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Abstract—For dc-dc boost converters, this paper presents
a model predictive control (MPC) algorithm, which directly
manipulates the switch, thus not requiring a modulator. The
proposed control scheme is implemented as a current-mode
controller, implying that two control loops are employed,
with the inner loop being designed in the framework of
MPC. Two different objective functions to be minimized
are formulated and investigated. As a prediction model,
a hybrid model of the converter is used, which captures
both the continuous and the discontinuous conduction mode.
The proposed control strategy achieves very fast current
regulation, while exhibiting a modest computational com-
plexity. Simulation and experimental results substantiate the
effectiveness of the proposed approach.

Keywords—Dc-dc converter, model predictive control,
hybrid system.

I. INTRODUCTION
The control of power electronic converters constitutes

a challenging task, due to their switched non-linear (or
hybrid) characteristic. The standard control approach is to
average the continuous-time dynamics associated with the
different modes of operation, and to linearize them about
the operating point. A different approach is to directly
address the hybrid nature of these converters, see e.g. [1].
Despite the extensive research done in this area, the

control problem of hybrid systems still poses challenges.
However, the emergence of fast microprocessors and
recent theoretical advances in the control of hybrid sys-
tems enabled the application of model predictive con-
trol (MPC) [2], [3] – a control method that has been
successfully used in the process industry for more than
three decades – to the field of power electronics. Dur-
ing the last decade, MPC has been successfully applied
to several power electronics topologies, including dc-dc
converters [4]–[10].
The present paper proposes a current-mode MPC

scheme for the dc-dc boost converter. Two loops are
employed; the outer loop adjusts the current reference for
the inner loop in such a way that the output voltage is
regulated to its desired reference. The inner loop, posed
in the MPC framework, drives the inductor current to
its reference, by manipulating the switch. The controller
aims to reject all disturbances, including load and input
voltage variations. A state estimation scheme is designed
in order to cope not only with the load variations, but
also with all possible uncertainties, which might arise
from the non-idealities of the model. Finally, the discrete-
time model of the converter, which serves as a prediction

model, is suitable for both the continuous (CCM) and
the discontinuous conduction mode (DCM). Hence, the
converter state can be accurately predicted for the whole
operating regime.
A major advantage of the current-mode MPC strategy

introduced here is that only a short prediction horizon
is needed, since the current exhibits a minimum-phase
behavior with respect to the control input. In that way,
the computational complexity, which is the dominant
disadvantage of MPC, is decreased. Other benefits of
the proposed scheme include the inherent robustness, the
design simplicity, and the fast dynamics that MPC can
provide. However, the absence of a modulator and the
direct manipulation of the converter switches imply a
variable switching frequency.
This paper is organized as follows. In Section II the

hybrid continuous-time model of the converter adequate
for both CCM and DCM is summarized. Furthermore,
the discrete-time model suitable for the controller design
is derived. Section III is devoted to the formulation
of the constrained optimal control problem. In Section
IV simulation results are given, and in Section V the
experimental validation of the proposed control strategy is
presented. Finally, in Section VI, conclusions are drawn.

II. MATHEMATICAL MODEL OF THE BOOST
CONVERTER

A. Continuous-Time Model

The dc-dc boost converter is a switch-mode converter
that is capable of producing a dc output voltage greater in
magnitude than the dc input voltage. Figure 1 illustrates
the circuit topology examined, where S denotes the
controllable switch, D the passive switch, and RL is the
internal resistor of the inductance L, which, together with
the capacitance Co, forms a low-pass filter.
The independent states of the converter are the inductor

current and the output voltage across the output capacitor.
The state vector is defined as x(t) = [iL(t) vo(t)]

T . The
system is described by the following affine (linear plus
offset) continuous-time state-space equations [11]

dx(t)

dt
=

⎧⎪⎨
⎪⎩
A1x(t) +Bvs(t) S = 1

A2x(t) +Bvs(t) S = 0 & iL(t) > 0

A3x(t) S = 0 & iL(t) = 0

(1)
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Fig. 1: Topology of the dc-dc boost converter.

where the matrices A1, A2, A3 and B are given by

A1 =

[
−RL

L
0

0 − 1
CoR

]
, A2 =

[
−RL

L
− 1

L
1
Co

− 1
CoR

]
,

A3 =

[
0 0

0 − 1
CoR

]
, and B = [

1

L
0]T ,

where R is the load resistance. The converter can operate
in CCM and DCM, depending on the value of the inductor
current iL(t), see Fig. 2. CCM refers to the case where
iL(t) is always positive regardless of the state of the
controllable switch S (first two equations in (1)). DCM
means that the inductor current reaches zero (iL(t) = 0)
for some period of time during the switching cycle, when
the switch is off (third equation in (1)).
The output of the system corresponds to the output

voltage, i.e.
y(t) = Cx(t) , (2)

with C = [0 1].

B. Modeling for Controller Design

The derivation of a discrete-time model suitable to
serve as an internal prediction model for the controller
is detailed in the following. The first step is to combine
the affine continuous-time state-space equations of (1)
into one non-linear expression describing the switched
behavior of the circuit. To do so, the binary variable u

denoting the switch position is introduced, where u = 1
refers to the switch S being on, and u = 0 to the switch
being off. Furthermore, an auxiliary binary variable daux
is used [12] to capture the transition from CCM to DCM.
If daux = 1 then the converter operates in CCM (S = 1
or S = 0 and iL(t) > 0); daux = 0 implies that the
converter operates in DCM (S = 0 and iL(t) ≤ 0), see
Fig. 3. Based on the above, the following expression is
derived:

dx(t)

dt
=

(
Γ1 + Γ2u(t)

)
x(t) + Δvs(t) (3)

with Γ1 = daux(A2 − A3) + A3,Γ2 = daux(A1 − A2)
and Δ = dauxB.
In a next step, the model’s continuous-time equations

as given by (2) and (3) are discretized using the forward
Euler approximation approach, resulting in the following
discrete-time model of the converter:

x(k + 1) =
(
E1 + E2u(k)

)
x(k) + Fvs(k) (4a)

y(k) = Gx(k) (4b)

t

iL

t t+ Ts t+ 2Ts

Fig. 2: The shape of the inductor current reveals the operation mode:
the converter operates in CCM from t to t + Ts, and in DCM from
t+ Ts to t+ 2Ts.

where E1 = 1 + Γ1Ts, E2 = Γ2Ts, F = ΔTs, and
G = C. Finally, 1 is the identity matrix and Ts is the
sampling interval.

III. CONTROL PROBLEM AND APPROACH
In this section, the design of the control scheme is

presented. The MPC approach indirectly controls the
output voltage by controlling the inductor current. This is
achieved by appropriately manipulating the controllable
switch. To derive the optimal sequence of control actions
that minimizes a user-defined objective function subject
to the plant dynamics, an enumeration technique is used.

A. Model Predictive Control
MPC has established itself as a widespread controller

thanks to its straight-forward design and implementation.
An objective function needs to be chosen that captures
the control objectives over the finite prediction horizon. At
each sampling instant, the optimal solution is the sequence
of control inputs that minimizes the objective function
subject to the discrete-time model of the converter, re-
sulting in the “best” predicted behavior of the system.
The first element of this sequence is used as the process
input. At the next step, new measurements or estimates are
obtained, the horizon is shifted by one sampling interval
and the optimization procedure is repeated. This strategy,
known as receding horizon policy [2], [3], is employed in
order to provide feedback.

B. Control Objectives
The main control objective is to derive a switching

strategy such that the inductor current is regulated along
its reference trajectory. Furthermore, the closed-loop sys-
tem needs to be robust to disturbances, i.e. the output
voltage is to remain unaffected by changes in the input
voltage and variations in the load.

C. Objective Function
For the design of the objective function the deviation of

the predicted evolution of the variables of concern from
the desired behavior, over the horizon N , is taken into
consideration. The control input at time-instant kTs is ob-
tained by minimizing that function over the optimization
variable, which is the sequence of switching states over
the horizon U(k) = [u(k) u(k + 1) . . . u(k + N − 1)]T .
The sequence U∗ that minimizes the objective function
is the optimal solution; the first element of the sequence,
denoted as u∗(k), is applied to the converter, the remain-
ing elements are discarded and the procedure is repeated

DS2c.11-2
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Fig. 3: Dc-dc converter presented as an automaton driven by conditions.

at the successive sampling instant based on new acquired
measurements.
An illustrative example of the predicted state – here

the inductor current – and the sequence of the control
actions, i.e. the switching state, is depicted in Fig. 4.
Three candidate switching sequences are shown for the
prediction horizon N = 7. Note that the current that
corresponds to time-step k is the measured one, while
from k+1 to k+N the currents are predicted, assuming
the switching sequences shown in Fig. 4(b).
In the control method introduced here, the control prob-

lem is formulated as a current regulation problem, with
the deviation of the inductor current from its reference
defined as

iL,err(k) = iL,ref − iL(k) . (5)

In this work, two different objective functions are
proposed that precisely describe the control problem. In
the first approach, the average value of the current error
is penalized, while in the second one the RMS value of
the current error is considered. This allows us to use a
shorter prediction horizon.
In the following, the two alternative formulations of the

objective function are described.
1) Average current error: At time-step k, the average

current error over the prediction interval NTs is given by:

iL,err,avg(k) =
1

NTs

∫ (k+N)Ts

kTs

|iL,err(t|k)|dt . (6)

Exploiting the fact that the current slope changes only
at the sampling instants and that in between the sampling
instants the slope remains constant, the above integral can
be rewritten as:

iL,err,avg(k) =
1

N

k+N−1∑
�=k

|̄iL,err(�|k)| (7)

with īL,err(�|k) =
iL,err(�|k)+iL,err(�+1|k)

2 .
Based on this, the objective function

Javg(k) =

k+N−1∑
�=k

1

N
|̄iL,err(�|k)|+ λ|Δu(�|k)| (8)

can be formulated. The second term in (8) penalizes the

Prediction steps

i L
[A
]

k − 1 k k + 1 k + 2 k + 3 k + 4 k + 5 k + 6 k + 7

2

3

4

5

0

1

(a) Predicted current trajectories

Prediction steps
u

k − 1 k k + 1 k + 2 k + 3 k + 4 k + 5 k + 6 k + 7

0

1

1

0

1

0

(b) Predicted switching sequences

Fig. 4: Three candidate switching sequences for the prediction horizon
N = 7.

difference between two consecutive switching states

Δu(k) = u(k)− u(k − 1) . (9)

This term is added to decrease the switching frequency
and to avoid excessive switching. The weighting factor
λ > 0 sets the trade-off between the inductor current
error and the switching frequency.
2) RMS current error: The RMS value of the current

error over the prediction interval is equal to

iL,err,RMS(k) =

√
1

NTs

∫ (k+N)Ts

kTs

(
iL,err(t|k)

)2
dt

(10)
with the current error as given in (5). This expression is
equivalent to

iL,err,RMS(k) =
2

3N

k+N−1∑
�=k

2
(̄
iL,err(�|k)

)2
−ĩL,err(�|k)

(11)

with ĩL,err(�|k) =
iL,err(�|k)·iL,err(�+1|k)

2 .
Based on (11) the objective function for the RMS

current error-based approach is formulated as

JRMS(k) =
k+N−1∑
�=k

2

3N

(
2
(̄
iL,err(�|k)

)2
− ĩL,err(�|k)

)

+λ
(
Δu(�|k)

)2
(12)

D. Optimization Problem

Subsequently, for both approaches, an optimization
problem is formulated and solved. The control input in
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both cases is obtained by minimizing the corresponding
objective function – (8) or (12) – subject to the converter
model at each sampling instant, i.e.

U∗(k) = argmin J†(k)
subject to eq. (4)

(13)

where J† denotes the objective function to be minimized,
which is either Javg or JRMS .
The optimization problem (13) is solved using an

enumeration strategy. All possible combinations of the
switching state (u = 0 or u = 1) over the prediction
horizon N are enumerated, yielding the so-called switch-
ing sequences U . There exist 2N switching sequences. For
each switching sequence, the evolution of the variables of
concern is calculated using (4) and the objective function
is evaluated. The switching sequence that results in the
minimum cost is chosen as the optimal one, U∗.

E. Outer Loop

The reference current for the inner loop is derived from
the outer loop based on a feed-forward scheme, using the
power balance equation Pin = Pout. Assuming that the
power switches are ideal, the following expression for the
desired current results:

IL,des =
Vs

2RL

−

√( Vs

2RL

)2

−
V 2
o,ref

RRL

(14)

In the above equation small-ripple approximation is
used [11], i.e. vs ≈ Vs and vo,ref ≈ Vo,ref .
In order to further improve the transient response of the

output voltage, a term proportional to the voltage error,
i.e. vo,ref − vo, is added to (14). Hence, the reference
inductor current is given by

IL,ref = IL,des + pk(Vo,ref − vo) , (15)

with pk ∈ R
+. In (15) the small-ripple approximation is

used again.

F. Load Variations

So far, the load has been assumed to be time-invariant
and known. In the vast majority of the applications,
however, this is not the case; the load typically varies
in an unknown way, resulting in a model mismatch
and therefore in a steady-state output voltage error. To
overcome this, an additional external loop that provides
state estimates needs to be designed. Moreover, this loop
will adjust the current reference so as to remove the error
between the inductor current and its reference.
Even though a PI-based loop might suffice to meet

the two objectives mentioned above, in this work a
discrete-time Kalman filter [13] is implemented, similar
to [7]. Thanks to its integrating nature, the Kalman filter
provides offset-free output voltage tracking, while it is not
operating point dependent.
The model of the converter given by (4) is augmented

by two integrating disturbance states, ie and ve, that
model the effect of load variations on the inductor current

and the output voltage, respectively. Hence, the Kalman
filter estimates the augmented state vector

xa = [iL vo ie ve]
T , (16)

consisting of the measured state variables, iL and vo,
and the disturbance states. As shown in (1) the converter
can be described by three affine systems. Taking into
account (4), the stochastic discrete-time state equation of
the augmented model is

xa(k + 1) =
(
E1a + E2au(k)

)
xa(k) + Favs(k) + ξ(k) .

(17)
The measured state is given by

x(k) =

[
iL(k)

vo(k)

]
= Gaxa(k) + ν(k) . (18)

The matrices are

E1a =

[
E1 0

0 1

]
, E2a =

[
E2 0

0 0

]
,

Fa =

⎡
⎢⎣F0
0

⎤
⎥⎦, and Ga =

[
1 1

] (19)

where 1 is the identity matrix of dimension two and 0

are square zero matrices of dimension two. The process
noise is denoted by ξ ∈ R

4 and the measurement noise
by ν ∈ R

2. Both of the noise disturbances represent zero-
mean, white Gaussian noise sequences with normal prob-
ability distributions. The process noise covariance matrix
is positive semi-definite and it is given by E[ξξT ] = Q.
The measurement noise covariance matrix is given by
E[ννT ] = R, and it is positive definite.
Based on the augmented converter model (17), a

switched discrete-time Kalman filter can be implemented.
Since the state-update for each operating mode is dif-
ferent, the respective Kalman gains are different. Hence,
three unique Kalman gains Kz , with z = {1, 2, 3}, need
to be calculated and implemented.
The state equation of the estimated augmented state

x̂a(k) is given by

x̂a(k + 1) =
(
E1a + E2au(k)

)
x̂a(k)

+KzGa

(
xa(k)− x̂a(k)

)
+ Favs(k) .

(20)

The Kalman gains are calculated based on the noise
covariance matrices, Q and R. These matrices are chosen
such that high credibility is assigned to the measurements
of the physical states (iL and vo), and low credibility to
the dynamics of the disturbance states (ie and ve). As a
result, the Kalman filter provides estimates of the distur-
bances that can be used to remove their influence from
the output voltage and inductor current. The estimated
disturbance state v̂e is used to adjust the output voltage
reference vo,ref

ṽo,ref = vo,ref − v̂e . (21)

Hence, in (14) and (15) the modified voltage reference
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Fig. 5: Control diagram.

ṽo,ref is taken into consideration, instead of the given
value vo,ref .
Following the same procedure, the inductor current

reference iL,ref is adjusted using the corresponding esti-
mated disturbance state îe, i.e.

ĩL,ref = iL,ref − îe . (22)

Moreover, the controller is based on the estimated states
v̂o and îL, rather than the measured ones, vo and iL.

G. Control Algorithm
The proposed control technique is summarized in Al-

gorithm 1. The function f† stands for the state-update
given by (4), and g† refers to the function that calculates
the current error according to (7) or (11). For the average
current error based approach, p = 1 is used, whilst for
the RMS current error based one, p = 2 is chosen. In
Fig. 5 the control diagram of the proposed control strategy
including both loops is depicted.

Algorithm 1 MPC algorithm
function u∗(k) = MPC (x̂(k), u(k − 1))

J∗† (k) =∞; u∗(k) = ∅; x(k) = x̂(k)
for all U over N do

J† = 0
for � = k to k +N − 1 do

x(�+ 1) = f†(x(�), u(�))
iL,err,†(�) = g†(x(�), x(� + 1))
Δu(�) = u(�)− u(�− 1)
J† = J† + iL,err,†(�) + λ|Δu(�)|p

end for
if J† < J∗† (k) then

J∗† (k) = J†, u∗(k) = U(1)
end if

end for
end function

IV. SIMULATION RESULTS
In this section simulation results are presented demon-

strating the dynamical performance of the proposed con-
troller. The simulations focus on the new MPC strategy

for the current loop and its dynamical properties; we
chose to refrain from showing the behavior of the whole
system, to not obstruct the dynamical analysis. Thus, for
both approaches the same scenario is examined, namely
a step-down change in the inductor current reference.
The behavior of the converter in both CCM and DCM
is examined.
The circuit parameters are L = 150μH, RL = 0.2Ω

and Co = 220μF. The load resistance is assumed to
be known and constant for all operating points; it
is equal to R = 73Ω. Initially, the input voltage is
vs = 20V, while the output reference voltage is set equal
to vo,ref = 53.5V, corresponding to the reference induc-
tor current iL,ref = 2A. Regarding the cost function,
the weighting factor is tuned in such a way that the
switching frequency in both approaches is approximately
the same, i.e. λ = 0.3 for the first approach and λ = 0.6
for the second. The prediction horizon is N = 5, and the
sampling interval is Ts = 2.5μs.
The converter initially operates under nominal condi-

tions. At time t = 0.1ms, a change to the inductor current
reference from iL,ref = 2A to iL,ref = 0.7A occurs. As
can be seen in Fig. 6, for both approaches, the inductor
current reaches very quickly the new desired level. The
switching frequency is about fsw ≈ 45 kHz. Since the
operating points and the corresponding switching frequen-
cies are the same in both approaches, the current ripples
observed are identical.
The main difference between the two proposed ap-

proaches can be observed in Fig. 7, which relates to
the converter operating under nominal and steady-state
conditions. The impact of varying the weighting factor λ
is investigated. The corresponding output voltage error,
given by

vo,err =

√√√√ 1

N

N∑
k=1

(
vo,ref − vo(k)

)2
, (23)

and the switching frequency fsw are depicted. As can be
seen, the average current error-based approach results in a
lower switching frequency with zero tracking error, which
means that lower switching losses can be achieved with
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Fig. 6: Simulation results for the step-down change scenario: a) inductor
current for the first (solid line) and the second (dashed line) approach,
and inductor current reference (light dashed line), b) pulses for the first
(solid line) and the second (dashed line) approach.

this approach. On the other hand, the RMS current error-
based approach leads to higher switching frequencies,
when λ is very small, due to the quadratic penalty. Such
high switching frequencies tend to result in even faster
transient responses.

V. EXPERIMENTAL RESULTS
In order to verify the dynamic behavior of the closed-

loop system and to highlight the potential advantages
of this novel MPC approach, the control algorithm was
implemented on a dSpace real-time system. A boost
converter was built using an IRF60 MOSFET and a
MUR840 diode as active and passive switches, respec-
tively. The physical values of the circuit parameters are
L = 450μH, RL = 0.3Ω and Co = 220μF. The nominal
conditions refer to an input voltage of vs = 10V and
a load resistance of R = 73Ω. If not otherwise stated,
the output voltage reference is vo,ref = 15V. Hall effect
transducers were used to acquire the voltage and inductor
current measurements.
The control algorithm was implemented on a dSpace

DS1104 real-time system. The proposed MPC strategy is
executed every Ts = 15μs and a prediction horizon of
three steps is used (N = 3). The weighting factor in the
objective function is set to λ = 0.4. Depending on the
tuning of λ, both control approaches yield similar results,
as shown in the previous section. Therefore, it suffices to

λ
vo,err [V]

f
s
w
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H
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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0
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50
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100
125
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175
200

Fig. 7: The output voltage error vo,err and the corresponding switching
frequency fsw versus the weighting factor λ for the average current
error-based (blue) and the RMS current error-based (red) approach when
the converter operates under nominal conditions.
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Fig. 8: Experimental results for nominal start-up: a) output voltage, and
b) inductor current.

present the dynamic behavior of only one methodology.
This section focuses on the average current error-based
approach. Regarding the Kalman filter, the covariance
matrices are chosen as Q = diag(0.1, 0.1, 50, 50) and
R = diag(1, 1).

A. Start-up
First, the dynamic behavior of the converter during

start-up and nominal conditions is investigated. As can be
seen in Fig. 8(b), the inductor current quickly increases
in order to charge the capacitor to the desired voltage
level. The output voltage reaches its reference in t ≈ 3ms
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Fig. 9: Experimental results for a step-up change in the output voltage
reference: a) output voltage, and b) inductor current.

with a small overshoot, see Fig. 8(a). After the transient,
the inductor current reaches its nominal value and the
converter operates in DCM.

B. Step Change in the Output Reference Voltage
Next, a step-up change in the reference of the output

voltage is considered. At time instant t ≈ 4.5ms the
output voltage reference steps up from its initial value, i.e.
from vo,ref = 15V to vo,ref = 30V, see Fig. 9. As pre-
viously, the inductor current rapidly increases (Fig. 9(b))
so as to charge the capacitor to the new desired level.
Initially, the output voltage briefly decreases due to the
non-minimum phase characteristic of the system, before
it increases, see Fig. 9(a), reaching its reference value
without an overshoot occurring. The transient lasts for
about t ≈ 3.5ms.

C. Ramp Change in the Input Voltage
For the third case, a ramp change in the input voltage is

imposed, starting at t ≈ 16ms and lasting until t ≈ 38ms,
as can be seen in Fig. 10(a). The input voltage is manually
increased from vs = 10V to vs = 13.5V. The effects on
the output voltage and the inductor current are shown in
Figs. 10(b) and 10(c), respectively. During this interval,
the inductor current decreases until it reaches its new
nominal value. The output voltage is not affected by
the change in the input voltage and remains equal to its
reference value.
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Fig. 10: Experimental results for a ramp change in the input voltage: a)
input voltage, b) output voltage, and c) inductor current.

D. Load Step Change

Finally, a step down in the load resistance is examined.
At t ≈ 4.5ms the load resistance is halved, from its
nominal value of R = 73Ω to R = 36.5Ω. In Fig. 11
the closed-loop performance of the converter is depicted.
The Kalman filter adjusts both the output voltage and
the inductor current references. The average value of the
current is instantaneously doubled, see Fig. 11(b), while
a small undershoot in the output voltage is observed
during the transient, see Fig. 11(a). When the converter
reaches steady-state operation, a zero steady-state error is
achieved thanks to the integrating character of the Kalman
filter.
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Fig. 11: Experimental results for a step change in the load: a) output
voltage, and b) inductor current.

VI. CONCLUSION

In this paper, two different MPC approaches based
on enumeration were introduced for the dc-dc boost
converter. The implementation of MPC as a current
controller (rather than a voltage controller) enables the
use of a relatively short prediction horizon, requiring less
computational power. In addition, an adequate estimation
scheme, based on a Kalman filter, was implemented in
order to address model uncertainties. The performance

of the proposed methods are compared via simulations.
Moreover, experimental results are shown, validating the
effectiveness of the proposed controller. Both MPC ap-
proaches yield a similar behavior during transients, with
very fast dynamics and solid robustness to parameter
variations. These benefits outweigh the drawbacks, which
arise from the variable switching frequency.

REFERENCES
[1] T. Geyer, G. Papafotiou, and M. Morari, “Model predictive control

in power electronics: A hybrid systems approach,” in Proc. IEEE
Conf. on Decision and Control and European Control Conf. CDC-
ECC, Seville, Spain, Dec. 2005, pp. 5606–5611.

[2] J. M. Maciejowski, Predictive Control with Constraints, Prentice
Hall Publ., 2002.

[3] J. B. Rawlings and D. Q. Mayne, Model Predictive Control:
Theory and Design, Nob Hill Publ., 2009.

[4] J. Chen, A. Prodic, R. W. Erickson, and D. Maksimovic, “Predic-
tive digital current programmed control,” IEEE Trans. on Power
Electronics, vol. 18, no 1, pp. 411–419, Jan. 2003.

[5] F. M. Oettmeier, J. Neely, S. Pekarek, R. DeCarlo, and
K. Uthaichana, “MPC of switching in a boost converter using a
hybrid state model with a sliding mode observer,” IEEE Trans. on
Industrial Electronics, vol. 56, no. 9, pp. 3453–3466, Sep. 2009.

[6] Y. Xie, R. Ghaemi, J. Sun, and J. S. Freudenberg, “Implicit model
predictive control of a full bridge DC-DC converter,” IEEE Trans.
on Power Electronics vol. 24, no. 12, pp. 2704–2713, Dec. 2009.

[7] T. Geyer, G. Papafotiou, R. Frasca, and M. Morari, “Constrained
optimal control of the step-down DC-DC converter,” IEEE Trans.
on Power Electronics, vol. 23, no 5, pp. 2454–2464, Sep. 2008.

[8] A. G. Beccuti, G. Papafotiou, R. Frasca, and M. Morari, “Explicit
hybrid model predictive control of the dc-dc boost converter,” in
Proc. IEEE Power Electronics Specialist Conf. PESC, Orlando,
FL, USA, June 2007, pp. 2503–2509.
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