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Abstract—In this paper we present modifications to the sphere
decoder initially introduced in [2] and modified in [3] that
significantly reduce the computation times during transiers. The
relative position of the unconstrained solution of the intger
quadratic program underlying model predictive control (MP C)
with respect to the convex hull of the (truncated) lattice ofinteger
points is examined. If it is found that the unconstrained salition
does not lie within the convex hull—a phenomenon that is ob-
served mostly during transients—then a projection is perfomed
onto the convex hull. By doing so, a new sphere that guarantse
feasibility and includes a significant smaller number of cadidate
solutions is computed. This reduces the computation time byp to
three orders of magnitude when solving the optimization prdlem
at hand. Nonetheless, the reduction of the computational rden
comes at a cost of (mild) suboptimal results. The effectivarss
of the proposed algorithm is tested with a variable speed dvie
system consisting of a three-level neutral point clamped (RC)
voltage source inverter and a medium-voltage induction mdtine.
Based on the presented results, the sphere decoding algdmin
with the proposed refinements maintains the very fast trangnt
responses inherent to direct MPC. Moreover, it is observedhat
the occasional implementation of suboptimal solutions deenot
lead to a deterioration of the system performance.

Index Terms—AC drive, model predictive control (MPC), inte-
ger least-squares (ILS) problem, integer programming, meim-
voltage (MV) drive, three-level neutral-point inverter, sphere
decoding.

I. INTRODUCTION

O

VER the past decade model predictive control (MPC) [zf
has paved its way in becoming one of the most attracti
control alternatives in power electronics [5]-[7]. MPC i

control of inverters [8], [9], rectifiers [10] and cycloca-
ers [11], power control of grid-connected converters [B2igl
torque [13]-[15], current [16], [17], and flux [18], [19] ctol
of electrical drives.

The most utilized MPC strategy in power electronics is the
so-called finite control set MPC (FCS-MPC) [5]. The output
reference tracking and the modulation problem are forradlat
in one computational stage, i.e., akin to a direct control
strategy. Although this approach seems to be straightfarwa
and intuitive, from a mathematical optimization perspesxtit
is computationally very challenging. The underlying optia3
tion problem is a (mixed) integer program, which is known to
be NP-hard, i.e., it can become computationally intraetabl
as the number of decision variables (i.e., control inputs) o
the length of the prediction horizon increase. Given that th
latter has been documented to be necessary for an improved
system performance [20]-[23], the commonly used bruteefor
method of exhaustive enumeration—according to which all
candidate solutions are enumerated to determine the Godti
cannot be considered as a realistic option for horizonsdong
than one step.

To allow for longer horizons, several techniques have been
proposed that either utilize nontrivial prediction honagq24]
by implementing concepts such as move blocking [25]
(e.g., [26]) and extrapolation [7] (e.g., [27]), or branahé-
bound methods [28] based on smart heuristics [20]. With
gards to the latter, a dedicated branch-and-bound #iguyi

veloped in the field of communications and referred to
s sphere decoder [29], [30], has been recently introduced
the field of power electronics [2], [3], [21]. Although it

formulated as a constrained optimization problem, meani b h © b blv effecti : i
that it can operate the system at its physical limits, and— S been shown 10 be reasonably €HeCtve, since It manages
a result—achieve the best possible performance. Moreﬂnvell,0 significantly reduce the corr_1putatmna| complexn_y of the
can easily handle systems with nonlinear dynamics, andR{Joblem at steady-state pperatlon as well as to tellingi de
multiple inputs and outputs since it is formulated in th ith state/output constraints [31], there exist challentieat

(discrete) time domain. These features of MPC, combin éxe not ytﬁt beentfully a_ddrets_sed. {10 b ved is th
with the vast computational power readily available, fysti mong the most prominent ISSues yet 1o be resolved Is the

its widespread acceptance from the power electronic coﬁﬁf’tem operation during transient phenomena. As shown in

munity. Prominent examples include, among others, currdlS Paper, the initial sphere used n the.optlmlzatlon e_stag
may become large during transients, making the bounding in
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the sphere decoding less effective. To avoid the associated
large computational burden, this paper proposes refineament
in the sphere decoding algorithm. These refinements guegant
that the center of the computed sphere is located within the
convex hull of the feasible set of the integer program under-
lying MPC. This is achieved by projecting the unconstrained
solution (i.e., the center of the to-be-computed spherg) thre
aforementioned convex hull. Moreover, the geometry of the



optimization problem is exploited to compute the projected
point in an efficient manner. As a result, the computational Y1
burden during transients is similar to that during steadyes VTdC) AN 7
operation. However, a small degree of suboptimality may

=
52
<
)
>
52
<
N
>

=
N
=
52
<
)
>
N
=
1
<
N
>

L .
result. N NS b
The issue of large spheres during transients was first ex- _L |
amined in [32] for a three-phase three-level H-bridge (H%CD AYNA AYNA
inverter with anR L load. Therein, the projection problem was?
formulated as a quadratic program (QP) and the effectignes VA YV A VA

of the approach was tested with the aforementioned time-
invariant plant, i.e., the HB inverter, and a five-step honmiz
Motivated by that work, the projection problem is formuFig- 1: Three-level three-phase neutral point clamped (NRfltage source
lated as abox-constrained QP in this paper. By doing so, inverter driving an induction motor (IM) with a fixed neutrabint potential.
reliable solvers can be employed that efficiently compuge th
solution. Moreover, the root cause of the above-mentionedi, depending on the position of the power switches in the
suboptimality is identified and discussed in detail, aloritnw respective phase [33]. As a result, the inverter outputgei—
a study on the optimality of the proposed method. Finally, @Jual to the voltage applied to the machine terminals;—
thorough computational analysis of the optimization pcuce ist v v
. . dc dc
is provided. Vap = <> Uap = 7Ku, (1)

To highlight the effectiveness of the modified sphere de-
coder, a variable speed drive system, consisting of a thrédere w = [ug up u]" €U =UxUxU=U> is the
level neutral point clamped (NPC) voltage source invertéiree-phase switch position, with the integer variable
driving a medium-voltage (MV) induction machine (IM), ist= € 4 ={—1,0,1} denoting the switch position in phase
chosen as a case study. As it is shown, the computatiofiaf {a,b,c}.
complexity of the algorithm—in terms of real-time floating With regards to the squirrel-cage IM, the stator curignts
point Operations (ﬂops)_can be reduced by more %ﬁ% and the rotor f|u>@bna[5 in theaﬁ plane as well as the angular
when long horizons, such as ten steps, and a wide rangeSBged of the rotow, are adopted as state variables to fully
switching frequencies are considered. describe its dynamics. Given the model parameters, i.e., th

This paper is structured as follows. The model of the driv@ator R; and rotor R, resistances, the statdf;, rotor X,
system and the MPC problem are presented in Section I1. TRd mutualX,,, reactances, the moment of inertf&, and
formulation of the optimization problem as an integer leasthe€ mechanical load torqug;, the differential equations that
squares (ILS) one is outlined in Section IIl. The derivatain 9overn the machine a¢34]
the sphere decoding algorithm applicable to transientadjmar di

. . k . ., Oug 1. 1 0 —1 X X,

follows in Section IV, whereas its computational complexit — = ——i, + (—I — Wy [ 0 ] >—¢T + —vs,

is analyzed in Section V. In Section VI, the performance of d Ts r 1 ® ®
the MPC strategy is demonstrated for the chosen case study. (2a)
Conclusions are drawn in Section VII. d X, 1 0 —1
i = is — —, + w, P, (2b)
de T T 1 0
Il. OPTIMAL CONTROL PROBLEM o 1
The problem examined relates to the control of the statory,” = = (Te = Te). (2¢c)

current of an IM when driven by a three-level NPC voltage
source inverter with a constant dc-link voltabig and a fixed .
ue R, X?2) and the rotor time constant = X,./R,. Moreover,

neutral point potential (Fig. 1). = X.,X, — X2 is a constant withX, = X;, + X,, and

In the sequel, the mathematical model of the examin Cxoox dT. is the elect fict Finall
system and the formulation of the optimization problem are” it Am, @NAL IS the electromagnetic torqué. Finally,
the identity matrix of appropriate dimension (here two-

presented. Both these tasks are performed in the station ) Iﬂﬁ

: . ional).
orthogonak3 system. Therefore, any variable in thie: plane ensiona . . .
£, :g[ga & gc{T is mapped into aytwo-dimensionaFI) vector For the MPC algorithm developed in Section II-B the

€.y = [ ¢5)7 in the a8 plane via the transformation matrithernal model of the drive system is required so that its

In (2), the stator time constant is, = X, ®/(RsX? +

future behavior can be predicted. To this end, the stator

K,ie., = K¢, with . .
Eas Eabe current and the rotor flux in thes plane constitute the stator
21 -1 -1 vector & = [isa isp ra ¥rp)”. Note that due to the slower
K = 30 & _i3 dynamics the mechanical speed is assumed to be constant
2 2 within the prediction horizon. Hence, the rotor angularespe
A. Control Model 1Throughout the paper, vectors in the3 plane are denoted with the

. corresponding subscript. For vectors in thie plane the subscript is omitted.
] The output pote_ntlal of ea(_:h phase of the three-level NP To simplify the notation in (2) the subscript3 is dropped from the vectors
inverter can obtain three discrete voltage Ievelé/Qd—C, 0, s, v, andvs.



De-link Based on the state of the current error and switching effort a
step k, function (5) penalizes their evolution over the finite

s refa I G u = prediction horizon of lengthV time steps. Note that the
= Ogizcrgne;:gfft'ﬁ; = = weighting factor), > 0 is introduced to adjust the trade-off
N between the two terms, i.e., the trade-off between the ourre
> — tracking ability of the controller and the switching freaues.
o To find the optimal sequence of control actions

U k)= [wTk) wT(k+1)...wT(k+N-1) that
Bsap results in the most desirable system behavior, i.e., the one
0) that minimizes (5), problem
wr',uz[ﬁ @

A

minimize  J(k)
U (k)

Observer subjectto (¢ +1) = Az({) + Bu({)
yl+1)=Cx(l+1),Vl=k,...,k+N—-1

Encoder U(k) cU

A

Wy

S (optional) (6)
Fig. 2: Model predictive current control with referenceckimg for the three- IS solved in real time. In (6),
phase three-level NPC inverter with an induction machine. U(k) — [uT(k:) uT(k 4 1) o uT(k 4+ N — 1)]T is the

optimization variable andJ = U ¢ Z", with n = 3N, is
wy Is not a state variable, but a time-varying parameter insteghe feasible set defined as tfetimes Cartesian product of
The input to the system is considered to be the three-phaise setis.
switch positionu, whereas the stator current is the output

variable, i.e.y = i, 3. Therefore, by taking into account (1) Ill. EQUIVALENT INTEGERLEAST-SQUARES PROBLEM
and (2), the continuous-time state-space representatitieo By relaxing the feasible set in (6), frofii to R”, one can
drive can be written as easily compute the so-called unconstrained solutior.(k) =
da(t) HU yn(k) € R, with Uyne € R™ [2]. Based onU y,—and
dt Da(t) + EKu(t) (32) after some algebraic manipulations shown in Appendix B—
y(t) = Fx(t), (3b) problem (6) becomes
where the dynamic®, input E and outputF’ matrices, are minimize  ||Uunc(k) — HU (k)||3
given in Appendix A. Uk) (7)
Using exact Euler discretization, the discrete-time state subjectto U(k) € U,
space model of the drive is which is an ILS problem [2]. The nonsingular, upper triaragul
matrix H € R"*™ in (7), is known as the lattice generator
k+1)=Ax(k)+ BKu(k 4 . . . .
ok +1) (k) + u(k) (4a) matrix that generates the discrete space wherein the @oluti
y(k) = Cx(k), (4b) jies.

with A =eP”s, B=—-D (I — A)E andC = F. More- ILS problems are known to be NP-hard [35], meaning
over, I here is the4 x 4 identity matrix, e the matrix that if H is ill-conditioned, then solving (7) may become

exponential T}, the sampling interval, anél € N. computationally intractable. To avoid this, algorithms dze
used that reshape the search space (i.e., they modify thesent
B. Direct MPC With Current Reference Tracking of H) with the eventual goal of having a lattice as close

The discussed control algorithm aims to regulate the Sta{ﬁroghogonal as pc;]ssmle, while gn;urlnghthalzt thlc_ed length of
CUITeNti, o5 along its reference, rer.qs, while operating the the basis vectors that generate it (i.e., the Euclidean norm

drive at low switching frequency. The latter objective iglfa of tf}le _I(EO“terns 0; t?he Iﬁtt|ce:t geLnerattor Lm aEr'X) 'ELLelg\f[el
important when MV drives are of concern, since it is directiy™ 2" '0 this €nd, the Lenstra-L.enstra-L.ovasz (LLL)i

related to the switching power losses which have to be k sis reduction algorithm [36]Ni5 employed to generate the

low for an increased efficiency of the converter. As can ggduced lattice generator matré{. The resulting equivalent
seen in Fig. 2, the optimal controller meets both objectiwes ILS problem is of the form [3]

computing and applying the control signals (i.e., the switc minimize || Uunc(k) — HU(K)|}3,
positions) in one stage, i.e., a modulation stage is bypasse U(k) (8)
By introducing the current (i.e., output) tracking error subjectto U(k) € U,

term i emmag(k) = s refap(k) — 45.0p(k), and the switching . -~ o 1 ~ B 1
(i.e., control) effort termAw(k) = u(k) — u(k — 1), the with Uunc(k) =H M~ Uunc(k), U(k) = M "U(k) and

_ T i 1 nxXn j
aforementioned control objectives are mapped into a scatf= V'~ HM. Finally, matrixV" € R"*" is orthogonal and
ie. matrix M € Z™*" unimodular (i.e.det M = +1).

Interpreting (8), one has to find the (integerdimensional
lattice point that is closest (in Euclidean sense) to thal{re
valued) unconstrained solutidiin(k). Equivalently, one has

E+N-—-1
J(k) = > |lisemap(l + 1[k)[3 + Aul|Au(llk)[3. (5)
=k



to find the smallest hypersphera-fimensional sphere) of 1V. SPHEREDECODER FORTRANSIENT OPERATION

radiusp centered aUunc(k) that includes at most one lattice  As mentioned before—and as shown in [21] and [3]—the
point. To this end, the branch-and-bound method known gghere decoder is significantly more computationally efiti
sphere decoder [29] can be utilized. With sphere decodifithn the exhaustive enumeration when the steady-state op-
the search space is limited to those lattice points (i.edeBp eration of the system is examined. Even though the sphere
included in the computed hypersphere, meaning that origcoding principle is also applicable to transient opergti
these points are considered as candidate solutions, asd e computationally complexity of the sphere decoder fitsel
evaluated, while optimality is still guaranteed. As a résulincreases (that of the exhaustive enumeration remainsthe s
this search algorithm proves to be highly computationallince all candidate solutions need to &evays evaluated).
efficient, especially compared with the brute-force apphoaThe reason for that is that the unconstrained solution under
of the exhaustive enumeration, see [21] and [3]. transient operating conditions can be far from the (truedt

As can be understood, the initial radipsof the computed lattice, implying that the initial radius (9) can be largettwi
hypersphere determines the efficacy of the sphere decduer. & considerable number of nodes included in the resulting
initial sphere should be small enough to include as few nodgshere. More specifically, radiys, (see (10)) is clearly not
as possible, whereas it should be nonempty in order to aveicgood guess since the previously applied solution (i.e., th
feasibility issues. According to [37], the initial radiuarcbe one applied before the transient occurs) is expected to lye ve

set equal to the minimum of two options, i.e., different compared to the one computed when the transient
phenomenon begins, whereas—although a better choice—
p(k) = min{p.(k), pp(k)}, (9) appears to be a poor initial radius as well.
To overcome this, and to keep the complexity of the sphere
with the options being decoding algorithm low, one could project the unconstréine
N L solution lN]unc(k:) onto the convex hull of the lattice in the
pa(k) = || Uunc(k)— HUpan(k)||2 , (10a) space generated bif. According to [39], the convex hull is
pu(k) = || Uunclk)— HUeqlk)2 - (10b) defined as
convU = {6,(HU,) +--- + 6;(HU;) |U, = M~*U;,
The radii in (10) are computed based on different estimated Ui elU, 0,>0,i=1,...,j, j=3"

solutions (i.e., initial guesseﬁest = M 'Ues. Radiusp,

is computed based on the so-called Babai estimate [38], i.e. (11)

U st = Upan Which results by rounding the unconstrained so-

lution to the closest integer vector, i.&pan(k) = [Uunc(k)]. TO this end, the following QP needs to be solved in real time

The S(_acond option (see (10b)).is computed ba_sed. on an minimize || ﬁunc(k)_ ﬁIﬁ(k)H%

educational guesdfest = Ueg), Which results by taking into k) (12)

account the previously computed solutidfi' (k — 1) shifted

by one time step and with a repetition of the last switch

position (see (40) in [2]). Note thdlpap(k) = M 'Upap(k) the gptimal value of which is the (Euclidean) distance

and ea(k) = M~ 'Useq(k). dist(Uync(k), coanN), and the optimal point is the projection
With an initial tight sphere of radius (9) the vast majorify 00f Uuno(k) on conviy [39]. N

the lattice points are a priori excluded from being consder Having found the (real-valued) projected pofit (k) €

candidate solutions. The task of the sphere decoder is c'@nvfj a new sphere can be used by the sphere decoder. This

visit the remaining nodes enclosed in the sphere in orderdgaller sphere is centered &t and has radiug that is

conclude to the optimal solution. To do so, and as can be sken by (9), with the difference that the first option result

in Algorithm 1 (lines15-28), the optimizer traverses a searCfby roundingU (k) = M ﬁ_lﬁrlx(k) to the nearest integer

treg ofn_le\llels by \.”S't'rég C;Llef?b);—one tEm—d|menS|Sc;ni! oint, i.e., similarly to (10a) with the difference thdt7x (k)]
nodes,m = 1,...,n, in a depth-first search manner. Starting. ", ° (&0 (oo

form the root (top),n-dimensional node, the algorithm goes : : -

through the branches—that constitute the candidate elsmen The downside Sf _thls app.rc.>ach. IS. that the. shapg of the
of the solution—with a goal to reach the bottom level of th&onvex hull convy is nontrivial (it is_an n-dimensional

tree (i.e., the leaf nodes that are one-dimensional) aklguas polyhedron) that depends_ OH'. Since H' depends on the
possible. As long as the assembled candidate solutiortsesul rotor speed (see Appendlx B), the convex hu_II needs to be
a smaller intermediate sphere than the initial one, therihgo recomput_ed when this parameter changes. Th_|s increases _the
keeps visiting nodes at the lower levels of tree; if not, omputational burden of the approach rendering its benefits

backtracks to visit higher-level nodes and find a new path SS tangible. _ . .
the bottom level. When a leaf node is reached, a comple éAw_or_karound Is to SOIVe. the equivalent pro_blem of (12)in
candidate solution is assembled, and a new, tighter sph 8 original space, as motivated by the following remark.

is computed. The optimizer continues searching for differe Remark 1: The objective functiorj| Uunc(k)— HU(k)]|2
sequences that may result in a tighter sphere until it getcan be written asU yne(k) — U (k)T Q(Uync(k) — U (k)) with
“certificate” that the optimal solution has been found. Q=H"H.

O+ 40, =1}.

subject to U(k) € convl ,



Proof: According to the definitions in Section Ill, it is trueAlgorithm 1 Long-Horizon Direct MPC

that 1: function U* = DMPCCU unc, Ued, Upan)
- o : if Uunc ¢ convU then
Uinc(k) = H M Unelk), 13 & M Pune ,
urf( ) . unc( ) ( ) 3: Uix + arg mingy cconvlU ||Uunc - U||Q
U(k) =M U(k) ) (14) 4: Ubpap < LUrId
H=V"HM. (15 ° Uune = Unx
6: end if
Then for the function/ (k) = || Uund(k)— HU(K)|3, itholds 7 Uunc <~H M 'Uunc
that 8  Uban¢ M 'Upap
N VR, 9 U+ M 'Ues
J(k) = || Uunc(k)— HU(K)||3 10: p < min{pg, pp} > see (10)

= |[V'THMM "Uunelk) - VIHMM 'UK)|3 11 SPHDEC([ ], Uine, 0,7, p?)
(from (13)-(15)) 1. U* « M U*
= ||[VTHU no(k) — VIHU (K)||?>  (det M = +1) 13: end function

2 T -1 14:
= [[HUunclk) — HU (k)] V"=V s function T = SPHDEC(U, Uyne, d2, 7, p?)
= Uunc(k) = U (k)" H" H(Uunc(k) — U (k) 16:  for eachi € U do
= (Uunc(k) = UENTQ(U ync(k) — U (K)) 17: Ui _ N N
(from (20)) 18: d? < || Uune,— H (;,5:0)Uien |3 + d?
a if d’? < p? then
) o S 20: ifi>1then
_ _The convex hull m_the or|g|nal spao®nvU is trivial since ;. SPHDEC(U, Uyne, d’2,i — 1, p?)
it is a hypercuber(-dimensional cube), centered at the origin,. else
and of side lengtl2. Therefore the projection di/ync(k) on 3. U U
convU, i.e., Unx(k) € convlU can be found by solving the 4. 0?2« d?
following box-constrained QP 5 end if
miimize  (Uune(k) — U (k)" Q(Uune(k) — U (k) o end
. lI 0 ] lU(k)] [ 1 ] 28: end function
subject to =< ,
0 —I||U(k) -1
(16)

where I and 0 are the n-dimensional identity and zero VO main reasons for subotimality are presented, namely, a
matrices, respectively is ann-dimensional vector with all Significantly skewed lattice, and a lattice with signifidgnt
components one, and denotes the componentwise inequality!"€VeN Sides. As can be seen in Fig. 3, when the angle between
Becauseonvl is nonempty, problem (16) is by definition feath€ vectors that form the basis &1 is far from orthogonal,
sible. Furthermore, it is convex with optimization variables then the proposed approach is prone to suboptimality. The
and 2n inequality constraints, thus relatively small and eass?Me phenomenon is observed when the length of the vectors
to solve [39]. More specifically, a plethora of effective\smts Of the basis ofH is greatly unequal, as depicted in Fig. 4.
is readily available, and any of iterative projection aiguns, Moreover, combinations of both sources of subotimality can
such as [40], [41], gradient projection methods, e_g”_[42furtheraggravate the phenomenon under discussion. Itigwo
[44], or derivatives [45]-[47] can be employed with nedbigi ngentioning, nonetheless, that thanks to the well-conukitib
differences in computational time, given the small sizehef t H (i.e., the lattice is almost orthogonal and all sides are of
problem at hand. comparable lengths) the probabilitnyor the optimal santi

With the projection poinlJ/,x obtained, the next step is toto be inside the sphere centered @ty is very high, see
map it into the H-generated space, i.dy =H M ~'U,. Section VI. In addition, given that the projection algonith
Subsequently, the radius of the new sphere, centered ats mostly active only during transients, the suboptimality
Usx, is computed as explained above, and the optimizati§i@es not affect the steady-state performance of the system.
process begins. The pseudocode of the proposed algorithrr@sequently, the benefits of long-horizon direct MPC [3],
presented in Algorithm 1. The initial values of the argunsent21] are still achieved.
are computed as explained in Section Ill.

Projecting the infeasible unconstrained solution on the V. COMPUTATIONAL COMPLEXITY

convex hull (i.e., the feasible Set) greatly reduces the-com Ana|yzing the Computationa| Comp|exity of A|gorithm 1,
putational complexity of the sphere decoder, as shown fife main effort is put into solving (16) (see lir8® and the
Section VI. However, it does not guarantee optimNaIity. Thisphere decoder (lines5—29). As mentioned in Section 1V,
means that the lattice point that is actually closest/tac(k) problem (16) is a box-constrained QP which means that it
may not be the one closest ﬂ|x(k). This is explained can be solved in polynomial time. For example, in [40],
with two illustrative examples in Figs. 3 and 4, where th§l5], it is shown that the proposed schemes exhibit a global
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Fig. 3: Example of the projection principle and the undedysuboptimality
due to a skewed lattice. Convex hull (shown shaded) of fourtpgshown as
black solid circles) in the two-dimensional space. (a) Dagspace: The level

sets of the objective function of problem (16) are shown ahed ellipses. . . P T . A

S ] . . Fig. 4: Example of the projection principle and the undedysuboptimality
The projection Qﬂ]“”C.(Shown as lmrcle) osonvU is the po'”tf]f'x (shown due to a lattice with (greatly) unequal sides. The same iootaind illustration
as gray solid circle), i.e., the point where the level setai¢h” the convex

hull. (b) IN{-generated space: The level sets of the function of problethgre principles are adopted as in Fig. 3. (a) Original spaceflbgenerated space:

h dashed circles. Th iectionth, = th e Consider the following case with lengtlls = 0.2, d2 = 0.3, d3 = 0.2 and
shown as dashed circles. The projectionlgfic on convU is the pointUnx. ;. — ¢ 15. £7* is the ontimal solution sincél T T7*I| — 013
Consider the following case with lengtlds = 0.2, da = 0.6, d3 = 0.3 and - 0.15. U P ¢ Uune— U] 0-13 <

ds = 0.4. The lattice point closest tdnc (i.e., the optimal solution) is the I U“”CN_ Usunl| = ~0'165~' Point Usuy is tﬂe pOiQt closest to the projected
one labeled a7, since|| Dinc— || = v04 < || Dne— D] = /0.45. point Ury since || Unx— U*|| = 0.3 > || Unx— Usurl| = 0.25. Therefore,
On the other hand, the point closest to the projected rﬁ'mt is the point Usup is a suboptimal option.

labeled asUsyp, since || Uix— U*|| = 0.6 > || Uix— Usup|| = 0.5. Thus,
lNJ;ub is clearly a suboptimal option.

the productt (,, ,n.nyUsnor i €itherhy, i, —hom.i, OF 0, with

m < i < n. Finally, since the cardinality of the input g¢tis
convergence rat®(1/x?), wherer is the number of iterations. three, this implies that for each node visited both its sipli
Therefore, (16) can be easily solved withi@—18 iterations nodes need to be checked to ascertain whether they are inside
on average, depending on the size of the problem which variee hypersphere or not.

linearly with the length of the prediction horizon. Given the above analysis, the real-time additiois sub-

With regards to the computational complexity of the sphetgactions N,, and multiplications N,,, are summarized as
decoding algorithm, this is analyzed based on the flopsilows

performed in real time. As can be seen in Algorithm 1,

when anm-dimensional node, withn = 1,...,n, is visited, "

n —m + 1 additions are required for the computation and No=3{p—-1+ Z (n—m)) | .

update of the intermediate (squared) radiug: — m for the =t (17)
computation of the radius at leveb, i.e., H (,, ) Upin, Ns = 3p,

and one for the updat « ||3 + d%), see line18. Moreover N =3,

one subtraction is required. Regarding the multiplicagjamly o ) ) o
one is required per node (for squaring the Euclidean noMfherel <m <n indicates the dimension of a node visited
|| % |12) regardless of its dimension; sin&& € U the result of (-€., level of the tree), and the maximum number of nodes
each one of thes — m multiplications required to compute explored. A more detailed analysis of the operations peréal
by the direct long-horizon MPC scheme and the employed
3Except whenm = n, where no additions are performed. optimizer can be found in [3], [48].
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Fig. 5: Torque reference steps for direct MPC with a ten-$tepzon (V = 10) at nominal speed. The sampling intervalTis = 25 us and the switching
frequency is approximatel300 Hz (A, = 0.1). (Upper row) Simulated waveforms with the original sphelecoder (see [3]). (Lower row) Simulated
waveforms with the modified sphere decoder (i.e., the prg@pproach).

V1. PERFORMANCEEVALUATION however, is the same, regardless of the prediction horizon

To obtain the simulation results presented in this secaon, length.
MV drive (Fig. 1) consisting of a squirrel cage IM with3 kV In Table | the proposed approach is compared with the
rated voltage356 A rated current2 MVA rated power,50 Hz ~ sphere decoder in [3] in terms of (sub)optimality for diéfat
nominal frequency(.25 p.u. total leakage inductance, and #ngths of the prediction horizon and switching frequesicie
three-level NPC with constant dc-link voltagg. = 5.2kv ~ Specifically, the weighting facton, is adjusted such that
and a fixed neutral point N, is considered. For all casélde resulting average switching frequency is changed in a
examined, the controller was operated with the sampliff§ePwise manner (with a step 66 Hz) from 100 to 700 Hz.
interval T, = 25 ps. All results are shown in the p.u. systemIhe same scenario as in Fig. 5 is examined, i.e., operation

The performance of the proposed direct MPC scheme ugder step changes in the torque reference. As can be seen,
examined during torque transients to examine its dynamid¢hRnks to the well- conditionefil optimality is sacrificed only
behavior in terms of settling time and reference regulatiofer longer prediction horizons\ > 5) and very low switching
The horizon N = 10 case is investigated; the weightingrequencies, and even then marginally, without any sigauific
factor \, = 0.1 is chosen, such that a switching frequency ¢#ffect on the drive performance, as shown in Fig. 5.
approximately300 Hz results. While operating at rated speed, As for the computational complexity, a first rough analysis
reference torque steps of magnitude one are imposed. Toethe two aforementioned techniques and the strategy of
response of the drive controlled with the sphere decoded]in exhaustive enumeration in terms of the nodes evaluated as
(i.e., optimality is guaranteed) is shown in the upper row @& function of the prediction horizon length is presented in
Fig. 5, whereas that of the proposed approach in the lowEable I, assuming same operating conditions as in Fig. 5.
row of the same figure. As can be seen, the electromagndfioreover, the flops required by these three strategies—when
torque in both cases tracks the new desired values as quidklg same conditions are considered—are depicted in Fig. 6.
as possible, with the settling time being limited only by th&s can be seen, the sphere decoding algorithm with the
available dc-link voltage (see Figs. 5(a) and 5(d), respelgd. refinements proposed here significantly reduces the nuniber o
In effect the controller behaves like a deadbeat controller examined nodes and real-time flops, even compared with the
for the currents, they accurately track their new referencepproach proposed in [3]. For example, the discussed method
(the torque steps on the torque reference are translated igan visit less nodes and perform less operations by up to
the corresponding current steady-state references), @gnsh99.7 % when a ten-step horizon and a step-up torque reference
in Figs. 5(b) and 5(e). Finally, in Figs. 5(c) and 5(f) thehange are examined.
three-phase switching sequences are shown. It is wortwhil To provide further insight in the computational complexity
to mention that, as shown in [21], the limiting factor for theof the proposed algorithm, Table Il presents a comprekensi
dynamical performance of direct MPC is the available dcomparison with the sphere decoder in [3] in terms of flops
link voltage. The performance of the system during trarisienfor different prediction horizons and switching frequesi



TABLE I: Probability in percent that the solution computed the proposed approach is the (global) optimal solufiéh for different prediction horizons
and switching frequenciegsw (the latter refer to steady-state operation).

Switching Prediction horizonV
frequency fsw [Hz] 1 | 2 | 3 | 4 | 5 | 7 | 10
100 100 | 100 | 100 | 100 | 98.7 | 95.2 | 91.1
150 100 | 100 | 100 | 100 | 99.5 | 96.7 | 95.7
200 100 | 100 | 100 | 100 | 99.6 | 98.8 | 96.8
250 100 | 100 | 100 | 100 | 99.7 | 99.0 | 97.7
300 100 | 100 | 100 | 100 | 99.8 | 99.3 | 98.5
350 100 | 100 | 100 | 100 | 99.9 | 99.5 | 99.3
400 100 | 100 | 100 | 100 | 100 | 99.7 | 99.6
450 100 | 100 | 100 | 100 | 100 | 100 | 100
500 100 | 100 | 100 | 100 | 100 | 100 | 100
550 100 | 100 | 100 | 100 | 100 | 100 | 100
600 100 | 100 | 100 | 100 | 100 | 100 | 100
650 100 | 100 | 100 | 100 | 100 | 100 | 100
700 100 | 100 | 100 | 100 | 100 | 100 | 100

TABLE II: Maximum number of nodegimax explored by (a) the exhaustive search algorithm, (b) themptecoder in [3], and (c) the proposed algorithm,
during the step torque reference changes shown in Fig. Siffereht prediction horizons and switching frequenfyy = 300 Hz.

Prediction horizonV
1] 2 | 3 4] 5 | 7 | 10
Exhaustive enumeratior 39 | 17092 | 29523 | 797°160 | 21'523'359 | > 1.5-10'° | > 3.10™
Sphere decoder [3] | pmax 7 23 43 165 460 1'579 36’092
Proposed approach 5 14 18 26 32 61 114

fsw® As before, for a given prediction horizon, the penalty — 1°°
on the switching transitions,, is tuned such that the desired # I
switching frequency results. Following, the maximum numbe = 10| )
of flops N"** performed by the optimizer in real time is
recorder during the torque reference changes, as presented ¢ 10| ‘ EE ’
Fig. 5. As can be observed, owing to the projection onto theé ‘
convex hull, the number of real-time flops during transients 19
operation is greatly reduced, regardless of the nature ef th

lopsN™

step change. W% 3 4 5 6 7 8 9 10
In a last step, the transient performance of the proposed Length of prediction horizorV (number of steps)
method is examined at low-speed operation, takioig speed y @
10 T T T T

as an example. While operating at a switching frequency of
about300 Hz, and with a ten-step horizon, the torque references T

m

is stepped down from its nominal value afp.u. to zero = 1°°f e

at time instantt = 50ms. Following, att = 100ms, the & i [ - i

torque reference is stepped back uplfp.u.. Observing the g 1 B = il
-}

system behavior, as shown in Fig. 7, it can be claimed thafg
the controller performance is as desired. It is important tog 1% B
point out that at low speeds optimality is not affected. In
other words, both the original sphere decoder [3]as wellas Y1 % 3 4 5 6 7 8 9 10
the algorithm proposed here provide the same solution in all Length of prediction horizoV (number of steps)
problem instancés Thus, the system performance with both (b)

optimizers is identical.

Fig. 6: Maximum number of flop&v*2* preformed during the search process
when the (a) step-down and (b) step-up torque referencegekaim Fig. 5
occur as a function of the prediction horizév. The solid (blue) line refers
to the sphere decoder in [3], the dashed (red) line to theepted algorithm,
and the dash-dotted (green) line to the exhaustive enuiorerat

4Based on the results in Table Il and Fig. 6, it is evident thdtaestive
enumeration is not a feasible option, thus it is not considem the
comparisons that follow.

5An intuitive explanation for this argument is that the speegendent
entries of A are dominant and get smaller as the speed decreases. Conse-
quently, the off-diagonal entries @ are also reduced, see Appendix B. The VIl. CONCLUSIONS

same applies to the off-diagonal entries Hf (and ﬁ), as can be concluded This paper proposes refinements for the sphere decoding

from (20) and [49, Chapter 3]. The latter implies that the afethe lattice . . .
basis vectors, i.e., the columns &f (or ﬁ), is more orthogonal, while the algorlthm employed to solve the Iong-horlzon direct model

basis vectors are of a smaller length. predictive control (MPC) problem for transient operati@&y.



TABLE IIIl: Maximum number of flopsN #* preformed during the search process when torque referéraeyes are applied for different prediction horizons
and switching frequenciegw. The flops performed by the proposed approach are denotedby<, whereas those by the sphere decoder in [SP\g§**.

Switching Prediction horizonV
frequency 1 2 3 5 7 10
Jow [Hz] | Noy™  NG5™ | Nop™  Ngp™ | Nov™  Ngg™ | Noy™  Ngp™ | Noy™  Ngg™ | Not™  Npp™ | Ney™  Ngp™
100 60 90 180 391 339 639 600 1’371 810 3'552 | 1'693 7938 3'879 12'213
150 60 120 216 403 357 788 633 2772 834 4'257 | 1'899 12912 4'425 >1-10°
200 60 132 237 414 366 951 663 3'045 895 4'695 | 2'067 18’598 6'213 >2.10°
250 60 162 237 532 366 1'262 663 3628 912 5'943 | 2’169 39’703 6'943 >6-10°
300 60 177 237 651 366 1'578 663 3'936 996 6'839 | 2'289 58054 7728 >1-109
350 60 177 237 708 417 1785 678 4’038 | 1’005 9’401 | 2'694 95’457 12035 > 7-106
400 60 177 240 900 474 2004 712 5769 | 1'035 17452 | 3645 >1-10° | 16875 > 2-107
450 60 177 240 948 474 3624 753 9'126 | 1'044 22'911 | 4086 >3-10° | 19672 > 9107
500 60 177 240 1'149 479 4'011 785 9'555 | 1093 34’274 | 4914 >8-10° | 25873 > 6-108
550 60 177 243 1'233 486 4'161 802 10'327 | 1'101 35’882 | 5031 >6-10% | 28388 > 2-10°
600 60 177 243 1461 486 5'244 831 12'086 | 1'140 41°082 | 5073 > 1-107 | 30'503 > 8- 10°
650 60 177 249 1641 493 5525 927 14'266 | 1'376 46’596 | 5’839 >9-107 | 31’458 > 4-1010°
700 60 177 249 1779 493 6'108 930 15'311 | 1'629 77154 | 6927 >5-10% | 36’521 > 210!
1 o 0
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(a) Electromagnetic torque (solid ling). and its(b) Three-phase stator currefi (solid lines) and
reference (dash-dotted line). their references (dash-dotted lines).

(c) Three-phase switch positiam.

Fig. 7: Torque reference steps for direct MPC when operading 1p.u. speed. A ten-step horizotV(= 10) is used, the sampling interval B; = 25 us
and the weighting factoA,, = 0.15 such that a switching frequency of approximat8§0 Hz results. The results with the original sphere decoder [3p
and the modified one, i.e., the proposed approach, are édénti

exploiting the geometry of the underlying quadratic progra APPENDIXA

(QP) a new, tighter sphere is computed that, although it CONTINUOUS-TIME MODEL OF THEDRIVE
sacrifices optimality (to some degree) when longer horizonsTthe matricesD, E, and F' of the continuous-time state-
are of concern, it can significantly reduce the computationgyace model of the drive (3) are

complexity of the integer problem. Thanks to the proposed

modifications, and given the presented case study, i.erea-th = 0 Tm Wiy
level converter driving an induction machine, the computa- D 0 —T—ls —wr%’l fg
tional burden can be reduced by more th@n5% for a T X 0 _1 —w, |’
wide range of switching frequencies and for long horizons, TO Xom w:" 1
compared to that required for the search algorithm in [3]. It ” ™
can be concluded that the proposed modifications render the Lo }
optimization problem of concern computationally tracébl X, Vg [0 1 10 0 0
thus facilitating the implementation of the sphere decoder B= @ 2 [0 o’ F= 01 00
for medium-voltage (MV) drives since continuous operation 00 -
of the system—even during transients—is ensured. This has

beenexperimentally verified with a field programmable gate APPENDIXB

array (FPGA) based control platform in [50]. Therein, the DERIVATION OF THE ILS PROBLEM

performance—both steady-state and transient—of a scaledpy introducingy (k) = [y”(k + 1) ... y*(k+ N)]T and

down prototype of a three-level neutral point clamped (NPGY (k) = [yL(k+1) ... yL(k+N)T to denote the output

inverter with anRL load is examined. and the corresponding output reference sequences over the
horizon, respectively, function (5) can be written in vecto
form as

J = ||Ta(k)+ YU (k) = Yretl |3+ Xu]|SU (k) —

m

u(k—1)||3,
(18)



where it was used the fact thit(k) = Tz (k) + YU (k), with
the matricesY, T, S andE being

El

CBK 0 0 (10]
CABK CBK . 0
Y = ,
: : : [11]
CAY " 'BK CA"’BK CBK
I o --- 0 T [12]
cA I I 0 0
c4® 0 I 0 0
F — , S — — . e , = = , [13]
oAV : : : :
0 o -.- I 0 [14]

where0 is the zero matrix of appropriate dimensions.
After some algebraic manipulations, (18) takes the form (15]

J(k) = [|U (k) + Q7 Ak)|[G + ¢ (k) — AT (F)Q™ " A(k) .

constk)

[16]

(19)
where 7]

C(k) = [[Tx(k) — Yiet(k)|| + Aul|[Eu(k — 1),
Q="Y"Y+1,5"8,
A(k) = X" (Tz(k) — Yiet(k)) — A\ ST Eu(k —1).

Following, by noticing that\, > 0 = Q > 0, then@ can be
decomposed as

(18]

Q=H"H. (20)

Using (20) and the unconstrained solution of (19), i.e.,
Uunc(k) = —Q *A(k), and by neglecting the constant terni21]
since it is independent di/ (k), (19) is written as

J = |[Uunclk) — HU (k)|[3, [22]

(21)

which is the ILS function of problem (7). |

[23]
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