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Abstract—For linear systems with integer inputs, the model shown for different applications in various fields [12]-]15
predictive control (MPC) problem with output reference tracking  Short sampling intervals further aggravate this issue.him t
is formulated as an integer least-squares (ILS) problem. Ta ILS field of power electronics, for example, sampling intenafls
problem is solved using a modified sphere decoding algorithm L )
which is a particular branch-and-bound method. To reduce tre hundreds or everl t?ns of m'cros_econds ar_e _con_1mon. ]
computational complexity of the sphere decoder, a reductio To address this issue, a dedicated optimization technique
algorithm is added as a preprocessing stage to reshape thewas recently proposed in [16], [17] for MPC problems in-
search space in which the integer solution lies. The computianal  yolving linear systems with integer inputs. The underlying
complexity of the proposed algorithm is modest, enabling &  imization problem is formulated as an integer leasases:

implementation in a real-time system even when considerinipng .
prediction horizons. A variable speed drive system with a thee- (ILS) problem and the branch-and-bound technique of sphere

level voltage source inverter serves as an illustrative exaple to  decoding [18], [19] is adopted to compute the optimal se-

demonstrate the effectiveness of the proposed algorithm. guence of control actions.

Index Terms—Model predictive control (MPC), integer least- By reformulating the ILS problem through a preprocessing
squares (ILS) problem, integer programming, LLL lattice basis Stage, [20] proposed a modified version of the algorithm
reduction, sphere decoding, power electronics, drive sysins introduced in [16]. A lattice reduction algorithm [21] was

implemented to reduce the size of thedimensional search
|. INTRODUCTION space and, as a result, the number of nodes in the search tree

HROUGHOUT the years, model predictive controf® be examined. In addition, the implementation of the spher
T ' : L Sdecoder in [16] was refined. With these improvements, the

due to its numerous advantages, including its ability todtean cor_nputatlons ,to_ be performed n rgal time can be reduced,
Iy}g?lle still obtaining the optimal solution.

systems with complex dynamics, such as hybrid systems. ) L )
y P y y y In this work, the initial results presented in [20] are ex-

linear systems with integer inputs, some (or all) of the sieci X . .
variables of the MPC problem are integer-valued, and thended. The formulation of the MPC problem is generalized

optimization problem underlying MPC is a (mixed) integei’lnd applied to ggngral linear syst_ems with ‘”tege'f inputs. A
program [2], [3], which is NP-hard. This type of systems can gexhaustive description of the derl\{anon a_nd solution pesC
modeled as mixed logical dynamical (MLD) systems [4], hy(-)f th_? (;eforrpul_ate;j ALS probllem |sfptr10wded, alczjngl W't_h a
brid automata [5], or polyhedral piecewise affine systenis [éjeta' ed analysis o t '€ comp exity of the propose algonit
The explicit state-feedback control law can be computeoI,TO .prOV|de.further insight, an example of a linear system
offline for such systems [7], [8], or they can be solved onling"'th integer inputs from the f|eI.d. of power.electromcs is
using for example branch-and-bound methods [3]. The fdised as a case study. More specifically, a variable speeé driv

mer approach, however, typically requires significant mmosy§teml IS corc115|dered, which cgn_s!sts of a tdh_ree-le\1el abutr
resources to store the explicit control law, with the reegir POINt clamped (NPC) inverter driving a medium-voltage in-

memory increasing dramatically with the problem size arfd/Ction machlme. Fcl)r !ongf hr?rlquns, S”Zh as ten _stepj, the
complexity. Explicit control laws are also ill-suited todreéss computational comp eX|ty_o the discussed strategy Is ceau
variations in parameters or reference setpoints. by up to45% compared with the approach presented in [16],

For long prediction horizons or for problems with manyighlighting the efficacy of the proposed algorithm.
integer variables, due to the combinatorial explosion & th
number of possible integer solutions, solving the integel. FORMULATION OF THE OPTIMAL CONTROL PROBLEM
optimization problem online might lead to computational consider a linear system with integer inputs that is deedrib
intractability [9]. Long horizons are often required to eres by the discrete-time state-space model
stability and good closed-loop performance [10], [11], asw
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U=UXx---xU=U" being then,-times Cartesian prod- o e
. = = ptimization probiem *

uct of the set/ C Z. The state-space matnc_e‘s G_R” e, Yref =t I Yyl Plant s
B e R"*" gnd C € R™*"= are time invariant, even U-
though the proposed control approach is also applicable to L
time-varying matrices. Finallys € N denotes the time step. Measurements

and/or estimates
A. Model Predictive Control with Output Reference Tracking Fig. 1: Model predictive control with output reference kg.

Consider MPC with output reference tracking as depictedd

L2 . o . nonsingular, upper triangular matrix. As a result, prob(8
in Fig. 1 with the objective function N i g probi(8)

becomes the ILS problem

k+N-1 _
.. . _ 2
T = 37 e+ DG + 1Au(O) @) oge IUumelk) = HUB: ©
L=k

whereU yne = HU yno(k) € R™. The matrix H is commonly
luti f1h _ q known as the lattice generator matrix—its columns repriesen
evolution of the output ermoe,(k) = yrer(k) — y(k), an n linearly independent vectors iR™ that generate a lattice,

the control effort Au(k) = u(k) —u(k —1). The ratio ;o e et of integer linear combinations of the basigarsc
between the weighting matrice® € R™*"v Q > 0 and hi, ie., CCH) = {37 kihy | #; € 2}

R e R™>™ R (0 decides on the trade-off between the =1 '
overall tracking accuracy and the control effort.

At time stepk, the optimal solution (i.e., the control input)

that penalizes over the finite prediction horiza¥ the

IIl. SOLVING THE ILS PROBLEM

is obtained by solving the following problem in real time M;—g f?ﬁgﬁ:ﬁr;h‘tah;ea}::tsimsrci)rggﬁ]m(eg;tar?ggdgf ttgebgros%?\f:g
mi(r}i(r]gize J (k) in a time-efficient manner. To achieve this, the procedure
subject to (¢ + 1) = Az(¢) + Bu(l) 3 for solving the problem is divided into two stages: the first
y(l) =Cz(l), Vl=k,....k+N—1 ©) stage (preprocessing) consists of théuction of problem (6),
Uk) € U ’ T whereas in the second stage (optimization) séarch for the

optimal solution is performed.
The optimization variable is the integer-valued sequenice o

control actionsU (k) = [u” (k) ... u"(k+N-1)]" e U=, Preprocessing Sage
U™ c 7" over the N-step horizon, where, = N - n,,. It ' ) , .
should be mentioned that because of the nature of system (1)! & first step, the Lenstra-Lenstra-Lovasz (LLL) lattice

a steadv-state error mav be predent basis reduction algorithm, as proposed in [21], is appled t
y yoep the problem (6). The goal is to improve the conditioning & th

. optimization problem (6) by transformingl to a new upper

B. Fo_rmulat|on of the ”‘_S Pro_blem o triangular matrixf € R"*". To do so, the reduction process—
Using algebraic manipulations, the optimization probl&n (\hich can be accomplished with only a few computations,

can be reformulated as an ILS problem. To this end, let thgsnks to the sparsity oFf—produces the matrid with

vectorsY (k) = [y (k+1) ... y"(k+N)|" andY'rei(k) = positive diagonal entries that satisfy the following aide
[yLik+1) ... yLi(k+ N)]T denote the sequence of outputs

and the corresponding sequence of output references awer th |Bij| < li}i i 1=1,...,7—1 (7a)
B . 3 —_ 2 9
horizon, respectively. - Z, - _
The objective function/ can be written in vector form as Ohj 11 <hj1;+his §=2,....m, (7b)

J(k) = |[Tz(k) + YU (k) — Yet(k)| |2+ wherel/4 < § <1 (with the typical value being = 3/4).
_ ) Q (4) To this end, integer Gauss transformations (IGTs) and
+|[SU (k) — Bu(k — 1)||ﬁ, permutation matrices are employed. First, IGTs of the form
T ~eeT i ight- i
with Y (k) = Ta(k) + YU (k). The matrices”, Y, S and M, ; = I —~e;e; are applied to the right-hand side &f,

= can be found in [20], whereas the block diagonal matriCéNshereei is the unit vector (i.e., théth column of the identity

~ . ~ ~ matrix I of proper dimensions) ang € Z. Therefore, by post-
Q, R are defined a®) = &) ,Q, and R = &Y | R. After e . PN .

some algebraic manipulations (as explained in the appkndri?(u'tlplymg H with M5 (with i < j) we obtain

the objective function (4) can be written as H= HM,; =H — 7HeiejT. (8)

J(k) = (U (k) = Uunc(k))" W (U (k) = Uunc(k)) +constk),  The matricesH and B are the same except for the, 1)

_ _ _ (5) entries, withk = 1,2,...,4, which arehy; = hi; — vhi.i.
whereUunc € R™ is the unconstrained solution of the probgy following a procedure similar to Gaussian eliminatiae, ,
lem (3), see the appendix. The mat# is by definition py setting ~ = |hi;/hii], we ensure that the entiy, ;| is
symmetric positive definite and can thus be factored (usiggfﬁcienﬂy reduced such that it meets condition (7aj.
Cholesky factorization) a8 = H” H, whereH € R"*" is

2|&] denotes the integer that is obtained by roundinghis definition can
INote that no stability guarantees are provided in this work. be directly extended to vectogs by performing elementwise rounding.



Algorithm 1 LLL Reduction

function H = LLL(H)
M+ I,
while j < 2 < n do
if |hj_17j| > %lhj—17j—1| then
H « HMj_Lj, M «+ MM]‘_LJ‘

end if
1 4 7 10 13 16 1922 25 28 o 1 4 7 10 13 16 1922 25 28 ’ |f 51?’?71,]'71 > h’?*l,j + hji] then
(a) The H matrix. (b) The H matrix. H «~ G;*-F,LjHPj—l,j , M+ MP;_,;
Fig. 2: Visualization of the lattice generator matrix (a)fdse and (b) after j+ max{j— 1,2}
the LLL reduction algorithm, assuming the dimensior= 30. The diagonal else
entries _of the upper triangular 'matrilwel are positive and are _placed in an for i — -2 down to1 do
ascending order. Moreover, their values are more than twestilarger than . 1
those of the off-diagonal entries, thus conditions (7a) éfim hold. if |hi,j| > §|hi,i| then
H + HMZ')]‘ , M +— MMi)j
. " . end if
To satisfy the second condition (7b), permutations of the en end for
tries of H are required wheneveh? | . | > h? | ;4 h? ;. S
) A ) -4 5 VA ] <« .] _|_ 1
A Givens rotation matribxG ;1 ; [22] is employed to maintain end if
the upper triangular form of the resulting matthif. Hence, end while
the LLL reduced matrixe{ can be written as He H
71 T end function
H: Gj—l,jHPj—Lj? (9)
where the Givensi;_, ; and permutationP;_; ; matrices L

are described in [20].

With this procedure, the second condition, as described T U
by (7b), is met, since

ﬁj711j71 = h?—l,j + h?,j Fig. 3: The principle of the sphere decoder: A (two-dimenalp sphere of
- 5 5 1/2 radiusp (shown as blue line) centered at the unconstrained sol(gioown as
hj,lﬁj = chj,17j71 , C= hjfl,j(hj—l,j + hj,j)i /2. red solid circle) includes several integer points of thédat(shown as black

solid circles). One of these points is the integer solutibthe ILS problem.

hjj=—shj_1j-1, s=hj;(h3_4;+h2;)""?

As a result, the reduction process strives to place tiRe Optimization Stage
diagonal entries off in ascending order, i.e., To find the optimal solution in the transformed lattice
~ ~ ~ generated bﬁ, a sphere decoding algorithm is implemented,
hip<he2 <. S hnn (10)  based on the one described in [16]. This algorithm is a varian
Note that the optimization algorithm described in the nef the Fincke and Pohst sphere decoding algorithm [18], whic
section performs a depth-first search. Ordering the didgo§¥Pploits the fact that the set of admissible control input se
entries of H reduces the number of nodes to be consider@yences forms a (truncated) integer lattice. According to the
in the early steps of the search procedure, thus decredming$Phere decoding principle, the optimal solution lies wntai
total number of nodes to be explored. hyperspherer{-dimensional sphere) of radiys see Fig. 3. As
The pseudocode of the LLL reduction procedure is providégéntioned in Section llI-A, the sphere decoding algoritsra i
in Algorithm 1. An illustrative exampfeof the effect of the depth-first search algorithm that finds the optimal solutign

LLL algorithm on H is presented in Fig. 2. More formally. traversing a search tree in a sequential manner until regchi
H is transformed intafl . which is of the form a dead end or the bottom level. If this happens, the algorithm

backtracks to examine unexplored nodes in higher layers. An
H=V"HM, (11) example of an integer search tree is provided in Fig. 4 along
with the visualization of the search procedure.
To exploit the structure off and to avoid unnecessary
computations, the search tree is built in a bottom-to-top
manner with the higher-dimensional nodes being locateldeat t

with V' € R™*™ being an orthogonal matrix anl € Z"*"
being unimodular (i.e.det M = +1). With this, the ILS
problem (6) can be rewritten as

minimize || Uunc(k) — HOU(K)||?, (12) top layers of the search tree, and the one-dimensional raides
U(k) €U the bottom, see Fig. 4. This is in contrast to [16], where tee t
. N N . is generated in a top-to-bottom manner. The pseudocode of
With Uunc(k) =H M~ Uunc(k) andU(k) = MU (k). the proposed algorithm is summarized in Algorithm 2, where
the initial values of the arguments afé « [ ], i.e., the

3The entries of the lattice generator matriddsand H are computed based .
on the case study presented in Section IV. As explained ,thleeeexample eNmpty vector,d < 0, @ < n, p p(k)—see (15)' and

is based on a prediction horizon &f = 10 steps. Uine <+ H M_lUunc(k).



Algorithm 2 Sphere Decoder

function U* = SPHDEC(U, d2, i, p, Uunod
for gacha e U do

Ui — U
d/2 — || Uunq_ H(lzn)UZnH% + d2
Fig. 4: Search tree of the ILS problem (12) of dimension (dept= 3. The if 2 < p? then
integer sef/ has cardinality three. The index = {1,...,n} refers to the if 2 > 1 then
layer in the search tree. As the search progresses, the slonesf the sphere rr o2 2 77
is reduced fromm = n to a one-dimensional sphere. The nodes explored by SPHDEC(U’ d=i—1,p% U“”C)
the sphere decoder are shown as black solid circles. Thasedthnot lie e|SeN N
within the sphere are shown as red solid circles, whereassntitht are not U* U, p2 — d?
evaluated at all are depicted as gray solid circles. Thectitire of the search end if
process is shown with black arrows. To find the optimal soiytinodes are .
visited with a direction from left to right, and from the highdimensional end if
layers to the lower ones, until reaching a dead end or therolvel, where end for
backtracking occurs. end function

Before invoking Algorithm 2, the initial radiug(k) of the
hypersphere needs to be determined. A common choice §ithe Babai estimat&/ 4, being equal to the optimal solution
p(k) is the so-called Babai estimate [23], which is a subops* is increased, as shown in [24]. As a consequence, in most
timal solution to the ILS problefn For the ILS problem (6), cases the sphere that includes at least one lattice poirthbas
the Babai estimate can be easily computed by rounding t@allest possible radiys and thus the nodes to be explored
unconstrained solution to the closdeasible integer vector  py the algorithm are reduced.

L -17 _
Ubank) = [H™ Uunc(k)] = [Uunc(k)] € U, (13) |\, CasE STUDY: THREE-LEVEL NPC INVERTER DRIVE

which is equivalent [24] to SYSTEM
To highlight the efficacy and the benefits of the proposed
n algorithm to solve the ILS problem in the general form (6),
€ = (ﬂunq _ Z hi,jubabj)/hi,i = upap = |€i] - (14)  an industrial case study is presented in this section. More
specifically, a medium-voltage drive system is considered,
which is based on a three-level NPC voltage source inverter,
as shown in Fig. 5. The inverter uses the constant dc-link
p(k) = || Uune(k)— HUpan(k)]|2 , (15) voltageVyc = 5.2kV and has a fixed neutral point potential.
N A squirrel cage induction machine is connected to the ievert
whereUbab(k) = M~ Upan(k), and thus it results that [19] ith 3.3kV rated voltage356 A rated current2 MVA rated
n no 2 power, 50 Hz nominal frequency596 rpm nominal rotational
pP(k) > (ﬁunq - Zhi,jﬁj) : (16) speed and &.25 per unit (p.u.) total leakage inductance. For
i=1 j=1 all cases examined, the control algorithm is operated high t
Therefore, then conditions to be met so that the solution segampling intervall’s = 25 us.
is nonempty and at least one lattice point exists §i8]

€En = ﬂuncn,/hn.,n = Upab, = Len-| 3

j=i+1

The initial value ofp(k) is then

A. Mathematical Model of the System

{MW <y, < {%J, The inverter produces at each phase the voltages

hnn b —Ye 0, Y% depending on the position of the correspond-

—Pn—1 + Tung, _,,, < < Pn—1+ Uunc, _,, ing semiconductor SW|tches._ The switch posmons in the
3 Stn-1 S | T phase legs can be described by the integer variables
n—1n—1 n—1n—1 Uq, Up, ue €U = {—1,0,1}; these variables constitute the

(17) manipulated variables, which are aggregated to the three-
where the conditions for thé: — 2)-dimensional nodei,, _, phase vectoru = [u, uy u.]’ € U =U>. The state vector
up to the one-dimensional nodg can be derived by con- & = [isa iss ¥ra ¥rs)’ € R* encompasses the stator cur-
tinuing the above-shown procedure in a similar fashiorent i, .s and the rotor fluxy, .5 in the o3 plané. By
Note that in (17),p,—1 = (p2 — (fyne, — ﬁn,nﬁn)Q)l/Q and choo;ing the 2stator c_urrent as the output of the system, i.e.
Tung, 31 = Tune,_y — n—1,nn. Yy = 1545 € R?, the discrete-time state-space mddef the

Finally, it should be pointed out that when the LLL reducdrive system can be written in the form (1). Note that in

tion algorithm is used to transform the lattice, the prohighi the examined case study, the system dimensions are given
by n, =4, ny, =2 and n, = 3 according to the notation

4In [16] an alternative calculation method fan(k) is proposed, which introduced in Section II.
exploits the receding horizon policy of MPC. More specifigahe previously
computed optimal control sequence is shifted by one steg ipatime. 6Note that to simplify the computations it is common to tramsf a vector
57¢] maps¢ to the smallest following integer (the smallest integer less ~ from the three-phaseufc) to the stationary orthogonat3 system.
than £). Conversely,|£| maps¢ to the largest previous integer (the largest “For the continuous-time state equations and for the detaitivation of
integer not greater thag). the system mathematical model see [25] and [16], respéctive



TABLE I: Maximum number of nodeg evaluated and flopad/; performed in
real time by the sphere decoder without and with the LLL réidacalgorithm,
depending on the length of the prediction horizdn

YA YA Y7
+Q KyaA AYRK ANK

Lzl

L] LT 2s.abe Prediction Without LLL With LLL
N a NEND 1 ™ horizon N || max(p) max(N¢) || max(p) max(Ng)

_L il N— E»—#Q 1 7 99 7 99

%D ANN AKNNYRKN RNNYN 2 19 369 14 291

3 39 915 19 501

YA YA YA 4 87 2,905 27 897
. ) 5 148 5,667 44 1,587
Fig. 5: Th_re'e-level_three-_phase neutral'pomt'clamped (\Nwitage source 7 690 10,275 61 3,030
inverter driving an induction machine with a fixed neutrainpgotential. 10 331 42,147 141 8,268

B. Direct MPC with Current Reference Tracking " i o highl ated andf |
. . owever, the entries oH are highly correlated andd is
The block diagram of the MPC scheme with current re%)arse. Therefore, the computational complexity is exgkect

erence tracking is alike the one in Fig. 1, with the feedba({, be less thai (n? log n), since the vast majority of the off-
signals being the (measured) stator current and rotor spe : ' ; L
and the (estimated) rotor flux. The main control objective Eﬁgonal entries offl already satisfy criteria (7a) and (7b).

"Phis becomes also evident from the example shown in Fig. 2.
the elimination of the current errai; ero3 [20]. To do so, P g

the switches of the inverter adirectly manipulated without

the presence of a modulator. Moreover, since for mediur- Complexity of the Sphere Decoding Algorithm

voltage drives switching losses are of paramount impoganc The ILS problem is known to be NP-hard [27], [28]. In order

the switching (i.e., control) effort is to be kept small. to derive an upper bound on the required computations, an
Considering the aforementioned objectives, we set in (8jnpirical analysis is presented hereafter. To do so, thdorum

Yerr = Ls,emap. Moreover, since the— andg—components of of nodes that are evaluated by the sphere decoder at each time

the stator current are of the same magnitude, we cibsel step to obtain the solution is computed. More specificalilg, t

and R = )\, I, where )\, > 0 sets the trade-off between themaximum number of nodeg examined is investigated for

stator current tracking accuracy and the switching effioet,( lattices of different dimensions (i.e., for different pietébn

the switching frequency). horizons, since the length of the horizon defines the dinoensi
of the lattice, and vice versa).
V. ANALYSIS OF THE COMPUTATIONAL COMPLEXITY The lattice generator matri¥l is computed for the drive

The computational complexity of the proposed MPC algg_ystem case study detailed in the previous section. Thehtveig

rithm is analyzed in this section, using the drive system as%‘%_facmr)‘“ is tuned such that a switching frequency of about

case study. Since the system matrices are time invariant Hz results.

a given speed setpoint and dc-link voltad®, and thus the able I_ summarizes the computational burde_n of the sphere
decoder in terms of the number of nodes examined. Two cases

lattice generator matridd are time invariant, too. As a result, ined: th ithout the LLL reducti lqorith
the preprocessing stage can be performed offline and only & examined. the case without the LLL reduction aigorithm
€., H is the lattice generator matrix), and the case with

sphere decoding algorithm needs to be executed in real time:” i ) i )
LLL reduction algorithm (i.e.H is the lattice generator

The latter thus determines the online computational demal X .
atrix). As can be seen, the sphere decoder with the LLL

while the first part of the algorithm is given for reasons olF: th ionifi | g h b ¢ nod b
completeness. algorithm significantly reduces the number of nodes to be

This motivates us to divide the analysis of the Compde_xa_mined. ) e
tational burden into two parts: (a) the preprocessing stagd '9S- 6(2) and 6(b) illustrate the probability distributiof
(Algorithm 1), and (b) the optimization stage (Algorithm. 2) i, n;m;]ber Of_ notljeslre.qum]-c:‘d K;] be eproreg at each time-step
The focus of this analysis is on the worst-case number of op- Ind the optimal solution, or t, e ten—;t_ep orizow .@ }O)
erations, which is, from an implementation point of viewe thcaSe: When the ILS problem is ill-conditioned the distritat

decisive quantity rather than the average number of opersti is relatively flat (with a low peak as0), spread_over a wide
range of numbers (fron80 up to 225), see Fig. 6(a). On

] . the other hand, when the search space is reshaped and the
A. Complexity of the Preprocessing Stage ILS problem is transformed to a well-conditioned one, the
For the LLL reduction algorithm, as introduced in [21], theorobability distribution exhibits a large peak at. With 30
average complexity ig)(n*logn) floating-point operations being the depth of the search tree, this number constithees t
(flops). However, as shown in [26], the average complexityinimum number of nodes to be explored by the algorithm.
can be reduced t®(n?logn), assuming that the entries ofMore precisely, as can be observed in Fig. 6(b), in alBott
the lattice generator matrikl are independent and identicallyof the cases, the solution is found in the first iteration.
distributed (i.i.d.) random variabld$ ~ A(0,1). In our case,  Even though the complexity analysis based on the number
of nodes provides a first indication, it is rather coarse. The
8The notion of flop count is used to provide a rough estimatehef t hnymber of computations depends not only on the number of
computation time of the implemented algorithm. It is not anuate estimate, . .
nodes explored, but also on the dimension of these nodes, see

especially whem is small ¢ < 100), since the computation time on today’s ' ™ h )
platforms highly depends on the architecture and compiler. Fig. 4. As an example, consider after the preprocessing stag
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(@) The mean number of nodes visited1i32.97. (b) The mean number of nodes visited3is.21. (c) The mean dimension of nodes visited in the
(Note that thed8, and99 percentiles are not shown worst-case scenario is5.7.

for visualization purposes.)

Fig. 6: (a) and (b): Probability distribution of the numbdrnmdes visited by the sphere decoding algorithm (AlgoritBmfor a ten-step horizon\ = 10)
(a) before, and (b) after the LLL reduction algorithm. Theamenumber of nodes visited is indicated by the solid vertica. The 95 and 98, and 99
percentiles are shown as dashed, dash-dotted, and dottichivénes, respectively. (c): Dimension of each nodeited in the worst-case scenario by the
sphere decoder when using a ten-step horizon and the pesging stage. The mean dimension of the nodes is indicatedebgolid vertical line.

sphere decoding for the horizaw = 10 case with the worst- To derive an upper bound on the number of operations to
case scenarionfax(p) = 141 nodes visited). The number ofbe performed, a worst-case scenario is examined. This-corre
nodes explored at each layer is shown in Fig. 6(c). As can sgonds to the case where (a) the maximum number of nodes
seen, many nodes are of high dimensions> 15), implying max(u) is explored by the sphere decoder (see Table 1), and
that few flops are required. This is due to the use of an upg®) U € U \ {0}, since multiplications with zero result in a
triangular H matrix and the effective pruning of suboptimabecrease in the number of additions.

branches. The total number of operations; = N, + N; + N,,, cor-

In the sequel, a second and more precise analysis of tesponds to the flop count for the real-time computation.
computational burden is performed for the real-time operdhe upper bound on the operations performed in real time
tions. Since the computation of the unconstrained soluig max(N;), is also summarized in Table I. For the horizon
is performed in real time, the corresponding operationg@re N = 10 case, the worst case number of flops is reduced by
be taken into account. Considering taf,. =H M Uy, 80%, compared with a reduction 8% when considering the
and that# is upper triangular, wheread/ is sparse, then WOrst case number of nodes.

n(n + 1)/2 multiplications andn(n — 1)/2 additions are re-
quired, i.e.,n2 flops in total. VI. PERFORMANCEEVALUATION

The operations performed by the sphere decoder are ahe simulation results presented in this section relatéeo t
function of the dimension of the node examined. Focusing #aedium-voltage drive system depicted in Fig. 5. The horizon
a snapshot of the recursive Algorithm 2, it can be concludéd = 10 case is investigated. The weighting factar = 0.1
that the most effort is required to compute the update of tiechosen, such that a switching frequency—corresponding t
radius of the hypersphere. Specifically, for andimensional the control effort—of approximatel$00 Hz is obtained.
node,n —m + 1 addition§ (n — m for the computation of ~The steady-state performance of the drive is shown in
ﬁ(m_m:n)ﬁmm and one for the addition] « ||2 + d2), one Fig. 7. The normalized f[hree-phase stator current Wayes‘orm
subtraction, andh —m + 2 multiplications ¢ — m + 1 for and their references are illustrated over one fundameataigh

the computation Oﬁ(m_mm)an and one for squaring thein F_ig. 7(a). _In Fi_g. 7(b) the _resulting current spectrum is
Euclidean norni| « [|2) are performed. More precisely, sincdiepicted to visualize the tracking accuracy of the corgroll
U € U, the result of the: — m -+ 1 multiplications performed The total harmonic distortion (THD) of the current is use@as
at themth layer is either the multiplicand itself, with the samd@€rformance metric, which quantifies the tracking perfaroea
or reversed sign, or zero. Therefore, only one multiplarais of the controller. The current THD is with.95% relatively
performed at each node, regardless of its dimension. fjnalPW given the low switching frequency, as can also be seen
since the cardinality of/ is three for the case study, for eact [17] where the direct MPC current controller with one-
child node explored, the two sibling nodes are evaluated 3d multiple-step horizon is compared with the pulsewidth
determine whether they lie inside of the hypersphere. NdigPdulation (PWM) based strategy of space vector modulation
that divisions are not required. (SVM), and a synchronous optimal modulation technique,
Taking all the above into account, the total number of addi@mely the offline-calculated optimized pulse patternsR€)P
tions N, subtractionsV, and multiplicationsV,,, performed The good performance of the controller can also be validated

in real time is by the thorough comparison_present_ed in [2_9] between_slevera
L MPC and PWM-based techniques. Finally, Fig. 7(c) depias th
N, — n(n —1) 43(pu—1+ Z (n—m®)) |, contro_l input over one fundamental period, i.e., the ttphase
2 = switching sequence.
N, = 3p, (18) Interestingly, in the field of power electronics, the ILS
n(n+1) problem underlying direct MPC is typically solved using a
N, = — + 3. brute-force approach, namely exhaustive enumeration lof al

admissible sequences of control inputs [30]. This limite th
9Except whenm = n, where there are. — m = 0 additions. prediction horizon achievable in a real-time implemewtati
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Fig. 7: Simulated waveforms produced by the direct moddliptiee controller with current reference tracking at stgatate operation, at full speed and rated
torque. A ten-step horizon\{ = 10) is used, the sampling interval I = 25 us and the weighting factor i&,, = 0.1. The switching frequency (interpreted
as the control effort) is approximateB00 Hz and the current THD (interpreted as the controller tnaglkaccuracy) ist.95%.

TABLE II: Maximum number of nodeg: evaluated and flop&V; performed by (a) the exhaustive search algorithm, (b) thespdecoder in [16], and (c)
the proposed algorithm. The resulting current THD for eadijction horizon is also shown.

Prediction Exhaustive search Sphere decoder [16] Proposed approach
horizon N max(u) max(N¢) max(u) max(Ng) || max(u) max(Ng) || THD%
1 26 250 7 99 7 99 5.76
2 517 4,948 16 304 14 291 5.65
3 7,371 70,120 24 585 19 501 5.43
4 103,518 983,587 31 1,029 27 897 5.37
5 1,455,000 > 1-107 50 1,764 44 1,587 5.29
7 >3-108 >5-10° 99 4,635 61 3,030 5.09
10 >2.102  >4.1013 255 14,936 141 8,268 4.95
typically to one [31], despite several strategies to ftat#i the VII. CONCLUSIONS

implementation of MPC algorithms with nontrivial predmi  The gptimization problem underlying model predictive con-
horizons [32]. Recently, the concept of sphere decoding hag| (MPC) of linear systems with integer inputs is an intege
been introduced to the power electronics community in [16]east-squares (ILS) problem. This paper discusses a camput
The computational complexity of the proposed approationally efficient method to solve this problem, consistiofy

is compared in Table Il with these two approaches frotwo steps. First, in a preprocessing step, a lattice reolucti
the literature. Specifically, the table shows the maximualgorithm transforms the optimization problem into a well-
number of examined nodesand operations performe¥d; for conditioned problem, such that it can be solved more effi-
different prediction horizons. As before, the converteemgpes ciently. These computations are performed once and offline.
at a switching frequency of aboB00Hz, regardless of the Second, in the optimization stage, a refined sphere decoding
prediction horizon. The resulting current THD is shown talgorithm is used to solve the optimization problem in a
highlight that the closed-loop performance of the system chranch-and-bound manner and to derive the optimal sequence
be improved by using longer prediction horizons. of control inputs. The initial radius of the hypersphere is

Exhaustive search clearly becomes impractical for predigoMPputed using the Babai estimate, ensuring that the ealuti
tion horizons exceeding two steps. When the sphere &l iS always nonempty while the radius is as small as pos-
coder is used to restrict the search space the computaticHl€- Nevertheless, since real-ime guarantees of tetiom
complexity—even in the worst-case scenario—increases oot be provided, modifications—such as adding a stopping
mildly as the prediction horizon is extended. Compared fgiterion—are required to resolve this issue. This mater i
the approach proposed in [16], the sphere decoding algoritfiurther discussed in [33]. . .
with the modifications proposed in this work further reduces AN industrial case study of a three-level inverter drive
both the number of nodes examined and flops performed. T¥stem is used to illustrate the benefits of the optimization
maximum number of nodes is reduced by ababts, and method. The computational complexity is analyzed—both in

that of the operations performed in real time by a very simild€'ms of the number of nodes in the search tree explored and
percentage, i.e., by4%. the number of flops required. Compared to the optimization

This reduction is a result of the reshaping of the searrﬂethOd proposed in [16], the computational burden is reduce

- - - . up to45%.
space and the initial radiysbeing smaller, as can be seen in y up 5%

Fig. 8(a). The computation of the initial radius based on the APPENDIX

Babai estimate (see (13) and (14)) results in a slightlytéigh  The opjective function (4) can be written as
hypersphere, and consequently reduces the number of nodes 9 T T

explored. This can be observed in Figs. 8(b) and 8(c), wherd(K) = C(R) U (R)[[w +U" (R)A(k)+ A" (R)U (k) , (19)
the probability distributions of the number of nodes viditsy where

the sphere decoder are illustrated. As can be seen, the Shapg) — ||Ta(k) — Yrer(k)||% + [[Bulk — 1)|1% ,

of the distributions resulting from the two sphere decoding N _Q R
approaches is very similar. Yet, with the proposed algmijth W =Y QY+ ST RS,

it is more concentrated at the lower end36f nodes. A(k) = ((I‘m(k) - Yref(k))T O - (Zulk - 1))T % S)T



0.2 100 100
0-15¢ I, 80r &, 80y
3 % 2 60} 2 60}
T 0.1} : 3 g

x L % 40+ % 40+
0.05 ° °

£ 20 | 2 20 |
% 5 O0 8671006 150 200 250 300 C0 50 100 150 200 250 300

Number of nodes Number of nodes
(b) The mean number of nodes visited3i8.93. (c) The mean number of nodes visited36.21.

Fig. 8: (a): Initial radiusp as a function of time, based on the Babai estimate (13) (réd boe) and the educated guess proposed in [16] (blue dhshe
line). (b) and (c): Probability distribution of the numbefr modes visited by the sphere decoding algorithm, for a tep-fiorizon (V = 10), as proposed
(b) in [16], and (c) in this work. The mean number of nodestsdiis indicated by the solid vertical line. TI9 and 98, and 99 percentiles are shown as

dashed, dash-dotted, and dotted vertical lines, respctiv

SinceR - 0= W = 0, andW = W7, after rearranging [16]
terms and completing the squares, (19) can be written as

J(k) = [[U (k) + W A(k)| 3y +C(k) — AT ()W TAGk) . 7

constk) (20) [18]

Note that the constant term is independenlif), and thus

it can be neglected. Allowind/ (k) C R", the unconstrained [19]
(i.e., relaxed) solution of (20) i€ ync(k) = —W "t A(k).
InsertingU ync(k) in (20), (5) results, which in turn, becomeg20]
the ILS function in problem (6). |
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