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Abstract—Direct model predictive control (MPC) with refer-
ence tracking, also referred to as finite control set MPC (FCS-
MPC), has gained significant attention in recent years, mainly
from the academic community. Thanks to its applicability to
a wide range of power electronic systems, it is considered a
promising control method for such systems. However, to simplify
the design, researchers frequently make choices that—often
unknowingly—reduce the system performance. We discuss and
analyze in this paper the factors that affect the closed-loop perfor-
mance of FCS-MPC. Based on these findings, design guidelines
are provided that help to maximize the system performance.
To highlight the performance benefits, two case studies willbe
considered; the first one consists of a two-level converter and an
induction machine, whereas the second one adds anLC filter
between the converter and the machine.

Index Terms—Power electronic systems, model predictive con-
trol (MPC), direct control, ac drives, integer programming,
weighting factors.

I. I NTRODUCTION

M ODEL predictive control (MPC) [1] was introduced as
an advanced control method in the process industry

in the 1970s. Formulated in the time domain and suitable
for multiple-input multiple-output systems with physicalcon-
straints and complex, nonlinear dynamics, MPC was quickly
adopted in the petrochemical, chemical, aerospace and auto-
motive industry, to name just a few [2].

Nevertheless, MPC in power electronics has not gained
much attention before the early 2000s. Despite some initial
research in the 1980s, see, e.g., [3], [4], the lack of sufficient
computational power at the time did not allow for further
investigations. In recent years, however, the advent of micro-
processors with increased computational capabilities renewed
the interest of the power electronics community in MPC [5]–
[8]. As a result, many algorithms in the framework of MPC
have hitherto been developed for several power electronic
systems, ranging from low- to high-power applications [9]–
[12].

This is reflected by the number of peer-reviewed pub-
lications. A search on IEEEXplore with the search term
“predictive and control and (inverter or converter)” in the
abstract reveals an exponential growth in the number of annual
publications, see Fig. 1. Since the year 2000, the number of
new publications per year has been roughly doubling every
three years.
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Fig. 1: Annual number of MPC-related peer-reviewed publications appearing
in IEEE Xplore since 2000. Only publications related to power electronic
systems are taken into account.

In academia, direct MPC with reference tracking, also
known as finite control set MPC (FCS-MPC), is the favored
and most widely published MPC method [13]. This popularity
stems from its design simplicity. Specifically, the model of
the power electronic system is used to predict its future
behavior based on the (finite number of) possible switch
positions. The subsequent predictions are assessed on the basis
of a chosen optimization criterion (or multiple criteria) that
is (are) quantified by an objective function. Following, the
switch position that is predicted to provide the most favorable
system behavior, i.e., the one that minimizes the objective
function, is considered to be optimal. In a last step, the optimal
switch position isdirectly applied to the converter without an
intermediate modulation stage [14].

As can be understood from the above, the design proce-
dure of FCS-MPC is fairly straightforward. Because of this,
researchers advocate the use of FCS-MPC in industry as a
superior alternative to established control methods. However,
industry is reluctant to adopt new control methods that do not
provide significant economic benefits [15]. More specifically,
either the investment cost of the power electronic system, i.e.,
the capital expenditure (CAPEX), or the operating cost, i.e.,
the operational expenditure (OPEX), need to be reduced. To
achieve these benefits with control, it is mandatory to improve
some key aspects of the system performance; this, in turn,
is typically achieved with more complicated control methods.
Indeed, MPC-based algorithms developed in industry are more
elaborate and intricate, see, e.g., [16]–[20]. Conversely, the
mapping from improved system performance aspects to cost
savings must be clearly identified and quantified in order to
convince industry to adopt novel MPC methods.

Motivated by the previous observations, this paper focuses



on design guidelines that improve the performance of FCS-
MPC. Two major performance metrics will be considered,
namely the switching frequency, and the total harmonic dis-
tortions (THD) of the load current. The switching frequency
relates to the switching losses and, thus, to the converter
efficiency. The current THD is a proxy for the harmonic
losses in the load. The parameters that affect the system
performance, such as the choice of norm, the weighting factors
in the objective function, the sampling intervalTs, the length
of the prediction horizon, etc., are discussed and analyzed.
Subsequently, design guidelines are provided. Moreover, two
case studies are used to illustrate the performance benefits—
or lack thereof—arising from the design choices, namely a
two-level converter driving an induction machine (IM), and
the same drive system with an intermediateLC filter.

This paper is structured as follows. The FCS-MPC problem
is summarized in Section II. The commonly used terms in the
objective function, i.e., the tracking error term and the control
effort term, are discussed in Sections III and IV, respectively.
Design guidelines for the sampling interval are given in
Section V. Section VI analyzes the effect of the prediction
horizon, whereas Section VII presents suboptimal designs.
Furthermore, a brief performance assessment is provided in
Section VIII. Finally, Section IX concludes this paper.

II. PROBLEM STATEMENT

We first review FCS-MPC. In the sequel of this section, the
mathematical model of the plant as well as the formulation
and solution of the optimal control problem are presented.

A. System Modeling

MPC requires an adequate system model for its predictions.
Because MPC is a discrete-time controller, the design of the
model has to be done in the discrete-time domain. A generic
power electronic system can be described by

x(k + 1) = f
(

x(k),u(k)
)

(1a)

y(k) = g
(

x(k)
)

, (1b)

where k ∈ N indicates the discrete time step. The state
vector1 x ∈ R

nx in (1) encompasses the variables that fully
describe the dynamics of the system in question. Typical state
variables in power electronics are the currents flowing through
inductors, the voltages across capacitors, the machine fluxes,
etc. [14].

Theny output variables of the system, which are aggregated
in the vectory ∈ R

ny , are a (linear or nonlinear) function of
the state variables. Typical output variables are the real and
reactive power, electromagnetic torque, flux magnitude, output
current, etc. Thenu-dimensional input vectoru corresponds
to the integer switch positions of the power converter. In the

1Commonly, when three-phase systems are considered, the variables
ξabc = [ξa ξb ξc]T in the three-phase (abc) system are mapped into a two-
dimensional orthogonal space. The latter can either be rotating with the
angular speedωfr (referred to as thedq-plane), or be stationary, i.e.,ωfr = 0
(referred to as theαβ-plane). For mapping to thedq-plane the transformation
ξdq = K(ϕ)ξabc, with ξdq = [ξd ξq]T andϕ being the angle between the
d- and thea-axis, is performed. When the mapping is done to theαβ-plane,
the transformation is of the formξαβ = K(0)ξabc, with ξαβ = [ξα ξβ ]

T .

remainder of the paper we consider three-phase systems (i.e.,
nu = 3); we define the input asu = uabc = [ua ub uc]

T with

u ∈ U , U ⊂ Z
3 . (2)

The extension of the discussion and analysis to systems with
nu 6= 3 is straightforward.

In most cases, the power electronic system (1) is a linear
system. Thus, the discrete-time state-space model takes the
form2

x(k + 1) = Ax(k) +BK(ϕ)u(k) (3a)

y(k) = Cx(k) . (3b)

The system matrixA ∈ R
nx×nx , input matrixB ∈ R

nx×2,
and output matrixC ∈ R

ny×nx are derived based on the
system, input and output matrices of the continuous-time
state-space model by using some discretization method, most
commonly, forward Euler or exact discretization [21].

B. Performance Metrics

The two most relevant metrics to evaluate the system
performance are the output current THDITHD and theaverage
switching frequencyfsw of the converter. The former is defined
as

ITHD =

√

∑

n6=1 î
2
o,n

îo,1
, (4)

where îo,n is the amplitude of the load current harmonic at
frequencynf1, with f1 being the fundamental frequency and
n ∈ R

+.3 Note that as per definition of the FCS-MPC problem
(see Section II-C), minimization of the output current error
implies minimization ofITHD, see [22, Appendix A].

The average device switching frequency is defined as

fsw = lim
M→∞

1

mckMTs

M−1
∑

ℓ=0

‖∆u(ℓ)‖1 , (5)

where∆u(ℓ) = u(ℓ)−u(ℓ−1). Moreover,m is the number of
the power semiconductor switches of the power converter of
interest, andck is a converter-dependent “correction” factor
such that ∆u

ck
∈ {−1, 0, 1}3. For example,ck = 2 for a

two-level converter becauseux ∈ {−1, 1}, while for a three-
level converter we setck = 1. As discussed in the paper,
and according to the FCS-MPC problem in Section II-C, the
switching frequencyfsw can be controlled directly when the
control effort is penalized.

Finally, it is worth mentioning that an insightful perfor-
mance metric that combines the two aforementioned metrics
is their product

cf = ITHD · fsw . (6)

2Hereafter, we drop the subscript from variables in theabc-plane to simplify
the notation, whereas variables in theαβ- anddq-plane are denoted with the
corresponding subscript.

3An alternative metric for the current distortions is the current total demand
distortion (TDD). The difference withITHD is that the nominal peak output
current constitutes the denominator in (4). The main benefitof such a metric
is that the current TDD does not approach infinity when the fundamental
component̂io,1 is zero. However, when operation at nominal conditions is
considered—as in the cases considered in this paper—the current THD and
TDD are the same.



This metric quantifies the product of the current distortions
and switching frequency, and thus the quality of the control
and modulation scheme in question;cf being approximately
constant defines a hyperbolic trade-off betweenITHD andfsw.
Therefore, a lowercf implies a higher performing control
method at steady-state operation.

C. FCS-MPC Problem

Consider the sequence of manipulated variables over a finite
horizon ofNp ∈ N

+ time steps

U(k) =
[

uT (k) uT (k + 1) . . . uT (k +Np − 1)
]T

∈ U ,

(7)
where U = U

Np . With U(k) and the present statex(k)
the future behavior of the power electronic system can be
predicted over the prediction horizon with the help of (1)
(or (3)).

The control objectives are quantified and mapped into
a non-negative scalar value via the objective function
J : Rnx × U → R

+, which is of the form4

J
(

x(k),U(k)
)

=

k+Np−1
∑

ℓ=k

J†
(

x(ℓ + 1),u(ℓ)
)

. (8)

The stage costJ†(⋆) is commonly based either on theℓ1-
norm or the ℓ2-norm. Consider then-dimensional vector
ξ = [ξ1 ξ2 . . . ξn]

T . The ℓ1-norm is defined as

‖ξ‖1 = |ξ1|+ |ξ2|+ . . .+ |ξn| ,

where|⋆ | denotes the absolute value of a scalar quantity. The
squaredℓ2-norm is given as

‖ξ‖22 = ξ21 + ξ22 + . . .+ ξ2n = ξT ξ .

Because the control problem is formulated as a reference
tracking problem [9], the output variablesy must track their
referencesyref. This is captured by the stage cost

J†
(

x(ℓ+1),u(ℓ)
)

= ‖yref(ℓ+1)−y(ℓ+1)‖pp+λu‖∆u(ℓ)‖
p
p ,
(9)

with p ∈ {1, 2}. The output tracking error and the control
effort are penalized at each time step. Note that the difference
between two consecutive switch positions∆u(ℓ) is penalized
rather than the switch position itself. This allows one to control
the average switching frequencyfsw of the converter. Finally,
the non-negative weighting factorλu ∈ R

+ adjusts the trade-
off between the two aforementioned terms.

4An alternative form of the objective function is

J
(

x(k),U(k)
)

= P
(

x(k +Np)
)

+

k+Np−1
∑

ℓ=k

J†
(

x(ℓ),u(ℓ)
)

,

whereP (⋆) describes the cost at the terminal state. This terminal costcan
be used to ensure closed-loop stability [1], [23].
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Fig. 2: Receding horizon policy for a six-step prediction horizon (Np = 6).
For simplicity, a single-input single-output (SISO) system is assumed. The
predicted output and output reference trajectories are denoted withY (k) =
[y(k+1) . . . y(k+Np)]T andY ref(k) = [yref(k+1) . . . yref(k+Np)]T ,
respectively.

D. Integer Optimization Problem

Based on the objective function (8), the system model (1),
the (integer) input constraint (2), and (optional) explicit state
constraints of the formx(k) ∈ X ⊆ R

nx , the integer
optimization problem is formulated as

minimize
U(k)

J
(

x(k),U(k)
)

subject to x(ℓ+ 1) = f
(

x(ℓ),u(ℓ)
)

y(ℓ+ 1) = g
(

x(ℓ+ 1)
)

u(ℓ) ∈ U

x(ℓ+ 1) ∈ X ∀ ℓ = k, . . . , k+Np−1 .

(10)

The optimization problem (10) is often solved by using
the brute-force approach of exhaustive enumeration [8]. To
reduce the computational load, methods that rely on dedicated
optimization algorithms such as branch-and-bound [24], and
non-trivial prediction horizon formulations [25] should be
considered. The solution of (10) is the open-loopoptimal
sequence of manipulated variables

U∗(k) =
[

u∗T (k) u∗T (k + 1) . . . u∗T (k +Np − 1)
]T

.

(11)
Out of this sequence only the first elementu∗(k) is applied
to the converter, whereas the rest are discarded. Following,
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Fig. 3: FCS-MPC with output reference tracking.

problem (10) is solved over a horizon shifted by one time
step using new measurements and/or estimates. This so-called
receding horizonpolicy provides feedback to the MPC algo-
rithm; this concept is visualized in Fig. 2. The block diagram
of FCS-MPC with output reference tracking is shown in Fig. 3.

The optimization problem in (10) simplifies significantly
when adopting theℓ2-norm in the objective function (8),
considering the linear discrete-time model (3) and removing
the constraints by settingu ∈ R

3 and x ∈ R
nx . The

optimization problem is then a convex quadratic program (QP)
with linear equality constraints. Its so-calledunconstrained
solution

Uunc(k) =
[

uT
unc(k) u

T
unc(k + 1) . . . uT

unc(k +Np − 1)
]T

(12)
can be found by setting the gradient of (8) equal to zero, i.e.,

∇J
(

x(k),U(k)
)

= 0 , (13)

where the components of∇J(⋆) ∈ R
3Np are the partial

derivatives ofJ(⋆)

∇J
(

x(k),U(k)
)

i
=
∂J

(

x(k),U (k)
)

∂ui(k)
, i = 1, . . . , 3Np .

The unconstrained solution (12) will be utilized in several
ways later in this paper.

III. T RACKING ERROR

This section is dedicated to the design of the tracking error
term (9) in the objective function. In the sequel, the most
common pitfall—namely a poorly chosen norm—is discussed,
which can lead to suboptimal performance or even instability.
Moreover, tuning guidelines are provided that can improve the
system performance.

A. Choice of Norm

The computation of the stage cost (9) is computationally
cheaper when theℓ1-norm—instead of theℓ2-norm—is used.
Therefore, from a computational perspective, the adoptionof
the ℓ1-norm in FCS-MPC seems to be preferable, particularly
in light of the fact that the MPC algorithm has to be executed
in real time within a few tens of microseconds. As a result, the
MPC problem is often based on theℓ1-norm in the literature,
see, e.g., [8], [26]–[41].

Focusing on this issue, a detailed analysis of the choice of
norm in FCS-MPC is presented in [42]. Therein, it is shown
that when theℓ2-norm is used in (9), i.e.,

J†
(

x(ℓ+1),u(ℓ)
)

= ‖yref(ℓ+1)−y(ℓ+1)‖22+λu‖∆u(ℓ)‖
2
2 ,
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Fig. 4: Trade-off curves for the stage cost (9) withℓ1- and ℓ2-norm. The
current THDITHD is shown for the achievable range of switching frequencies
fsw. The solid (blue) and dashed (red) lines are polynomial approximations
of the individual simulation results. The individual simulations are indicated
by squares and circles for current FCS-MPC based on theℓ1- and ℓ2-norm,
respectively.

closed-loop (practical) stability5 of the system is guaran-
teed [43]. On the other hand, theℓ1-norm can result in a
performance deterioration as well as closed-loop instability,
provided thatλu 6= 0. For λu = 0, stability issues do not
arise, but setting the penalty on the control effort to zero is
not recommended, as will be explained in Section IV.

Besides the stability issues incurred by the use of theℓ1-
norm in (9), a limited range of switching frequencies as wellas
performance degradation are among the direct consequences
of such a design choice. To show this consider a two-
level inverter driving an IM (this case study is presented in
Appendix A). Let FCS-MPC control the stator currentis,αβ
of the system, i.e.,y = is,αβ . We set the sampling interval
to Ts = 5µs. The stator current THD,ITHD, is plotted versus
the average device switching frequencyfsw in Fig. 4.

When theℓ2-norm is used andλu is varied between0 and
0.025, a wide range of switching frequencies is achieved. The
highest switching frequency occurs forλu = 0 and, thus,
depends only on the chosen sampling interval. The lowest
possible switching frequency occurs in six-step operation; to
achieve this, we setλu = 0.025. On the other hand, when
the objective function is based on theℓ1-norm, stability is
lost when λu exceeds0.0163. Operation at low switching
frequencies is, thus, not possible, as can be seen in Fig. 4. For
a detailed discussion of these findings, the interested reader is
referred to [42].

Thanks to Parseval’s identity theℓ2-norm of a signal corre-
sponds to its energy [44]. In the context of power electronics,
the ℓ2-norm of a ripple variable is proportional to its THD,
see [22, Appendix A]. Therefore, minimizing the output track-
ing erroryref−y is akin to minimizing the THD of the output
variablesy. This implies that better tracking performance is
achieved when theℓ2-norm is used in (9). This can be seen
in Fig. 4, where for the shown range of achievable switching
frequencies, the performance of FCS-MPC based on theℓ1-
norm is equal to or worse than that of FCS-MPC with the
ℓ2-norm. This observation leads to the first guideline.

5For the definition of practical stability the reader is referred to [23, Section
II] and references therein.



Design guideline 1.The stage cost should be based on the
ℓ2-norm by settingp = 2 in (9). By doing so, practical closed-
loop stability, favorable tracking performance and compara-
tively low distortions are ensured.

B. Algebraic Tuning Guidelines

The output current of the converter, regardless of whether
it is fed into the grid, an electrical machine, or any other
load, should have as low a THD as possible. To this aim, the
straightforward approach is to directly control it, i.e., to define
it as an output variabley so as to regulate it with the help
of (9) along its referenceyref. Within the family of FCS-MPC
methods, current FCS-MPC minimizes the current THD for a
given switching frequency, as shown in [22].

Nevertheless, for grid-connected converters, it is sometimes
preferable to directly control the real and reactive power.
Similarly for electrical machines, the electromagnetic torque
and the stator flux magnitude are of prime interest and often
defined as output variables. This implies that a weighting
factor is required that sets the relative importance between the
two output variables. When controlling the real and reactive
power, the penalty on the corresponding two error tracking
terms should be equal [27], [45], [46]; a related discussioncan
be found in [14, Section 11.3.3] for model predictive direct
power control. Heuristically tuning the weighting factor for
torque and flux control, or simply assigning the same weight
to the two objective function terms, as done, e.g., in [41], [47],
[48], is a questionable practice. In general, the current THD
and, thus, the closed-loop performance deteriorates.

As shown in [22], a closed-form expression for the weight-
ing factor in model predictive torque and flux control can be
derived. This is done by designing the objective function of
the problem in question such that its level sets are similar
to those of the current control problem. As a result, the
flux/torque controller produces verysimilar current distortions
per switching frequency to those of the predictive current
controller. Going one step further, the flux/torque controller
achieves thesame current THD as the predictive current
controller when replacing the stator flux by the rotor flux in
the objective function (of the flux/torque controller) [49].

Consider again the two-level inverter drive system described
in Appendix A, and assume operation at nominal speed and
rated torque. Fig. 5 shows simulation results that highlight the
equivalence between the two control methods.

Design guideline 2.To achieve similar current distortions for
current FCS-MPC and torque/flux FCS-MPC, the weighting
factor introduced in the output tracking error term(9) of the
latter can be set based on an analytical expression. Tuning is
avoided.

IV. PENALTY ON THE CONTROL EFFORT

The effect of the control effort weighting factorλu on the
system performance is analyzed in this section. Two cases are
examined, i.e.,λu = 0 andλu > 0. The relevant performance
benefits, or lack thereof, are discussed, and design guidelines
are proposed.
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Fig. 5: Trade-off between current THDITHD and switching frequencyfsw for
current FCS-MPC (solid, blue line), and torque/flux FCS-MPC(dashed, red
line). The individual simulations are shown as squares (current control), and
circles (torque/flux control).

A. Similarity with Deadbeat Control

Deadbeat control is a control technique that aims to elim-
inate the tracking error at the end of the sampling interval
Ts provided that the system is one-step reachable [50].6

This is achieved by computing the appropriate modulating
signal udb ∈ [−1, 1]3 ⊂ R

3 which is fed into a modulator.
Therefore, deadbeat controllers show fast dynamic responses,
but also poor robustness to model mismatches and parameter
uncertainties [51], [52].

For λu = 0, FCS-MPC resembles the behavior of dead-
beat control, as explained in the following. This holds true
regardless of whether a short or a long prediction horizon is
used.

1) One-Step FCS-MPC:As can also be seen in [12,
Table III], the most common implementation of FCS-MPC
considers a one-step prediction horizon (Np = 1), and the
stage cost does not include the control effort term∆u (or
equivalentlyλu = 0), see, e.g., [8], [27]–[32], [34]–[41], [47],
[53]–[55]. With such a design, the objective function simplifies
to

J
(

x(k),u(k)
)

= ‖yref(k + 1)− y(k + 1)‖22 , (14)

where only theℓ2-norm is considered for the reasons explained
in Section III-A.

Theorem 1. Consider a three-phase power electronic system
described by the linear state-space model(3). One-step FCS-
MPC without penalization of the control effort (as(14)) is a
quantized deadbeat controller.

Proof. The proof is provided in [56, Section 3]. �

In other words, according to Theorem 1, the deadbeat
solutionudb is the same as theunconstrained(i.e., relaxed)
solution uunc of the optimization problem (10), see (12).
With one-step FCS-MPC, however,uunc cannot be synthesized
by a subsequent PWM stage because the switch positions
are directly manipulated. Therefore, the concept of deadbeat
control is extended; the solution of the FCS-MPC problem is

6This is the case for first-order systems without input constraints. For
systems of orderℓ > 1, reachability can be achieved inℓ time steps. Without
loss of generality, the concepts discussed hereafter can bedirectly extended
and applied to such systems as well.



the three-phase switch positionu that minimizes the track-
ing error at the next time step, regardless of the switching
effort. As a consequence, MPC with objective function (14)
can be interpreted as a quantized deadbeat control technique
which inherits the corresponding performance characteristics,
as mentioned at the beginning of this section.

2) Multistep FCS-MPC: Although, as will be analyzed
in Section VI, long prediction horizons offer performance
benefits, a common belief in the power electronic community
is that they are not necessary. This misconception stems from
the poor formulation of the MPC problem, i.e., the lack of
the control effort penalization. Thereby, for long-horizon FCS-
MPC with Np > 1 andλu = 0, the function to be minimized
is of the form

J
(

x(k),U (k)
)

=

k+Np−1
∑

ℓ=k

‖yref(ℓ+ 1)− y(ℓ+ 1)‖22 . (15)

MPC with (15), nonetheless, resembles a deadbeat controller,
as stated in the following theorem.

Theorem 2. Consider a three-phase power electronic system
described by the linear state-space model(3). Multistep FCS-
MPC without penalization of the control effort (see func-
tion (15)) is a quantized deadbeat controller.

Proof. The proof is provided in Appendix C. �

Therefore, long-horizon FCS-MPC with the objective func-
tion (15) cannot improve the system performance as compared
with one-step horizon MPC with function (14) because both
methods produce exactly the same control actions.

3) Performance: The similarity between FCS-MPC with
λu = 0 and quantized deadbeat control implies that the fea-
tures that characterize the latter control method are inherited
by the former. This means that FCS-MPC shows favorable
dynamic operation, but inferior steady-state performancecom-
pared with conventional modulation techniques.

More specifically, owing to the lack of the control effort
penalization, the switching frequency in FCS-MPC is limited
only by the chosen sampling intervalTs. Although the theoreti-
cal maximum switching frequency is equal tofsw = fs/2, with
fs = 1/Ts being the sampling frequency, empirical studies
show that it is less thanfs/4 [13, Chapter 4]; this is also
implied by Fig. 4, for which we havefsw ≈ fs/7.7.

When operating the converter at the highest possible switch-
ing frequency (withλu = 0), FCS-MPC does not outper-
form conventional methods, such as space vector modulation
(SVM) [57]. This is shown in Table I, where a comparison
between one-step FCS-MPC, multistep FCS-MPC, and SVM
is presented. We consider again current control of the two-
level drive system in Appendix A. A switching frequency
of fsw ≈ 2.3 kHz results when setting the sampling interval
to Ts = 50µs, regardless of the length of the prediction
horizon. Clearly, the current distortions are also the samefor
the one-step and the multistep FCS-MPC. To achieve the same
switching frequency for SVM, the modulation cycle is chosen
asTc = 434.78µs. Note that its current distortions are slightly
lower. A similar result is obtained at the switching frequency
fsw ≈ 25.75 kHz, see Table I.

TABLE I: Current THD ITHD of a two-level drive system (see Appendix A)
when operated either atfsw ≈ 2.3 kHz or atfsw ≈ 25.75 kHz.

Control Control fsw ITHD

scheme settings [kHz] [%]

SVM Tc = 434.78µs
2.3

5.99

MPC Np = 1, λu = 0, Ts = 50 µs 6.04

MPC Np = 10, λu = 0, Ts = 50µs 6.04

SVM Tc = 38.84 µs
25.75

0.56

MPC Np = 1, λu = 0, Ts = 5µs 0.62

MPC Np = 10, λu = 0, Ts = 5µs 0.62

Design guideline 3. The control effort in FCS-MPC must
always be penalized to ensure acceptable current distortions
per switching frequency.

As will be explained in Section V, a high sampling-to-
switching-frequency ratio is required to ensure an acceptable
steady-state performance. To enable a high ratio, the control
effort must be penalized with the aim to reduce the switching
frequency. Lowering the switching frequency by increasing
the sampling interval, however, leads to a low sampling-to-
switching-frequency ratio and, thus, to rather high current
distortions per switching frequency. FCS-MPC then also re-
sembles deadbeat control, which is characterized by a high
sensitivity to measurement and observer noise.

B. Tuning of the Weighting Factor on the Control Effort

The objective function (8) comprises two competing scalar
terms that are to be minimized. To prioritize among the two
terms, the weighing factorλu is introduced; this parameter
needs to be tuned such that the desired performance is
achieved. The standard practice is to tune the weighting factor
manually.

More generally, the optimization problem (10) is, by def-
inition, a multi-criterion optimization problem with trade-off
curves or surfaces [58, Section 4.7]. It is common practice to
explore the so-called Pareto optimal points, i.e., these feasible
points that are “better” from an optimization perspective than
all other feasible points. Owing to the non-convex nature
of the integer optimization problem, however, the trade-off
surfaces are not monotonic, see also Figs. 4 and 5. Because of
that, the tuning process becomes more difficult; this fact was
also pointed out in [59], wherein a first discussion on how
to empirically design such parameters was presented. Some
more laborious ways to choose the weights have been recently
proposed, see, e.g., [60], [61].

C. Alternative Approaches

To avoid the difficulties discussed above, a promising ap-
proach was recently proposed in [62]. The minimization of the
weighted control effort is replaced by a new term that penalizes
the predicted deviation of the switching frequency from its
reference. More specifically, the stage cost (9) is rewritten as

J†
(

x(ℓ+ 1),u(ℓ)
)

= ‖yref(ℓ + 1)− y(ℓ+ 1)‖pp

+ λu‖fsw,ref(ℓ+ 1)− f̂sw(ℓ+ 1)‖pp ;
(16)



the switching effort term‖∆u(ℓ)‖pp is replaced with the track-
ing term ‖fsw,ref(ℓ+ 1)− f̂sw(ℓ+ 1)‖pp. This term introduces
the desired operating switching frequencyfsw,ref as well as the
predictedswitching frequencyf̂sw. With regard to the latter,
a filter can be used to capture the switching frequencyfsw

as defined in (5). To this aim, e.g., a second-order infinite
impulse response (IIR) filter was proposed in [62]. Depending
on the state of this filter and the switching sequenceU(k), the
approximate switching frequency over the prediction horizon
can be predicted.

To avoid the tuning of the control effort altogether, one can
formulate an MPC problem in which the switching frequency
is fixed and directly defined by the chosen sampling interval
Ts. This can be done by choosing the number of possible
switching transitions within a given time interval. Starting
with [63], several related methods have been proposed, see,
e.g., [64]–[72]. The objective function is simplified, thus
allowing the controller to focus only on the tracking of the
output referenceyref. This significantly simplifies the tuning
procedure. However, because these problem formulations do
not meet the problem definition in (10), they differ from FCS-
MPC methods and are, thus, out of the scope of this paper.

Design guideline 4.The weighting factors in multi-criterion
optimization problems such as(10) are most commonly tuned
by exploring the associated trade-off surfaces. This renders the
tuning procedure cumbersome. To avoid this, one could fix the
switching frequency while FCS-MPC focuses on minimizing
the tracking error.

V. SAMPLING INTERVAL

FCS-MPC restricts switching transitions to the discrete time
instantskTs, (k+1)Ts, . . .. This fact directly follows from the
formulation of the optimization problem in (10), which leads
to a constant switch position in the interval[kTs, (k + 1)Ts].
The discretization of the time axis is required to formulate
and solve the MPC problem in the discrete-time domain, but
the restriction of switching to discrete-time steps is unique to
FCS-MPC.

A key metric is the ratio between the sampling frequency
and the switching frequency. This ratio defines thegranularity
of switching. More specifically, a low sampling-to-switching-
frequency ratio unduly restricts the switching instants ofFCS-
MPC to a coarsely sampled time axis. This is illustrated in
Fig. 6(a), which shows a single-phase switching sequence
for the low sampling-to-switching-frequency ratio of10. On
the other hand, a high sampling-to-switching-frequency ratio
allows FCS-MPC to switch at approximately any moment in
time, and, thus, effectively in the continuous-time domain.
This results in a fine granularity of switching. Fig. 6(b) shows
a switching sequence for the high sampling-to-switching-
frequency ratio of100.

As a rule of thumb, the sampling frequencyfs should
be about two orders of magnitude higher than the switching
frequencyfsw [62], [73]–[78]. Such a high ratio is required
for all direct control techniques. Industrial drives controlled
by direct torque control (DTC) [79], e.g., require a sampling
frequency of40 kHz when operating at switching frequencies

Time step

u

k k + 2 k + 4 k + 6 k + 8 k + 10

−1

1

(a) fs/fsw ≈ 10

Time step

u

k k + 20 k + 40 k + 60 k + 80 k + 100

−1

1

(b) fs/fsw ≈ 100

Fig. 6: Single-phase switching sequence for switching frequency at about
500Hz. The sampling frequency is (a)5 kHz, and (b)50 kHz. The individual
samples are shown as rhombi. The time window corresponds to2ms.

TABLE II: Current THD ITHD of a two-level converter when operating at
fsw = 4 kHz.

Control Control fs/fsw ITHD

scheme settings [%]

SVM fc = 4 kHz — 1.67

MPC λu = 0, Ts = 35µs 7.14 2.06

MPC λu = 5 · 10−6, Ts = 30µs 8.33 1.79

MPC λu = 3.1 · 10−4, Ts = 20 µs 12.5 1.75

MPC λu = 1.9 · 10−4, Ts = 10 µs 25 1.59

MPC λu = 1.2 · 10−4, Ts = 5µs 50 1.56

MPC λu = 6.5 · 10−5, Ts = 2.5µs 100 1.51

MPC λu = 2.7 · 10−5, Ts = 1µs 250 1.47

MPC λu = 7 · 10−6, Ts = 0.25µs 1000 1.47

of up to 250Hz to achieve the desired steady-state behavior
as well as a superior dynamic performance [80].

To confirm this rule of thumb, consider a two-level converter
with an activeRL load operating at rated power. One-step
current FCS-MPC is used with various sampling intervals. The
penalty on switching,λu, is adjusted accordingly to achieve
a switching frequency of4 kHz. The results are summarized
in Table II, where SVM is used as a baseline using the same
switching frequency.

The table indicates that a sampling-to-switching-frequency
ratio of at least20 is required to outperform SVM. Ratios in
excess of50 can further improve the steady-state performance,
although less significantly. The table also confirms that setting
the penalty on switching to zero and using the sampling
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interval as a tuning parameter to set the switching frequency
is a poor design choice, leading to much higher current
distortions than SVM. Even though this is common practice,
see, e.g., [8], [27], [31], [34]–[41], [47], [53], [54], [81]–[83],
it is not recommended.

The benefit of high sampling-to-switching-frequency ratios
can also be observed in Fig. 7. Considering the two-level
drive system of Appendix A, the performance of one-step
current FCS-MPC in terms of current distortions is depicted
for Ts = 5µs and50µs. When low switching frequencies
are desired then both sampling intervals perform equally well
because the ratiofs/fsw is high. However, as the switching
frequency increases, the current THD produced by MPC
with the long sampling interval becomes worse than that of
MPC with the short sampling interval, when the sampling-to-
switching-frequency ratio falls below25.

Design guideline 5.To ensure a fine granularity of switching
in FCS-MPC, the sampling frequency should be two orders of
magnitude higher than the switching frequency (and a penalty
on the switching transitions should be imposed to achieve the
desired the switching frequency).

To achieve high sampling frequencies, control platforms
based on field-programmable gate array (FPGA) are well
suited, because operations can be highly pipelined and paral-
lelized [62], [84]. Alternatively, discrete-time controlmethods
should be considered that facilitate switching at any moment
in time within the sampling interval. Two examples for this
include [16] and [71], but more research effort is required
to develop MPC methods for converters operating at high
switching frequencies.

VI. L ENGTH OF THEPREDICTION HORIZON

It is a common misconception that solving the integer opti-
mization problem (10) is numerically easy and that it can be
done in a straightforward manner with exhaustive enumeration.
Indeed, problem (10) underlying MPC is inherently difficultto
solve as it is known to be NP-hard. This means that its compu-
tational complexity increases exponentially with the dimension
of the optimization vector, i.e., the switching sequenceU(k).

Hence, (10) can quickly become computationally intractable
as the length of the horizon increases.

A common practice to keep the computational complexity
at bay is to choose as short a prediction horizon as possible;
in almost all cases,Np = 1 is selected [10]. However, it is
well-known that a long prediction horizon can improve the
closed-loop stability margin as well as the plant performance
in MPC [85]. In the case of FCS-MPC with reference tracking
for power electronics this was confirmed in [86]. Therefore,
a trade-off between control performance and computational
complexity arises. In the sequel of this section the benefits
of long horizons are examined for a first- and a third-order
system.

A. First-Order System

The effect of the longer horizon on the system performance
is shown in Fig. 8 for the two-level drive system (see Ap-
pendix A). The sampling interval is set toTs = 5µs. As can be
observed, long-horizon FCS-MPC outperforms one-step MPC
over the whole range of the shown switching frequencies.
Long horizons are particularly beneficial for switching fre-
quencies below1 kHz, see Fig. 8(b). The relativeimprovement
in the current THD

ITHD,rel =

∣

∣

∣

∣

ITHD|Np=10 − ITHD|Np=1

ITHD|Np=1

∣

∣

∣

∣

,

peaks at approximately≈ 12% for the switching frequency
fsw = 500Hz. This is a notable, but relatively modest
performance improvement. Larger gains of about20% can be
achieved for three-level converters, see [86].

The absence of a considerable performance benefit is due to
the simplicity of the chosen system. The transfer function from
the switch position (i.e., the manipulated variable) to theoutput
current (i.e., the controlled variable) is a first-order system, one
in each axis of the stationary orthogonal coordinate system.
First-order systems, are, in general, easy to control, and thus
more sophisticated and complex control methods—such as
long-horizon MPC—provide only minor performance benefits.

Design guideline 6. For first-order systems, long horizons
offer modest performance benefits over a limited range of
operating points and switching frequencies. Therefore, a short
horizon typically suffices.

B. Third-Order System

When higher-order systems, such as converters withLC
or LCL filters, are the targeted applications, long horizons
strongly impact the closed-loop performance [87]. Due to the
more complex dynamics of such systems, a long prediction
horizon enables the controller to make better educated deci-
sions because the evolution of the system state is computed
over a longer time interval into the future.

This performance boost is also visible in Fig. 9. A third-
order system is considered, namely the aforementioned two-
level drive system with anLC filter and a resonance frequency
of 830Hz, see Appendix B. The sampling interval isTs =
25µs. Extending the prediction horizon from one to20 steps



fsw [kHz]

I T
H

D
[%

]

SVM

MPC with
Np = 1

MPC with
Np = 10

0 5 10 15 20 25 30
0

2.5

5

7.5

10

12.5

15

(a) ITHD vs fsw

fsw [kHz]

I T
H

D
[%

]

SVM

MPC with
Np = 1

MPC with
Np = 10

0 0.5 1 1.5 2 3 3.5 4 4.52.5 5
0

5

10

15

20

25

30

(b) ITHD vs fsw (zoomed in)

Fig. 8: First-order (two-level drive) system: trade-off between current THD
ITHD and switching frequencyfsw for FCS-MPC withNp = 1 (solid, blue
line), FCS-MPC withNp = 10 (dashed, red line), and SVM (dash-dotted,
black line). The individual simulations are shown as squares (MPC withNp =
1), circles (MPC withNp = 10), and asterisks (SVM).

reduces the stator current THD by more than75% over the
whole range of the depicted switching frequencies.

This can also be observed in Fig. 10, which depicts the
stator current THD as a function of the prediction horizon
length for the fixed switching frequency of3 kHz. The current
THD decreases considerably up to the10-step horizon, after
which the rate is significantly lower. The proverbialkneeof the
fitted curve indicates a good compromise between performance
and controller complexity. For the specific case study, ten-step
FCS-MPC provides a good performance at a relatively low
computational complexity.

Design guideline 7.For higher-order systems, long horizons
offer significant performance benefits over one-step FCS-
MPC. Even a relatively short prediction horizon can consider-
ably improve the performance, and should, thus, be adopted.

VII. SUBOPTIMAL MPC

To facilitate the implementation of FCS-MPC algorithms,
researchers resort to strategies that simplify the optimization
problem at hand by either reformulating the objective function,
or by restricting the feasible set7 [24], [38], [75], [88]–
[92]. However, there are cases where such methods—often

7A feasible set is a set of all feasible points of an optimization problem [58,
Section 4.1]. In the context of FCS-MPC for power electronics, feasible points
are the switch positionsu ∈ U that meet the constraints in (10).
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Fig. 10: Stator current THDITHD of a third-order drive system as a function of
the prediction horizonNp at a switching frequency offsw ≈ 3 kHz. Individual
simulations are shown as circles.

unknowingly—have a detrimental effect on the system perfor-
mance because they impact optimality. This section focuses
on such methods and discusses the introduced suboptimality.

A. Simplified Objective Function

As discussed in Section IV, problem (10) is a multi-
criterion optimization problem with multiple terms in the
objective function. Weighting factors are required to set their
relative importance in the objective function [58]. To avoid
the tuning procedure, a simplified FCS-MPC approach is to
consider multiple objective functions, each with a single term.
Subsequently, the single-objective functions are minimized
separately one after another, i.e., in asequential manner, see,
e.g., [93], [94]. Eliminating the weighting factors in sucha
way, nevertheless, removes degrees of freedom that can be
exploited to improve the performance. This will be explained
with the following example.

Example 1. Consider one-step FCS-MPC to control the
torque Te and stator flux magnitudeΨs of an induction
machine. By neglecting the control effort term, objective func-
tion (8) simplifies to

J
(

x(k),u(k)
)

= λT JT + (1− λT )JΨ , (17)



where

JT =
(

Te,ref(k + 1)− Te(k + 1)
)2
, (18a)

JΨ =
(

Ψs,ref(k + 1)−Ψs(k + 1)
)2
, (18b)

andλT ∈ [0, 1]. As shown in [22],JT can be written as

JT = cm
(

ψ∗
sq(k + 1)− ψsq(k + 1)

)2
, (19)

wherecm is a machine-dependent constant parameter. We also
defineΨs = ‖ψs‖2.

The level sets ofJT are straight lines parallel to the rotor
flux vectorψr, see [22, Fig. 3(a)]. The level sets ofJΨ are
concentric circles centered at the origin of the Cartesian plane,
see [22, Fig. 3(b)]. This implies that the two level sets are not
orthogonal to each other, and that the minimization of the two
terms in the objective function is coupled.

As discussed in Section III-B,λT can be chosen alge-
braically so as to combine the aforementioned level sets of
the individual terms in a way that achieves a favorable system
performance, see [49, Section V]. In doing so, both terms can
be simultaneously minimized in an optimal manner.

In [93], however, it is proposed to split the objective
function (17) into its two termsJT and JΨ, and to minimize
them sequentially so as to avoid the tuning procedure. In a
first step, two three-phase switch positions are computed that
achieve the lowest value ofJT in (18a). In a second step, the
switch position that minimizesJΨ in (18b) is determined and
applied to the converter. When doing so, only the previously
computed two switch positions are considered8.

This turns the two-dimensional MPC problem with objective
function (17) into a sequence of two one-dimensional prob-
lems; the flux vector is first controlled along theq-axis, and,
following, along thed-axis. As can be understood, this limits
the controllability of the torque and machine magnetization
and can thus lead to suboptimal performance.

The suboptimality of this method is verified in Fig. 11
for the two-level drive system in Appendix A. The optimal
flux/torque FCS-MPC discussed in Section III-B is compared
with the aforementioned suboptimal approach. As can be seen,
when the torque and flux terms are minimized sequentially
significantly higher current distortions result over the whole
range of switching frequencies. Note that since the sequential
approach does not consider a control effort term, the switching
frequency is varied by changing the sampling intervalTs.

Design guideline 8.The weighting factors in multi-criterion
MPC add degrees of freedom that ensure operation at the
optimal trade-off surface, and are thus vital. By adjusting
these weights, i.e., by assigning different priorities among the
objective function terms, all objectives can be simultaneously
met and optimality is guaranteed.

B. Direct Rounding

The straightforward method to keep the computational
cost of the optimization process to a minimum is to round

8This method can be extended to different objectives, sequence of objective
functions, and numbers of options to be evaluated, see e.g.,[94].
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Fig. 11: Trade-off between current THDITHD and switching frequencyfsw
for suboptimal (solid, blue line), and optimal (dashed, redline) torque/flux
FCS-MPC. The individual simulations are shown as squares (suboptimal FCS-
MPC), and circles (optimal FCS-MPC).

(i.e., quantize) the unconstrained solutionuunc(k) (see Sec-
tion IV-A). This means that the entries ofuunc(k) are rounded
componentwise to the nearest integer ofU , see, e.g., [86], [95].
Hence, the applied switch positionurnd(k) is

urnd(k) = ⌈uunc(k)⌋ . (20)

By doing so, however, suboptimal solutions are occasionally
implemented because the optimal and quantized solutions do
not always coincide, i.e.,u∗(k) 6= urnd(k). This will be
exemplified in the following example.

Example 2. Consider a two-level converter system of the
form (3) and FCS-MPC(10) with Np = 1. Assume that at
some instance of the problem the unconstrained solution is

uunc(k) =
[

0.2416 −0.3401 0.0985
]T

.

This is depicted in Fig. 12(a) in theab-plane9 along with pos-
sible integer solutions. Rounding the unconstrained solution
urnd yields

urnd(k) =
[

1 −1 1
]T

,

which is also shown in Fig. 12(a). To examine whether
the quantized unconstrained solution is the solution to the
optimization problem(10) it is recommended to revisit the
problem and examine it from a different perspective. As shown
in [24], function (8) can be written as

J
(

x(k),u(k)
)

= ‖V uunc(k)− V u(k)‖
2
2 , (21)

where the so-called generator matrixV generates the (trun-
cated) lattice

L(V ) =

{

3
∑

i=1

wivi | wi ∈ {−1, 1}

}

.

Minimizing (21) can be interpreted as finding the three-phase
switch positionu (i.e., lattice point) closest (in the Euclidean
sense) to the unconstrained solutionuunc. Assuming

V =







14.45 0 0

−7.07 15.95 0

−0.09 −0.09 16.32






· 10−3 ,

9The c-axis is not depicted to simplify the visualization.
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Fig. 12: Visualization of the FCS-MPC problem withNp = 1 in the (a) originalab-plane (thec-axis is not shown), (b)ab-plane transformed by the generator
matrix V , and (c)αβ-plane, assuming a two-level converter. In (a) and (b), the unconstrained solution is shown as the solid red circle, the rounded solution
as the black solid circle, the optimal solution as the green solid circle, and the remaining integer candidate solutions(i.e., the three-phase switch positions
ui, i ∈ {0, 1, . . . 7}) as circles.
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MPC (dashed, red line). The individual simulations are shown as squares
(suboptimal MPC), and circles (optimal MPC).

the transformedabc-plane becomes skewed, as illustrated in
Fig. 12(b) for thea- andb-axes. Because of this transformation
urnd turns out to benot the lattice point closest touunc. Indeed,
minimizing(21) yields

u∗(k) =
[

−1 −1 1
]T

as the solution to the optimization problem, which is the point
closest touunc. This fact can also be observed in Fig. 12(b).

Thus, direct rounding can lead to a suboptimal performance.
This is confirmed by Fig. 13, which considers one-step FCS-
MPC for the drive system case study in Appendix A with the
sampling intervalTs = 5µs. We conclude that the integer
solution needs to be found with a method that guarantees
optimality, such as exhaustive enumeration or a dedicated
branch-and-bound method, see, e.g., the sphere decoder [24].

Design guideline 9.Direct quantization of the unconstrained
solution incurs a degree of suboptimality. Therefore, it should
not be used in lieu of more sophisticated algorithms that
guarantee optimality.

C. Restricted Feasible Set

Due to the pronounced computational cost of FCS-MPC
algorithms, methods to reduce the computational complexity
of (10) attract the research interest [24], [38], [88], [90]–
[92]. A common approach is to limit the search space, i.e.,
to reduce the number of candidate solutions to be consid-
ered. To this end, the unconstrained solutionuunc to (10)—
see (12)—is most frequently utilized along with methods, such
as branch-and-bound algorithms, or heuristics to speed up the
optimization process [96]. However, there are cases where the
adopted heuristics unintentionally exclude the optimal solution
u∗ from the feasible set. As a result, a degree of suboptimality
is introduced that leads to performance deterioration.

A popular approach is to restrict the feasible set to that
triangular sector of theαβ-plane wherein the unconstrained
solution lies [38], [40], [68], [90], [92], [97]–[99]. Assuming
a three-phase two-level inverter, the seven unique vectorsform
six triangular sectors, as can be seen in Fig. 12(c); depend-
ing on the location of the unconstrained vectoruunc,αβ =
K(0)uunc, the corresponding sector and the three vectors that
form it are identified.

This heuristic method greatly reduces the size of the feasible
set. Returning to the example of the two-level inverter, the
number of candidate switch positions is reduced from7Np to
3Np . This difference—and the reduction of the computational
burden—becomes more evident as the number of the switch-
ing devices of the converter increases. However, the above-
mentioned technique comes with a pitfall, because it is also
prone to suboptimality. This is explained with the following
example.

Example 3. Consider the same setup and conditions as in
Example 2. Transforminguunc = [0.2416 − 0.3401 0.0985]T

into theαβ-plane gives

uunc,αβ(k) =K(0)uunc(k) =
[

0.2416 −0.2532
]T

.
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for a short-circuit ratio ofksc = 20.

As shown in Fig. 12(c),uunc,αβ is located within Sector6,
thus the vectors

u0,αβ =K(0)[−1 −1 −1]T ,

u1,αβ =K(0)[1 −1 −1]T ,

u6,αβ =K(0)[1 −1 1]T , and

u7,αβ =K(0)[1 1 1]T

are the vectors (switch positions) to be evaluated. Note that
urnd is among the candidate solutions.

However, as shown in Example 2, the optimal solution is
u∗(k) = [−1 −1 1]T . This switch position was excluded from
the restricted feasible set, hence a suboptimal switch position
is to be applied to the converter.

Design guideline 10.Restrictions on the feasible set of the
considered switch positions have to be implemented with
caution and only after careful analysis of the problem at hand.
Otherwise, FCS-MPC may deliver suboptimal results that will
affect the system performance accordingly.

VIII. P ERFORMANCEASSESSMENT

FCS-MPC performs the control and modulation tasks in one
computational stage, see Fig. 3. Consequently, a subsequent
modulation stage is not required. The lack thereof and the
FCS-MPC problem formulation (10) not imposing a periodic
switching pattern imply non-deterministic harmonic spectra.
This is usually not an issue for inverters driving electrical
machines; for drives, the current THD is the main performance
metric because it relates to the harmonic machine losses.

For grid-connected converters, however, FCS-MPC in the
form (10) is not suitable. The reason is that such applications
have to meet grid codes that limit the amplitudes of the
voltage and current harmonics injected at the point of common
coupling (PCC). One widely imposed grid code is the IEEE
519 standard [100], which imposes particularly stringent limits
on even harmonics, see Fig. 14.

The absence of a modulator also implies a variable switch-
ing frequency. This complicates the system design and might
lead to an overly conservative choice for the output filter,
cooling system, and semiconductor devices. Therefore, there is
a need to ensure a constant, or at least deterministic, switching
frequency. In this direction, ongoing research aims to extend

the problem formulation (10) of standard FCS-MPC, see,
e.g., [63]–[67], [69]–[71], [101]–[104]; see also the discussion
in Section IV-C.

The literature on FCS-MPC mostly considers two-level
converters operating in the kHz range [8], [27], [41], [45],
[47], [48], [53], [81], [82], [105], [106]. At such high switch-
ing frequencies, the benefit of FCS-MPC over established
modulator-based methods (such as SVM) remains unclear.
This observation is also highlighted in Fig. 7 and Table II;
a very small sampling intervalTs is required to outperform
SVM at relatively high switching frequencies. Hence, such
a small Ts, combined with the—generally demanding and
complicated—enumeration strategy, poses an implementation
challenge.

Given the above pitfalls and challenges of FCS-MPC, one
remedy is to consider indirect MPC, which uses a modulator
and offers several advantages. First, the power converter is op-
erated at a constant switching frequency. Moreover, determin-
istic harmonic spectra result. The harmonic components are
limited to non-triplen odd integer multiples of the fundamental
frequency, provided that the carrier frequency is three times
an odd integer multiple of the fundamental frequency. Finally,
the optimization problem underlying indirect MPC can be cast
as a QP, which is computationally relatively straightforward
to solve [58] in real time with existing solvers, see, e.g.,
[19], [107]–[109]. This research direction is steadily gaining
attention [110]–[112]. If constraints on state variables can be
neglected, the linear quadratic regulator (LQR) might prove
an interesting alternative [113], [114].

Design guideline 11.FCS-MPC in its current form is not
suitable for grid-connected converters and when operatingat
high switching frequencies.

IX. CONCLUSIONS

FCS-MPC is a promising and versatile predictive control
method. It is particularly suitable for complex power electronic
systems operating at their physical limits. However, commonly
used design simplifications limit its performance potential
in terms of current distortions per switching frequency; this
prohibits the adoption of FCS-MPC by industry. The main
factors that affect the performance of FCS-MPC were analyzed
and discussed in this paper, including the weighting factors,
the sampling interval, and the length of the prediction horizon.

Several common misconceptions about FCS-MPC were
identified, clarified and discussed. A number of design guide-
lines were provided. When following them and carefully de-
signing FCS-MPC algorithms, significant performance benefits
can be attained. These benefits were demonstrated with the
first-order and third-order drive system case studies, which
are based on a two-level inverter and an induction machine.

APPENDIX A
CASE STUDY A: DRIVE SYSTEM

Fig. 15 shows a two-level three-phase voltage source in-
verter with an induction machine. Its corresponding systempa-
rameters are summarized in Table III. The three-phase switch
positionu is restricted to the setU = {−1, 1}3. Using the



TABLE III: Rated values and parameters of the drive system

Rated values Parameters

Induction Motor

Voltage 400V Stator resistance (Rs) 2.7Ω (0.0514 p.u.)
Current 4.4A Rotor resistance (Rr) 2.4Ω (0.0457 p.u.)

Apparent power 3.048 kVA Stator leakage reactance (Xls) 9.868mH (0.0591 p.u.)
Stator frequency 50Hz Rotor leakage reactance (Xlr) 11.777mH (0.0705 p.u.)
Rotational speed 2875 rpm Mutual reactance (Xm) 394.704mH (2.3625 p.u.)

Inverter

Dc-link voltage (Vdc) 650V (1.9902 p.u.)

LC filter

Converter-side resistance (Rl) 0.54mΩ (0.0103 · 10−3 p.u.)
Converter-side reactance (Xl) 1.3mH (0.0078 p.u.)
Capacitance resistance (Rc) 0.67mΩ (0.0127 · 10−3 p.u.)
Capacitance reactance (Xc) 30µF (0.4947 p.u.)
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Fig. 15: Two-level inverter driving an induction machine.

Vdc
2

Vdc
2

N A
B C

IM
iinv is

vc

Xl

Xc

Fig. 16: Two-level inverter with an outputLC filter driving an induction
motor.

stator currentis,αβ and the rotor fluxψr,αβ in the αβ-plane
as the state vector, we definex = [isα isβ ψrα ψrβ]

T ∈ R
4.

The stator current is the system output, which we set to
y = is,αβ ∈ R

2.
The corresponding continuous-time dynamical model can

be easily derived; see, e.g., [14, Appendix 5.A]. Using exact
Euler discretization, the linear state-space model (1) results.
For this case study, the system dimensions are given bynu =
3, nx = 4, andny = 2, according to the notation introduced
in Section II-A. Throughout this paper, the drive is operated
at nominal speed and rated torque.

APPENDIX B
CASE STUDY B: DRIVE SYSTEM WITH AN LC FILTER

The drive system with theLC filter is depicted in Fig. 16,
and its parameters are given in Table III. As with the
previous case study presented in Appendix A, the three-
phase switch positionu ∈ {−1, 1}3 is the manipulated
variable. The state vector consists of the inverter current
iinv,αβ, capacitor voltagevc,αβ , stator currentis,αβ , and rotor
flux ψr,αβ ; we write x = [iTinv,αβ v

T
c,αβ i

T
s,αβ ψ

T
r,αβ]

T ∈ R
8.

The first six state variables are the controlled variables, i.e.,
y = [iTinv,αβ v

T
c,αβ i

T
s,αβ ]

T ∈ R
6.

For a detailed derivation of the continuous-time state-
space model of the system, the reader is referred to [14,
Appendix 6.A]. Note that this case study is a third-order
system in each coordinate axis of theαβ-plane. The system
dimensions arenu = 3, nx = 8, andny = 6. The drive is
operated at nominal speed and rated torque.

The combination of theLC filter with the total leakage
reactanceXσ of the machine gives rise to anLCL filter
structure. Neglecting the (small) ohmic resistances in thefilter
and stator, the resonance frequency

fres = fB
1

√

Xc
XlXσ

Xl+Xσ

≈ 830 Hz , (22)

can be obtained, wherefB = 50Hz is the base (rated)
frequency.

APPENDIX C
PROOF OFTHEOREM 2

The proof of Theorem 2 is provided hereafter.

Proof. The objective of a deadbeat controller is to elimi-
nate the output error as quickly as possible. This implies
yref(k + 1) = y(k + 1) for a first-order system without input
constraints. Given (3), this amounts to

yref(k+1) = Cx(k+1) = C
(

Ax(k)+BK(0)u(k)
)

. (23)

Therefore, by settinguαβ(k) =K(0)u(k), the desired control
actionudb,αβ ∈ R

2 which drives the system to its reference
within one sampling intervalTs is

udb,αβ(k) = D
−1

(

yref(k + 1)−CAx(k)
)

, (24)

whereD−1 is the inverse of the matrixCB, i.e.,10

D−1 =
(

CB
)−1

.

10Given the assumption of one-step reachability, it is implied thatnx ≤ nu,
see [56, Section 3]. For current control of a typical one-step reachable three-
phase power electronic system, e.g., a converter connectedto the grid or
driving an electrical machine, it holds thatny = nu.



Utilizing the assumption of a linear system, (15) can be
written as [14]

J(x(k),U(k)) = ‖Y ref − Γx(k) +ΥU(k)‖22 , (25)

with

Y ref(k) =
[

yTref(k + 1) yTref(k + 2) · · · yTref(k +Np)
]T

.

The matrices are given by

Υ=

[

Υ11 Υ12

Υ21 Υ22

]

=













CB 0 · · · 0

CAB CB · · · 0

...
...

...

CANp−1B CANp−2B · · · CB













(26)
and

Γ =

[

Γ1

Γ2

]

=













CA

CA2

...

CANp













, (27)

where0 denotes zero matrices of appropriate dimensions. The
sequence of manipulated variables is defined in theαβ-plane
as

U(k) =
[

uT
αβ(k) uT

αβ(k + 1) · · · uT
αβ(k +Np − 1)

]T

.

The solutionuunc,αβ(k) of long-horizon FCS-MPC can be
found by utilizing (13). Given that forM = MT ∈ R

n×n,
c, ξ ∈ R

n, andd ∈ R it holds that

∇
(

cT ξ + d
)

(ξ) = c

∇
(

ξTMξ
)

(ξ) = 2Mξ ,

it follows that

2ΥT
(

ΥUunc(k) + Γx(k)− Y ref(k)
)

= 0 ,

which implies that

Uunc(k) = Υ
−1

(

Y ref(k)− Γx(k)
)

. (28)

Because the problem formulation is in theαβ-plane it
is implied that matrixΥ22 is nonsingular. Provided that
Υ11 −Υ12Υ

−1
22 Υ21 is also nonsingular, and by utilizing the

Woodbury matrix identity and (26), matrixW = Υ
−1 can be

written as

W =

[

W 11 W 12

W 21 W 22

]

(29)

with

W 11 = (Υ11 −Υ12Υ
−1
22 Υ21)

−1 = Υ
−1
11

W 12 = −W 11Υ12Υ
−1
22 = 0

W 21 = −Υ
−1
22 Υ21W 11 = −Υ

−1
22 Υ21Υ

−1
11

W 22 = Υ
−1
22 +Υ

−1
22 Υ21W 11Υ12Υ

−1
22 = Υ

−1
22 .

Using (27), and (29), the unconstrained solution becomes

Uunc(k) =













uunc,αβ(k)

uunc,αβ(k + 1)
...

uunc,αβ(k +Np − 1)













(28)
=
(27)

Υ
−1













yref(k + 1)− Γ1x(k)








yref(k + 2)
...

yref(k +Np)









− Γ2x(k)













= Υ
−1

[

γ1

γ2

]

(29)
=

[

W 11 W 12

W 21 W 22

][

γ1

γ2

]

=

[

W 11γ1 +W 12γ2

W 21γ1 +W 22γ2

]

=

[

Υ
−1
11 γ1

−Υ
−1
22 Υ21W 11γ1 +Υ

−1
22 γ2

]

.

According to the receding horizon policy, only the control
action that refers to time stepk is implemented. Thus, by
considering (26), it follows that

uunc,αβ(k) = D
−1

(

yref(k + 1)−CAx(k)
)

. (30)

As can be observed from (24) and (30), the deadbeat solution
is the same as the first element of the relaxed solution of FCS-
MPC with objective function (15).

�

ACKNOWLEDGMENT

The authors would like to thank Pablo Acuña, Sergio
Vazquez, Marco Rivera, Fengxiang Wang, Pablo Lezana, and
Margarita Norambuena for their valuable feedback.

REFERENCES

[1] J. B. Rawlings and D. Q. Mayne,Model predictive control: Theory
and design. Madison, WI: Nob Hill, 2009.

[2] S. J. Qin and T. A. Badgwell, “A survey of industrial modelpredictive
control technology,”Control Eng. Pract., vol. 11, pp. 733–764, Jul.
2003.

[3] J. Holtz and S. Stadtfeld, “A predictive controller for the stator current
vector of ac-machines fed from a switched voltage source,” in Int.
Power Electron. Conf., vol. 2, (Tokyo, Japan), pp. 1665–1675, Mar.
1983.

[4] D. F. Schröder and R. Kennel, “Model-control PROMC—A new
control strategy with microcomputer for drive applications,” IEEE
Trans. Ind. Appl., vol. IA-21, pp. 1162–1167, Sep./Oct. 1985.

[5] A. Linder and R. Kennel, “Model predictive control for electrical
drives,” in Proc. IEEE Power Electron. Spec. Conf., (Recife, Brazil),
pp. 1793–1799, Jun. 2005.

[6] T. Geyer, G. Papafotiou, and M. Morari, “On the optimal control of
switch-mode dc-dc converters,” inHybrid Syst.: Comput. and Control
(R. Alur and G. J. Pappas, eds.), vol. 2993 ofLNCS, pp. 342–356,
Berlin, Germany: Springer-Verlag, 2004.

[7] T. Geyer,Low complexity model predictive control in power electronics
and power systems. PhD thesis, Autom. Control Lab. ETH Zurich,
Zurich, Switzerland, 2005.

[8] J. Rodrı́guez, J. Pontt, C. A. Silva, P. Correa, P. Lezana, P. Cortés, and
U. Ammann, “Predictive current control of a voltage source inverter,”
IEEE Trans. Ind. Electron., vol. 54, pp. 495–503, Feb. 2007.

[9] P. Cortés, M. P. Kazmierkowski, R. M. Kennel, D. E. Quevedo, and
J. Rodrı́guez, “Predictive control in power electronics and drives,”IEEE
Trans. Ind. Electron., vol. 55, pp. 4312–4324, Dec. 2008.



[10] J. Rodrı́guez, M. P. Kazmierkowski, J. R. Espinoza, P. Zanchetta,
H. Abu-Rub, H. A. Young, and C. A. Rojas, “State of the art of finite
control set model predictive control in power electronics,” IEEE Trans.
Ind. Informat., vol. 9, pp. 1003–1016, May 2013.

[11] S. Kouro, M. A. Perez, J. Rodrı́guez, A. M. Llor, and H. A.Young,
“Model predictive control: MPC’s role in the evolution of power
electronics,”IEEE Ind. Electron. Mag., vol. 9, pp. 8–21, Dec. 2015.

[12] S. Vazquez, J. Rodrı́guez, M. Rivera, L. G. Franquelo, and M. No-
rambuena, “Model predictive control for power converters and drives:
Advances and trends,”IEEE Trans. Ind. Electron., vol. 64, pp. 935–
947, Feb. 2017.

[13] J. Rodrı́guez and P. Cortés,Predictive control of power converters and
electrical drives. Chichester, UK: Wiley, 2012.

[14] T. Geyer, Model predictive control of high power converters and
industrial drives. Hoboken, NJ: Wiley, 2016.

[15] G. A. Papafotiou, G. D. Demetriades, and V. G. Agelidis,“Technology
readiness assessment of model predictive control in medium- and
high-voltage power electronics,”IEEE Trans. Ind. Electron., vol. 63,
pp. 5807–5815, Sep. 2016.

[16] T. Geyer, N. Oikonomou, G. Papafotiou, and F. D. Kieferndorf, “Model
predictive pulse pattern control,”IEEE Trans. Ind. Appl., vol. 48,
pp. 663–676, Mar./Apr. 2012.

[17] N. Oikonomou, C. Gutscher, P. Karamanakos, F. D. Kieferndorf, and
T. Geyer, “Model predictive pulse pattern control for the five-level
active neutral point clamped inverter,”IEEE Trans. Ind. Appl., vol. 49,
pp. 2583–2592, Nov./Dec. 2013.

[18] T. J. Besselmann, S. Van de moortel, S. Almér, P. Jörg,and H. J.
Ferreau, “Model predictive control in the multi-megawatt range,”IEEE
Trans. Ind. Electron., vol. 63, pp. 4641–4648, Jul. 2016.

[19] T. J. Besselmann, S. Almér, and H. J. Ferreau, “Model predictive
control of load-commutated inverter-fed synchronous machines,” IEEE
Trans. Power Electron., vol. 31, pp. 7384–7393, Oct. 2016.

[20] M. Vasiladiotis, A. Christe, and T. Geyer, “Model predictive pulse
pattern control for modular multilevel converters,”IEEE Trans. Ind.
Electron., vol. 66, pp. 2423–2431, Mar. 2019.

[21] R. S. Palais and R. A. Palais,Differential equations, mechanics, and
computation. Providence, RI: Amer. Mathem. Soc., 2009.

[22] T. Geyer, “Algebraic tuning guidelines for model predictive torque and
flux control,” IEEE Trans. Ind. Appl., vol. 54, pp. 4464–4475, Sep./Oct.
2018.

[23] R. P. Aguilera and D. E. Quevedo, “Stability analysis ofquadratic MPC
with a discrete input alphabet,”IEEE Trans. Autom. Control, vol. 58,
pp. 3190–3196, Dec. 2013.

[24] T. Geyer and D. E. Quevedo, “Multistep finite control setmodel
predictive control for power electronics,”IEEE Trans. Power Electron.,
vol. 29, pp. 6836–6846, Dec. 2014.

[25] P. Karamanakos, T. Geyer, N. Oikonomou, F. D. Kieferndorf, and
S. Manias, “Direct model predictive control: A review of strategies
that achieve long prediction intervals for power electronics,” IEEE Ind.
Electron. Mag., vol. 8, pp. 32–43, Mar. 2014.

[26] R. Vargas, P. Cortés, U. Ammann, J. Rodrı́guez, and J. Pontt, “Pre-
dictive control of a three-phase neutral-point-clamped inverter,” IEEE
Trans. Power Electron., vol. 24, pp. 2697–2705, Oct. 2007.

[27] P. Cortés, J. Rodrı́guez, P. Antoniewicz, and M. Kazmierkowski,
“Direct power control of an AFE using predictive control,”IEEE Trans.
Power Electron., vol. 23, pp. 2516–2523, Sep. 2008.

[28] R. Vargas, U. Ammann, and J. Rodrı́guez, “Predictive approach to
increase efficiency and reduce switching losses on matrix converters,”
IEEE Trans. Power Electron., vol. 24, pp. 894–902, Apr. 2009.

[29] P. Correa, J. Rodrı́guez, I. Lizama, and D. Andler, “A predictive con-
trol scheme for current-source rectifiers,”IEEE Trans. Ind. Electron.,
vol. 56, pp. 1813–1815, May 2009.

[30] R. Vargas, U. Ammann, B. Hudoffsky, J. Rodrı́guez, and P. W. Wheeler,
“Predictive torque control of an induction machine fed by a matrix
converter with reactive input power control,”IEEE Trans. Power
Electron., vol. 25, pp. 1426–1438, Jun. 2010.

[31] M. Rivera, C. Rojas, J. Rodrı́guez, P. Wheeler, B. Wu, and J. Espinoza,
“Predictive current control with input filter resonance mitigation for
a direct matrix converter,”IEEE Trans. Power Electron., vol. 26,
pp. 2794–2803, Oct. 2011.

[32] J. Qin and M. Saeedifard, “Predictive control of a modular multilevel
converter for a back-to-back HVDC system,”IEEE Trans. Power Del.,
vol. 27, pp. 1538–1647, Jul. 2012.

[33] P. Karamanakos, K. Pavlou, and S. Manias, “An enumeration-based
model predictive control strategy for the cascaded H-bridge multilevel
rectifier,” IEEE Trans. Ind. Electron., vol. 61, pp. 3480–3489, Jul. 2014.

[34] Z. Zhang, F. Wang, T. Sun, J. Rodrı́guez, and R. Kennel, “FPGA-based
experimental investigation of a quasi-centralized model predictive
control for back-to-back converters,”IEEE Trans. Power Electron.,
vol. 31, pp. 662–674, Jan. 2016.

[35] K. Antoniewicz, M. Jasinski, M. P. Kazmierkowski, and M. Ma-
linowski, “Model predictive control for three-level four-leg flying
capacitor converter operating as shunt active power filter,” IEEE Trans.
Ind. Electron., vol. 63, pp. 5255–5262, Aug. 2016.

[36] H. A. Young, M. A. Perez, and J. Rodrı́guez, “Analysis offinite-control-
set model predictive current control with model parameter mismatch in
a three-phase inverter,”IEEE Trans. Ind. Electron., vol. 63, pp. 3100–
3107, May 2016.

[37] M. Mosa, R. S. Balog, and H. Abu-Rub, “High performance predic-
tive control of quasi impedance source inverter,”IEEE Trans. Power
Electron., vol. 32, pp. 3251–3262, Apr. 2017.

[38] Z. Zhang, C. M. Hackl, and R. Kennel, “Computationally efficient
DMPC for three-level NPC back-to-back converters in wind turbine
systems with PMSG,”IEEE Trans. Power Electron., vol. 32, pp. 8018–
8034, Oct. 2017.

[39] M. Abdelrahem, C. M. Hackl, and R. Kennel, “Finite position set-
phase locked loop for sensorless control of direct-driven permanent-
magnet synchronous generators,”IEEE Trans. Power Electron., vol. 33,
pp. 3097–3105, Apr. 2018.

[40] M. Siami, D. A. Khaburi, and J. Rodrı́guez, “Simplified finite control
set-model predictive control for matrix converter-fed PMSM drives,”
IEEE Trans. Power Electron., vol. 33, pp. 2438–2446, Mar. 2018.

[41] O. Sandre-Hernandez, J. Rangel-Magdaleno, and R. Morales-Caporal,
“A comparison on finite-set model predictive torque controlschemes
for PMSMs,” IEEE Trans. Power Electron., vol. 33, pp. 8838–8847,
Oct. 2018.

[42] P. Karamanakos, T. Geyer, and R. Kennel, “On the choice of norm
in finite control set model predictive control,”IEEE Trans. Power
Electron., vol. 33, pp. 7105–7117, Aug. 2018.

[43] R. P. Aguilera and D. E. Quevedo, “Predictive control ofpower
converters: Designs with guaranteed performance,”IEEE Trans. Ind.
Informat., vol. 11, pp. 53–63, Feb. 2015.

[44] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab,Signals and systems.
Upper Saddle River, NJ: Prentice-Hall, 2nd ed., 1996.

[45] D.-K. Choi and K.-B. Lee, “Dynamic performance improvement of
ac/dc converter using model predictive direct power control with finite
control set,” IEEE Trans. Ind. Electron., vol. 62, pp. 757–767, Feb.
2015.

[46] Y. Zhang, W. Xie, Z. Li, and Y. Zhang, “Model predictive direct power
control of a PWM rectifier with duty cycle optimization,”IEEE Trans.
Power Electron., vol. 28, pp. 5343–5351, Nov. 2013.

[47] H. Miranda, P. Cortés, J. I. Yuz, and J. Rodrı́guez, “Predictive torque
control of induction machines based on state-space models,” IEEE
Trans. Ind. Electron., vol. 56, pp. 1916–1924, Jun. 2009.

[48] J. Rodrı́guez, R. M. Kennel, J. R. Espinoza, M. Trincado, C. A. Silva,
and C. A. Rojas, “High-performance control strategies for electrical
drives: An experimental assessment,”IEEE Trans. Ind. Electron.,
vol. 59, pp. 812–820, Feb. 2012.

[49] P. Karamanakos and T. Geyer, “Model predictive torque and flux
control minimizing current distortions,”IEEE Trans. Power Electron.,
vol. 34, pp. 2007–2012, Mar. 2019.
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“Finite-set model predictive control strategies for a 3L-NPC inverter
operating with fixed switching frequency,”IEEE Trans. Ind. Electron.,
vol. 65, pp. 3954–3965, May 2018.

[71] P. Karamanakos, R. Mattila, and T. Geyer, “Fixed switching frequency
direct model predictive control based on output current gradients,” in
Proc. IEEE Ind. Electron. Conf., (Washington, D.C.), pp. 2329–2334,
Oct. 2018.
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