
Reformulation of the Long-Horizon
Direct Model Predictive Control Problem
to Reduce the Computational Effort
Petros Karamanakos, Member, IEEE, Tobias Geyer, Senior Member, IEEE,

and Ralph Kennel, Senior Member, IEEE

Abstract—For direct model predictive control schemes with
current reference tracking, the underlying integer least-squares
(ILS) problem is reformulated to reduce the computational
complexity of the solution stage. This is achieved by exploiting the
geometry of the ILS problem and by reducing the computations
needed for its formulation and solution. A lattice reduction and
a sphere decoding algorithm are implemented. A variable speed
drive system with a three-level voltage source inverter serves as
an illustrative example to demonstrate the effectiveness of the
proposed algorithm.

I. INTRODUCTION
Model predictive control (MPC) [1] is a control strategy that

has recently gained popularity in the field of power electronics
due to its numerous advantages [2]. MPC is suitable for
nonlinear multiple-input multiple-output (MIMO) plants with
complex dynamics. Furthermore, constraints can be explicitly
or implicitly imposed and met, by formulating the control
problem as a constrained optimization problem. Thanks to the
so-called receding horizon policy, disturbances are effectively
rejected and a high degree of robustness to model uncertainties
is generally achieved.
However, MPC schemes are often computationally de-

manding, especially when implemented as a direct controller.
Direct MPC schemes manipulate the inverter switch positions
without the use of a modulator, giving rise to a switched
linear or nonlinear system model. These MPC problems are
often solved by enumerating all candidate solutions, imply-
ing that all possible solutions are exhaustively evaluated to
determine the optimal one. Since long prediction horizons
are often required to ensure stability and good closed-loop
performance [3], the underlying optimization problem may
become computationally intractable.
As a result, the horizon is typically kept as short as

possible. In power electronics, a one-step horizon is often
used, especially when reference tracking of the variables of
interest is considered for power electronic systems of first
order [2]. Despite a few strategies to make the implementation
of MPC algorithms with long prediction horizons feasible in

P. Karamanakos and R. Kennel are with the Institute for Electrical Drive
Systems and Power Electronics, Technische Universität München, 80333
Munich, Germany; e-mails: p.karamanakos@ieee.org, kennel@ieee.org
T. Geyer is with ABB Corporate Research, 5405 Baden-Dättwil, Switzer-

land; e-mail: t.geyer@ieee.org

real time [4], computational issues prevail, which need to
be addressed to enable the widespread use of direct MPC
algorithms in power electronics.
Recently, an optimization technique was proposed in [5] and

evaluated in [6] that solves the direct MPC problem with only
a modest increase in the computational burden when enlarging
the prediction horizon. The underlying optimization problem
is formulated as an integer least-squares (ILS) problem and the
branch-and-bound technique of sphere decoding [7] is adopted
to compute the optimal solution (the optimal switching se-
quence). It is expected that the complexity of the problem
does not significantly increase when stepping up the number
of converter voltage levels, making this method particularly
attractive for multilevel topologies.
By reformulating the ILS problem through a preprocessing

stage, this paper proposes a modified version of the algorithm
introduced in [5]. A lattice reduction algorithm reduces the
size of the n-dimensional solution space and, as a result,
the number of nodes in the search tree to be examined. In
addition, the implementation of the sphere decoder in [5]
is refined. With these improvements, the computations to be
performed in real time are reduced, while still obtaining the
optimal solution. As a case study, a variable speed drive system
is considered, which consists of a three-level neutral point
clamped (NPC) voltage source inverter driving a medium-
voltage (MV) induction machine (IM). For long horizons, such
as ten steps, the number of nodes to be evaluated is reduced by
up to 45%, highlighting the efficacy of the proposed algorithm.

II. FORMULATION OF THE OPTIMAL CONTROL PROBLEM
For reasons of simplicity, in this work the optimal control

problem to be solved in the framework of MPC considers the
direct current control problem in an IM drive. A three-level
NPC voltage source inverter is used with a fixed neutral point
potential and a constant dc-link voltage Vdc, see Fig. 1. It is
important to note that the formulation of the problem and the
analysis that follows can be easily extended to other converter
topologies and control tasks.

A. Mathematical Model of the System
When deriving the prediction model of the plant, it is

common practice to transform the variables from the three-

978-1-4799-5776-7/14/$31.00 ©2014 IEEE 3512

Vdc
2

Vdc
2

N
NN

a
b

c

is,abc

IM

Fig. 1: Three-level three-phase neutral point clamped (NPC) voltage source
inverter driving an induction motor (IM) with a fixed neutral point potential.

phase (abc) to the stationary orthogonal αβ system. For this,
we define ξαβ = Kξabc, where ξabc = [ξa ξb ξc]

T is a vector
in the abc plane, and ξαβ = [ξα ξβ]

T is the resulting vector
in the αβ plane, with the transformation matrix

K =
2

3

[
1 − 1

2 − 1
2

0
√
3
2 −

√
3
2

]
.

The inverter produces at each phase the voltages
−Vdc

2 , 0,
Vdc
2 , depending on the position of the corresponding

phase switches. The switch positions in the phase legs can be
described by the integer variables ua, ub, uc ∈ U = {−1, 0, 1}.
Hence, the output voltage of the inverter is given by1

vαβ =
Vdc
2

uαβ =
Vdc
2

Ku . (1)

where u = [ua ub uc]
T .

To derive the state-space model of the squirrel-cage IM in
the αβ plane, the stator current is,αβ and the rotor flux ψr,αβ

are chosen as state variables. It should be mentioned that the
dynamic of the rotor angular speed ωr is neglected, since the
speed is considered to be a time-varying parameter. The model
input is the stator voltage vs,αβ , which is equal to the inverter
output voltage, as given by (1). The model parameters are the
stator Rs and rotor Rr resistances, the stator Xls, rotor Xlr

and mutual Xm reactances, the inertia J , and the mechanical
load torque T�.
Considering the above, the continuous-time state equations

are2 [8]

dis
dt

= −
1

τs
is +

(
1

τr
I − ωr

[
0 −1

1 0

])
Lm

Φ
ψr +

Lr

Φ
vs

(2a)

dψr

dt
=
Xm

τr
is −

1

τr
ψr + ωr

[
0 −1

1 0

]
ψr (2b)

dωr

dt
=

1

J
(Te − T�) (2c)

with Φ = XsXr −X2
m, Xs = Xls +Xm and Xr = Xlr +

Xm. Furthermore, in (2) τs = XrΦ/(RsX
2
r + RrX

2
m) and

1Throughout the paper, vectors in the αβ plane are denoted with the
corresponding subscript, unless otherwise stated. If the subscript is omitted,
then it is assumed that the vector is in the abc plane.
2In (2) all vectors are in the αβ plane, and the subscripts are dropped for

convenience.

=
~~

IM

Minimization of
objective function

Prediction of
trajectories

is

u

Encoder
(optional)

Observer

dc-link

is,ref

ψr

ωr

Fig. 2: Model predictive current control with reference tracking for the three-
phase three-level NPC inverter with an IM.

τr = Xr/Rr are the stator and rotor time constants, respec-
tively, I is the identity matrix of appropriate dimension (here
two by two), whereas Te is the electromagnetic torque.
Given the model of the drive, as described by (1) and (2),

the state-space model in the continuous-time domain is
dx(t)

dt
= Dx(t) +Eu(t) (3a)

y(t) = Fx(t) (3b)

In (3) x = [isα isβ ψrα ψrβ]
T is the state vector, encom-

passing the stator current and the rotor flux in the αβ plane.
The output of the system is the stator current, i.e. y = is,αβ .
The switch position u = [ua ub uc]

T constitutes the input
vector provided by the controller. Finally, the continuous-time
matrices D, E, and F can be calculated using elementary
linear algebra.
The state-space model of the drive can be transformed from

the continuous-time domain to the discrete-time domain using
exact Euler discretization. The discrete-time representation is

x(k + 1) = Ax(k) +Bu(k) (4a)
y(k) = Cx(k) (4b)

The matrices A,B and C are of the form A = e
DTs ,

B = −D−1(I −A)E andC = F . Moreover, I is—as previ-
ously defined—the identity matrix of appropriate dimensions,
e the matrix exponential, Ts the sampling interval, and k ∈ N.

B. Direct Model Predictive Control with Current Reference
Tracking
The block diagram of the MPC scheme with current refer-

ence tracking is shown in Fig. 2. The main control objective
is the elimination of the current error, or equivalently, the
accurate tracking of the reference value is,ref,αβ of the stator
current is,αβ . To do so, the switches of the inverter are directly
manipulated without the presence of a modulator. Moreover,
since for MV drives switching losses are of paramount impor-
tance, the switching effort is to be kept small.

3513

Based on the above, the objective function that penalizes at
step k the evolution of the current error and the control effort
over the finite prediction horizon N is

J(k) =

k+N−1∑
�=k

||ie,αβ(� + 1|k)||22 + λu||Δu(�|k)||22 , (5)

where ie,αβ(� + 1) = is,ref,αβ(� + 1) − is,αβ(� + 1)
and Δu(�) = u(�)− u(�− 1). In (5) the weighting factor
λu ∈ R

+ sets the trade-off between the stator current tracking
accuracy (i.e. the deviation of the current from its reference)
and the switching effort (i.e. the switching frequency).
To obtain the optimal solution (i.e. the control input), the

objective function (7) is minimized at time-step k, subject
to the system dynamics and additional constraints (e.g. the
switches are not allowed to change from u = 1 to u = −1,
and vice versa, directly in one step). Thus, the following
optimization problem is formulated and solved in real time

minimize
U(k)

J(k) (see (5)) (6a)

subject to U(k) ∈ U (6b)
||Δu(�)||∞ ≤ 1 , ∀ � = k, . . . , k +N − 1 . (6c)

The optimization variable is the switching sequence
U(k) = [uT (k) . . .uT (k +N − 1)]T ∈ R

n, with n = 3N .
The set U = U × · · · × U is the N -times Cartesian product
of the set U , with U = U × U × U being the set of discrete
three-phase switch positions. The second constraint in the
optimization problem, see (6c), is imposed to avoid a shoot
through.

C. Formulation of the ILS Problem
Following, by introducing the vectors Y (k) and Y ref(k)

to denote the output sequence and the corresponding output
reference sequence over the horizon, respectively, i.e. Y (k) =
[yT (k+1) . . .yT (k+N)]T = Γx(k)+ΥU(k) and Y ref(k) =
[yT
ref(k+1) . . .yT

ref(k+N)]T , the objective function J can be
written in vector form as

J = ||Γx(k)+ΥU(k)−Y ref||
2
2+λu||SU(k)−Ξu(k−1)||22 ,

(7)
where the definition of matrices Γ, Υ, S and Ξ can be
found in the appendix. After some algebraic manipulations3
the objective function (7) can be written as

J = (U(k)−U unc(k))
TQ(U(k)−U unc(k))+const(k) , (8)

where U unc ∈ R
n is the unconstrained solution of the

optimization problem (6). The matrix Q = Υ
T
Υ+λuS

TS is
by definition positive definite and can thus be factored (using
Cholesky factorization) as

Q = HTH , (9)

where H ∈ R
n×n is a nonsingular, upper triangular matrix.

Taking (9) into account, (8) takes the form

J = (HU(k)− Ū unc(k))
T (HU(k)− Ū unc(k)) + const(k) ,

(10)
3For a detailed derivation of (8) the reader is referred to [5].

(0, 0) (0, 1)

(1, 0)

(a)

(0, 0)

(1, 1) (2, 1)

(b)

Fig. 3: A two-dimensional lattice generated by two different bases. The arrows
(shown as dashed lines) correspond to the basis vectors of the lattice. In (a)
the basis vectors are h1 = (1, 0) and h2 = (0, 1), whereas in (b) the basis
vectors are h̃1 = (1, 1) and h̃2 = (2, 1). The two lattices are Z

2, i.e.
L(H) = L(

∼

H) = Z
2.

where Ū unc ∈ R
n is

Ū unc(k) = HU unc(k) . (11)

Since the constant in (10) does not affect the result of the
optimization problem, the function to be minimized is

J = ||Ū unc(k)−HU(k)||22 . (12)

Thus, the optimization problem (6) can be reformulated as

minimize
U(k)

||Ū unc(k)−HU(k)||22 (13a)

subject to U(k) ∈ U (13b)
||Δu(�)||∞ ≤ 1 , ∀ � = k, . . . , k +N − 1 .

(13c)

The reformulated optimization problem is an integer least-
squares (ILS) problem. The matrix H is known as the lattice
generator matrix—its columns represent n linearly indepen-
dent vectors in R

n that generate a lattice (see Fig. 3), i.e. the
set of all linear combinations

L(H) = {
n∑

i=1

wihi | wi ∈ Z} (14)

of the basis vectors hi.

III. SOLVING THE ILS PROBLEM
To facilitate the real-time implementation of the proposed

MPC algorithm, the ILS problem (13) needs to be solved in
a time-efficient manner. To achieve this, the procedure for
solving the problem is divided into two stages: the first stage
(preprocessing) consists of the reduction of problem (13),
whereas in the second stage (optimization) the search for the
optimal solution is performed.

A. Reduction of the ILS Problem
In a first step, the Lenstra-Lenstra-Lovász (LLL) lattice

basis reduction algorithm as proposed in [9] is applied to
the problem (13) to reduce the complexity of the search
process. Despite the fact that H is already upper triangular,
a factorization procedure is employed to transform H to the
new upper triangular matrix

∼
H∈ R

n×n. Thanks to the sparsity
of H , this procedure can be accomplished with only a few
computations.

3514

The reduction process derives the upper triangular matrix
∼
H with positive diagonal entries that satisfy the following
criteria:

|h̃i,j | ≤
1

2
h̃i,i, i = 1, . . . , j − 1 (15a)

δh̃2j−1,j−1 ≤ h̃2j−1,j + h̃2j,j, j = 2, . . . , n , (15b)

where 1/4 < δ ≤ 1 (with the typical value being δ = 3/4).
To this end, integer Gauss transformations (IGTs) and

permutation matrices are employed. First, IGTs of the form

M i,j = I − γeie
T
j , (16)

are applied to the right-hand side of H . In (16) ei is the
unit vector (i.e. the ith column of the identity matrix I of
proper dimensions) and γ ∈ Z. Therefore, by post-multiplying
H with M i,j (with i < j) we obtain

∼
H= HM i,j = H − γHeie

T
j . (17)

The matrices H and
∼
H are the same except for the (k, i)

entries, with k = 1, 2, . . . , i, which are

h̃k,j = hi,j − γhk,i , (18)

By following a procedure similar to Gaussian elimination, i.e.
by setting4

γ = �hi,j/hi,i� , (19)

we ensure that the entry |h̃i,j | is sufficiently reduced such that
it meets condition (15a).
To satisfy the second condition (15b), permutations

of the entries of H are required whenever
δh2j−1,j−1 > h2j−1,j + h2j,j . A Givens rotation matrix
Gj−1,j [10], [11] is employed to maintain the upper
triangular form of the resulting matrix

∼
H . As a result, the

LLL reduced matrix
∼
H can be written in its final form

∼
H= GT

j−1,jHP j−1,j , (20)

where the Givens matrix is

Gj−1,j =

⎡
⎢⎢⎢⎣
Ij−2

c −s

s c

In−j

⎤
⎥⎥⎥⎦ ,

with

c2 + s2 = 1 , c =
hj−1,j√

h2j−1,j + h2j,j

, s =
hj,j√

h2j−1,j + h2j,j

.

The permutation matrix in (20) is of the form

P j−1,j =

⎡
⎢⎢⎢⎣
Ij−2

0 1

1 0

In−j

⎤
⎥⎥⎥⎦ ,

4With �ξ� is denoted the nearest integer vector to ξ, i.e. each entry of ξ is
rounded to the nearest integer. Moreover, �ξ� denotes rounding to the nearest
largest integer vector, and �ξ� rounding to the nearest smallest integer vector.

Algorithm 1 LLL Reduction

function
∼
H = LLL(H)

while j ← 2 ≤ n do
if |hj−1,j | >

1
2 |hj−1,j−1| then

∼
H← HM j−1,j

end if
if δh2j−1,j−1 > h2j−1,j + h2j,j then∼

H← GT
j−1,jHP j−1,j

j ← max{j − 1, 2}
else
for i← j − 2 to 1 do
if |hi,j | > 1

2 |hi,i| then∼
H← HM i,j

end if
end for
j ← j + 1

end if
end while

end function

With this procedure, the second condition, as described
by (15b), is met, since⎧⎪⎪⎨

⎪⎪⎩
h̃j−1,j−1 =

√
h2j−1,j + h2j,j

h̃j−1,j = chj−1,j−1

h̃j,j = −shj−1,j−1

.

As a result, the reduction process strives to place the
diagonal entries of

∼
H in ascending order, i.e.

h̃1,1 � h̃2,2 � . . .� h̃n,n . (21)

Note that the algorithm employed to find the ILS solution (see
the next section) performs a depth-first search—the candidate
ILS solutions are found by aggressively searching the n-
dimensional space. Ordering the diagonal entries of

∼
H reduces

the number of nodes to be considered in the early steps of the
search procedure, decreasing the total number of nodes to be
explored.
The pseudocode of the LLL reduction procedure is provided

in Algorithm 1, and an illustrative example of the effect of the
LLL algorithm on H is presented in Fig. 4.
Therefore, with transformations (17) and (20) applied toH ,

a matrix of the following form
∼
H= V THM (22)

is generated, with V ∈ R
n×n being an orthonormal matrix

and M ∈ Z
n×n being unimodular (i.e. detM = ±1). With

this, the ILS problem (13) can be rewritten as

minimize
∼

U(k)

||
∼
Uunc(k) −

∼
H

∼
U(k)||22 (23a)

subject to U(k) ∈ U (23b)
||Δu(�)||∞ ≤ 1 , ∀ � = k, . . . , k +N − 1 ,

(23c)

3515

1 4 7 10 13 16 19 22 25 28

1
4
7
10
13
16
19
22
25
28

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(a) The H matrix.

1 4 7 10 13 16 19 22 25 28

1
4
7
10
13
16
19
22
25
28

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(b) The
∼

H matrix.

Fig. 4: Visualization of the lattice generator matrixH for n = 30 (a) before,
and (b) after the LLL reduction algorithm.

ρ

Fig. 5: The principle of the sphere decoder: A (two-dimensional) sphere of
radius ρ (shown in blue line) centered at the unconstrained solution (shown as
red solid circle) includes several integer points of the lattice (shown as black
solid circles). One of these points is the integer solution of the ILS problem.

m = 3

m = 2

m = 1

(a)

m = 3

m = 2

m = 1

(b)

Fig. 6: (a) A typical search tree for the ILS problem (23), assuming a three-
dimensional problem (n = 3). The index m = {1, . . . , n} refers to the layer
in the search tree. As the search progresses, the dimension of the sphere is
reduced from m = n to a one-dimensional sphere. (b) Search tree with nodes
explored by the sphere decoder (shown as black solid circles). The nodes that
do not lie within the m-dimensional sphere are shown as red solid circles,
whereas nodes that are not evaluated at all are depicted as gray solid circles.
The direction of the search process is shown with black arrows; to find the
optimal solution nodes are visited with a direction from left to right, and from
the higher dimensional layers to the lower ones, until reaching a dead end or
the bottom level, where backtracking occurs.

with
∼
Uunc(k) =

∼
H M−1U unc(k) and

∼
U(k) = M−1U(k).

B. Search for the Optimal Solution
To find the optimal solution in the transformed lattice

generated by
∼
H , a sphere decoding algorithm is implemented,

based on the one described in [5]. This algorithm is a variant

Algorithm 2 Sphere Decoder

function
∼
U∗ = SPHDEC(U , d2, i, ρ2,

∼
Uunc)

for each u ∈ U do
Ui ← u
d′2 ← ||

∼
Ui−

∼
H(i,i:n) U i:n||22 + d2

if d′2 ≤ ρ2 then
if i > 1 then
SPHDEC(U , d′2, i− 1, ρ2,

∼
Uunc)

else
if U meets (23c) then

∼
U∗ ← U

ρ2 ← d′2

end if
end if

end if
end for

end function

of the Fincke and Pohst sphere decoding algorithm [12], which
exploits the structure of the switching vector U . According to
the sphere decoding principle, the optimal solution lies within
a hypersphere (n-dimensional sphere) of radius ρ, see Fig. 5.
As mentioned in Section III-A, these algorithms are depth-first
search algorithms that find the optimal solution by traversing a
search tree (Fig. 6(a)) in a sequential manner until reaching a
dead end or the bottom level, i.e. the one-dimensional nodes;
in such a case they backtrack to examine unexplored nodes in
higher layers, see Fig. 6(b).
To exploit the structure of

∼
H and to avoid unnecessary

computations, the sphere decoding algorithm is implemented
as a “from bottom to top” search algorithm. This is in contrast
to [5], where the search procedure is performed in a top-to-
bottom manner. The pseudocode of the proposed algorithm is
summarized in Algorithm 2.
Before invoking Algorithm 2, the initial radius ρ(k) of

the hypersphere needs to be determined. A common choice
for ρ(k) is the so-called Babai estimate [13], [14], which
is a suboptimal solution to the ILS problem5. For the ILS
problem (13), the Babai estimate can be easily computed by
simply rounding the unconstrained solution U unc to the closest
integer vector

U bab(k) = �U unc(k)� . (24)

The initial value of ρ(k) is then

ρ(k) = ||
∼
Uunc(k)−

∼
H

∼
Ubab(k)||2 , (25)

where
∼
Ubab(k) = M−1U bab(k).

It can be shown that the entry uj of U is bounded
between [7]⌈

−ρ+ ũuncj

h̃j,j

⌉
≤ uj ≤

⌊
ρ+ ũuncj

h̃j,j

⌋
, (26)

5In [5] an alternative calculation method for ρ(k) is proposed, which
exploits the receding horizon policy of MPC. More specifically, the previously
computed optimal switching sequence is shifted by one step back in time.

3516

since
ρ2(k) ≥ ||

∼
Uunc(k)−

∼
H

∼
U(k)||22 . (27)

If condition (26) holds, then the solution set is nonempty and
at least one lattice point exists.
Finally, it should be pointed out that when the LLL reduc-

tion algorithm is used for the transformation of the lattice,
the probability of the Babai estimate U bab being equal to
the optimal solution U∗ is increased, as shown in [15]. As
a consequence, in most cases the sphere that includes at least
one lattice point has the smallest possible radius ρ, and thus
the nodes to be enumerated are less.

IV. ANALYSIS OF THE COMPUTATIONAL COMPLEXITY

In this section, the computational complexity of the pro-
posed MPC algorithm is analyzed. When implementing this
algorithm on a microprocessor or a field-programmable gate
array (FPGA), one needs to ensure that the algorithm always
converges within the available time interval. Therefore, this
analysis focuses on the worst-case number of operations.
The analysis of the computational burden of the direct MPC

algorithm is divided into two parts: (a) the formulation of the
ILS problem (13) and the preprocessing stage, based on the
LLL reduction procedure (Algorithm 1), and (b) the optimiza-
tion stage, i.e. the sphere decoding algorithm (Algorithm 2).
The reason for splitting the analysis into two parts is that
the formulation of the ILS problem and the preprocessing
stage—under the given assumptions, i.e. the lattice generator
matrix H is time-invariant—can be done offline, whereas the
optimization stage is executed in real time. The second part
of the algorithm thus determines the online computational
demand, while the algorithm’s first part is given for reasons
of completeness.

A. Complexity of the ILS Problem Formulation and Prepro-
cessing Stage

For the formulation of the ILS problem (13), the compu-
tational effort is concentrated in the factorization of Q to
compute the lattice generator matrix H . For the Cholesky
factorization of Q (1/3)n3 floating-point operations (flops)6
are required [10].
For the LLL reduction algorithm, as shown in [16], the

average complexity is O(n3 logn). This upper bound on the
number of flops required is derived by assuming that the
entries of the lattice generator matrix H are independent and
identically distributed (i.i.d.) random variables H ∼ N (0, 1).
In our case, though, the entries of H are highly correlated,
and H is sparse. Therefore, the computational complexity is
expected to be less than O(n3 logn), since the vast majority
of the off-diagonal entries of H already satisfy criteria (15a)
and (15b), see Fig. 4.

6The notion of flop count is used to provide a rough estimate of the
computation time of the implemented algorithm. It is not an accurate estimate,
especially when n is small (n < 100), since the computation time on today’s
platforms highly depends on the architecture and compiler.

TABLE I: Average and maximum number μ of nodes that are evaluated by the
sphere decoder (Algorithm 2) without and with the LLL reduction algorithm
(Algorithm 1), depending on the length of the prediction horizon N .

Prediction Without LLL With LLL
Horizon N avg(μ) max(μ) avg(μ) max(μ)

1 3.18 7 3.18 7

2 7.88 19 6.40 14

3 14.01 39 9.58 19

4 22.48 87 12.86 27

5 33.02 148 12.21 44

7 63.18 690 23.05 61

10 132.97 831 36.21 141

B. Complexity of the Sphere Decoding Algorithm
The ILS problem, either in its initial form (13) or in its

final form (23), is known to be NP-hard [14], [17]. In order
to derive an upper bound on the required computations, an
empirical analysis is presented hereafter. To do so, the number
of nodes that are evaluated by the sphere decoder at each
time-step to obtain the solution is computed. More specifically,
the average and the maximum number of examined nodes μ
are investigated for lattices of different dimensions (i.e. for
different prediction horizons, since the length of the horizon
defines the dimension of the lattice, and vice versa).
The lattice generator matrix H is computed assuming a

drive system with a three-level inverter as in Fig. 1, the
parameters of which can be found in Section V. The sampling
interval is chosen as Ts = 25μs, and the weighting factor λu is
tuned such that a switching frequency of about 300Hz results.
Table I summarizes the computational burden of the sphere

decoder (and consequently of the proposed MPC algorithm,
since only these operations are performed in real time) in terms
of the number of nodes examined. Two cases are examined:
the case without the LLL reduction algorithm (i.e. H is the
lattice generator matrix), and the case with the LLL reduction
algorithm (i.e.

∼
H is the lattice generator matrix).

As can be seen, the sphere decoder with the LLL algorithm
significantly reduces the number of nodes to be examined.
For the horizon N = 10, for example, the average number
of nodes is reduced by 73%, while the maximum number of
nodes is reduced by 83%. The latter number is of importance
for a real-time implementation, indicating that the worst-case
computations are reduced by 83%.
Even though the number of nodes explored by the sphere

decoder provides an indication of the expected complexity, a
more precise analysis is to be performed to define an upper
bound on the expected operations to be performed in real time.
First, since the computation of the unconstrained solution

∼
Uunc

is performed in real time, the corresponding operations are to
be taken into account. For this, n(n+ 1)/2 multiplications and
n(n− 1)/2 additions are required, i.e. n2 flops in total.
Second, the nodes explored by the search algorithm are

of different dimension, i.e. they belong to different layers of
the search tree (see Fig. 6). Hence, the operations performed
by the sphere decoder are a function of the dimension of
the node examined. Specifically, for an m-dimensional node,

3517

TABLE II: Average and maximum number of operations Nt performed in
real time during the optimization stage, i.e. flops required to compute the
unconstrained solution, as well operations performed by the sphere decoder
(Algorithm 2). Two cases are presented—without and with the LLL reduction
algorithm (Algorithm 1)—depending on the length of the prediction horizon
N .

Prediction Without LLL With LLL
Horizon N avg(Nt) max(Nt) avg(Nt) max(Nt)

1 44.73 99 44.73 99

2 165.39 369 138.72 291

3 371.04 915 278.23 501

4 698.95 2905 466.43 897

5 1156.61 5667 701.98 1587

7 2606.68 10275 1320.87 3030

10 6580.55 42147 2714.86 8268

n−m+ 1 additions7, one subtraction, and n−m+ 2 mul-
tiplications are performed, whereas no division is required.
Nonetheless, since U ∈ U the result of the n−m multiplica-
tions performed at themth dimension is either the multiplicand
itself, with the same or reversed sign, or zero. Therefore, only
one multiplication is performed at each node, regardless of
its dimension. Finally, since the cardinality of U is three, for
each node explored—and assuming that the constraint (23c)
is inactive—the two remaining nodes are evaluated to check
if they lie inside the hypersphere.
Taking all the above into account, the total number of addi-

tions Na, subtractions Ns and multiplications Nm performed
in real time is

Na =
n(n− 1)

2
+ 3

⎛
⎜⎝μ− 1 +

∑
nodes
explored

(n−m)

⎞
⎟⎠ ,

Ns = 3μ ,

Nm =
n(n+ 1)

2
+ 3μ .

(28)

To derive an upper bound on the operations performed, the
worst-case scenario is examined. This corresponds to the case
where (a) the maximum number of nodes max(μ) is explored
by the sphere decoder (see Table I), (b) U ∈ U \ {0}N×3,
since multiplications with zero result in a decrease in the
number of additions, (c) constraint (23c) is inactive, and (d)
only one out of the three m-dimensional nodes with the same
(m + 1)-dimensional root node is explored. Thus, the maxi-
mum of the total number of operations Nt = Na +Ns +Nm

serves as an upper bound on the real-time computations.
The average number of operations performed in real time

avg(Nt), as well as the respective upper bound max(Nt), are
outlined in Table II. Again, the same two cases as in Table I
are examined, i.e. the case where the solution U∗ lies in
a hypersphere in the lattice L(H), and the case where the
solution

∼
U ∗ lies in a hypersphere in the lattice L(

∼
H). In

addition, the dimensions of the lattices examined are the same
as those presented in Table I.

7Except when m = n, where there are n−m = 0 additions.

V. PERFORMANCE EVALUATION
The simulation results presented in this section relate to a

MV drive (see Fig. 1) consisting of a three-level NPC inverter
with the constant dc-link voltage Vdc = 5.2 kV and a fixed
neutral point N. A squirrel cage IM is connected to the inverter
with 3.3 kV rated voltage, 356A rated current, 2MVA rated
power, 50Hz nominal frequency and a 0.25 p.u. total leakage
inductance. For all cases examined, the control algorithm was
operated with the sampling interval Ts = 25μs. The results
are shown in the p.u. system.
The steady-state performance of the drive is shown in

Fig. 7. The horizonN = 10 case is investigated; the weighting
factor λu = 0.1 is chosen, such that a switching frequency
of approximately 300Hz is obtained. The three-phase stator
current waveforms and their references are illustrated over
one fundamental period in Fig. 7(a). Moreover, the resulting
current spectrum is shown in Fig. 7(b); the total harmonic
distortion (THD) of the current is 4.95%. Finally, Fig. 7(c)
depicts the three-phase switching sequence.
To highlight the computational efficiency of the proposed

direct MPC algorithm, it is compared with the exhaustive
enumeration algorithm, which is typically used in the field
of power electronics to solve integer programming problems
formulated in the framework of MPC, as well as with the
state-of-the-art sphere decoding algorithm introduced in [5].
Table III shows the average and the maximum number of ex-
amined nodes μ for different prediction horizons.The resulting
current THD is shown to highlight the fact that with longer
prediction intervals the closed-loop performance of the system
can be improved.
As can be seen, the sphere decoding algorithm with the

modifications proposed in this work significantly reduces the
number of nodes examined, even compared with the approach
proposed in [5]. Particularly, the maximum number of nodes—
which is of more interest since it indicates the worst-case
scenario—is reduced by about 45%.

VI. CONCLUSIONS
This paper proposes a direct model predictive control (MPC)

scheme for current reference tracking with a low computa-
tional burden. The algorithm introduced in [5] is refined to
further reduce the computational complexity of the underlying
integer least-squares (ILS) problem. Modifications in the pre-
processing stage, as well as in the sphere decoder are proposed.
Specifically, in the preprocessing phase, a lattice reduction
algorithm is implemented that reformulates the underlying ILS
problem such that it can be solved more efficiently, i.e. it
transforms the optimization problem to a well-conditioned one.
In the second phase, i.e. the optimization stage, the initial
radius of the hypersphere is calculated in an effective way
based on the Babai estimate. This ensures that the solution
set is always nonempty and that the radius is as small as
possible. Thanks to all the aforementioned modifications, the
computational burden can be reduced by up to 45% for long
horizons and a three-level converter, compared to that required
for the search algorithm proposed in [5].

3518

Time [ms]
0 5 10 15 20

−1

−0.5

0

0.5

1

(a) Three-phase stator current is (solid lines) and
their references (dash-dotted lines).

Frequency [Hz]
0 500 1000 1500 2000
0

0.01

0.02

0.03

0.04

(b) Stator current spectrum.
Time [ms]

0 5 10 15 20

−1

−1

−1

0

0

0

1

1

1

(c) Three-phase switch position u.

Fig. 7: Simulated waveforms produced by the direct model predictive controller with current reference tracking at steady-state operation, at full speed and
rated torque. A ten-step horizon (N = 10) is used, the sampling interval is Ts = 25μs and the weighting factor is λu = 0.1. The switching frequency is
approximately 300Hz and the current THD 4.95%.

TABLE III: Average and maximum number μ of nodes evaluated by (a) the exhaustive search algorithm, (b) the sphere decoder in [5], and (c) the proposed
algorithm. The resulting current THD for each prediction horizon length is also shown.

Prediction Exhaustive Search Sphere Decoder [5] Proposed Approach
Horizon N avg(μ) max(μ) avg(μ) max(μ) avg(μ) max(μ) THD%

1 17.25 37 3.18 7 3.18 7 5.76

2 260 517 6.49 16 6.40 14 5.65

3 3, 580 7, 371 9.74 24 9.58 19 5.43

4 53, 389 103, 518 13.02 31 12.86 27 5.37

5 717, 000 1, 455, 000 16.47 50 12.21 44 5.29

7 > 1 · 108 > 3 · 108 23.64 99 23.05 61 5.09

10 > 1 · 1012 > 2 · 1012 38.93 255 36.21 141 4.95

VII. APPENDIX

The matrices Υ, Γ, S, and Ξ in (7) are

Υ =

⎡
⎢⎢⎢⎢⎣

CBK 0 · · · 0

CABK CBK · · · 0

...
...

...
CAN−1BK CAN−2BK · · · CBK

⎤
⎥⎥⎥⎥⎦ ,

Γ =

⎡
⎢⎢⎢⎢⎣

CA

CA2

...
CAN

⎤
⎥⎥⎥⎥⎦ , S =

⎡
⎢⎢⎢⎢⎢⎢⎣

I 0 · · · 0

−I I · · · 0

0 −I · · · 0

...
...

...
0 0 · · · I

⎤
⎥⎥⎥⎥⎥⎥⎦
, Ξ =

⎡
⎢⎢⎢⎢⎢⎢⎣

I

0

0

...
0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where 0 is the zero matrix of appropriate dimensions.

REFERENCES
[1] J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and

Design. Madison, WI: Nob Hill, 2009.
[2] P. Cortés, M. P. Kazmierkowski, R. M. Kennel, D. E. Quevedo, and

J. Rodrı́guez, “Predictive control in power electronics and drives,” IEEE
Trans. Ind. Electron., vol. 55, no. 12, pp. 4312–4324, Dec. 2008.

[3] M. Morari and J. H. Lee, “Model predictive control: Past, present and
future,” Comput. and Chemical Eng., vol. 23, no. 4, pp. 667–682, May
1999.

[4] P. Karamanakos, T. Geyer, N. Oikonomou, F. D. Kieferndorf, and
S. Manias, “Direct model predictive control: A review of strategies
that achieve long prediction intervals for power electronics,” IEEE Ind.
Electron. Mag., vol. 8, no. 1, pp. 32–43, Mar. 2014.

[5] T. Geyer and D. E. Quevedo, “Multistep direct model predictive con-
trol for power electronics—Part 1: Algorithm,” in Proc. IEEE Energy
Convers. Congr. Expo., Denver, CO, Sep. 2013, pp. 1154–1161.

[6] ——, “Multistep direct model predictive control for power electronics—
Part 2: Analysis,” in Proc. IEEE Energy Convers. Congr. Expo., Denver,
CO, Sep. 2013, pp. 1162–1169.

[7] B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm I. Ex-
pected complexity,” IEEE Trans. Signal Process., vol. 53, no. 8, pp.
2806–2818, Aug. 2005.

[8] J. Holtz, “The representation of ac machine dynamics by complex signal
flow graphs,” IEEE Trans. Ind. Electron., vol. 42, no. 3, pp. 263–271,
Jun. 1995.

[9] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász, “Factoring polynomials
with rational coefficients,” Math. Ann., vol. 261, no. 4, pp. 515–534,
1982.

[10] J. W. Demmel, Applied Numerical Linear Algebra. Philadelphia, PA:
SIAM, 1997.

[11] G. Strang, Linear Algebra and its Applications, 4th ed. Stamford, CT:
Cengage Learn., 2005.

[12] U. Fincke and M. Pohst, “Improved methods for calculating vectors
of short length in a lattice, including a complexity analysis,” Math.
Comput., vol. 44, no. 170, pp. 463–471, Apr. 1985.

[13] L. Babai, “On Lovász’ lattice reduction and the nearest lattice point
problem,” Combinatorica, vol. 6, no. 1, pp. 1–13, 1986.

[14] M. Grotschel, L. Lovász, and A. Schriver, Geometric Algorithms and
Combinatorial Optimization, 2nd ed. New York: Springer-Verlag, 1993.

[15] X.-W. Chang, J. Wen, and X. Xie, “Effects of the LLL reduction on the
success probability of the Babai point and on the complexity of sphere
decoding,” IEEE Trans. Inf. Theory, vol. 59, no. 8, pp. 4915–4926, Aug.
2013.

[16] C. Ling, W. H. Mow, and N. Howgrave-Graham, “Reduced and fixed-
complexity variants of the LLL algorithm for communications,” IEEE
Trans. Commun., vol. 61, no. 3, pp. 1040–1050, Mar. 2013.

[17] D. Micciancio, “The hardness of the closest vector problem with
preprocessing,” IEEE Trans. Inf. Theory, vol. 47, no. 3, pp. 1212–1215,
Mar. 2001.

3519

