off between the two
terms is set by the weighting factorλuI ∈ R

+.
With the proposed controller, the electromagnetic torque and

the machine magnetization are controlledindirectly through
the stator currents. More specifically, based on the reference
values of the electromagnetic torqueT ∗

e and rotor flux mag-
nitudeΨ∗

r , the reference currenti∗s is set by an outer control
loop based on the field-oriented control principle [8].

B. MPFC

Because the stator currents relate to the machine flux
linkages through

is =
1

D
(Xrψs +Xmψr) , (7)

(5) can be written as

J1 = JI1 + JI2 + JuI , (8)

where

JI1 =

(

Xr

D

)2

||ψ∗

s(k + 1)−ψs(k + 1)||22 , (9a)

JI2 =

(

Xm

D

)2

||ψ∗

r(k + 1)−ψr(k + 1)||22 . (9b)

Owing to the long rotor time constant, it holds that
ψ∗

r(k + 1) ≈ ψr(k + 1), thusJI2 ≈ 0. We define

J2 = JI1 + JuI , (10)

which is approximately equal toJ1. J2 gives rise to model
predictive (stator) flux control (MPFC), as discussed, e.g.,
in [9].

C. Proposed MPTFC

To control the torque and machine magnetization directly,
we propose an MPTFC scheme with the objective function

J3 = JT + JΨ + JuT , (11)

where

JT = λT
(

T ∗

e (k + 1)− Te(k + 1)
)2
, (12a)

JΨ = (1− λT )
(

Ψ∗

r(k + 1)−Ψr(k + 1)
)2
, (12b)

JuT = λuT ||∆uabc(k)||1 , (12c)

λT ∈ [0, 1], and λuT ∈ R
+. Due to the slow dynamic of

the rotor flux, a one-step horizon does not suffice to achieve



closed-loop control of it. To address this issue, the rotor flux
is controlled through the stator flux with [2, (3.70)]

Ψr =
Xm

Xs

cos(γ)Ψs , (13)

whereγ is the load angle. Consequently,JΨ is rewritten as

JΨ = (1 − λT )

(

Xm

Xs

)2(

cos
(

γ∗(k + 1)
)

Ψ∗

s(k + 1)−

− cos
(

γ(k + 1)
)

Ψs(k + 1)

)2

, (14)

where Ψs(k + 1) =
√

ψ2
sα(k + 1) + ψ2

sβ(k + 1). The pre-

dicted load angleγ(k + 1) can be found as follows. With (3)
and (7), the electromagnetic torque is rewritten as

Te =
1

pf
Xm

D
ψr ×ψs =

1

pf
Xm

D
ΨrΨs sin(γ) . (15)

It follows that

γ(k + 1) = arcsin

(

pf
D

Xm

Te(k + 1)

Ψr(k + 1)Ψs(k + 1)

)

, (16)

where the predicted rotor flux magnitudeΨr(k + 1) can be
computed in a straightforward manner based on (4a) and (7).

As for the references in (14), the desired value of the stator
flux magnitudeΨ∗

s is computed by considering (13) and (15),
whereΨr andTe are replaced by their references,Ψ∗

r andT ∗

e ,
respectively. Specifically, by squaring both expressions and
using the identitycos2(γ)+ sin2(γ) = 1, it can be shown that

Ψ∗

s =

√

(

pfDT ∗
e

)2
+
(

Xs Ψ∗2
r

)2

Xm Ψ∗
r

. (17)

Finally, the reference of the load angleγ∗ is given by (16)
whereT ∗

e , Ψ∗

r and Ψ∗

s are used instead ofTe, Ψr and Ψs,
respectively. As can be understood from the above, the stator
flux magnitude reference used in the MPC algorithm is not
predefined, but rather derived based on the desired torque
and rotor flux magnitude values. This is in contrast to the
conventional model predictive torque control, see, e.g., [1],
and DTC [3].

The block diagram of the proposed MPTFC can be found
in [5, Fig. 2], with the small but crucial difference that the
input signals to the controller areT ∗

e andΨ∗

r instead ofT ∗

e

andΨ∗

s.

IV. OPTIMIZATION PROBLEM

The optimization problem underlying MPCC, MPFC and
MPTFC with the objective functions (5), (10) and (11),
respectively, is

minimize
uabc ∈U

Jp

subject to (4), (3), (7)
||∆uabc(k)||∞ ≤ 1 ,

(18)

where p ∈ {1, 2, 3} refers to the chosen objective func-
tion. The last constraint—the switching constraint—prevents
switching transitions between1 and−1. Owing to its small
size, problem (18) can be solved with any off-the-shelf solver
for integer programs, including brute-force enumeration [2].
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Fig. 2: Level sets of the objective functionsJ2, see (10), andJ3, see (11), for
the cost value0.025. For simplicity, we assume that no switching transition
occurs from time-stepk − 1 to k, i.e., ||∆uabc(k)||1 = 0.

V. EQUIVALENCE BETWEEN MPCC AND MPTFC

To show the equivalence between MPCC and MPTFC, we
will prove in the following thatJ3 = c J2 with the scaling

factor c =
(

D
Xr

)2
(Xm Ψ∗

r
)2

(Xs Ψ∗

r
)2+(pf D)2 . BecauseJ2 ≈ J1, this

impliesJ3 ≈ c J1 with a negligible difference, as discussed in
Section VI.

Consider thedq reference frame with the angular speed
ωfr = ωs, whereωs is the angular stator frequency. Since the
transformation from the stationary to the rotating reference
frame is amplitude-invariant, the termJI1 in (10)—see (9a)—
can be written as

JI1 =

(

Xr

D

)2

||ψ∗

s,dq(k + 1)−ψs,dq(k + 1)||22 . (19)

The level sets ofJI1—and consequently ofJ2—are circles
centered atψ∗

s,dq, see Fig. 2.

RegardingJΨ in (11), the rotor flux magnitude can be

written asΨr =
√

ψ2
rd + ψ2

rq. By aligning thed-axis with
the rotor flux vectorψr, (12b) simplifies to

JΨ = (1− λT )
(

ψ∗

rd(k + 1)− ψrd(k + 1)
)2
. (20)

Combining (1) and (7), the rotor dynamic with respect to the
flux linkages is given by [2, (3.69)]

dψrd

dt
=
Rr

D
(Xmψsd −Xsψrd) . (21)

Given that the derivative ofψrd must be zero at steady-state
operation to maintain the field orientation, it follows that

ψrd =
Xm

Xs

ψsd . (22)

With this, the flux term (12b) is rewritten in terms of thed-
component of the stator flux vector

JΨ = (1− λT )

(

Xm

Xs

)2
(

ψ∗

sd(k + 1)− ψsd(k + 1)
)2
. (23)

For the torque, it follows from (15) that (sinceψrq = 0)

Te =
1

pf
Xm

D
ψrdψsq . (24)

As before, we assume thatψrd ≈ ψ∗

rd = Ψ∗

r . The torque
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Fig. 3: Three-phase stator currentis,abc in p.u.. (a) Proposed MPTFC, (b) MPCC (MPFC), and (c) MPTFC according to [5]. The switching frequency is in
all casesfsw = 250Hz.
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Fig. 4: Three-phase switch positionuabc for the cases shown in Fig. 3. (a) Proposed MPTFC, (b) MPCC (MPFC), and (c) MPTFC according to [5].

term (12a) can then be written as

JT = λT

(

1

pf
Xm

D
Ψ∗

r

)2
(

ψ∗

sq(k + 1)− ψsq(k + 1)
)2
. (25)

To achieve circular level sets with MPTFC, equal flux errors
in the d- andq-axis should result in the same cost. It follows
from (23) and (25) that

(1− λT )

(

Xm

Xs

)2

= λT

(

1

pf
Xm

D
Ψ∗

r

)2

. (26)

The weight on the torque tracking term2 is thus

λT =
(pfD)2

(Xs Ψ∗
r)

2 + (pfD)2
. (27)

As a result, the penalties on the torque and flux tracking errors
in MPTFC are

JT + JΨ = d
(

(

ψ∗

sq(k + 1)− ψsq(k + 1)
)2
+

+
(

ψ∗

sd(k + 1)− ψsd(k + 1)
)2
)

= d ||ψ∗

s,dq(k + 1)−ψs,dq(k + 1)||22 ,

(28)

with

d =
(Xm Ψ∗

r)
2

(Xs Ψ∗
r)

2 + (pfD)2
. (29)

Function (28) yields circular level sets, which are centered at
ψ∗

s,dq, as shown in Fig. 2.
The level sets of MPCC and MPTFC are now both circular.

In addition to that, in order to achieve the same control behav-
ior in terms of tracking performance (i.e., current distortions)
and control effort (i.e., switching frequency), the ratio between
the tracking error and the switching penalty terms must be the
same for both control methods, see [5]:

JT + JΨ

JI
=
JuT

JuI
⇒ λuT = d

(

D

Xr

)2

λuI (30)

2Note that the chosen value ofλT differs from that in [5, (28)]. This is
due to the different formulation of the torque and flux control problem.

This determines a dependency between their penalties on
switching,λuI andλuT .

Based on the above, (11) can be written as3

J3 = d ||ψ∗

s,dq −ψs,dq||
2
2 + d

(

D

Xr

)2

λuI ||∆uabc||1

= d

(

D

Xr

)2
(

(

Xr

D

)2

||ψ∗

s,dq −ψs,dq||
2
2 + λuI ||∆uabc||1

)

= d

(

D

Xr

)2

J2 = c J2 . (31)

As can be seen in Fig. 2, if the level sets ofJ2 are scaled
up by c, then they coincide with those ofJ3. This implies
that MPTFC achieves the same closed-loop performance as
MPCC.

VI. D ISCUSSION

To examine the performance of the proposed MPTFC
method, an MV drive with a squirrel cage IM with3.3 kV
rated voltage,356A rated current,2MVA rated power,50Hz
nominal frequency and0.25 p.u. total leakage reactance was
considered. The three-level NPC voltage source inverter has
the constant dc-link voltageVdc = 5.2 kV. The sampling
interval was set toTs = 25µs.

The steady-state performance is assessed in terms of the
total demand distortions (TDD) of the stator current,ITDD, and
electromagnetic torque,TTDD, for a given switching frequency
fsw. The torque weight was chosen in accordance with (27), re-
sulting inλT = 0.047, and the scaling parameterc = 0.0547.

For instance, by choosingλuT = 0.141 · 10−3 in the
proposed MPTFC and by tuningλuI = 2.578 ·10−3 according
to (30) for MPCC/MPFC, an average switching frequency of
fsw = 250Hz results. For this operating point, the MPTFC

3To improve readability, the time dependency is omitted.



fsw [Hz]

I T
D

D
[%

]

0 200 400 600 800 1000 1200
0

2

4

6

8

10

(a) Current TDD vs switching frequency.

fsw [Hz]

T
T

D
D

[%
]

0 200 400 600 800 1000 1200
0

2

4

6

8

10

(b) Torque TDD vs switching frequency.

Fig. 5: Trade-off curves of MPCC, MPFC and the proposed MPTFC. MPCC
with the objective functionJ1 is shown with dashed (red) lines, MPFC with
the objective functionJ2 relates to the dash-dotted (green) lines, and MPTFC
with the objective functionJ3 corresponds to the solid (blue) lines.

time-domain waveforms of the stator current and three-phase
switch position over one fundamental period are shown in
Figs. 3(a) and 4(a), respectively; those of MPCC are shown in
Figs. 3(b) and 4(b), respectively (the waveforms of MPFC are
the same as for MPCC, and thus omitted). Since the waveforms
for all three control methods are identical, the current and
torque TDDs are the same; for the specific operating point,
they are equal toITDD = 5.87% and TTDD = 4.71%,
respectively.

Following, the switching weightλuT was varied between
0.02 · 10−3 and 4 · 10−3 so as to record a wide range
of switching frequencies. More than200 simulations were
run, which are summarized in the trade-off curves shown
in Fig. 5. MPTFC was benchmarked in these simulations
against MPCC and MPFC. As can be seen, the performance
of the proposed MPTFC is identical with that of MPFC. Some
minute differences can be observed for MPCC, owing to the
assumption thatψr = ψ∗

r . Nevertheless, for a given state
vector, previous switch position, and equivalent current,torque
and flux references, MPTFC and MPCC yield the same switch
position in99.4% of the problem instances. The values of their
objectives functions—when appropriately scaled by the factor
c—differ by at most10−3, i.e., their relative difference is less
than1%.

This is in contrast to conventional MPTFC based on a
constant stator flux magnitude reference [1]. Although the
tuning in [5] is done such that the steady-state performanceof
the torque and flux controller is as close to that of MPCC as
possible, the two control schemes are not equivalent. A small
but distinct performance difference arises when operatingat
rated torque and low switching frequencies, see [5, Fig. 10].
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Fig. 6: Statorψs and rotorψr flux linkage vectors at (a) low and (b) rated
torque. By keeping the stator flux magnitudeΨs constant at1 p.u., the rotor
flux magnitudeΨr is reduced from0.94 to 0.91 p.u. when increasing the
torque from0.08 to 1p.u.

This is also evident from Figs. 3(c) and 4(c), where the
stator current and three-phase switch position, respectively, of
MPTFC discussed in [5] are depicted. By settingλT = 0.052
according to [5, (28)] as well asλuT = 0.158·10−3 to achieve
fsw = 250Hz (see [5, (31)]), the resulting current and torque
TDDs areITDD = 6.39% andTTDD = 5.00%, respectively.

Conventional MPTFC [1] and DTC maintain the stator flux
magnitude at a constant value, typically 1 p.u. When increasing
the torque and thus the load angleγ, the magnitude of the rotor
flux vector decreases in accordance with (13). This implies
that the machine is (slightly) demagnetized as the torque is
increased, as illustrated in Fig. 6. In contrast, owing to the
direct control of therotor flux, the proposed MPTFC avoids
this demagnetization of the machine at high torque.

VII. C ONCLUSION

The proposed model predictive torque and flux controller
directly controls the torque androtor flux magnitude of the
machine. By appropriately choosing the weighting factors
in the objective function analytically, a closed-loop perfor-
mance closely resembling that of predictive current control is
achieved. Consequently, the proposed model predictive torque
and flux controller achieves the same low current and torque
distortions as predictive current control, without requiring an
outer field-oriented controller that sets the current references.
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