
A Computationally Efficient Model Predictive
Control Strategy for Linear Systems With Integer

Inputs
Petros Karamanakos,Member, IEEE, Tobias Geyer,Senior Member, IEEE,

and Ralph Kennel,Senior Member, IEEE

Abstract—For linear systems with integer inputs, the model
predictive control (MPC) problem with output reference tra cking
is formulated as an integer least-squares (ILS) problem. The ILS
problem is solved using a modified sphere decoding algorithm,
which is a particular branch-and-bound method. To reduce the
computational complexity of the sphere decoder, a reduction
algorithm is added as a preprocessing stage to reshape the
search space in which the integer solution lies. The computational
complexity of the proposed algorithm is modest, enabling its
implementation in a real-time system even when consideringlong
prediction horizons. A variable speed drive system with a three-
level voltage source inverter serves as an illustrative example to
demonstrate the effectiveness of the proposed algorithm.

Index Terms—Model predictive control (MPC), integer least-
squares (ILS) problem, integer programming, LLL lattice basis
reduction, sphere decoding, power electronics, drive systems

I. I NTRODUCTION

T HROUGHOUT the years, model predictive control
(MPC) [1] has gained popularity in many disciplines

due to its numerous advantages, including its ability to handle
systems with complex dynamics, such as hybrid systems. For
linear systems with integer inputs, some (or all) of the decision
variables of the MPC problem are integer-valued, and the
optimization problem underlying MPC is a (mixed) integer
program [2], [3], which is NP-hard.This type of systems can be
modeled as mixed logical dynamical (MLD) systems [4], hy-
brid automata [5], or polyhedral piecewise affine systems [6].

The explicit state-feedback control law can be computed
offline for such systems [7], [8], or they can be solved online,
using for example branch-and-bound methods [3]. The for-
mer approach, however, typically requires significant memory
resources to store the explicit control law, with the required
memory increasing dramatically with the problem size and
complexity. Explicit control laws are also ill-suited to address
variations in parameters or reference setpoints.

For long prediction horizons or for problems with many
integer variables, due to the combinatorial explosion of the
number of possible integer solutions, solving the integer
optimization problem online might lead to computational
intractability [9]. Long horizons are often required to ensure
stability and good closed-loop performance [10], [11], as was

P. Karamanakos and R. Kennel are with the Institute for Electrical Drive
Systems and Power Electronics, Technische Universität M¨unchen, 80333
Munich, Germany; e-mails: p.karamanakos@ieee.org, kennel@ieee.org

T. Geyer is with ABB Corporate Research, 5405 Baden-Dättwil, Switzer-
land; e-mail: t.geyer@ieee.org

shown for different applications in various fields [12]–[15].
Short sampling intervals further aggravate this issue. In the
field of power electronics, for example, sampling intervalsof
hundreds or even tens of microseconds are common.

To address this issue, a dedicated optimization technique
was recently proposed in [16], [17] for MPC problems in-
volving linear systems with integer inputs. The underlying
optimization problem is formulated as an integer least-squares
(ILS) problem and the branch-and-bound technique of sphere
decoding [18], [19] is adopted to compute the optimal se-
quence of control actions.

By reformulating the ILS problem through a preprocessing
stage, [20] proposed a modified version of the algorithm
introduced in [16]. A lattice reduction algorithm [21] was
implemented to reduce the size of then-dimensional search
space and, as a result, the number of nodes in the search tree
to be examined. In addition, the implementation of the sphere
decoder in [16] was refined. With these improvements, the
computations to be performed in real time can be reduced,
while still obtaining the optimal solution.

In this work, the initial results presented in [20] are ex-
tended. The formulation of the MPC problem is generalized
and applied to general linear systems with integer inputs. An
exhaustive description of the derivation and solution process
of the reformulated ILS problem is provided, along with a
detailed analysis of the complexity of the proposed algorithm.

To provide further insight, an example of a linear system
with integer inputs from the field of power electronics is
used as a case study. More specifically, a variable speed drive
system is considered, which consists of a three-level neutral
point clamped (NPC) inverter driving a medium-voltage in-
duction machine. For long horizons, such as ten steps, the
computational complexity of the discussed strategy is reduced
by up to45% compared with the approach presented in [16],
highlighting the efficacy of the proposed algorithm.

II. FORMULATION OF THE OPTIMAL CONTROL PROBLEM

Consider a linear system with integer inputs that is described
by the discrete-time state-space model

x(k + 1) = Ax(k) +Bu(k) , y(k) = Cx(k) , (1)

which has nx states,ny outputs andnu inputs. In this
formulation,x ∈ R

nx is the state vector,y ∈ R
ny the output

vector, andu ∈ U is the integer-valued input vector, with

U = U × · · · × U = Unu being thenu-times Cartesian prod-
uct of the setU ⊂ Z. The state-space matricesA ∈ R

nx×nx ,
B ∈ R

nx×nu and C ∈ R
ny×nx are time invariant, even

though the proposed control approach is also applicable to
time-varying matrices. Finally,k ∈ N denotes the time step.

A. Model Predictive Control with Output Reference Tracking

Consider MPC with output reference tracking as depicted
in Fig. 1 with the objective function

J(k) =

k+N−1∑

ℓ=k

||yerr(ℓ+ 1)||2Q + ||∆u(ℓ)||2R (2)

that penalizes over the finite prediction horizonN the
evolution of the output erroryerr(k) = yref(k)− y(k), and
the control effort ∆u(k) = u(k)− u(k − 1). The ratio
between the weighting matricesQ ∈ R

ny×ny ,Q � 0 and
R ∈ R

nu×nu ,R ≻ 0 decides on the trade-off between the
overall tracking accuracy and the control effort.

At time stepk, the optimal solution (i.e., the control input)
is obtained by solving the following problem in real time

minimize
U(k)

J(k)

subject to x(ℓ+ 1) = Ax(ℓ) +Bu(ℓ)

y(ℓ) = Cx(ℓ) , ∀ ℓ = k, . . . , k +N − 1

U(k) ∈ U .

(3)

The optimization variable is the integer-valued sequence of
control actionsU(k) = [uT (k) . . . uT (k+N − 1)]T ∈ U =
U

N ⊂ Z
n over theN -step horizon, wheren = N · nu. It

should be mentioned that because of the nature of system (1)
a steady-state error may be present1.

B. Formulation of the ILS Problem

Using algebraic manipulations, the optimization problem (3)
can be reformulated as an ILS problem. To this end, let the
vectorsY (k) = [yT (k+1) . . . yT (k+N)]T andY ref(k) =
[yTref(k+1) . . . yTref(k+N)]T denote the sequence of outputs
and the corresponding sequence of output references over the
horizon, respectively.

The objective functionJ can be written in vector form as

J(k) = ||Γx(k) +ΥU(k)− Y ref(k)||
2
∼

Q
+

+ ||SU(k)−Ξu(k − 1)||2∼
R
,

(4)

with Y (k) = Γx(k) + ΥU(k). The matricesΓ, Υ, S and
Ξ can be found in [20], whereas the block diagonal matrices
∼

Q,
∼

R are defined as
∼

Q = ⊕N
i=1Q, and

∼

R = ⊕N
i=1R. After

some algebraic manipulations (as explained in the appendix)
the objective function (4) can be written as

J(k) =
(
U(k)−Uunc(k)

)T
W
(
U(k)−Uunc(k)

)
+ const(k) ,

(5)
whereUunc ∈ R

n is the unconstrained solution of the prob-
lem (3), see the appendix. The matrixW is by definition
symmetric positive definite and can thus be factored (using
Cholesky factorization) asW =HTH , whereH ∈ R

n×n is

1Note that no stability guarantees are provided in this work.

Plant
Optimization problem (3)

yref

Measurements
and/or estimates

u∗ y

x

⇓
U∗

Fig. 1: Model predictive control with output reference tracking.

a nonsingular, upper triangular matrix. As a result, problem (3)
becomes the ILS problem

minimize
U(k)∈U

||Ūunc(k)−HU(k)||22 , (6)

whereŪunc =HUunc(k) ∈ R
n. The matrixH is commonly

known as the lattice generator matrix—its columns represent
n linearly independent vectors inRn that generate a lattice,
i.e., the set of integer linear combinations of the basis vectors
hi, i.e.,L(H) = {

∑n
i=1 κihi | κi ∈ Z}.

III. SOLVING THE ILS PROBLEM

To facilitate the real-time implementation of the proposed
MPC algorithm the ILS problem (6) needs to be solved
in a time-efficient manner. To achieve this, the procedure
for solving the problem is divided into two stages: the first
stage (preprocessing) consists of thereduction of problem (6),
whereas in the second stage (optimization) thesearch for the
optimal solution is performed.

A. Preprocessing Stage

In a first step, the Lenstra-Lenstra-Lovász (LLL) lattice
basis reduction algorithm, as proposed in [21], is applied to
the problem (6). The goal is to improve the conditioning of the
optimization problem (6) by transformingH to a new upper
triangular matrix

∼

H∈ R
n×n. To do so, the reduction process—

which can be accomplished with only a few computations,
thanks to the sparsity ofH—produces the matrix

∼

H with
positive diagonal entries that satisfy the following criteria:

|h̃i,j | ≤
1

2
h̃i,i, i = 1, . . . , j − 1 (7a)

δh̃2j−1,j−1 ≤ h̃
2
j−1,j + h̃2j,j , j = 2, . . . , n , (7b)

where1/4 < δ ≤ 1 (with the typical value beingδ = 3/4).
To this end, integer Gauss transformations (IGTs) and

permutation matrices are employed. First, IGTs of the form
M i,j = I − γeieTj are applied to the right-hand side ofH,
whereei is the unit vector (i.e., theith column of the identity
matrixI of proper dimensions) andγ ∈ Z. Therefore, by post-
multiplying H with M i,j (with i < j) we obtain

∼

H=HM i,j =H − γHeie
T
j . (8)

The matricesH and
∼

H are the same except for the(k, i)
entries, withk = 1, 2, . . . , i, which areh̃k,j = hi,j − γhk,i.
By following a procedure similar to Gaussian elimination, i.e.,
by setting2 γ = ⌊hi,j/hi,i⌉, we ensure that the entry|h̃i,j | is
sufficiently reduced such that it meets condition (7a).

2⌊ξ⌉ denotes the integer that is obtained by roundingξ. This definition can
be directly extended to vectorsξ, by performing elementwise rounding.

1 4 7 10 13 16 19 22 25 28

1

4

7

10

13

16

19

22

25

28
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(a) TheH matrix.

1 4 7 10 13 16 19 22 25 28

1

4

7

10

13

16

19

22

25

28
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(b) The
∼

H matrix.

Fig. 2: Visualization of the lattice generator matrix (a) before and (b) after
the LLL reduction algorithm, assuming the dimensionn = 30. The diagonal
entries of the upper triangular matrix

∼

H are positive and are placed in an
ascending order. Moreover, their values are more than two times larger than
those of the off-diagonal entries, thus conditions (7a) and(7b) hold.

To satisfy the second condition (7b), permutations of the en-
tries ofH are required wheneverδh2j−1,j−1 > h2j−1,j + h2j,j.
A Givens rotation matrixGj−1,j [22] is employed to maintain
the upper triangular form of the resulting matrix

∼

H . Hence,
the LLL reduced matrix

∼

H can be written as
∼

H= GT
j−1,jHP j−1,j , (9)

where the GivensGj−1,j and permutationP j−1,j matrices
are described in [20].

With this procedure, the second condition, as described
by (7b), is met, since

h̃j−1,j−1 =
√

h2j−1,j + h2j,j

h̃j−1,j = chj−1,j−1 , c = hj−1,j(h
2
j−1,j + h2j,j)

−1/2

h̃j,j = −shj−1,j−1 , s = hj,j(h
2
j−1,j + h2j,j)

−1/2

.

As a result, the reduction process strives to place the
diagonal entries of

∼

H in ascending order, i.e.,

h̃1,1 ≤ h̃2,2 ≤ . . . ≤ h̃n,n . (10)

Note that the optimization algorithm described in the next
section performs a depth-first search. Ordering the diagonal
entries of

∼

H reduces the number of nodes to be considered
in the early steps of the search procedure, thus decreasing the
total number of nodes to be explored.

The pseudocode of the LLL reduction procedure is provided
in Algorithm 1. An illustrative example3 of the effect of the
LLL algorithm onH is presented in Fig. 2. More formally,
H is transformed into

∼

H , which is of the form
∼

H= V THM , (11)

with V ∈ R
n×n being an orthogonal matrix andM ∈ Z

n×n

being unimodular (i.e.,detM = ±1). With this, the ILS
problem (6) can be rewritten as

minimize
∼

U(k)∈U

||
∼

Uunc(k) −
∼

H
∼

U(k)||22 , (12)

with
∼

Uunc(k) =
∼

H M−1Uunc(k) and
∼

U(k) =M−1U(k).

3The entries of the lattice generator matricesH and
∼

H are computed based
on the case study presented in Section IV. As explained there, the example
is based on a prediction horizon ofN = 10 steps.

Algorithm 1 LLL Reduction

function
∼

H = LLL(H)
M ← In
while j ← 2 ≤ n do

if |hj−1,j | >
1
2 |hj−1,j−1| then

H ←HM j−1,j , M ←MM j−1,j

end if
if δh2j−1,j−1 > h2j−1,j + h2j,j then
H ← GT

j−1,jHP j−1,j , M ←MP j−1,j

j ← max{j − 1, 2}
else

for i← j − 2 down to1 do
if |hi,j | > 1

2 |hi,i| then
H ←HM i,j , M ←MM i,j

end if
end for
j ← j + 1

end if
end while
∼

H←H

end function

ρ

Fig. 3: The principle of the sphere decoder: A (two-dimensional) sphere of
radiusρ (shown as blue line) centered at the unconstrained solution(shown as
red solid circle) includes several integer points of the lattice (shown as black
solid circles). One of these points is the integer solution of the ILS problem.

B. Optimization Stage

To find the optimal solution in the transformed lattice
generated by

∼

H , a sphere decoding algorithm is implemented,
based on the one described in [16]. This algorithm is a variant
of the Fincke and Pohst sphere decoding algorithm [18], which
exploits the fact that the set of admissible control input se-
quencesU forms a (truncated) integer lattice. According to the
sphere decoding principle, the optimal solution lies within a
hypersphere (n-dimensional sphere) of radiusρ, see Fig. 3. As
mentioned in Section III-A, the sphere decoding algorithm is a
depth-first search algorithm that finds the optimal solutionby
traversing a search tree in a sequential manner until reaching
a dead end or the bottom level. If this happens, the algorithm
backtracks to examine unexplored nodes in higher layers. An
example of an integer search tree is provided in Fig. 4 along
with the visualization of the search procedure.

To exploit the structure of
∼

H and to avoid unnecessary
computations, the search tree is built in a bottom-to-top
manner with the higher-dimensional nodes being located at the
top layers of the search tree, and the one-dimensional nodesat
the bottom, see Fig. 4. This is in contrast to [16], where the tree
is generated in a top-to-bottom manner. The pseudocode of
the proposed algorithm is summarized in Algorithm 2, where
the initial values of the arguments are

∼

U ← [], i.e., the
empty vector,d ← 0, i ← n, ρ ← ρ(k)—see (15), and
∼

Uunc←
∼

H M−1Uunc(k).

replacements
m = 3

m = 2

m = 1

Fig. 4: Search tree of the ILS problem (12) of dimension (depth) n = 3. The
integer setU has cardinality three. The indexm = {1, . . . , n} refers to the
layer in the search tree. As the search progresses, the dimension of the sphere
is reduced fromm = n to a one-dimensional sphere. The nodes explored by
the sphere decoder are shown as black solid circles. Those that do not lie
within the sphere are shown as red solid circles, whereas nodes that are not
evaluated at all are depicted as gray solid circles. The direction of the search
process is shown with black arrows. To find the optimal solution, nodes are
visited with a direction from left to right, and from the higher dimensional
layers to the lower ones, until reaching a dead end or the bottom level, where
backtracking occurs.

Before invoking Algorithm 2, the initial radiusρ(k) of the
hypersphere needs to be determined. A common choice for
ρ(k) is the so-called Babai estimate [23], which is a subop-
timal solution to the ILS problem4. For the ILS problem (6),
the Babai estimate can be easily computed by rounding the
unconstrained solution to the closestfeasible integer vector

Ubab(k) = ⌊H
−1Ūunc(k)⌉ = ⌊Uunc(k)⌉ ∈ U , (13)

which is equivalent [24] to

ǫn = ūuncn/hn,n ⇒ ubabn = ⌊ǫn⌉ ,

ǫi =
(

ūunci −
n∑

j=i+1

hi,jubabj

)

/hi,i ⇒ ubabi = ⌊ǫi⌉ .
(14)

The initial value ofρ(k) is then

ρ(k) = ||
∼

Uunc(k)−
∼

H
∼

Ubab(k)||2 , (15)

where
∼

Ubab(k) =M
−1Ubab(k), and thus it results that [19]

ρ2(k) ≥
n∑

i=1

(

ũunci −
n∑

j=1

h̃i,j ũj

)2

. (16)

Therefore, then conditions to be met so that the solution set
is nonempty and at least one lattice point exists are5 [19]

⌈

−ρ+ ũuncn

h̃n,n

⌉

≤ ũn ≤

⌊

ρ+ ũuncn

h̃n,n

⌋

,

⌈

−ρn−1 + ũuncn−1|n

h̃n−1,n−1

⌉

≤ ũn−1 ≤

⌊

ρn−1 + ũuncn−1|n

h̃n−1,n−1

⌋

,

(17)

where the conditions for the(n− 2)-dimensional nodẽun−2

up to the one-dimensional nodẽu1 can be derived by con-
tinuing the above-shown procedure in a similar fashion.
Note that in (17),ρn−1 =

(
ρ2 − (ũuncn − h̃n,nũn)

2
)1/2

and
ũuncn−1|n

= ũuncn−1
− h̃n−1,nũn.

Finally, it should be pointed out that when the LLL reduc-
tion algorithm is used to transform the lattice, the probability

4In [16] an alternative calculation method forρ(k) is proposed, which
exploits the receding horizon policy of MPC. More specifically, the previously
computed optimal control sequence is shifted by one step back in time.

5⌈ξ⌉ mapsξ to the smallest following integer (the smallest integer notless
than ξ). Conversely,⌊ξ⌋ mapsξ to the largest previous integer (the largest
integer not greater thanξ).

Algorithm 2 Sphere Decoder

function
∼

U∗ = SPHDEC(
∼

U, d2, i, ρ2,
∼

Uunc)
for eachũ ∈ U do

∼

Ui ← ũ
d′2 ← ||

∼

Uunci−
∼

H(i,i:n)
∼

Ui:n||22 + d2

if d′2 ≤ ρ2 then
if i > 1 then

SPHDEC(
∼

U, d′2, i− 1, ρ2,
∼

Uunc)
else

∼

U∗ ←
∼

U, ρ2 ← d′2

end if
end if

end for
end function

of the Babai estimateUbab being equal to the optimal solution
U∗ is increased, as shown in [24]. As a consequence, in most
cases the sphere that includes at least one lattice point hasthe
smallest possible radiusρ, and thus the nodes to be explored
by the algorithm are reduced.

IV. CASE STUDY: THREE-LEVEL NPC INVERTER DRIVE

SYSTEM

To highlight the efficacy and the benefits of the proposed
algorithm to solve the ILS problem in the general form (6),
an industrial case study is presented in this section. More
specifically, a medium-voltage drive system is considered,
which is based on a three-level NPC voltage source inverter,
as shown in Fig. 5. The inverter uses the constant dc-link
voltageVdc = 5.2 kV and has a fixed neutral point potential.
A squirrel cage induction machine is connected to the inverter
with 3.3 kV rated voltage,356A rated current,2MVA rated
power,50Hz nominal frequency,596 rpm nominal rotational
speed and a0.25 per unit (p.u.) total leakage inductance. For
all cases examined, the control algorithm is operated with the
sampling intervalTs = 25µs.

A. Mathematical Model of the System

The inverter produces at each phase the voltages
−Vdc

2 , 0,
Vdc
2 , depending on the position of the correspond-

ing semiconductor switches. The switch positions in the
phase legs can be described by the integer variables
ua, ub, uc ∈ U = {−1, 0, 1}; these variables constitute the
manipulated variables, which are aggregated to the three-
phase vectoru = [ua ub uc]

T ∈ U = U3. The state vector
x = [isα isβ ψrα ψrβ]

T ∈ R
4 encompasses the stator cur-

rent is,αβ and the rotor fluxψr,αβ in the αβ plane6. By
choosing the stator current as the output of the system, i.e.,
y = is,αβ ∈ R

2, the discrete-time state-space model7 of the
drive system can be written in the form (1). Note that in
the examined case study, the system dimensions are given
by nx = 4, ny = 2 and nu = 3 according to the notation
introduced in Section II.

6Note that to simplify the computations it is common to transform a vector
from the three-phase (abc) to the stationary orthogonalαβ system.

7For the continuous-time state equations and for the detailed derivation of
the system mathematical model see [25] and [16], respectively.

Vdc
2

Vdc
2

N
NN

a
b

c

is,abc

IM

Fig. 5: Three-level three-phase neutral point clamped (NPC) voltage source
inverter driving an induction machine with a fixed neutral point potential.

B. Direct MPC with Current Reference Tracking

The block diagram of the MPC scheme with current ref-
erence tracking is alike the one in Fig. 1, with the feedback
signals being the (measured) stator current and rotor speed,
and the (estimated) rotor flux. The main control objective is
the elimination of the current erroris,err,αβ [20]. To do so,
the switches of the inverter aredirectly manipulated without
the presence of a modulator. Moreover, since for medium-
voltage drives switching losses are of paramount importance,
the switching (i.e., control) effort is to be kept small.

Considering the aforementioned objectives, we set in (2)
yerr = is,err,αβ. Moreover, since theα− andβ−components of
the stator current are of the same magnitude, we choseQ = I
andR = λuI, whereλu > 0 sets the trade-off between the
stator current tracking accuracy and the switching effort (i.e.,
the switching frequency).

V. A NALYSIS OF THE COMPUTATIONAL COMPLEXITY

The computational complexity of the proposed MPC algo-
rithm is analyzed in this section, using the drive system as a
case study. Since the system matrices are time invariant for
a given speed setpoint and dc-link voltage,W and thus the
lattice generator matrixH are time invariant, too. As a result,
the preprocessing stage can be performed offline and only the
sphere decoding algorithm needs to be executed in real time.
The latter thus determines the online computational demand,
while the first part of the algorithm is given for reasons of
completeness.

This motivates us to divide the analysis of the compu-
tational burden into two parts: (a) the preprocessing stage
(Algorithm 1), and (b) the optimization stage (Algorithm 2).
The focus of this analysis is on the worst-case number of op-
erations, which is, from an implementation point of view, the
decisive quantity rather than the average number of operations.

A. Complexity of the Preprocessing Stage

For the LLL reduction algorithm, as introduced in [21], the
average complexity isO(n4 logn) floating-point operations
(flops)8. However, as shown in [26], the average complexity
can be reduced toO(n3 logn), assuming that the entries of
the lattice generator matrixH are independent and identically
distributed (i.i.d.) random variablesH ∼ N (0, 1). In our case,

8The notion of flop count is used to provide a rough estimate of the
computation time of the implemented algorithm. It is not an accurate estimate,
especially whenn is small (n < 100), since the computation time on today’s
platforms highly depends on the architecture and compiler.

TABLE I: Maximum number of nodesµ evaluated and flopsNt performed in
real time by the sphere decoder without and with the LLL reduction algorithm,
depending on the length of the prediction horizonN .

Prediction Without LLL With LLL
horizonN max(µ) max(Nt) max(µ) max(Nt)

1 7 99 7 99
2 19 369 14 291
3 39 915 19 501
4 87 2,905 27 897
5 148 5,667 44 1,587
7 690 10,275 61 3,030
10 831 42,147 141 8,268

however, the entries ofH are highly correlated andH is
sparse. Therefore, the computational complexity is expected
to be less thanO(n3 logn), since the vast majority of the off-
diagonal entries ofH already satisfy criteria (7a) and (7b).
This becomes also evident from the example shown in Fig. 2.

B. Complexity of the Sphere Decoding Algorithm

The ILS problem is known to be NP-hard [27], [28]. In order
to derive an upper bound on the required computations, an
empirical analysis is presented hereafter. To do so, the number
of nodes that are evaluated by the sphere decoder at each time-
step to obtain the solution is computed. More specifically, the
maximum number of nodesµ examined is investigated for
lattices of different dimensions (i.e., for different prediction
horizons, since the length of the horizon defines the dimension
of the lattice, and vice versa).

The lattice generator matrixH is computed for the drive
system case study detailed in the previous section. The weight-
ing factorλu is tuned such that a switching frequency of about
300Hz results.

Table I summarizes the computational burden of the sphere
decoder in terms of the number of nodes examined. Two cases
are examined: the case without the LLL reduction algorithm
(i.e., H is the lattice generator matrix), and the case with
the LLL reduction algorithm (i.e.,

∼

H is the lattice generator
matrix). As can be seen, the sphere decoder with the LLL
algorithm significantly reduces the number of nodes to be
examined.

Figs. 6(a) and 6(b) illustrate the probability distribution of
the number of nodes required to be explored at each time-step
to find the optimal solution, for the ten-step horizon (N = 10)
case. When the ILS problem is ill-conditioned the distribution
is relatively flat (with a low peak at30), spread over a wide
range of numbers (from30 up to 225), see Fig. 6(a). On
the other hand, when the search space is reshaped and the
ILS problem is transformed to a well-conditioned one, the
probability distribution exhibits a large peak at30. With 30
being the depth of the search tree, this number constitutes the
minimum number of nodes to be explored by the algorithm.
More precisely, as can be observed in Fig. 6(b), in about80%
of the cases, the solution is found in the first iteration.

Even though the complexity analysis based on the number
of nodes provides a first indication, it is rather coarse. The
number of computations depends not only on the number of
nodes explored, but also on the dimension of these nodes, see
Fig. 4. As an example, consider after the preprocessing stage

Number of nodes

P
ro

b
ab

ili
ty

[%
]

0 50 100 150 200 250 300
0

20

40

60

80

100

(a) The mean number of nodes visited is132.97.
(Note that the98, and99 percentiles are not shown
for visualization purposes.)

Number of nodes

P
ro

b
ab

ili
ty

[%
]

0 50 100 150 200 250 300
0

20

40

60

80

100

(b) The mean number of nodes visited is36.21.
Dimension of nodes

N
u

m
b

er
o

f
n

o
d

es

0 5 10 15 20 25 30 35
0

2

4

6

8

10

(c) The mean dimension of nodes visited in the
worst-case scenario is15.7.

Fig. 6: (a) and (b): Probability distribution of the number of nodes visited by the sphere decoding algorithm (Algorithm2), for a ten-step horizon (N = 10)
(a) before, and (b) after the LLL reduction algorithm. The mean number of nodes visited is indicated by the solid verticalline. The 95 and 98, and 99
percentiles are shown as dashed, dash-dotted, and dotted vertical lines, respectively. (c): Dimension of each node visited in the worst-case scenario by the
sphere decoder when using a ten-step horizon and the preprocessing stage. The mean dimension of the nodes is indicated bythe solid vertical line.

sphere decoding for the horizonN = 10 case with the worst-
case scenario (max(µ) = 141 nodes visited). The number of
nodes explored at each layer is shown in Fig. 6(c). As can be
seen, many nodes are of high dimensions (m > 15), implying
that few flops are required. This is due to the use of an upper
triangular

∼

H matrix and the effective pruning of suboptimal
branches.

In the sequel, a second and more precise analysis of the
computational burden is performed for the real-time opera-
tions. Since the computation of the unconstrained solution

∼

Uunc

is performed in real time, the corresponding operations areto
be taken into account. Considering that

∼

Uunc =
∼

H M−1Uunc,
and that

∼

H is upper triangular, whereasM is sparse, then
n(n+ 1)/2 multiplications andn(n− 1)/2 additions are re-
quired, i.e.,n2 flops in total.

The operations performed by the sphere decoder are a
function of the dimension of the node examined. Focusing on
a snapshot of the recursive Algorithm 2, it can be concluded
that the most effort is required to compute the update of the
radius of the hypersphere. Specifically, for anm-dimensional
node,n−m+ 1 additions9 (n − m for the computation of
∼

H(m,m:n)

∼

Um:n and one for the addition|| ∗ ||22 + d2), one
subtraction, andn−m+ 2 multiplications (n − m + 1 for
the computation of

∼

H(m,m:n)

∼

Um:n and one for squaring the
Euclidean norm|| ∗ ||22) are performed. More precisely, since
U ∈ U, the result of then−m+ 1 multiplications performed
at themth layer is either the multiplicand itself, with the same
or reversed sign, or zero. Therefore, only one multiplication is
performed at each node, regardless of its dimension. Finally,
since the cardinality ofU is three for the case study, for each
child node explored, the two sibling nodes are evaluated to
determine whether they lie inside of the hypersphere. Note
that divisions are not required.

Taking all the above into account, the total number of addi-
tionsNa, subtractionsNs and multiplicationsNm performed
in real time is

Na =
n(n− 1)

2
+ 3

(

µ− 1 +

µ
∑

ν=1

(
n−m(ν)

)

)

,

Ns = 3µ ,

Nm =
n(n+ 1)

2
+ 3µ .

(18)

9Except whenm = n, where there aren−m = 0 additions.

To derive an upper bound on the number of operations to
be performed, a worst-case scenario is examined. This corre-
sponds to the case where (a) the maximum number of nodes
max(µ) is explored by the sphere decoder (see Table I), and
(b) U ∈ U \ {0}, since multiplications with zero result in a
decrease in the number of additions.

The total number of operationsNt = Na +Ns +Nm cor-
responds to the flop count for the real-time computation.
The upper bound on the operations performed in real time
max(Nt), is also summarized in Table I. For the horizon
N = 10 case, the worst case number of flops is reduced by
80%, compared with a reduction of83% when considering the
worst case number of nodes.

VI. PERFORMANCEEVALUATION

The simulation results presented in this section relate to the
medium-voltage drive system depicted in Fig. 5. The horizon
N = 10 case is investigated. The weighting factorλu = 0.1
is chosen, such that a switching frequency—corresponding to
the control effort—of approximately300Hz is obtained.

The steady-state performance of the drive is shown in
Fig. 7. The normalized three-phase stator current waveforms
and their references are illustrated over one fundamental period
in Fig. 7(a). In Fig. 7(b) the resulting current spectrum is
depicted to visualize the tracking accuracy of the controller.
The total harmonic distortion (THD) of the current is used asa
performance metric, which quantifies the tracking performance
of the controller. The current THD is with4.95% relatively
low given the low switching frequency, as can also be seen
in [17] where the direct MPC current controller with one-
and multiple-step horizon is compared with the pulsewidth
modulation (PWM) based strategy of space vector modulation
(SVM), and a synchronous optimal modulation technique,
namely the offline-calculated optimized pulse patterns (OPPs).
The good performance of the controller can also be validated
by the thorough comparison presented in [29] between several
MPC and PWM-based techniques. Finally, Fig. 7(c) depicts the
control input over one fundamental period, i.e., the three-phase
switching sequence.

Interestingly, in the field of power electronics, the ILS
problem underlying direct MPC is typically solved using a
brute-force approach, namely exhaustive enumeration of all
admissible sequences of control inputs [30]. This limits the
prediction horizon achievable in a real-time implementation

Time [ms]
0 5 10 15 20

−1

−0.5

0

0.5

1

(a) Three-phase stator currentis (solid lines) and
their references (dash-dotted lines).

Frequency [Hz]
0 500 1000 1500 2000

0

0.01

0.02

0.03

0.04

(b) Stator current spectrum.
Time [ms]

0 5 10 15 20

−1

−1

−1

0

0

0

1

1

1

(c) Three-phase switch position (control input)u.

Fig. 7: Simulated waveforms produced by the direct model predictive controller with current reference tracking at steady-state operation, at full speed and rated
torque. A ten-step horizon (N = 10) is used, the sampling interval isTs = 25 µs and the weighting factor isλu = 0.1. The switching frequency (interpreted
as the control effort) is approximately300Hz and the current THD (interpreted as the controller tracking accuracy) is4.95%.

TABLE II: Maximum number of nodesµ evaluated and flopsNt performed by (a) the exhaustive search algorithm, (b) the sphere decoder in [16], and (c)
the proposed algorithm. The resulting current THD for each prediction horizon is also shown.

Prediction Exhaustive search Sphere decoder [16] Proposed approach
horizonN max(µ) max(Nt) max(µ) max(Nt) max(µ) max(Nt) THD%

1 26 250 7 99 7 99 5.76
2 517 4,948 16 304 14 291 5.65
3 7,371 70,120 24 585 19 501 5.43
4 103,518 983,587 31 1,029 27 897 5.37
5 1,455,000 > 1 · 107 50 1,764 44 1,587 5.29
7 > 3 · 108 > 5 · 109 99 4,635 61 3,030 5.09
10 > 2 · 1012 > 4 · 1013 255 14,936 141 8,268 4.95

typically to one [31], despite several strategies to facilitate the
implementation of MPC algorithms with nontrivial prediction
horizons [32]. Recently, the concept of sphere decoding has
been introduced to the power electronics community in [16].

The computational complexity of the proposed approach
is compared in Table II with these two approaches from
the literature. Specifically, the table shows the maximum
number of examined nodesµ and operations performedNt for
different prediction horizons. As before, the converter operates
at a switching frequency of about300Hz, regardless of the
prediction horizon. The resulting current THD is shown to
highlight that the closed-loop performance of the system can
be improved by using longer prediction horizons.

Exhaustive search clearly becomes impractical for predic-
tion horizons exceeding two steps. When the sphere de-
coder is used to restrict the search space the computational
complexity—even in the worst-case scenario—increases only
mildly as the prediction horizon is extended. Compared to
the approach proposed in [16], the sphere decoding algorithm
with the modifications proposed in this work further reduces
both the number of nodes examined and flops performed. The
maximum number of nodes is reduced by about45%, and
that of the operations performed in real time by a very similar
percentage, i.e., by44%.

This reduction is a result of the reshaping of the search
space and the initial radiusρ being smaller, as can be seen in
Fig. 8(a). The computation of the initial radius based on the
Babai estimate (see (13) and (14)) results in a slightly tighter
hypersphere, and consequently reduces the number of nodes
explored. This can be observed in Figs. 8(b) and 8(c), where
the probability distributions of the number of nodes visited by
the sphere decoder are illustrated. As can be seen, the shape
of the distributions resulting from the two sphere decoding
approaches is very similar. Yet, with the proposed algorithm,
it is more concentrated at the lower end of30 nodes.

VII. C ONCLUSIONS

The optimization problem underlying model predictive con-
trol (MPC) of linear systems with integer inputs is an integer
least-squares (ILS) problem. This paper discusses a computa-
tionally efficient method to solve this problem, consistingof
two steps. First, in a preprocessing step, a lattice reduction
algorithm transforms the optimization problem into a well-
conditioned problem, such that it can be solved more effi-
ciently. These computations are performed once and offline.

Second, in the optimization stage, a refined sphere decoding
algorithm is used to solve the optimization problem in a
branch-and-bound manner and to derive the optimal sequence
of control inputs. The initial radius of the hypersphere is
computed using the Babai estimate, ensuring that the solution
set is always nonempty while the radius is as small as pos-
sible. Nevertheless, since real-time guarantees of termination
cannot be provided, modifications—such as adding a stopping
criterion—are required to resolve this issue. This matter is
further discussed in [33].

An industrial case study of a three-level inverter drive
system is used to illustrate the benefits of the optimization
method. The computational complexity is analyzed—both in
terms of the number of nodes in the search tree explored and
the number of flops required. Compared to the optimization
method proposed in [16], the computational burden is reduced
by up to45%.

APPENDIX

The objective function (4) can be written as

J(k) = ζ(k)+||U(k)||2W +UT (k)Λ(k)+Λ
T (k)U(k) , (19)

where
ζ(k) = ||Γx(k)− Y ref(k)||

2
∼

Q
+ ||Ξu(k − 1)||2∼

R
,

W = Υ
T ∼

Q Υ+ ST ∼

R S ,

Λ(k) =
((

Γx(k)− Y ref(k)
)T ∼

Q Υ−
(
Ξu(k − 1)

)T ∼

R S
)T

Time [ms]

R
ad

iu
s

0 5 10 15 20
0

0.05

0.1

0.15

0.2

(a)
Number of nodes

P
ro

b
ab

ili
ty

[%
]

0 50 100 150 200 250 300
0

20

40

60

80

100

(b) The mean number of nodes visited is38.93.
Number of nodes

P
ro

b
ab

ili
ty

[%
]

0 50 100 150 200 250 300
0

20

40

60

80

100

(c) The mean number of nodes visited is36.21.

Fig. 8: (a): Initial radiusρ as a function of time, based on the Babai estimate (13) (red solid line) and the educated guess proposed in [16] (blue dashed
line). (b) and (c): Probability distribution of the number of nodes visited by the sphere decoding algorithm, for a ten-step horizon (N = 10), as proposed
(b) in [16], and (c) in this work. The mean number of nodes visited is indicated by the solid vertical line. The95 and98, and99 percentiles are shown as
dashed, dash-dotted, and dotted vertical lines, respectively.

SinceR ≻ 0 ⇒ W ≻ 0, andW = W T , after rearranging
terms and completing the squares, (19) can be written as

J(k) = ||U(k)+W−1
Λ(k)||2W +ζ(k)−Λ

T (k)W−T
Λ(k)

︸ ︷︷ ︸

const(k)

.

(20)
Note that the constant term is independent ofU(k), and thus
it can be neglected. AllowingU(k) ⊂ R

n, the unconstrained
(i.e., relaxed) solution of (20) isUunc(k) = −W

−1
Λ(k).

InsertingUunc(k) in (20), (5) results, which in turn, becomes
the ILS function in problem (6). �

REFERENCES

[1] J. B. Rawlings and D. Q. Mayne,Model Predictive Control: Theory and
Design. Madison, WI: Nob Hill, 2009.

[2] C. A. Floudas,Nonlinear and Mixed-Integer Optimization: Fundamen-
tals and Applications. Oxford, UK: Oxford Univ. Press, 1995.

[3] L. A. Wolsey, Integer Programming. New York, NY: Wiley, 1998.
[4] A. Bemporad and M. Morari, “Control of systems integrating logic,

dynamics and constraints,”Automatica, vol. 35, no. 3, pp. 407–427,
Mar. 1999.

[5] R. Alur, C. Courcoubetis, T. A. Henzinger, and P. H. Ho, “Hybrid
automata: An algorithmic approach to the specification and verification
of hybrid systems,” inHybrid Syst., ser. LNCS, R. Grossman, A. Nerode,
A. Ravn, and H. Rischel, Eds. Springer-Verlag, 1993, vol. 736, pp.
209–229.

[6] E. D. Sontag, “Nonlinear regulation: The piecewise linear approach,”
IEEE Trans. Autom. Control, vol. 26, no. 2, pp. 346–358, Apr. 1981.

[7] F. Borrelli, M. Baotić, A. Bemporad, and M. Morari, “Dynamic pro-
gramming for constrained optimal control of discrete-timelinear hybrid
systems,”Automatica, vol. 41, no. 10, pp. 1709–1721, Oct. 2005.

[8] F. Borrelli, A. Bemporad, and M. Morari,Predictive Control for Linear
and Hybrid Systems. Cambridge, UK: Cambridge Univ. Press, 2011.

[9] D. E. Quevedo, G. C. Goodwin, and J. A. De Doná, “Finite constraint
set receding horizon quadratic control,”Int. J. of Robust Nonlin. Control,
vol. 14, no. 4, pp. 355–377, Mar. 2004.

[10] M. Morari and J. H. Lee, “Model predictive control: Past, present and
future,” Comput. and Chemical Eng., vol. 23, no. 4, pp. 667–682, May
1999.

[11] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Con-
strained model predictive control: Stability and optimality,” Automatica,
vol. 36, no. 6, pp. 789–814, Jun. 2000.

[12] G. C. Goodwin, H. Haimovich, D. E. Quevedo, and J. S. Welsh, “A
moving horizon approach to networked control system design,” IEEE
Trans. Autom. Control, vol. 49, no. 9, pp. 1427–1445, Sep. 2004.

[13] D. E. Quevedo and G. C. Goodwin, “Multistep optimal analog-to-digital
conversion,”IEEE Trans. Circuits Syst. I, vol. 52, no. 3, pp. 503–515,
Mar. 2005.

[14] ——, “Moving horizon design of discrete coefficient FIR filters,” IEEE
Trans. Signal Process., vol. 53, no. 6, pp. 2262–2267, Jun. 2005.

[15] D. E. Quevedo, J. Østergaard, and D. Nešić, “Packetized predictive
control of stochastic systems over bit-rate limited channels with packet
loss,” IEEE Trans. Autom. Control, vol. 56, no. 12, pp. 2854–2868, Dec.
2011.

[16] T. Geyer and D. E. Quevedo, “Multistep finite control setmodel
predictive control for power electronics,”IEEE Trans. Power Electron.,
vol. 29, no. 12, pp. 6836–6846, Dec. 2014.

[17] ——, “Performance of multistep finite control set model predictive
control for power electronics,”IEEE Trans. Power Electron., vol. 30,
no. 3, pp. 1633–1644, Mar. 2015.

[18] U. Fincke and M. Pohst, “Improved methods for calculating vectors
of short length in a lattice, including a complexity analysis,” Math.
Comput., vol. 44, no. 170, pp. 463–471, Apr. 1985.

[19] B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm I. Ex-
pected complexity,”IEEE Trans. Signal Process., vol. 53, no. 8, pp.
2806–2818, Aug. 2005.

[20] P. Karamanakos, T. Geyer, and R. Kennel, “Reformulation of the
long-horizon direct model predictive control problem to reduce the
computational effort,” inProc. IEEE Energy Convers. Congr. Expo.,
Pittsburgh, PA, Sep. 2014, pp. 3512–3519.

[21] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász, “Factoring polynomials
with rational coefficients,”Math. Ann., vol. 261, no. 4, pp. 515–534,
1982.

[22] J. W. Demmel,Applied Numerical Linear Algebra. Philadelphia, PA:
SIAM, 1997.

[23] L. Babai, “On Lovász’ lattice reduction and the nearest lattice point
problem,” Combinatorica, vol. 6, no. 1, pp. 1–13, 1986.

[24] X.-W. Chang, J. Wen, and X. Xie, “Effects of the LLL reduction on the
success probability of the Babai point and on the complexityof sphere
decoding,”IEEE Trans. Inf. Theory, vol. 59, no. 8, pp. 4915–4926, Aug.
2013.

[25] J. Holtz, “The representation of ac machine dynamics bycomplex signal
flow graphs,”IEEE Trans. Ind. Electron., vol. 42, no. 3, pp. 263–271,
Jun. 1995.

[26] C. Ling, W. H. Mow, and N. Howgrave-Graham, “Reduced andfixed-
complexity variants of the LLL algorithm for communications,” IEEE
Trans. Commun., vol. 61, no. 3, pp. 1040–1050, Mar. 2013.

[27] M. Grotschel, L. Lovász, and A. Schriver,Geometric Algorithms and
Combinatorial Optimization, 2nd ed. New York: Springer-Verlag, 1993.

[28] D. Micciancio, “The hardness of the closest vector problem with
preprocessing,”IEEE Trans. Inf. Theory, vol. 47, no. 3, pp. 1212–1215,
Mar. 2001.

[29] T. Geyer, “A comparison of control and modulation schemes for
medium-voltage drives: Emerging predictive control concepts versus
PWM-based schemes,”IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1380–
1389, May/Jun. 2011.

[30] J. Rodrı́guez, J. Pontt, C. A. Silva, P. Correa, P. Lezana, P. Cortés, and
U. Ammann, “Predictive current control of a voltage source inverter,”
IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 495–503, Feb. 2007.

[31] P. Cortés, M. P. Kazmierkowski, R. M. Kennel, D. E. Quevedo, and
J. Rodrı́guez, “Predictive control in power electronics and drives,” IEEE
Trans. Ind. Electron., vol. 55, no. 12, pp. 4312–4324, Dec. 2008.

[32] P. Karamanakos, T. Geyer, N. Oikonomou, F. D. Kieferndorf, and
S. Manias, “Direct model predictive control: A review of strategies
that achieve long prediction intervals for power electronics,” IEEE Ind.
Electron. Mag., vol. 8, no. 1, pp. 32–43, Mar. 2014.

[33] P. Karamanakos, T. Geyer, and R. Kennel, “Suboptimal search strategies
with bounded computational complexity to solve long-horizon direct
model predictive control problems,” inProc. IEEE Energy Convers.
Congr. Expo., Montreal, QC, Canada, Sep. 2015, pp. 334–341.

