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Abstract—In this paper we present modifications to the sphere
decoder initially introduced in [2] and modified in [3] that
significantly reduce the computation times during transients. The
relative position of the unconstrained solution of the integer
quadratic program underlying model predictive control (MP C)
with respect to the convex hull of the (truncated) lattice ofinteger
points is examined. If it is found that the unconstrained solution
does not lie within the convex hull—a phenomenon that is ob-
served mostly during transients—then a projection is performed
onto the convex hull. By doing so, a new sphere that guarantees
feasibility and includes a significant smaller number of candidate
solutions is computed. This reduces the computation time byup to
three orders of magnitude when solving the optimization problem
at hand. Nonetheless, the reduction of the computational burden
comes at a cost of (mild) suboptimal results. The effectiveness
of the proposed algorithm is tested with a variable speed drive
system consisting of a three-level neutral point clamped (NPC)
voltage source inverter and a medium-voltage induction machine.
Based on the presented results, the sphere decoding algorithm
with the proposed refinements maintains the very fast transient
responses inherent to direct MPC. Moreover, it is observed that
the occasional implementation of suboptimal solutions does not
lead to a deterioration of the system performance.

Index Terms—AC drive, model predictive control (MPC), inte-
ger least-squares (ILS) problem, integer programming, medium-
voltage (MV) drive, three-level neutral-point inverter, sphere
decoding.

I. I NTRODUCTION

OVER the past decade model predictive control (MPC) [4]
has paved its way in becoming one of the most attractive

control alternatives in power electronics [5]–[7]. MPC is
formulated as a constrained optimization problem, meaning
that it can operate the system at its physical limits, and—as
a result—achieve the best possible performance. Moreover,it
can easily handle systems with nonlinear dynamics, and/or
multiple inputs and outputs since it is formulated in the
(discrete) time domain. These features of MPC, combined
with the vast computational power readily available, justify
its widespread acceptance from the power electronic com-
munity. Prominent examples include, among others, current
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control of inverters [8], [9], rectifiers [10] and cycloconvert-
ers [11], power control of grid-connected converters [12],and
torque [13]–[15], current [16], [17], and flux [18], [19] control
of electrical drives.

The most utilized MPC strategy in power electronics is the
so-called finite control set MPC (FCS-MPC) [5]. The output
reference tracking and the modulation problem are formulated
in one computational stage, i.e., akin to a direct control
strategy. Although this approach seems to be straightforward
and intuitive, from a mathematical optimization perspective, it
is computationally very challenging. The underlying optimiza-
tion problem is a (mixed) integer program, which is known to
be NP-hard, i.e., it can become computationally intractable
as the number of decision variables (i.e., control inputs) or
the length of the prediction horizon increase. Given that the
latter has been documented to be necessary for an improved
system performance [20]–[23], the commonly used brute-force
method of exhaustive enumeration—according to which all
candidate solutions are enumerated to determine the solution—
cannot be considered as a realistic option for horizons longer
than one step.

To allow for longer horizons, several techniques have been
proposed that either utilize nontrivial prediction horizons [24]
by implementing concepts such as move blocking [25]
(e.g., [26]) and extrapolation [7] (e.g., [27]), or branch-and-
bound methods [28] based on smart heuristics [20]. With
regards to the latter, a dedicated branch-and-bound algorithm,
developed in the field of communications and referred to
as sphere decoder [29], [30], has been recently introduced
in the field of power electronics [2], [3], [21]. Although it
has been shown to be reasonably effective, since it manages
to significantly reduce the computational complexity of the
problem at steady-state operation as well as to tellingly deal
with state/output constraints [31], there exist challenges that
have not yet been fully addressed.

Among the most prominent issues yet to be resolved is the
system operation during transient phenomena. As shown in
this paper, the initial sphere used in the optimization stage
may become large during transients, making the bounding in
the sphere decoding less effective. To avoid the associated
large computational burden, this paper proposes refinements
in the sphere decoding algorithm. These refinements guarantee
that the center of the computed sphere is located within the
convex hull of the feasible set of the integer program under-
lying MPC. This is achieved by projecting the unconstrained
solution (i.e., the center of the to-be-computed sphere) onto the
aforementioned convex hull. Moreover, the geometry of the



optimization problem is exploited to compute the projected
point in an efficient manner. As a result, the computational
burden during transients is similar to that during steady-state
operation. However, a small degree of suboptimality may
result.

The issue of large spheres during transients was first ex-
amined in [32] for a three-phase three-level H-bridge (HB)
inverter with anRL load. Therein, the projection problem was
formulated as a quadratic program (QP) and the effectiveness
of the approach was tested with the aforementioned time-
invariant plant, i.e., the HB inverter, and a five-step horizon.
Motivated by that work, the projection problem is formu-
lated as abox-constrained QP in this paper. By doing so,
reliable solvers can be employed that efficiently compute the
solution. Moreover, the root cause of the above-mentioned
suboptimality is identified and discussed in detail, along with
a study on the optimality of the proposed method. Finally, a
thorough computational analysis of the optimization procedure
is provided.

To highlight the effectiveness of the modified sphere de-
coder, a variable speed drive system, consisting of a three-
level neutral point clamped (NPC) voltage source inverter
driving a medium-voltage (MV) induction machine (IM), is
chosen as a case study. As it is shown, the computational
complexity of the algorithm—in terms of real-time floating
point operations (flops)—can be reduced by more than97.5%
when long horizons, such as ten steps, and a wide range of
switching frequencies are considered.

This paper is structured as follows. The model of the drive
system and the MPC problem are presented in Section II. The
formulation of the optimization problem as an integer least-
squares (ILS) one is outlined in Section III. The derivationof
the sphere decoding algorithm applicable to transient operation
follows in Section IV, whereas its computational complexity
is analyzed in Section V. In Section VI, the performance of
the MPC strategy is demonstrated for the chosen case study.
Conclusions are drawn in Section VII.

II. OPTIMAL CONTROL PROBLEM

The problem examined relates to the control of the stator
current of an IM when driven by a three-level NPC voltage
source inverter with a constant dc-link voltageVdc and a fixed
neutral point potential (Fig. 1).

In the sequel, the mathematical model of the examined
system and the formulation of the optimization problem are
presented. Both these tasks are performed in the stationary
orthogonalαβ system. Therefore, any variable in theabc plane
ξabc = [ξa ξb ξc]

T is mapped into a two-dimensional vector
ξαβ = [ξα ξβ ]

T in theαβ plane via the transformation matrix
K, i.e., ξαβ =Kξabc, with
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A. Control Model

The output potential of each phase of the three-level NPC
inverter can obtain three discrete voltage levels−Vdc

2 , 0,

Vdc
2

Vdc
2

N
NN

a
b

c

is

IM

Fig. 1: Three-level three-phase neutral point clamped (NPC) voltage source
inverter driving an induction motor (IM) with a fixed neutralpoint potential.

Vdc
2 , depending on the position of the power switches in the

respective phase [33]. As a result, the inverter output voltage—
equal to the voltage applied to the machine terminalsvs,αβ—
is1

vαβ =
Vdc

2
uαβ =

Vdc

2
Ku , (1)

where u = [ua ub uc]
T ∈ U = U × U × U = U3 is the

three-phase switch position, with the integer variable
ux ∈ U = {−1, 0, 1} denoting the switch position in phase
x ∈ {a, b, c}.

With regards to the squirrel-cage IM, the stator currentis,αβ
and the rotor fluxψr,αβ in theαβ plane as well as the angular
speed of the rotorωr are adopted as state variables to fully
describe its dynamics. Given the model parameters, i.e., the
statorRs and rotorRr resistances, the statorXls, rotor Xlr

and mutualXm reactances, the moment of inertiaH , and
the mechanical load torqueTℓ, the differential equations that
govern the machine are2 [34]

dis
dt

= −
1
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ψr (2b)

dωr

dt
=

1

H
(Te − Tℓ) . (2c)

In (2), the stator time constant isτs = XrΦ/(RsX
2
r +

RrX
2
m) and the rotor time constantτr = Xr/Rr. Moreover,

Φ = XsXr −X
2
m is a constant withXs = Xls +Xm and

Xr = Xlr+Xm, andTe is the electromagnetic torque. Finally,
I is the identity matrix of appropriate dimension (here two-
dimensional).

For the MPC algorithm developed in Section II-B the
internal model of the drive system is required so that its
future behavior can be predicted. To this end, the stator
current and the rotor flux in theαβ plane constitute the stator
vectorx = [isα isβ ψrα ψrβ]

T . Note that due to the slower
dynamics the mechanical speed is assumed to be constant
within the prediction horizon. Hence, the rotor angular speed

1Throughout the paper, vectors in theαβ plane are denoted with the
corresponding subscript. For vectors in theabc plane the subscript is omitted.

2To simplify the notation in (2) the subscriptαβ is dropped from the vectors
is, ψ

r
andvs.
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Fig. 2: Model predictive current control with reference tracking for the three-
phase three-level NPC inverter with an induction machine.

ωr is not a state variable, but a time-varying parameter instead.
The input to the system is considered to be the three-phase
switch positionu, whereas the stator current is the output
variable, i.e.,y = is,αβ . Therefore, by taking into account (1)
and (2), the continuous-time state-space representation of the
drive can be written as

dx(t)
dt

= Dx(t) +EKu(t) (3a)

y(t) = Fx(t) , (3b)

where the dynamicsD, inputE and outputF matrices, are
given in Appendix A.

Using exact Euler discretization, the discrete-time state-
space model of the drive is

x(k + 1) = Ax(k) +BKu(k) (4a)

y(k) = Cx(k) , (4b)

with A = e
DTs , B = −D−1(I −A)E andC = F . More-

over, I here is the4 × 4 identity matrix, e the matrix
exponential,Ts the sampling interval, andk ∈ N.

B. Direct MPC With Current Reference Tracking

The discussed control algorithm aims to regulate the stator
currentis,αβ along its referenceis,ref,αβ , while operating the
drive at low switching frequency. The latter objective is fairly
important when MV drives are of concern, since it is directly
related to the switching power losses which have to be kept
low for an increased efficiency of the converter. As can be
seen in Fig. 2, the optimal controller meets both objectivesby
computing and applying the control signals (i.e., the switch
positions) in one stage, i.e., a modulation stage is bypassed.

By introducing the current (i.e., output) tracking error
term is,err,αβ(k) = is,ref,αβ(k) − is,αβ(k), and the switching
(i.e., control) effort term∆u(k) = u(k) − u(k − 1), the
aforementioned control objectives are mapped into a scalar,
i.e.,

J(k) =
k+N−1∑

ℓ=k

||is,err,αβ(ℓ + 1|k)||22 + λu||∆u(ℓ|k)||
2
2 . (5)

Based on the state of the current error and switching effort at
step k, function (5) penalizes their evolution over the finite
prediction horizon of lengthN time steps. Note that the
weighting factorλu > 0 is introduced to adjust the trade-off
between the two terms, i.e., the trade-off between the current
tracking ability of the controller and the switching frequency.

To find the optimal sequence of control actions
U∗(k) = [u∗T (k) u∗T (k + 1) . . . u∗T (k +N − 1)]T that
results in the most desirable system behavior, i.e., the one
that minimizes (5), problem

minimize
U(k)

J(k)

subject to x(ℓ + 1) = Ax(ℓ) +Bu(ℓ)

y(ℓ+ 1) = Cx(ℓ+ 1) , ∀ ℓ = k, . . . , k+N−1

U(k) ∈ U

(6)
is solved in real time. In (6),
U(k) = [uT (k) uT (k + 1) . . . uT (k +N − 1)]T is the
optimization variable andU = U

N ⊂ Z
n, with n = 3N , is

the feasible set defined as theN -times Cartesian product of
the setU .

III. E QUIVALENT INTEGERLEAST-SQUARESPROBLEM

By relaxing the feasible set in (6), fromU to R
n, one can

easily compute the so-called unconstrained solutionŪunc(k) =
HUunc(k) ∈ R

n, with Uunc ∈ R
n [2]. Based onŪunc—and

after some algebraic manipulations shown in Appendix B—
problem (6) becomes

minimize
U(k)

||Ūunc(k)−HU(k)||22

subject to U(k) ∈ U ,
(7)

which is an ILS problem [2]. The nonsingular, upper triangular
matrix H ∈ R

n×n in (7), is known as the lattice generator
matrix that generates the discrete space wherein the solution
lies.

ILS problems are known to be NP-hard [35], meaning
that if H is ill-conditioned, then solving (7) may become
computationally intractable. To avoid this, algorithms can be
used that reshape the search space (i.e., they modify the entries
of H) with the eventual goal of having a lattice as close
to orthogonal as possible, while ensuring that the length of
the basis vectors that generate it (i.e., the Euclidean norm
of the columns of the lattice generator matrix) is relatively
small. To this end, the Lenstra-Lenstra-Lovász (LLL) lattice
basis reduction algorithm [36] is employed to generate the
reduced lattice generator matrix

∼
H. The resulting equivalent

ILS problem is of the form [3]

minimize
U(k)

||
∼
Uunc(k) −

∼
H

∼
U(k)||22 ,

subject to U(k) ∈ U ,
(8)

with
∼
U unc(k) =

∼
H M−1Uunc(k),

∼
U (k) = M−1U(k) and

∼
H= V THM . Finally, matrixV ∈ R

n×n is orthogonal and
matrixM ∈ Z

n×n unimodular (i.e.,detM = ±1).
Interpreting (8), one has to find the (integer)n-dimensional

lattice point that is closest (in Euclidean sense) to the (real-
valued) unconstrained solution

∼
Uunc(k). Equivalently, one has



to find the smallest hypersphere (n-dimensional sphere) of
radiusρ centered at

∼
Uunc(k) that includes at most one lattice

point. To this end, the branch-and-bound method known as
sphere decoder [29] can be utilized. With sphere decoding
the search space is limited to those lattice points (i.e., nodes)
included in the computed hypersphere, meaning that only
these points are considered as candidate solutions, and thus
evaluated, while optimality is still guaranteed. As a result,
this search algorithm proves to be highly computationally
efficient, especially compared with the brute-force approach
of the exhaustive enumeration, see [21] and [3].

As can be understood, the initial radiusρ of the computed
hypersphere determines the efficacy of the sphere decoder. The
initial sphere should be small enough to include as few nodes
as possible, whereas it should be nonempty in order to avoid
feasibility issues. According to [37], the initial radius can be
set equal to the minimum of two options, i.e.,

ρ(k) = min{ρa(k), ρb(k)} , (9)

with the options being

ρa(k) = ||
∼
Uunc(k)−

∼
H

∼
Ubab(k)||2 , (10a)

ρb(k) = ||
∼
Uunc(k)−

∼
H

∼
Ued(k)||2 . (10b)

The radii in (10) are computed based on different estimated
solutions (i.e., initial guesses)

∼
Uest = M−1Uest. Radiusρa

is computed based on the so-called Babai estimate [38], i.e.,
Uest= Ubab, which results by rounding the unconstrained so-
lution to the closest integer vector, i.e.,Ubab(k) = ⌊Uunc(k)⌉.
The second option (see (10b)) is computed based on an
educational guess (Uest = Ued), which results by taking into
account the previously computed solutionU∗(k − 1) shifted
by one time step and with a repetition of the last switch
position (see (40) in [2]). Note that

∼
Ubab(k) =M

−1Ubab(k)

and
∼
Ued(k) =M

−1Ued(k).
With an initial tight sphere of radius (9) the vast majority of

the lattice points are a priori excluded from being considered
candidate solutions. The task of the sphere decoder is to
visit the remaining nodes enclosed in the sphere in order to
conclude to the optimal solution. To do so, and as can be seen
in Algorithm 1 (lines15–28), the optimizer traverses a search
tree of n levels by visiting one-by-one them-dimensional
nodes,m = 1, . . . , n, in a depth-first search manner. Starting
form the root (top),n-dimensional node, the algorithm goes
through the branches—that constitute the candidate elements
of the solution—with a goal to reach the bottom level of the
tree (i.e., the leaf nodes that are one-dimensional) as quickly as
possible. As long as the assembled candidate solution results in
a smaller intermediate sphere than the initial one, the algorithm
keeps visiting nodes at the lower levels of tree; if not, it
backtracks to visit higher-level nodes and find a new path to
the bottom level. When a leaf node is reached, a complete
candidate solution is assembled, and a new, tighter sphere
is computed. The optimizer continues searching for different
sequences that may result in a tighter sphere until it gets a
“certificate” that the optimal solution has been found.

IV. SPHEREDECODER FORTRANSIENT OPERATION

As mentioned before—and as shown in [21] and [3]—the
sphere decoder is significantly more computationally efficient
than the exhaustive enumeration when the steady-state op-
eration of the system is examined. Even though the sphere
decoding principle is also applicable to transient operation,
the computationally complexity of the sphere decoder itself
increases (that of the exhaustive enumeration remains the same
since all candidate solutions need to bealways evaluated).
The reason for that is that the unconstrained solution under
transient operating conditions can be far from the (truncated)
lattice, implying that the initial radius (9) can be large with
a considerable number of nodes included in the resulting
sphere. More specifically, radiusρb (see (10)) is clearly not
a good guess since the previously applied solution (i.e., the
one applied before the transient occurs) is expected to be very
different compared to the one computed when the transient
phenomenon begins, whereasρa—although a better choice—
appears to be a poor initial radius as well.

To overcome this, and to keep the complexity of the sphere
decoding algorithm low, one could project the unconstrained
solution

∼
U unc(k) onto the convex hull of the lattice in the

space generated by
∼
H. According to [39], the convex hull is

defined as

conv
∼
U = {θ1(

∼
H

∼
U1) + · · ·+ θj(

∼
H

∼
Uj) |

∼
Ui =M

−1U i,

U i ∈ U, θi ≥ 0, i = 1, . . . , j, j = 3n,

θ1 + · · ·+ θj = 1} .
(11)

To this end, the following QP needs to be solved in real time

minimize
∼

U(k)

||
∼
Uunc(k)−

∼
H

∼
U(k)||22

subject to
∼
U(k) ∈ conv

∼
U ,

(12)

the optimal value of which is the (Euclidean) distance
dist(

∼
Uunc(k), conv

∼
U ), and the optimal point is the projection

of
∼
Uunc(k) on conv

∼
U [39].

Having found the (real-valued) projected point
∼
U rlx(k) ∈

conv
∼
U a new sphere can be used by the sphere decoder. This

smaller sphere is centered at
∼
U rlx and has radiuŝρ that is

given by (9), with the difference that the first option results

by roundingU rlx(k) =M
∼
H

−1 ∼
Urlx(k) to the nearest integer

point, i.e., similarly to (10a) with the difference that⌊U rlx(k)⌉
is the estimated solution.

The downside of this approach is that the shape of the
convex hull conv

∼
U is nontrivial (it is an n-dimensional

polyhedron) that depends on
∼
H. Since

∼
H depends on the

rotor speed (see Appendix B), the convex hull needs to be
recomputed when this parameter changes. This increases the
computational burden of the approach rendering its benefits
less tangible.

A workaround is to solve the equivalent problem of (12) in
the original space, as motivated by the following remark.

Remark 1: The objective function||
∼
Uunc(k)−

∼
H

∼
U(k)||22

can be written as(Uunc(k)−U(k))TQ(Uunc(k)−U(k)) with
Q =HTH .



Proof : According to the definitions in Section III, it is true
that

∼
Uunc(k) =

∼
H M−1Uunc(k) , (13)

∼
U(k) =M−1U(k) , (14)

∼
H = V THM . (15)

Then for the functionJ(k) = ||
∼
Uunc(k)−

∼
H

∼
U(k)||22, it holds

that

J(k) = ||
∼
Uunc(k)−

∼
H

∼
U(k)||22

= ||V THMM−1Uunc(k)− V
THMM−1U(k)||22

(from (13)–(15))

= ||V THUunc(k)− V
THU(k)||22 (detM = ±1)

= ||HUunc(k)−HU(k)||22 (V T = V −1)

= (Uunc(k)−U(k))THTH(Uunc(k)−U(k))

= (Uunc(k)−U(k))TQ(Uunc(k)−U(k))
(from (20))

�

The convex hull in the original spaceconvU is trivial since
it is a hypercube (n-dimensional cube), centered at the origin
and of side length2. Therefore the projection ofUunc(k) on
convU, i.e., U rlx(k) ∈ convU can be found by solving the
following box-constrained QP

minimize
U(k)

(Uunc(k)−U(k))TQ(Uunc(k)−U(k))

subject to

[

I 0

0 −I

][

U(k)

U(k)

]

�

[

1

−1

]

,

(16)
where I and 0 are the n-dimensional identity and zero
matrices, respectively,1 is an n-dimensional vector with all
components one, and� denotes the componentwise inequality.
BecauseconvU is nonempty, problem (16) is by definition fea-
sible. Furthermore, it is convex withn optimization variables
and 2n inequality constraints, thus relatively small and easy
to solve [39]. More specifically, a plethora of effective solvers
is readily available, and any of iterative projection algorithms,
such as [40], [41], gradient projection methods, e.g., [42]–
[44], or derivatives [45]–[47] can be employed with negligible
differences in computational time, given the small size of the
problem at hand.

With the projection pointU rlx obtained, the next step is to
map it into the

∼
H-generated space, i.e.,

∼
Urlx =

∼
H M−1U rlx .

Subsequently, the radiuŝρ of the new sphere, centered at
∼
Urlx , is computed as explained above, and the optimization
process begins. The pseudocode of the proposed algorithm is
presented in Algorithm 1. The initial values of the arguments
are computed as explained in Section III.

Projecting the infeasible unconstrained solution on the
convex hull (i.e., the feasible set) greatly reduces the com-
putational complexity of the sphere decoder, as shown in
Section VI. However, it does not guarantee optimality. This
means that the lattice point that is actually closest to

∼
Uunc(k)

may not be the one closest to
∼
Urlx(k). This is explained

with two illustrative examples in Figs. 3 and 4, where the

Algorithm 1 Long-Horizon Direct MPC

1: function U∗ = DMPCC(U unc,Ued,Ubab)
2: if Uunc /∈ convU then
3: U rlx ← argminU∈convU ||Uunc−U ||Q
4: Ubab← ⌊U rlx⌉
5: Uunc← U rlx

6: end if
7:

∼
Uunc←

∼
H M−1Uunc

8:
∼
Ubab←M−1Ubab

9:
∼
Ued←M−1Ued.

10: ρ← min{ρa, ρb} ⊲ see (10)
11: SPHDEC([ ],

∼
Uunc, 0, n, ρ

2)

12: U∗ ←M
∼
U∗

13: end function
14:

15: function
∼
U∗ = SPHDEC(

∼
U,

∼
Uunc, d

2, i, ρ2)
16: for eachũ ∈ U do
17:

∼
Ui ← ũ

18: d′2 ← ||
∼
Uunci−

∼
H(i,i:n)

∼
Ui:n||

2
2 + d2

19: if d′2 ≤ ρ2 then
20: if i > 1 then
21: SPHDEC(

∼
U,

∼
Uunc, d

′2, i− 1, ρ2)
22: else
23:

∼
U∗ ←

∼
U

24: ρ2 ← d′2

25: end if
26: end if
27: end for
28: end function

two main reasons for subotimality are presented, namely, a
significantly skewed lattice, and a lattice with significantly
uneven sides. As can be seen in Fig. 3, when the angle between
the vectors that form the basis of

∼
H is far from orthogonal,

then the proposed approach is prone to suboptimality. The
same phenomenon is observed when the length of the vectors
of the basis of

∼
H is greatly unequal, as depicted in Fig. 4.

Moreover, combinations of both sources of subotimality can
further aggravate the phenomenon under discussion. It is worth
mentioning, nonetheless, that thanks to the well-conditioned
∼
H (i.e., the lattice is almost orthogonal and all sides are of
comparable lengths) the probability for the optimal solution
to be inside the sphere centered at

∼
U rlx is very high, see

Section VI. In addition, given that the projection algorithm
is mostly active only during transients, the suboptimality
does not affect the steady-state performance of the system.
Consequently, the benefits of long-horizon direct MPC [3],
[21] are still achieved.

V. COMPUTATIONAL COMPLEXITY

Analyzing the computational complexity of Algorithm 1,
the main effort is put into solving (16) (see line3) and the
sphere decoder (lines15–29). As mentioned in Section IV,
problem (16) is a box-constrained QP which means that it
can be solved in polynomial time. For example, in [40],
[45], it is shown that the proposed schemes exhibit a global
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Fig. 3: Example of the projection principle and the underlying suboptimality
due to a skewed lattice. Convex hull (shown shaded) of four points (shown as
black solid circles) in the two-dimensional space. (a) Original space: The level
sets of the objective function of problem (16) are shown as dashed ellipses.
The projection ofUunc (shown as circle) onconvU is the pointU rlx (shown
as gray solid circle), i.e., the point where the level sets “touch” the convex
hull. (b)

∼

H-generated space: The level sets of the function of problem (12) are

shown as dashed circles. The projection of
∼

Uunc on conv
∼

U is the point
∼

Urlx .
Consider the following case with lengthsd1 = 0.2, d2 = 0.6, d3 = 0.3 and
d4 = 0.4. The lattice point closest to

∼

Uunc (i.e., the optimal solution) is the
one labeled as

∼

U∗, since|| ∼

Uunc−
∼

U∗|| =
√
0.4 < || ∼

Uunc−
∼

Usub|| =
√
0.45.

On the other hand, the point closest to the projected point
∼

Urlx is the point
labeled as

∼

Usub, since || ∼

Urlx−
∼

U∗|| = 0.6 > || ∼

Urlx−
∼

Usub|| = 0.5. Thus,
∼

Usub is clearly a suboptimal option.

convergence rateO(1/κ2), whereκ is the number of iterations.
Therefore, (16) can be easily solved within12–18 iterations
on average, depending on the size of the problem which varies
linearly with the length of the prediction horizon.

With regards to the computational complexity of the sphere
decoding algorithm, this is analyzed based on the flops
performed in real time. As can be seen in Algorithm 1,
when anm-dimensional node, withm = 1, . . . , n, is visited,
n−m+ 1 additions3 are required for the computation and
update of the intermediate (squared) radiusd (n−m for the
computation of the radius at levelm, i.e.,

∼
H(m,m:n)

∼
Um:n,

and one for the update|| ∗ ||22 + d2), see line18. Moreover
one subtraction is required. Regarding the multiplications, only
one is required per node (for squaring the Euclidean norm
|| ∗ ||22) regardless of its dimension; sinceU ∈ U the result of
each one of then−m multiplications required to compute

3Except whenm = n, where no additions are performed.
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U

d4
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d3

∼
U∗

∼
Usub

(b)

Fig. 4: Example of the projection principle and the underlying suboptimality
due to a lattice with (greatly) unequal sides. The same notation and illustration
principles are adopted as in Fig. 3. (a) Original space. (b)

∼

H-generated space:
Consider the following case with lengthsd1 = 0.2, d2 = 0.3, d3 = 0.2 and
d4 = 0.15.

∼

U∗ is the optimal solution since|| ∼

Uunc−
∼

U∗|| =
√
0.13 <

|| ∼

Uunc−
∼

Usub|| =
√
0.165. Point

∼

Usub is the point closest to the projected
point

∼

Urlx since || ∼

Urlx−
∼

U∗|| = 0.3 > || ∼

Urlx−
∼

Usub|| = 0.25. Therefore,
∼

Usub is a suboptimal option.

the product
∼
H(m,m:n)

∼
Um:n is eitherh̃m,i, −h̃m,i, or 0, with

m ≤ i ≤ n. Finally, since the cardinality of the input setU is
three, this implies that for each node visited both its sibling
nodes need to be checked to ascertain whether they are inside
the hypersphere or not.

Given the above analysis, the real-time additionsNa, sub-
tractions Ns, and multiplicationsNm are summarized as
follows

Na = 3

(

µ− 1 +

µ
∑

ν=1

(
n−m(ν)

)

)

,

Ns = 3µ ,

Nm = 3µ ,

(17)

where1 ≤ m ≤ n indicates the dimension of a node visited
(i.e., level of the tree), andµ the maximum number of nodes
explored. A more detailed analysis of the operations performed
by the direct long-horizon MPC scheme and the employed
optimizer can be found in [3], [48].
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(c) Three-phase switch positionu.
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(d) Electromagnetic torque (solid line)Te and its
reference (dash-dotted line).
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(e) Three-phase stator currentis (solid lines) and
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(f) Three-phase switch positionu.

Fig. 5: Torque reference steps for direct MPC with a ten-stephorizon (N = 10) at nominal speed. The sampling interval isTs = 25 µs and the switching
frequency is approximately300Hz (λu = 0.1). (Upper row) Simulated waveforms with the original spheredecoder (see [3]). (Lower row) Simulated
waveforms with the modified sphere decoder (i.e., the proposed approach).

VI. PERFORMANCEEVALUATION

To obtain the simulation results presented in this section,an
MV drive (Fig. 1) consisting of a squirrel cage IM with3.3 kV
rated voltage,356A rated current,2MVA rated power,50Hz
nominal frequency,0.25 p.u. total leakage inductance, and a
three-level NPC with constant dc-link voltageVdc = 5.2 kV
and a fixed neutral point N, is considered. For all cases
examined, the controller was operated with the sampling
intervalTs = 25µs. All results are shown in the p.u. system.

The performance of the proposed direct MPC scheme is
examined during torque transients to examine its dynamical
behavior in terms of settling time and reference regulation.
The horizonN = 10 case is investigated; the weighting
factorλu = 0.1 is chosen, such that a switching frequency of
approximately300Hz results. While operating at rated speed,
reference torque steps of magnitude one are imposed. The
response of the drive controlled with the sphere decoder in [3]
(i.e., optimality is guaranteed) is shown in the upper row of
Fig. 5, whereas that of the proposed approach in the lower
row of the same figure. As can be seen, the electromagnetic
torque in both cases tracks the new desired values as quickly
as possible, with the settling time being limited only by the
available dc-link voltage (see Figs. 5(a) and 5(d), respectively).
In effect the controller behaves like a deadbeat controller. As
for the currents, they accurately track their new references
(the torque steps on the torque reference are translated into
the corresponding current steady-state references), as shown
in Figs. 5(b) and 5(e). Finally, in Figs. 5(c) and 5(f) the
three-phase switching sequences are shown. It is worthwhile
to mention that, as shown in [21], the limiting factor for the
dynamical performance of direct MPC is the available dc-
link voltage. The performance of the system during transients,

however, is the same, regardless of the prediction horizon
length.

In Table I the proposed approach is compared with the
sphere decoder in [3] in terms of (sub)optimality for different
lengths of the prediction horizon and switching frequencies.
Specifically, the weighting factorλu is adjusted such that
the resulting average switching frequency is changed in a
stepwise manner (with a step of50Hz) from 100 to 700Hz.
The same scenario as in Fig. 5 is examined, i.e., operation
under step changes in the torque reference. As can be seen,
thanks to the well-conditioned

∼
H optimality is sacrificed only

for longer prediction horizons (N ≥ 5) and very low switching
frequencies, and even then marginally, without any significant
effect on the drive performance, as shown in Fig. 5.

As for the computational complexity, a first rough analysis
for the two aforementioned techniques and the strategy of
exhaustive enumeration in terms of the nodes evaluated as
a function of the prediction horizon length is presented in
Table II, assuming same operating conditions as in Fig. 5.
Moreover, the flops required by these three strategies—when
the same conditions are considered—are depicted in Fig. 6.
As can be seen, the sphere decoding algorithm with the
refinements proposed here significantly reduces the number of
examined nodes and real-time flops, even compared with the
approach proposed in [3]. For example, the discussed method
can visit less nodes and perform less operations by up to
99.7% when a ten-step horizon and a step-up torque reference
change are examined.

To provide further insight in the computational complexity
of the proposed algorithm, Table III presents a comprehensive
comparison with the sphere decoder in [3] in terms of flops
for different prediction horizons and switching frequencies



TABLE I: Probability in percent that the solution computed by the proposed approach is the (global) optimal solutionU∗ for different prediction horizons
and switching frequenciesfsw (the latter refer to steady-state operation).

Switching Prediction horizonN

frequencyfsw [Hz] 1 2 3 4 5 7 10

100 100 100 100 100 98.7 95.2 91.1

150 100 100 100 100 99.5 96.7 95.7

200 100 100 100 100 99.6 98.8 96.8

250 100 100 100 100 99.7 99.0 97.7

300 100 100 100 100 99.8 99.3 98.5

350 100 100 100 100 99.9 99.5 99.3

400 100 100 100 100 100 99.7 99.6

450 100 100 100 100 100 100 100

500 100 100 100 100 100 100 100

550 100 100 100 100 100 100 100

600 100 100 100 100 100 100 100

650 100 100 100 100 100 100 100

700 100 100 100 100 100 100 100

TABLE II: Maximum number of nodesµmax explored by (a) the exhaustive search algorithm, (b) the sphere decoder in [3], and (c) the proposed algorithm,
during the step torque reference changes shown in Fig. 5 for different prediction horizons and switching frequencyfsw = 300Hz.

Prediction horizonN

1 2 3 4 5 7 10

Exhaustive enumeration
µmax

39 1’092 29’523 797’160 21’523’359 > 1.5 · 1010 > 3 · 1014
Sphere decoder [3] 7 23 43 165 460 1’579 36’092

Proposed approach 5 14 18 26 32 61 114

fsw.4 As before, for a given prediction horizon, the penalty
on the switching transitionsλu is tuned such that the desired
switching frequency results. Following, the maximum number
of flops Nmax

o performed by the optimizer in real time is
recorder during the torque reference changes, as presentedin
Fig. 5. As can be observed, owing to the projection onto the
convex hull, the number of real-time flops during transient
operation is greatly reduced, regardless of the nature of the
step change.

In a last step, the transient performance of the proposed
method is examined at low-speed operation, taking10% speed
as an example. While operating at a switching frequency of
about300Hz, and with a ten-step horizon, the torque reference
is stepped down from its nominal value of1 p.u. to zero
at time instantt = 50ms. Following, att = 100ms, the
torque reference is stepped back up to1 p.u.. Observing the
system behavior, as shown in Fig. 7, it can be claimed that
the controller performance is as desired. It is important to
point out that at low speeds optimality is not affected. In
other words, both the original sphere decoder [3] as well as
the algorithm proposed here provide the same solution in all
problem instances5. Thus, the system performance with both
optimizers is identical.

4Based on the results in Table II and Fig. 6, it is evident that exhaustive
enumeration is not a feasible option, thus it is not considered in the
comparisons that follow.

5An intuitive explanation for this argument is that the speed-dependent
entries ofA are dominant and get smaller as the speed decreases. Conse-
quently, the off-diagonal entries ofQ are also reduced, see Appendix B. The
same applies to the off-diagonal entries ofH (and

∼

H), as can be concluded
from (20) and [49, Chapter 3]. The latter implies that the setof the lattice
basis vectors, i.e., the columns ofH (or

∼

H), is more orthogonal, while the
basis vectors are of a smaller length.
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Fig. 6: Maximum number of flopsNmax
o

preformed during the search process
when the (a) step-down and (b) step-up torque reference changes in Fig. 5
occur as a function of the prediction horizonN . The solid (blue) line refers
to the sphere decoder in [3], the dashed (red) line to the presented algorithm,
and the dash-dotted (green) line to the exhaustive enumeration.

VII. C ONCLUSIONS

This paper proposes refinements for the sphere decoding
algorithm employed to solve the long-horizon direct model
predictive control (MPC) problem for transient operation.By



TABLE III: Maximum number of flopsNmax
o

preformed during the search process when torque reference changes are applied for different prediction horizons
and switching frequenciesfsw. The flops performed by the proposed approach are denoted byNmax

o1
, whereas those by the sphere decoder in [3] byNmax

o2
.

Switching Prediction horizonN

frequency 1 2 3 4 5 7 10

fsw [Hz] Nmax

o1
Nmax

o2
Nmax

o1
Nmax

o2
Nmax

o1
Nmax

o2
Nmax

o1
Nmax

o2
Nmax

o1
Nmax

o2
Nmax

o1
Nmax

o2
Nmax

o1
Nmax

o2

100 60 90 180 391 339 639 600 1’371 810 3’552 1’693 7’938 3’879 12’213

150 60 120 216 403 357 788 633 2’772 834 4’257 1’899 12’912 4’425 > 1 · 105
200 60 132 237 414 366 951 663 3’045 895 4’695 2’067 18’598 6’213 > 2 · 105
250 60 162 237 532 366 1’262 663 3’628 912 5’943 2’169 39’703 6’943 > 6 · 105
300 60 177 237 651 366 1’578 663 3’936 996 6’839 2’289 58’054 7’728 > 1 · 106
350 60 177 237 708 417 1’785 678 4’038 1’005 9’401 2’694 95’457 12’035 > 7 · 106
400 60 177 240 900 474 2’004 712 5’769 1’035 17’452 3’645 > 1 · 105 16’875 > 2 · 107
450 60 177 240 948 474 3’624 753 9’126 1’044 22’911 4’086 > 3 · 105 19’672 > 9 · 107
500 60 177 240 1’149 479 4’011 785 9’555 1’093 34’274 4’914 > 8 · 105 25’873 > 6 · 108
550 60 177 243 1’233 486 4’161 802 10’327 1’101 35’882 5’031 > 6 · 106 28’388 > 2 · 109
600 60 177 243 1’461 486 5’244 831 12’086 1’140 41’082 5’073 > 1 · 107 30’503 > 8 · 109
650 60 177 249 1’641 493 5’525 927 14’266 1’376 46’596 5’839 > 9 · 107 31’458 > 4 · 1010
700 60 177 249 1’779 493 6’108 930 15’311 1’629 77’154 6’927 > 5 · 108 36’521 > 2 · 1011
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(a) Electromagnetic torque (solid line)Te and its
reference (dash-dotted line).
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(c) Three-phase switch positionu.

Fig. 7: Torque reference steps for direct MPC when operatingat 0.1p.u. speed. A ten-step horizon (N = 10) is used, the sampling interval isTs = 25 µs
and the weighting factorλu = 0.15 such that a switching frequency of approximately300Hz results. The results with the original sphere decoder (see [3])
and the modified one, i.e., the proposed approach, are identical.

exploiting the geometry of the underlying quadratic program
(QP) a new, tighter sphere is computed that, although it
sacrifices optimality (to some degree) when longer horizons
are of concern, it can significantly reduce the computational
complexity of the integer problem. Thanks to the proposed
modifications, and given the presented case study, i.e., a three-
level converter driving an induction machine, the computa-
tional burden can be reduced by more than97.5% for a
wide range of switching frequencies and for long horizons,
compared to that required for the search algorithm in [3]. It
can be concluded that the proposed modifications render the
optimization problem of concern computationally tractable,
thus facilitating the implementation of the sphere decoder
for medium-voltage (MV) drives since continuous operation
of the system—even during transients—is ensured. This has
beenexperimentally verified with a field programmable gate
array (FPGA) based control platform in [50]. Therein, the
performance—both steady-state and transient—of a scaled-
down prototype of a three-level neutral point clamped (NPC)
inverter with anRL load is examined.

APPENDIX A
CONTINUOUS-TIME MODEL OF THEDRIVE

The matricesD, E, andF of the continuous-time state-
space model of the drive (3) are

D =








− 1
τs

0 Xm

τrΦ
ωr

Xm

Φ

0 − 1
τs
−ωr

Xm

Φ
Xm

τrΦ
Xm

τr
0 − 1

τr
−ωr

0 Xm

τr
ωr − 1

τr







,

E =
Xr

Φ

Vdc

2








1 0

0 1

0 0

0 0







, F =

[

1 0 0 0

0 1 0 0

]

.

APPENDIX B
DERIVATION OF THE ILS PROBLEM

By introducingY (k) = [yT (k + 1) . . . yT (k +N)]T and
Y ref(k) = [yTref(k+1) . . . yTref(k+N)]T to denote the output
and the corresponding output reference sequences over the
horizon, respectively, function (5) can be written in vector
form as

J = ||Γx(k)+ΥU(k)−Y ref||
2
2+λu||SU(k)−Ξu(k−1)||22 ,

(18)



where it was used the fact thatY (k) = Γx(k)+ΥU(k), with
the matricesΥ, Γ, S andΞ being

Υ =









CBK 0 · · · 0

CABK CBK · · · 0

...
...

...

CAN−1BK CAN−2BK · · · CBK









,

Γ =









CA

CA2

...

CAN









, S =











I 0 · · · 0

−I I · · · 0

0 −I · · · 0

...
...

...

0 0 · · · I











, Ξ =











I

0

0

...

0











,

where0 is the zero matrix of appropriate dimensions.
After some algebraic manipulations, (18) takes the form

J(k) = ||U(k) +Q−1
Λ(k)||2Q + ζ(k)−Λ

T (k)Q−T
Λ(k)

︸ ︷︷ ︸

const(k)

.

(19)
where

ζ(k) = ||Γx(k)− Y ref(k)||+ λu||Ξu(k − 1)|| ,

Q = Υ
T
Υ+ λuS

TS ,

Λ(k) = Υ
T
(
Γx(k)− Y ref(k)

)
− λuS

T
Ξu(k − 1) .

Following, by noticing thatλu > 0⇒ Q ≻ 0, thenQ can be
decomposed as

Q =HTH . (20)

Using (20) and the unconstrained solution of (19), i.e.,
Uunc(k) = −Q

−1
Λ(k), and by neglecting the constant term

since it is independent ofU(k), (19) is written as

J = ||Ūunc(k)−HU(k)||22 , (21)

which is the ILS function of problem (7). �
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