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Abstract—In power electronics, the ℓ1-norm (instead of the
squared ℓ2-norm) is often used in the objective function of model
predictive controllers (MPCs) with reference tracking. Although
the ℓ1-norm is preferred for its computational simplicity, it might
lead to a performance deterioration and closed-loop instability.
This paper analyzes the root cause for this and discusses the
benefits of using the ℓ2-norm instead. Given the theoretical nature
of this paper, a power electronics-oriented case study is employed
to visualize and exemplify—through examples and simulations—
the mathematical concepts and arguments presented. To this end,
a variable speed drive system with a three-level voltage source
inverter serves as an illustrative example to clearly demonstrate
the effectiveness of using the ℓ2-norm.

Index Terms—Model predictive control (MPC), optimal con-
trol, objective function, system stability

I. INTRODUCTION

MODEL predictive control (MPC) [1], [2] is a well-

established advanced control methodology that was

developed in the process control industry in the 1970s. Over
the years, it paved its way into many disciplines thanks to its

numerous advantages. MPC is suitable for nonlinear multiple-

input multiple-output (MIMO) plants with complex dynam-

ics. Furthermore, constraints can be explicitly or implicitly

imposed and met, allowing the plant to be operated at its

physical and safety limits. As a result, favorable operation can

be obtained without the need to oversize system components

while meeting operational limits.

An objective function is formulated that captures the control

objectives and the plant behavior is described by (discrete-

time) dynamical equations. Additional hard or soft constraints

on the state variables and the manipulated variables (the con-

trol inputs) can be added. By solving the resulting constrained

optimization problem in real time at each time step, a sequence

of control actions over a finite prediction horizon is obtained,

which are optimal with respect to the objective function. In

accordance with the receding horizon policy, only the first

element of the optimal sequence of control actions is applied

to the plant. At the next step, the optimization procedure is

repeated with new measurements or estimates over a horizon

that is shifted by one step [3], [4]. The receding horizon policy
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adds feedback and makes MPC robust to model mismatches,

uncertainties and disturbances.

The conceptual simplicity of MPC and its aforementioned

advantages attracted the interest of the power electronics

community in the early 2000s, see [5], [6] and the survey

papers [7]–[9]. In the last decade, MPC has been extensively

discussed for a variety of power electronic applications and

control tasks. Prominent examples include, among others,

current control of inverters [10]–[12], power control of grid-

connected converters [13], [14], voltage control of dc-dc

converters [15], [16], and torque [17]–[19], current [20], and

flux [21] control of electrical drives. In most of these ref-

erences, direct MPC with reference tracking is used—the so-

called finite control set MPC (FCS-MPC). This implies that the

switches of the converter are directly manipulated, avoiding an

explicit modulation stage. This simplifies the design stage.

However, since the control actions have to be computed

in power electronic systems in a matter of some tens of mi-

croseconds, control designers often resort to far-reaching sim-

plifications, which often cause—knowingly or unknowingly—

significant performance degradations. Among the most fre-

quent simplifications is the use of overly short prediction

horizons to limit the computational complexity. The pitfall of

this approach is a degradation of the steady-state performance

(current distortions per switching frequency), as shown e.g.,

in [22], [23]. Moreover, the penalty on the switching effort is

often omitted in FCS-MPC formulations, which is in violation

of the optimal control paradigm [2]. As a result, the switching

frequency is merely indirectly controlled through the chosen

sampling interval, and the ratio between current distortions

and switching frequency is suboptimal.

Another widely used simplification is the use of the ℓ1-
norm in the objective function, i.e., the sum of the absolute

values of the predicted tracking error components, see [8]

and references therein. The ℓ1-norm is considered to require

fewer computations than the squared ℓ2-norm, which is the

sum of squares of the tracking error components. Apart from

a preliminary discussion in [24, Chap. 10], it is commonly

believed in the power electronics community that the choice

of norm is merely a subtlety that does not influence the

controller performance. This belief is wrong, as will be shown

in this paper for linear systems with integer inputs and a

one-step predictive current controller. Indeed, when using a

nonzero penalty on the switching effort, the ℓ1-norm can lead

to closed-loop instability, severely affecting the steady-state

performance. A critical value λ
(1)
u,crt will be derived for the

ℓ1-norm; if the penalty on switching exceeds this value, then



the controller is unable to switch altogether, always leading to

instability. In contrast to this, the ℓ2-norm will always ensure

practical stability [25], regardless of the penalty on switching.

This paper describes the underlying root cause and shows

the impact the selection of the norm has on the closed-loop

stability. To this end, a medium-voltage (MV) variable speed

drive system is used as an illustrative example. We would like

to emphasize that the results in this paper are valid for all

linear systems with integer inputs.

This paper is structured as follows. The systems under

consideration, the formulation of the MPC problem based on

the ℓ1- and ℓ2-norm, respectively, and the consequent impact

of the choice of norm are analyzed in Section II. The drive

system case study is outlined in Section III, whereas the op-

timization problem underlying predictive current control with

reference tracking is introduced in Section IV. A discussion

on the impact of norms on the chosen case study follows

in Section V. In Section VI, the performance of the MPC

strategy is demonstrated for both norms and the benefits of

using the ℓ2-norm are highlighted. Conclusions are drawn in

Section VII.

II. IMPACT OF THE CHOICE OF NORM: ANALYSIS

This section analyzes the impact of the choice of norm

on the closed-loop performance of the system controlled by

FCS-MPC. Without loss of generality, a three-phase power

electronic system is considered. Furthermore, the modeling

and analysis are done in the αβ-plane1. Finally, all quantities
are assumed to be normalized, i.e., all derivations and results

are in the per unit (p.u.) system.

A. Background and Prerequisites

The system under consideration is described by the follow-

ing continuous-time linear dynamical system

dx(t)

dt
= Fx(t) +G′u(t) (1a)

y(t) = Cx(t) . (1b)

In (1) x ∈ R
nx is the nx-dimensional state, and

u = [ua ub uc]
T ∈ U = U × U × U = U3, with U ⊂ Z, is

the integer-valued input vector that can be interpreted as

the three-phase switch position. The ny system outputs are

aggregated to the output vector y ∈ R
ny ; the outputs are

considered to be a subset of the state variables, i.e., monomials

in the state variables. Finally, the system matrix F ∈ R
nx×nx ,

the input matrix G′ = GK , with G ∈ R
nx×2, and the output

matrix C ∈ R
ny×nx can be either time-invariant or time-

varying without affecting the analysis presented hereafter. For

1To simplify the modeling and the controller design, all vari-
ables ξabc = [ξa ξb ξc]T in the three-phase (abc) system are trans-
formed to ξαβ = [ξα ξβ ]

T in the stationary orthogonal αβ system, i.e.,
ξαβ = Kξabc, with K being the transformation matrix

K =
2

3

[

1 − 1
2

− 1
2

0
√

3
2

−
√

3
2

]

.

Note that throughout the text, vectors in the αβ-plane are denoted with the
corresponding subscript, whereas for vectors in the abc-plane the subscript is
omitted.

matrix G, it is assumed that its columns gi, i = 1, 2, are
orthogonal, i.e., gT1 g2 = 0.

MPC requires the prediction model of the system to be

in the discrete-time domain. Hence, (1) is discretized with

the exact Euler discretization. This leads to the state-space

representation

x(k + 1) = Ax(k) +B′u(k) , (2a)

y(k) = Cx(k) , (2b)

with A = e
FTs , B′ = BK and B = −F−1(I −A)G. I

is the identity matrix of dimension nx × nx, e is the matrix

exponential, Ts is the sampling interval, and k ∈ N denotes

the discrete time step.

For direct MPC (FCS-MPC) with output reference tracking

and a penalty on the control effort, which is imposed by

penalizing the difference between two consecutive three-phase

switch positions ∆u(k) = u(k) − u(k − 1), the objective

function Jp : Rny × U → R
+ results

Jp(k) = ||yref(k + 1)− y(k + 1)
︸ ︷︷ ︸

yerr(k+1)

||pp + λu||∆u(k)||
p
p . (3)

Function (3) can be based either on the ℓ1- or the (squared) ℓ2-
norm by setting p = 1 or p = 2, respectively2. The weighting
factor λu ∈ R

+ is a tuning parameter, which determines the

trade-off between the tracking accuracy (i.e., the deviation of

the output variables from their references) and the switching

effort (i.e., the switching frequency), whereas—for sake of

simplicity—the output errors are equally prioritized3.

To compute the optimal control input u∗(k) which mini-

mizes (3), the following integer optimization problem is solved

in real time

minimize
u(k)∈U

Jp(k) (4a)

subject to x(k + 1) = Ax(k) +B′u(k) (4b)

y(k) = Cx(k) (4c)

||∆u(k)||∞ ≤ 1 . (4d)

The optimal solution u∗(k) is typically found by

enumerating all admissible (i.e., feasible) switch posi-

tions, i.e., the switch positions u(k) ∈ Uadm(k), with

U adm(k) = {u(k) | u(k) ∈ U , ||∆u(k)||∞ ≤ 1} being the set
of three-phase admissible switch positions, defined as the

Cartesian product of the admissible phase switch positions

Uadm,x, x ∈ {a, b, c}, i.e., U adm(k) = Uadm,a(k)×Uadm,b(k)×
Uadm,c(k). Finally, it should be pointed out that the con-

straint (4d) is added to limit the switching transition per phase

2Note that in (3) the prediction horizon is set equal to one time step
(N = 1) to simplify the analysis that follows. However, the extension to
longer prediction horizons is straightforward.

3If prioritization among the different output errors was required then
the first term in (3) would become ||Λyerr(k + 1)||pp by introducing the
diagonal weighting matrix Λ = diag(λ1, λ2, . . . , λny ), with λi ∈ R+,
i = 1, . . . , ny . Notwithstanding the foregoing, the core of the analysis that
follows remains intact and the conclusions drawn still hold true.



to one step and to thus avoid a shoot through4.

B. Analysis

As a preparatory step, we write the output term in (3) as

y(k + 1) = CAx(k) +CB′u(k)

= CAx(k) +CB′u(k − 1) +CB′∆u(k) ,
(5)

and the objective function becomes

Jp(k) = ||yref(k + 1)−CAx(k)−CB′u(k − 1)

−CB′∆u(k)||pp + λu||∆u(k)||
p
p .

(6)

Introducing the “open-loop” error

yerr,op(k+1) = yref(k+1)−CAx(k)−CB′u(k− 1) , (7)

i.e., the error resulting at time-step k + 1 if no control action

is taken at time-step k, (6) takes the form

Jp(k) = ||yerr,op(k+1)−CB′∆u(k)||pp+λu||∆u(k)||
p
p . (8)

Finally, assuming a two-dimensional output5, the matrix

D = CB ∈ R
2×2 is (approximately) diagonal6 with the

diagonal elements γ, i.e., D ≈ diag(γ) ≻ 0, and ≻ denoting

the componentwise inequality [26], (8) can be written as7

Jp(k) = ||yerr,op(k+1)−γK∆u(k)||pp +λu||∆u(k)||
p
p . (9)

Theorem 1. Consider a power electronic system of the

form (2) controlled by FCS-MPC given by (4). Direct MPC

with the ℓ1-norm-based objective function (3) (p = 1) can lead
to stability issues if λu > 0.

Proof. For p = 1, the objective function (9) becomes

J1(k) = ||yerr,op(k+1)−γK∆u(k)||1+λu||∆u(k)||1 . (10)

The solution to the optimization problem (4) strongly depends

on the value of the weighting factor λu ∈ R
+. Next, we

consider the cases λu = 0 and λu > 0 separately.

For λu = 0, the optimization problem can be cast as the

integer linear program

minimize
u(k)∈U adm

1
Th

subject to h � yerr,op(k + 1)− γK∆u(k)

h � −
(
yerr,op(k + 1)− γK∆u(k)

)
,

(11)

4Note that the contribution of the switching effort ∆u(k|k) is the same
regardless of the norm used in (3). As implied by constraint (4d), in each
phase switching is allowed by at most one step up or down. Therefore, the
ℓ1-norm and the (squared) ℓ2-norm of the switching transition yield the same
cost, i.e., ||∆u(k)||1 = ||∆u(k)||22. For consistency reasons, we use the
same norm for the output tracking error and the switching transitions.

5To keep the following analysis concise, a two-dimensional output is
considered (ny = 2) which can be interpreted as the α- and β-components
of the same physical quantity. It is straightforward to show, however, that
the arguments made apply to any system described by (2) with an arbitrary
number of outputs.

6When the forward Euler approximation is used, B = GTs holds and
it is easy to see that D is diagonal. When the exact Euler discretization
is employed, the off-diagonal entries of D are nonzero. However, if these
elements are several orders of magnitude smaller than the diagonal ones, then
they can be neglected without a significant loss of accuracy.

7Due to the previously introduced approximation, i.e., D ≈ diag(γ),
function (9) and all its instances throughout the paper are approximations
of (8). With a slight abuse of notation, we use the symbol “=” instead of
“≈” for simplicity.

where 1 is a vector of appropriate dimension whose compo-

nents are one, h is a vector of slack variables.

Because there exists always at least one candidate inte-

ger solution u(k) ∈ U adm that satisfies the constraints, prob-

lem (11) is always feasible. An off-the-self solver, such as

a suitable branch-and-bound method, is therefore able to

find this solution. The latter is the control action (or switch

position) u∗(k) that minimizes the output error. Potential

stability issues are avoided and tracking of the output reference

trajectories is ensured.

If, on the other hand, λu > 0 holds, the value of the

objective function under consideration can be written as

J1(k) =







||yerr,op(k + 1)||1 , if ||∆u(k)||1 = 0

||yerr,op(k + 1)

− γK∆u(k)||1 + cλu ,
if ||∆u(k)||1 = c

,

(12)

with c ∈ {1, 2, 3}. Note that ||∆u(k)||1 ∈ {0, 1, 2, 3} because
of the switching constraint. Therefore, if

||yerr,op(k+1)||1 < ||yerr,op(k+1)−γK∆u(k)||1+cλu , (13)

switching is avoided. This inequality can be rewritten as

λu>
1

c
||yerr,op(k+1)||1 −

1

c
||yerr,op(k+1)− γK∆u(k)||1⇔

λu>
1

c

(

|yerr,op,1(k + 1)|+ |yerr,op,2(k + 1)| − |yerr,op,1(k + 1)

− γkT1 ∆u(k)| − |yerr,op,2(k + 1)− γkT2 ∆u(k)|
)

,

(14)

where k
T
i ∈ R

3, i = 1, 2, is the ith row of K, and

yerr,op = [yerr,op,1 yerr,op,2]
T .

To investigate the effect of the weighting factor on the

stability of the system when the ℓ1-norm is used, let us assume

that

yerr,op(k + 1)− γK∆u(k) � 02 , ∀∆u(k) ∈ Cc (15)

with 02 being the 2-dimensional zero vector, and

Cc = {∆u(k) | ||∆u(k)||1 = c, ||∆u(k)||∞ = 1}.
Assumption (15) implies that yerr,op(k + 1) � 02, thus

we conclude from (14) that

λu >
1

c

(

yerr,op,1(k + 1) + yerr,op,2(k + 1)− yerr,op,1(k + 1)

+ γkT1 ∆u(k)− yerr,op,2(k + 1) + γkT2 ∆u(k)
)

⇔

λu >
γ

c

(

kT1 ∆u(k) + k
T
2 ∆u(k)

)

, ∀∆u(k) ∈ Cc .

(16)

Note that according to (16), λu is independent of the output

open-loop error yerr,op.

By following the same procedure as in (16), (15) can be
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Fig. 1. Neutral point clamped (NPC) voltage source inverter driving an
induction machine (IM).

generalized to
[
1 0
0 −1

]
(
yerr,op(k + 1)− γK∆u(k)

)
� 02 , ∀∆u(k) ∈ Cc

⇒ λu >
γ

c

(

k
T
1 ∆u(k)− k

T
2 ∆u(k)

)

,
[
−1 0
0 −1

]
(
yerr,op(k + 1)− γK∆u(k)

)
� 02 , ∀∆u(k) ∈ Cc

⇒ λu >
γ

c

(

−kT1 ∆u(k)− k
T
2 ∆u(k)

)

,
[
−1 0
0 1

]
(
yerr,op(k + 1)− γK∆u(k)

)
� 02 , ∀∆u(k) ∈ Cc

⇒ λu >
γ

c

(

−kT1 ∆u(k) + k
T
2 ∆u(k)

)

.

(17)

To find the critical value of λu, λ
(c)
u,crt, that simultaneously

satisfies conditions (16) and (17) the maximum value of the

term within the parentheses must be found for all possible

∆u(k) ∈ Cc. To do so, the following problem is solved for

each c ∈ {1, 2, 3}:8

maximize
u(k)∈U

||K∆u(k)||1

subject to ||∆u(k)||1 = c

||∆u(k)||∞ = 1 .

(18)

As can be seen, problem (18) is model independent and can be

easily solved offline. Having found the solution to (18), i.e.,

∆u∗(k), λ
(c)
u,crt can be found by setting ∆u(k) = ∆u∗(k)

in (16) and (17). Based on the resulting critical values

λ
(3)
u,crt < λ

(2)
u,crt < λ

(1)
u,crt , (19)

the conditions that are necessary and sufficient for (not)

switching can be derived. More specifically, if

• λ
(3)
u,crt < λu < λ

(2)
u,crt, then simultaneous switching in all

three phases is impossible,

• λ
(2)
u,crt < λu < λ

(1)
u,crt, then simultaneous switching in two

phases is impossible,

• λ
(1)
u,crt < λu, then switching is avoided altogether.

�

Example 1. Consider the drive system shown in Fig. 1 with the

parameters stated in Table II. As shown in Section III, the drive

model can be written in the form (2). FCS-MPC is employed

8A detailed derivation of (18) is provided in Appendix A.
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(b) Three-phase switch position u.

Fig. 2. Output (stator current) and control action (switch position) when the
ℓ1-norm is used in the objective function and the weighting factor is chosen

as λu = λ
(3)
u,crt + ǫ.

to control the three-phase output (i.e., stator) current of the

drive (see Section IV). The closed-loop behavior of this system

is shown in Fig. 2 for the weighting factor λu = λ
(3)
u,crt + ǫ,

where ǫ > 0 is an arbitrarily small positive quantity. As can be

seen, stability issues arise, because switching transitions that

might reduce the output error are prohibited by ruling out

simultaneous switching in all three phases9. If the value of λu
is further increased to λu = λ

(1)
u,crt + ǫ, switching in any of

the three phases becomes impossible and the system becomes

unstable, see Fig. 3. The outputs fail to track their reference

trajectories and the output trajectories evolve according to the

natural response of the system.

Note that stability is not guaranteed for λu < λ
(3)
u,crt. Indeed,

the critical values λ
(c)
u,crt are computed on the basis that (16)

and (17) hold for all ∆u(k) ∈ Cc, thus they provide upper

bounds on λu. This implies that there exists some ∆u(k) ∈
C3 for which switching transitions are avoided under certain

conditions for weights that are smaller than their lower critical

weight, i.e., for λu < λ
(3)
u,crt. As λu increases and approaches

λ
(3)
u,crt, the set of ∆u(k) that satisfy (16) and (17) becomes

larger. Consequently, as λu → λ
(3)−
u,crt , i.e., as λu approaches

λ
(3)
u,crt from the left, the likelihood that stability problems arise

increases.

9Note that simultaneously switching in two phases might also be avoided,
depending on the total switching cost and the relative tracking error. To
better explain the latter, a simple—yet informative—example is discussed in
Section V.



Time [ms]
0 5 10 15 20

−8

−4

0

4

8
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(b) Three-phase switch position u.

Fig. 3. Output (stator current) and control action (switch position) when the
ℓ1-norm is used in the objective function and the weighting factor is chosen

as λu = λ
(1)
u,crt + ǫ.

To this end, consider the following example. We set c = 3
and relax assumption (15) so that it is satisfied for some

∆u(k) ∈ C̄3 ⊂ C3 such that ||K∆u(k)||1 < ||K∆u∗(k)||1.

Provided that yerr,op(k+1) � 02 still holds, then λ̄
(3)
u,crt < λ

(3)
u,crt,

where λ̄
(3)
u,crt is the new λu that satisfies (16). By setting

λu = λ̄
(3)
u,crt switching is avoided, something that would lead

to stability problems when ||yerr,op(k + 1)||2 ≫ 0. This issue
is exemplified in the following and further discussed in more

detail in Section VI when examining the system performance

over a wide range of weights λu.

Example 2. Consider the same system and control problem

as in Example 1. For the given parameters it results that

λ
(3)
u,crt = 18.1 · 10−3, see also Section VI. For the present exam-

ple λu is chosen such that λu → λ
(3)−
u,crt , e.g., λu = 18.0 · 10−3.

Assume that at one instant of the problem the state of the

system is x(k) = [0.5696 0.8292 0.8878 − 0.2158]T (i.e., the

output is y(k) = [0.5696 0.8292]T ) and the desired output

value at the next time step is yref(k + 1) = [0.5906 0.8137]T .
In the sequel two cases are examined depending on the previ-

ously applied switch position u(k−1). In the first case assume
that it is u1(k − 1) = [0 1 0]T . Then it is straightforward to

show that the optimal switch position is u∗1(k) = [1 0 − 1]T ,
i.e., all three phases switch to eliminate the error as

much as possible. More specifically, the corresponding pre-

dicted output is y(k + 1)|u∗

1
(k) = [0.5928 0.8196]T meaning

that || yerr(k + 1)|u∗

1
(k) ||1 = 0.0082. For the second case

u2(k − 1) = [−1 1 1]T . Ideally, the converter would switch to

u2(k) = [0 0 0]T (note that the constraint (4d) limits the fea-

sible options, see also Table I), but this option turns out to be

suboptimal. The optimal solution is u∗2(k) = [0 1 0]T which

leads to an output of y(k + 1)|u∗

2
(k) = [0.5532 0.8196]T and

thus to an output error of || yerr(k + 1)|u∗

2
(k) ||1 = 0.0434.

Therefore, it can be concluded that depending on ∆u(k), and

as λu → λ
(3)−
u,crt , switching in all three phases may not always

be possible, and consequently potential stability issues may

arise.

Theorem 2. Consider a power electronic system of the

form (2) controlled by FCS-MPC given by (4). Direct MPC

with the (squared) ℓ2-norm in the objective function (3)

(p = 2) is guaranteed to be stable.

Proof. For p = 2, (9) takes the form

J2(k) = ||yerr,op(k+1)−γK∆u(k)||22+λu||∆u(k)||
2
2 . (20)

Problem (4) with J2(k) and λu = 0 is an integer quadratic

program that can be solved using a variety of solvers, such as

CPLEX [27], Gurobi [28] and MOSEK [29]. Practical stability

is guaranteed for FCS-MPC with a prediction horizon of one

step provided that the ℓ2-norm is used in the objective function,

as shown in [12].

For λu > 0, and by adopting assumption (15), it follows

that

λu>
1

c
||yerr,op(k+1)||22 −

1

c
||yerr,op(k+1)− γK∆u(k)||22 ⇔

λu>
1

c

(

||yerr,op(k+1)||22 − ||yerr,op(k+1)||22 − ||γK∆u(k)||22

+ 2γyTerr,op(k + 1)K∆u(k)
)

⇔

λu>
γ

c

(
−γ||K∆u(k)||22 + 2yTerr,op(k + 1)K∆u(k)

)
,

∀∆u(k) ∈ Cc .
(21)

As can be seen, λu depends on yerr,op(k+1). This implies that
an upper bound on the λu that affects closed-loop stability

cannot be derived independently of the open-loop output

error at time-step k + 1. Nevertheless, we observe that for

small output errors (i.e., ||yerr,op(k + 1)||2 ≈ 0), small values
of λu suffice to avoid switching. On the other hand, when

||yerr,op(k + 1)||2 ≫ 0, and for the same λu, switching transi-
tions are triggered that ensure stability. This is intuitively clear,

since the ℓ2-norm in the objective function emphasizes large

tracking errors, triggering switching transitions to compensate

for them.



More formally, (20) can be written as10

J2(k) = ||yerr,op − γK∆u||22 + λu||∆u||
2
2

= ∆uTγ2KTK∆u− 2γyTerr,opK∆u+ λu∆u
T∆u

+ ||yerr,op||
2
2

= ∆uT




γ

2KTK + λuI
︸ ︷︷ ︸

Q




∆u− 2 γyTerr,opK

︸ ︷︷ ︸

−θT (k+1)

∆u

+ ||yerr,op||
2
2

= ∆uTQ∆u+ 2θT∆u + θTQ−1θ

+ ||yerr,op||
2
2 − θ

TQ−1θ
︸ ︷︷ ︸

const(k+1)

=
(
∆u+Q−1θ

)T
Q

(
∆u+Q−1θ

)
+ const

= ||∆u+Q−1θ||2Q + const ,
(22)

whereQ = QT ≻ 0. Therefore, problem (4) with J2(k) in the
form (22) is an integer quadratic program11 (regardless of the

value of λu), and thus, as mentioned before, practical stability
of the system is guaranteed, according to [12]. Moreover,

the same argument can be extended to multistep FCS-MPC,

provided that a terminal cost is added to the ℓ2-norm-based
objective function, see [25].

�

III. NPC INVERTER DRIVE SYSTEM CASE STUDY

To demonstrate the impact the choice of norm in the

objective function has on the system performance, an industrial

case study is considered. More specifically, an MV drive

system consisting of a three-phase three-level neutral point

clamped (NPC) voltage source inverter is considered. The dc-

link voltage Vdc is assumed to be constant and the neutral point
potential is fixed to zero. As shown in Fig. 1, the inverter drives

an induction machine.

At each phase terminal, the NPC inverter can produce the

three discrete voltage levels −Vdc

2 , 0, Vdc

2 depending on the po-

sition of the four semiconductor switches in the phase leg [30].

To this end, let the integer variable ux ∈ U = {−1, 0, 1}
denote the switch position in phase x ∈ {a, b, c}, which
will be manipulated by the controller. Aggregating the switch

positions to the input vector u = [ua ub uc]
T ∈ U = U3, the

output voltage of the inverter can be described by

vαβ =
Vdc
2
uαβ =

Vdc
2
Ku . (23)

The system under consideration can be described by

the dynamics of the stator current is,αβ and the ro-

tor flux linkage ψr,αβ . By introducing the state vec-

tor x = [isα isβ ψrα ψrβ]
T ∈ R

4, the continuous-time state

equation can be described by (1). By setting y = is,αβ ∈ R
2,

we defined the stator current as the system output (or the

10In the following derivation, the dependency on the time-step k is dropped
to simplify the exposition.

11Note that the constant term in (22) is independent of ∆u(k) and can be
neglected.
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Fig. 4. MPC with current reference tracking for the NPC inverter with an
IM.

controlled variable). The matrices F , G and C—for the

specific case study, along with the detailed derivation of the

system model, are provided in the Appendix B. Regarding

the discrete-time state-space model of the drive, this is of the

form (2), where the system matrices are derived using exact

Euler discretization.

IV. FCS-MPC WITH CURRENT REFERENCE TRACKING

We consider MPC with current reference tracking, see

Fig. 4. The main control objective is the elimination of the

current error

is,err,αβ = is,ref,αβ − is,αβ , (24)

which is defined as the difference between the current ref-

erence is,ref,αβ and the measured stator current. Because the

switching losses typically dominate over the conduction losses

for MV drives, the switching frequency (i.e., the switching

effort) has to be kept small. To achieve the latter, as explained

in section II, the term ∆u(k) = u(k)−u(k−1) is penalized.

Switching between ux = 1 and ux = −1 without an

intermediate zero switch position has to be prevented in order

to avoid a shoot through. To this end, the switching constraint

||∆u(k)||∞ ≤ 1 (see (4d)) is utilized. Depending on u(k−1),
this constraint restricts the set of admissible switch positions

u(k) ∈ U adm(k) the controller may switch to. For the three-

level NPC inverter, the admissible phase switch positions

Uadm,x that compose the set of three-phase admissible switch

positions U adm(k) are summarized in Table I.

Based on the previously stated control objectives, the ob-

jective function takes the form

Jp(k) = ||is,err,αβ(k + 1)||pp + λu||∆u(k)||
p
p , (25)

by setting yerr = is,err,αβ in (3). Note that the α- and β-
components of the stator current are of the same magnitude,



TABLE I
SET OF ADMISSIBLE SWITCH POSITIONS OF

PHASE x ∈ {a, b, c}, UADM,x(k), THAT
FORM UADM(k) = UADM,a(k)× UADM,b(k)× UADM,c(k).

ux(k − 1) Uadm,x(k)

−1 {−1, 0}

0 {−1, 0, 1}

1 {0, 1}

thus the tracking of their reference values is equally em-

phasized. Moreover, λu sets the trade-off between the stator

current error and the switching frequency.

To obtain the desired behavior of the drive, the optimal

control input u∗(k) that minimizes (25), is computed. To do

so, the stator current at time step k+1 is predicted based on (2).
This is done for all admissible u(k) ∈ Uadm(k) that meet the
switching constraint. Therefore, the optimization problem to

be solved is of the form (4), where function (4a) is given

by (25).

V. IMPACT OF THE CHOICE OF NORM: DISCUSSION

To exemplify the effect of the norm used in the objective

function (25), two possible instances of the optimization

problem (4) are presented. In both cases, the previously

applied input is u(k − 1) = [0 0 0]T , thus the set of ad-

missible switch positions at time-step k is Uadm(k) = U .

This implies that all of the 33 = 27 switch positions

u(k) need to be evaluated to determine the optimal one.

Nonetheless, for the sake of simplicity—but without loss

of generality—only three out of the 27 candidate solutions

are examined in the following examples, labeled as u0(k),
u1(k) and u2(k). The three-phase switch position u0(k) is

chosen as u0(k) = u(k − 1), whereas the other two three-

phase switch positions incur one switching transition, i.e.,

||∆uz(k)|| = 1 , ∀uz(k), z ∈ {1, 2}. Finally, to further sim-

plify the exposition, we assume that all three examined

switch positions have approximately the same influence on

the tracking error in the β-axis regardless of the norm used,

i.e.,
∣
∣is,err,β(k + 1)|uz(k)

∣
∣ ≈

(
is,err,β(k + 1)|uz(k)

)2
, ∀uz(k),

z ∈ {0, 1, 2}. This implies that the contribution of the β-
component of the current error to the overall cost can be

interpreted as merely an offset, thus it can be discarded without

affecting the analysis presented hereafter. Hence, we restrict

our discussion to the α-axis.
For the first instance examined, the current error in the α-

axis at time-step k is small, i.e., |is,err,α(k)| ≈ 0, see Fig. 5(a).
As can be seen in this figure, the predicted current can take

three possible values at time-step k + 1 depending on the

three examined switch positions u(k), i.e., is,α(k + 1)
∣
∣
u0(k)

,

is,α(k+1)
∣
∣
u1(k)

, and is,α(k+1)
∣
∣
u2(k)

. The resulting values of

J1(k) (i.e., with the ℓ1-norm) are depicted in Fig. 5(b). The

black bar shows the contribution of the current error term,

i.e., the tracking error cost, which depends linearly on the

current error is,err,α(k). The gray bar indicates the contribution
of the switching effort term, i.e., the switching cost. On the

other hand, when the (squared) ℓ2-norm (p = 2) is used in

k k + 1
t

is,α

is,ref,α(k)

is,ref,α(k + 1)

is,α(k)
∣
∣
u0(k)

is,α(k + 1)
∣
∣
u2(k)

is,α(k + 1)
∣
∣
u0(k)

is,α(k + 1)
∣
∣
u1(k)

(a)

is,err,α

J1

J1(u
∗)

u1 u0 u2

(b)

is,err,α

J2

J2(u
∗)

u1 u0 u2

(c)

Fig. 5. Impact of the choice of norm on the selection of the switch
position when the current error is small. (a) Instance of the problem. (b)
Penalization of the current error and the switching effort based on the ℓ1-
norm. (c) Penalization of the current error and the switching effort based on
the (squared) ℓ2-norm. The switching cost is shown with the gray bar and the
tracking error with the black bar.

the objective function (25), the tracking error cost changes

quadratically with the current error, see Fig. 5(c).

As can be observed in Fig. 5(a), the predicted α-axis current
at k + 1 deviates the most from the current reference when



u2(k) is applied, because
∥
∥
∥is,err,α(k + 1)

∣
∣
u1(k)

∥
∥
∥

p

p
<

∥
∥
∥is,err,α(k + 1)

∣
∣
u0(k)

∥
∥
∥

p

p

<
∥
∥
∥is,err,α(k + 1)

∣
∣
u2(k)

∥
∥
∥

p

p
.

(26)

The option u2(k) is consequently suboptimal and is thus not

further discussed. As for the remaining two options, u0(k)
and u1(k), the controller will refrain from switching for both

norms, because the switching cost dominates over the tracking

error cost. In other words, because
∣
∣
∣is,err,α(k + 1)

∣
∣
u0(k)

∣
∣
∣ < λu and

(

is,err,α(k + 1)
∣
∣
u0(k)

)2

< λu

hold, keeping the old switch position yields the minimal cost

and is thus optimal.

Fig. 6(a) depicts the same situation as before, with the

difference that a large current error occurs at time-step k, i.e.,
|is,err,α(k)| ≫ 0. As before, (26) holds, thus the option u2(k)
can be easily excluded. However, the choice between u0(k)
and u1(k) depends on the norm used in the objective function.

More specifically, when the ℓ1-norm is used and
∣
∣
∣is,err,α(k + 1)

∣
∣
u0(k)

∣
∣
∣ <

∣
∣
∣is,err,α(k + 1)

∣
∣
u1(k)

∣
∣
∣+ λu

holds, then the controller concludes that u∗(k) = u0(k) =
u(k − 1) is the optimal solution to (4); a switching tran-

sition, which could reduce the current error, is not trig-

gered. In other words, when the switching cost (gray bar in

Fig. 6(b)) outweighs the relative reduction in the tracking

error, as defined by the difference

∣
∣
∣is,err,α(k + 1)

∣
∣
u0(k)

∣
∣
∣ −

∣
∣
∣is,err,α(k + 1)

∣
∣
u1(k)

∣
∣
∣, then switching is avoided regardless

of the absolute tracking error. As a result, the current error

increases, the controller tracking performance deteriorates and

stability issues arise.

On the other hand, when the (squared) ℓ2-norm is used and

(

is,err,α(k + 1)
∣
∣
u0(k)

)2

>
(

is,err,α(k + 1)
∣
∣
u1(k)

)2

+ λu

holds, i.e., the difference between the predicted squared current

errors for u0(k) and u1(k) exceeds the switching cost, then a
switching transition occurs from u(k− 1) to u1(k) to reduce
the current error. This is indicated in Fig. 6(c). Consequently,

and as shown in [12], closed-loop stability is ensured.

VI. PERFORMANCE EVALUATION

The simulation results presented in this section relate to the

MV drive system depicted in Fig. 1. The inverter is fed by the

constant dc-link voltage Vdc = 5.2 kV and a fixed neutral point

potential N. A 3.3 kV, 356A and 50Hz squirrel-cage induction
machine rated at 2MVA, with 596 rpm nominal rotational

speed and a 0.25 p.u. total leakage inductance is used. The

rated values of the induction machine and the parameters of

the drive are summarized in Table II both in SI quantities and

in the p.u. system. According to the objective function (25),

the one-step horizon case is investigated. The behavior of the

k k + 1
t

is,α

is,ref,α(k)

is,ref,α(k + 1)

is,α(k)
∣
∣
u0(k)

is,α(k + 1)
∣
∣
u2(k)

is,α(k + 1)
∣
∣
u0(k)

is,α(k + 1)
∣
∣
u1(k)

(a)

is,err,α

J1

J1(u
∗)

u1 u0 u2

(b)

is,err,α

J2

J2(u
∗)

u1 u0 u2

(c)

Fig. 6. Impact of the choice of norm on the selection of the switch
position when the current error is large. (a) Instance of the problem. (b)
Penalization of the current error and the switching effort based on the ℓ1-
norm. (c) Penalization of the current error and the switching effort based on
the (squared) ℓ2-norm. The switching cost is shown with the gray bar and the
tracking error with the black bar.

drive system is examined for the ℓ2-norm and the ℓ1-norm.
The sampling interval Ts = 25µs is used.

1) Objective Function With the ℓ2-Norm: First, the steady-
state performance of the system is examined when using the

(squared) ℓ2-norm in (25), i.e., p = 2. The weighting factor is
set to λu = 2.5 · 10−3, which results in an average switching

frequency per semiconductor device of fsw = 268Hz. The



TABLE II
RATED VALUES AND PARAMETERS OF THE DRIVE

Rated values Parameters

Induction Motor

Voltage 3.3 kV Stator resistance (Rs) 57.61mΩ (0.0108 p.u.)

Current 356A Rotor resistance (Rr) 48.89mΩ (0.0091 p.u.)

Real power 1.587MW Stator leakage reactance (Xls) 2.544mH (0.1493 p.u.)

Apparent power 2.035MVA Rotor leakage reactance (Xlr) 1.881mH (0.1104 p.u.)

Stator frequency 50Hz Mutual reactance (Xm) 40.01mH (2.349 p.u.)

Rotational speed 596 rpm

Inverter

Dc-link voltage (Vdc) 5.2 kV (1.930 p.u.)
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(b) Three-phase switch position (control input) u.
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(c) Electromagnetic torque Te (solid line) and its reference (dash-dotted
line).
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(d) Stator flux magnitude Ψs.

Fig. 7. Simulated waveforms produced by the direct model predictive controller with current reference tracking during steady-state operation, at full speed
and rated torque. The (squared) ℓ2-norm and the weighting factor λu = 2.5 · 10−3 are used in the objective function.

simulation results for this scenario are shown in Fig. 7. As

can be seen in Fig. 7(a), the three-phase stator currents (solid

lines), which are shown for one fundamental period, accurately

track their references (dash-dotted lines). The low switching

frequency and the short horizon of one time step, though,

lead to relatively high current ripples and to the current total

harmonic distortion (THD) of ITHD = 5.84%. Fig. 7(b) shows
the three-phase switch positions, while the electromagnetic

torque and the magnitude of the stator flux are depicted in

Figs. 7(c) and 7(d), respectively. Based on these results, it can

be concluded that the steady-state performance of the drive is

relatively good.

In a next step, the weighting factor λu is varied in order

to investigate the trade-off between the current THD and

the average switching frequency. The resulting current THD

and the switching frequency are shown for 0 ≤ λu ≤ 0.02
in Figs. 8(a) and 8(b), respectively. As can be observed in

Fig. 8(a), the current THD depends almost linearly on λu for

λu ≤ 0.017. The switching frequency decreases steeply from

its peak at 3440Hz for λu = 0 to about 70Hz at λu = 0.0175,
as shown in the log-linear plot in Fig. 8(b). For λu ≥ 0.018,
six-step operation is reached, implying a switching frequency

of 50Hz. The current THD is about 20%.

A useful performance metric that characterizes the control

scheme is the product of the current distortions and the device
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Fig. 8. Trade-off curves when the ℓ2-norm is used in the objective function.
The current THD, switching frequency and the product of the two scaled by
1000 are shown as a function of the weighting factor λu.

switching frequency, i.e.,

cf = ITHD · fsw . (27)

As shown for example in [31], cf is effectively a constant for

control schemes based on pulse width modulation (PWM).

For the discussed direct MPC strategy, however, this is not

the case.

Indeed, roughly five distinct regions governed by different

characteristics can be observed in Fig. 8(c). For three of them,

i.e., 0.0005 ≤ λu < 0.0065 (region II), 0.0065 ≤ λu < 0.007
(region III) and λu ≥ 0.018 (region V), the ratio between cur-
rent distortions and switching frequency is favorable, because

cf is below 1600 and thus relatively small. More specifically,

in region II, the switching frequency is between 100Hz and

1 kHz, cf is approximately 1600 and the current THD changes

linearly with λu. Considering that an MV drive typically

operates within this range of switching frequencies, the tuning

of the controller is relative simple. The metric cf is very

low (≈ 1100) in region III and the switching frequency is

constant and equal to 100Hz. Finally, in six-step operation

(region V), cf attains its lowest value of approximately 1000,
implying that even for that range of values of λu, the system
performance is acceptable.

On the other hand, in the two remaining regions

λu < 0.0005 (region I) and 0.007 ≤ λu < 0.018 (region IV),

the values of cf are mostly high, indicating an unfavorable

ratio between current distortions and switching frequency. In

region I, in which the switching penalty is close to zero,

the switching frequency increases disproportionately; large

increases in the switching frequency lead to only minor

reductions in the current THD. Finally, the same unfavorable

behavior is observed in region IV, where the drive operates at

very low switching frequencies between 70 and 100Hz.

2) Objective Function With the ℓ1-Norm: Operating un-

der the same conditions as before, the steady-state per-

formance of the drive is examined when the ℓ1-norm is

used. The weighting factor is chosen as λu = 16 · 10−3 and

the resulting average switching frequency is fsw = 1266Hz.
For the given system parameters (see Table II), the crit-

ical weights λ
(3)
u,crt = 18.1 · 10−3, λ

(2)
u,crt = 23.6 · 10−3 and

λ
(1)
u,crt = 27.1 · 10−3 result. The resulting waveforms of the

stator currents, the three-phase switch positions, the electro-

magnetic torque and the magnitude of the stator flux are shown

in Fig. 9. Despite the relatively high switching frequency, large

current errors occur resulting in torque deviations from its

reference value of more than 30%, see Figs. 9(a) and 9(c),

respectively. It can be concluded that the system becomes

temporarily unstable, which clearly deteriorates the overall

closed-loop performance. Based on the analysis given in

Section II, this behavior of the system is expected considering

that λu → λ
(3)−
u,crt .

For a final comparison between the ℓ1- and the ℓ2-norm,
λu is again varied between 0 and 0.02. The resulting current

THD and switching frequency are recorded and shown in

Fig. 10. As can be seen for λu < 0.0072 (region I), the

switching frequency and the current THD are almost constant.

For 0.0072 ≤ λu < 0.0198 (region II), however, the switching
frequency decreases in a somewhat linear manner (it remains,

though, above 1 kHz), causing a gradual increase in the current
THD; a stepwise increase occurs for λu > 0.0171, i.e., as

λu approaches λ
(3)
u,crt. For λu ≥ 0.0198 (region III), i.e., for

λ
(3)
u,crt < λu < λ

(2)
u,crt, the switching frequency approaches zero,

the tracking of the current is lost and the system becomes

unstable. Based on these observations, it can be concluded

that the ℓ1-norm is an unfortunate choice for two reasons. The

controller is effective only for a very limited range of values

of λu and it fails to meet the second control objective, i.e.,

the operation at switching frequencies of a few hundred Hz.

VII. CONCLUSIONS

The choice of norm has a profound impact on the closed-

loop system performance when direct model predictive con-

trol (MPC) with reference tracking is employed. Despite the

common belief that an objective function with the ℓ1-norm is

preferable for computational simplicity, the ℓ1-norm is a poor



Time [ms]
0 5 10 15 20

−1

−0.5

0

0.5

1

(a) Three-phase stator current is (solid lines) and their references (dash-
dotted lines).

Time [ms]
0 5 10 15 20

−1

−1

−1

0

0

0

1

1

1

(b) Three-phase switch position (control input) u.
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(c) Electromagnetic torque Te (solid line) and its reference (dash-dotted
line).
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Fig. 9. Simulated waveforms produced by the direct model predictive controller with current reference tracking during steady-state operation, at full speed
and rated torque. The ℓ1-norm and the weighting factor λu = 16 · 10−3 are used in the objective function.
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Fig. 10. Trade-off curves when the ℓ1-norm is used in the objective function.
The current THD and the switching frequency are shown as a function of the
weighting factor λu.

choice. Operation at low switching frequencies is impaired,

tuning is difficult and stability issues arise. As was proven in

this paper, for penalties on the switching effort in excess of

λ
(1)
u,crt, the controller with a horizon of N = 1 and the ℓ1-

norm for a linear system with integer inputs stops operating

altogether. The (squared) ℓ2-norm avoids these issues and is

thus clearly preferable. In particular, the ℓ2-norm guarantees

closed-loop stability, see [12].

This paper presented and analyzed the impact of the choice

of norm in depth and used an industrial case study to verify

the theoretical analysis. To this end, a three-level inverter drive

system was used to illustrate and confirm the issues associated

with the ℓ1-norm and the benefit of adopting the ℓ2-norm in

the objective function.

APPENDIX A

CALCULATION OF THE CRITICAL VALUE OF λu

The critical value of λu is that value that simultaneously

satisfies all four inequalities in (16) and (17). Thus, the λu that

is always greater than all four left-hand sides is that λ
(c)
u,crt > 0

that is greater than the maximum possible values of the dot

products formed by the matrix-vector multiplicationK∆u(k)
for all ∆u(k) ∈ Cc (note that the constant factor γ/c does

not affect the optimal value, and thus it can be neglected).

To find the maximum value resulting by the aforementioned

multiplication K∆u(k) one has to take into account the

absolute values of the dot products, i.e., the ℓ1-norm of the

product is required.

Finally, to find the feasible λ
(c)
u,crt, the formulated objective

function ||K∆u(k)||1 is minimized, subject to the constraints



imposed according to the definition of Cc, i.e., the feasible

set. As a result, the optimization problem that computes λ
(c)
u,crt

takes the form (18).

APPENDIX B

CONTINUOUS-TIME MODEL OF THE DRIVE SYSTEM

According to (23)—and considering that there are 33 = 27
different vectors of the form u = [ua ub uc]

T—the inverter

unit can produce 19 unique voltage vectors vαβ in the αβ-
plane. The output voltage of the inverter is the voltage applied

to the stator windings of the machine.

Before deriving the state-space model of the squirrel-cage

induction machine in the αβ-plane, it should be mentioned

that the dynamic of the rotor angular speed ωr is neglected,

since the speed is considered to be a time-varying parameter.

As mentioned in Section III, the stator current is,αβ and the

rotor flux vector ψr,αβ are the state variables. Moreover, the

machine input is the stator voltage vs,αβ , which is equal

to the inverter output voltage, as given by (23). The model

parameters are the stator and rotor resistances Rs and Rr,

respectively, the stator, rotor and mutual reactances Xls, Xlr

and Xm, respectively, the inertia M , and the mechanical load

torque Tℓ.

Considering the above, the continuous-time state equations

are12 [32]

dis
dt

= −
1

τs
is +

(

1

τr
I − ωr

[

0 −1
1 0

]

)

Xm

Φ
ψr +

Xr

Φ
vs

(28a)

dψr

dt
=
Xm

τr
is −

1

τr
ψr + ωr

[

0 −1
1 0

]

ψr (28b)

dωr

dt
=

1

M
(Te − Tℓ) (28c)

with Φ = XsXr −X
2
m, Xs = Xls +Xm and Xr = Xlr +

Xm. Furthermore, we define τs = XrΦ/(RsX
2
r +RrX

2
m)

and τr = Xr/Rr as the transient stator and rotor time con-

stants, respectively. I is the identity matrix of appropriate di-

mension (here two by two), whereas Te is the electromagnetic
torque, which is given by

Te =
Xm

Xr

(ψrαisβ − ψrβisα) . (29)

Combining (23) and (28), the state-space model of the drive

system in the continuous-time domain can be written in the

form (1). The matrices F , G, and C are

F =











− 1
τs

0 Xm

τrΦ
ωr

Xm

Φ

0 − 1
τs

−ωr
Xm

Φ
Xm

τrΦ
Xm

τr
0 − 1

τr
−ωr

0 Xm

τr
ωr − 1

τr











, G =
Xr

Φ

Vdc
2









1 0
0 1
0 0
0 0









,

C =

[

1 0 0 0
0 1 0 0

]

.

12In (28), all vectors are given in the αβ-plane and the subscripts are
dropped for convenience.
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