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Abstract—In this paper we present modifications in the sphere
decoder initially introduced in [1] and modified in [2] that allow
for its implementation in transient operation. By investigating
the geometry of the integer problem underlying direct model
predictive control (MPC), a new sphere that guarantees feasibility
and includes a significant smaller number of candidate solutions
is computed. In a first analysis, the computational complexity
can be reduced by up to 99.7% when a variable speed drive
system consisting of a three-level neutral point clamped (NPC)
voltage source inverter and a medium-voltage induction machine
is examined. As also shown, optimality is sacrificed only to a
limited extent, thus maintaining the very fast transient response
inherent to direct MPC.

I. INTRODUCTION

Over the past decade model predictive control (MPC) [3]
has paved its way in becoming one of the most attractive
control alternatives in power electronics [4], [5]. MPC is
formulated as a constrained optimization problem, meaning
that it can operate the system at its physical limits, and—as
a result—achieve the best possible performance. Moreover, it
can easily handle systems with nonlinear dynamics, and/or
multiple inputs and outputs since it is formulated in the
(discrete) time domain. These features of MPC, combined
with the vast computational power readily available, justify its
widespread acceptance from the power electronic community.

The most utilized MPC strategy in power electronics is the
so-called finite control set MPC (FCS-MPC) [4]. The output
reference tracking and the modulation problem are formulated
in one computational stage, i.e., akin to a direct control
strategy. Although this approach seems to be straightforward
and intuitive, from a mathematical optimization perspective, it
is computationally very challenging. The underlying optimiza-
tion problem is a (mixed) integer program, which is known to
be NP-hard, i.e., it can become computationally intractable as
the number of decision variables (i.e., control inputs) or the
length of the prediction horizon increase. Given that the latter
has been documented to be necessary for an improved system
performance [6]–[9], the commonly used brute-force method
of exhaustive enumeration—according to which all candidate
solutions are enumerated to determine the solution—cannot be
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considered as a realistic option for horizons longer than one
step.

To allow for longer horizons, several techniques have
been proposed that either utilize nontrivial prediction hori-
zons [10] by implementing concepts such as move block-
ing [11] (e.g., [12]) and extrapolation [5] (e.g., [13]), or
branch-and-bound methods [14] based on smart heuristics [6].
With regards to the latter, a dedicated branch-and-bound algo-
rithm, developed in the field of communications and referred
to as sphere decoder [15], [16], has been recently introduced
in the field of power electronics [1], [2], [7]. Although it
has been shown to be reasonably effective, since it manages
to significantly reduce the computational complexity of the
problem at steady-state operation as well as to tellingly deal
with state/output constraints [17], there exist challenges that
have not yet been fully addressed.

Among the most prominent issues yet to be resolved is the
system operation during transient phenomena. Besides some
preliminary investigations for a time-invariant system [18],
a more in-depth analysis is required. As explained in this
paper, because of the geometry of the problem under transient
conditions, the sphere decoder tends to be less effective, ren-
dering the algorithm computationally prohibitively demanding.
To overcome this issue, this paper proposes refinements in
the sphere decoding algorithm that—despite the fact they
sacrifice optimality (but only marginally, as shown)—alleviate
its computational burden. To highlight the effectiveness of
the modified sphere decoder, a variable speed drive system,
consisting of a three-level neutral point clamped (NPC) voltage
source inverter driving a medium-voltage (MV) induction
machine (IM), is chosen as a case study. As it is shown, the
computational complexity of the algorithm—in terms of real-
time floating point operations (flops)—can be reduced by up to
99.7% when long horizons, such as ten steps, are considered.

II. OPTIMAL CONTROL PROBLEM

The problem examined relates to the control of the stator
current of an IM when driven by a three-level NPC voltage
source inverter with a constant dc-link voltage Vdc and a fixed
neutral point potential (Fig. 1).

In the sequel, the mathematical model of the examined
system and the formulation of the optimization problem are
presented. Both these tasks are performed in the stationary
orthogonal αβ system. Therefore, any variable in the abc-
plane ξabc = [ξa ξb ξc]

T is mapped into a two-dimensional
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Fig. 1: Three-level three-phase neutral point clamped (NPC) voltage source
inverter driving an induction motor (IM) with a fixed neutral point potential.
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A. Control Model

The output potential of each phase of the three-level NPC
inverter can obtain three discrete voltage levels −Vdc

2 , 0,
Vdc

2 , depending on the position of the power switches in the
respective phase [19]. As a result, the inverter output voltage—
equal to the voltage applied to the machine terminals vs,αβ—
is1

vαβ =
Vdc

2
uαβ =

Vdc

2
Ku , (1)

where u = [ua ub uc]
T ∈ U = U × U × U = U3 is the

three-phase switch position, with the integer variable
ux ∈ U = {−1, 0, 1} denoting the switch position in phase
x ∈ {a, b, c}.

With regards to the squirrel-cage IM, the stator current is,αβ
and the rotor flux ψr,αβ in the αβ-plane as well as the angular
speed of the rotor ωr are adopted as state variables to fully
describe its dynamics. Given the model parameters, i.e., the
stator Rs and rotor Rr resistances, the stator Xls, rotor Xlr

and mutual Xm reactances, the moment of inertia H , and
the mechanical load torque T�, the differential equations that
govern the machine are2 [20]

dis
dt

= − 1

τs
is +

(
1

τr
I − ωr

[
0 −1
1 0

])
Xm

Φ
ψr +

Xr

Φ
vs

(2a)

dψr

dt
=

Xm

τr
is − 1

τr
ψr + ωr

[
0 −1
1 0

]
ψr (2b)

dωr

dt
=

1

H
(Te − T�) . (2c)

In (2), the stator time constant is τs = XrΦ/(RsX
2
r +

RrX
2
m) and the rotor time constant τr = Xr/Rr. Moreover,

Φ = XsXr −X2
m is a constant with Xs = Xls +Xm and

1Throughout the paper, vectors in the αβ-plane are denoted with the
corresponding subscript. For vectors in the abc-plane the subscript is omitted.

2To simplify the notation in (2) the subscript αβ is dropped from the vectors
is, ψr and vs.
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Fig. 2: Model predictive current control with reference tracking for the three-
phase three-level NPC inverter with an induction machine.

Xr = Xlr+Xm, and Te is the electromagnetic torque. Finally,
I is the identity matrix of appropriate dimension (here two-
dimensional).

For the MPC algorithm developed in Section II-B the
internal model of the drive system is required so that its
future behavior can be predicted. To this end, the stator
current and the rotor flux in the αβ-plane constitute the stator
vector x = [isα isβ ψrα ψrβ]

T . Note that due to the slower
dynamics the mechanical speed is assumed to be constant
within the prediction horizon. Hence, the rotor angular speed
ωr is not a state variable, but a time-varying parameter instead.
The input to the system is considered to be the three-phase
switch position u, whereas the stator current is the output
variable, i.e., y = is,αβ . Therefore, by taking into account (1)
and (2), the continuous-time state-space representation of the
drive can be written as

dx(t)

dt
= Dx(t) +EKu(t) (3a)

y(t) = Fx(t) , (3b)

where the dynamics D, input E and output F matrices, are
given in Appendix A.

Using exact Euler discretization, the discrete-time state-
space model of the drive is

x(k + 1) = Ax(k) +BKu(k) (4a)

y(k) = Cx(k) , (4b)

with A = eDTs , B = −D−1(I −A)E and C = F . More-
over, I here is the 4 × 4 identity matrix, e the matrix
exponential, Ts the sampling interval, and k ∈ N.

B. Direct MPC With Current Reference Tracking

The discussed control algorithm aims to regulate the stator
current is,αβ along its reference is,ref,αβ , while operating the
drive at low switching frequency. The latter objective is fairly
important when MV drives are of concern, since it is directly
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related to the switching power losses which have to be kept
low for an increased efficiency of the converter. As can be
seen in Fig. 2, the optimal controller meets both objectives by
computing and applying the control signals (i.e., the switch
positions) in one stage, i.e., a modulation stage is bypassed.

By introducing the current (i.e., output) tracking error term
is,err,αβ(k) = is,ref,αβ(k) − is,αβ(k), and the switching
(i.e., control) effort term Δu(k) = u(k) − u(k − 1), the
aforementioned control objectives are mapped into a scalar,
i.e.,

J(k) =
k+N−1∑
�=k

||is,err,αβ(�+ 1|k)||22 + λu||Δu(�|k)||22 . (5)

Based on the state of the current error and switching effort at
step k, function (5) penalizes their evolution over the finite
prediction horizon of length N time steps. Note that the
weighting factor λu > 0 is introduced to adjust the trade-off
between the two terms, i.e., the trade-off between the current
tracking ability of the controller and the switching frequency.

To find the optimal sequence of control actions
U∗(k) = [u∗T (k) u∗T (k + 1) . . . u∗T (k +N − 1)]T that
results in the most desirable system behavior, i.e., the one
that minimizes (5), problem

minimize
U(k)

J(k)

subject to x(� + 1) = Ax(�) +Bu(�)

y(�) = Cx(�) , ∀ � = k, . . . , k +N − 1

U(k) ∈ U

(6)

is solved in real time. In (6),
U(k) = [uT (k) uT (k + 1) . . . uT (k +N − 1)]T is the
optimization variable and U = UN ⊂ Z

n, with n = 3N , is
the feasible set defined as the N -times Cartesian product of
the set U .

III. EQUIVALENT INTEGER LEAST-SQUARES PROBLEM

By relaxing the feasible set in (6), from U to R
n,

one can easily compute the so-called unconstrained solution
Ūunc(k) = HUunc(k) ∈ R

n, with Uunc ∈ R
n [1]. Based

on Ūunc—and after some algebraic manipulations shown in
Appendix B—problem (6) becomes

minimize
U(k)

||Ūunc(k)−HU(k)||22
subject to U(k) ∈ U ,

(7)

which is an integer least-squares (ILS) problem [1]. The non-
singular, upper triangular matrix H ∈ R

n×n in (7), is known
as the lattice generator matrix that generates the discrete space
wherein the solution lies.

ILS problems are known to be NP-hard [21], meaning
that if H is ill-conditioned, then solving (7) may become
computationally intractable. To avoid this, algorithms can be
used that reshape the search space (i.e., they modify the entries
of H) with the eventual goal of having a lattice as close
to orthogonal as possible, while ensuring that the length of
the basis vectors that generate it (i.e., the Euclidean norm

of the columns of the lattice generator matrix) is relatively
small. To this end, the Lenstra-Lenstra-Lovász (LLL) lattice
basis reduction algorithm [22] is employed to generate the
reduced lattice generator matrix

∼
H . The resulting equivalent

ILS problem is of the form [2]

minimize
U(k)

|| ∼Uunc(k) − ∼
H
∼
U(k)||22 ,

subject to U(k) ∈ U ,
(8)

with
∼
Uunc(k) =

∼
H M−1Uunc(k),

∼
U(k) = M−1U(k) and

∼
H= V THM . Finally, matrix V ∈ R

n×n is orthogonal and
matrix M ∈ Z

n×n unimodular (i.e., detM = ±1).
Interpreting (8), one has to find the (integer) n-dimensional

lattice point that is closest (in Euclidean sense) to the (real-
valued) unconstrained solution

∼
Uunc(k). Equivalently, one has

to find the smallest hypersphere (n-dimensional sphere) of
radius ρ centered at

∼
Uunc(k) that includes at most one lattice

point. To this end, the branch-and-bound method known as
sphere decoder [15] can be utilized. With sphere decoding
the search space is limited to those lattice points (i.e., nodes)
included in the computed hypersphere, meaning that only
these points are considered as candidate solutions, and thus
evaluated, while optimality is still guaranteed. As a result,
this search algorithm proves to be highly computationally
efficient, especially compared with the brute-force approach
of the exhaustive enumeration, see [7] and [2].

As can be understood, the initial radius ρ of the computed
hypersphere determines the efficacy of the sphere decoder. The
initial sphere should be small enough to include as few nodes
as possible, whereas it should be nonempty in order to avoid
feasibility issues. According to [23], the initial radius can be
set equal to the minimum of two options, i.e.,

ρ(k) = min{ρa(k), ρb(k)} , (9)

with the options being

ρa(k) = || ∼Uunc(k)− ∼
H
∼
Ubab(k)||2 , (10a)

ρb(k) = || ∼Uunc(k)− ∼
H
∼
Ued(k)||2 . (10b)

The radii in (10) are computed based on different estimated
solutions (i.e., initial guesses)

∼
Uest = M−1U est. Radius ρa

is computed based on the so-called Babai estimate [24], i.e.,
U est = Ubab, which results by rounding the unconstrained so-
lution to the closest integer vector, i.e., Ubab(k) = �Uunc(k)�.
The second option (see (10b)) is computed based on an
educational guess (U est = U ed), which results by taking into
account the previously applied solution U∗(k − 1) shifted
by one time step and with a repetition of the last switch
position (see (40) in [1]). Note that

∼
Ubab(k) = M−1Ubab(k)

and
∼
Ued(k) = M−1U ed(k).

With an initial tight sphere of radius (9) the vast majority of
the lattice points are a priori excluded from being considered
candidate solutions. The task of the sphere decoder is to
visit the remaining nodes enclosed in the sphere in order to
conclude to the optimal solution. To do so, and as can be seen
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in Algorithm 1 (lines 15–28), the optimizer traverses a search
tree of n levels by visiting one-by-one the m-dimensional
nodes, m = 1, . . . , n, in a depth-first search manner. Starting
form the root (top), n-dimensional node, the algorithm goes
through the branches—that constitute the candidate elements
of the solution—with a goal to reach the bottom level of the
tree (i.e., the leaf nodes that are one-dimensional) as quickly as
possible. As long as the assembled candidate solution results in
a smaller intermediate sphere than the initial one, the algorithm
keeps visiting nodes at the lower levels of tree; if not, it
backtracks to visit higher-level nodes and find a new path to
the bottom level. When a leaf node is reached, a complete
candidate solution is assembled, and a new, tighter sphere
is computed. The optimizer continues searching for different
sequences that may result in a tighter sphere until it gets a
“certificate” that the optimal solution has been found.

IV. SPHERE DECODER FOR TRANSIENT OPERATION

As mentioned before—and as shown in [7] and [2]—the
sphere decoder is significantly more computationally efficient
than the exhaustive enumeration when the steady-state op-
eration of the system is examined. Even though the sphere
decoding principle is also applicable to transient operation,
the computationally complexity of the sphere decoder itself
increases (that of the exhaustive enumeration remains the same
since all candidate solutions need to be always evaluated).
The reason for that is that the unconstrained solution under
transient operating conditions can be far from the (truncated)
lattice, implying that the initial radius (9) can be large with
a considerable number of nodes included in the resulting
sphere. More specifically, radius ρb (see (10)) is clearly not
a good guess since the previously applied solution (i.e., the
one applied before the transient occurs) is expected to be very
different compared to the one computed when the transient
phenomenon begins, whereas ρa—although a better choice—
appears to be a poor initial radius as well.

To overcome this, and to keep the complexity of the sphere
decoding algorithm low, one could project the unconstrained
solution

∼
U unc(k) onto the convex hull of the lattice in the

space generated by
∼
H . According to [25], th convex hull is

defined as

conv
∼
U = {θ1( ∼H ∼

U1) + · · ·+ θj(
∼
H
∼
Uj) | ∼Ui = M−1U i,

U i ∈ U, θi ≥ 0, i = 1, . . . , j, j = 3n,

θ1 + · · ·+ θj = 1} .
(11)

To this end, the following quadratic program (QP) needs to be
solved in real time

minimize
∼
U(k)

|| ∼Uunc(k)− ∼
H
∼
U(k)||22

subject to
∼
U(k) ∈ conv

∼
U ,

(12)

the optimal value of which is the (Euclidean) distance
dist(

∼
Uunc(k), conv

∼
U ), and the optimal point is the projec-

tion of
∼
Uunc(k) on conv

∼
U [25].

Having found the (real-valued) projected point
∼
Urlx(k) ∈

conv
∼
U a new sphere can be used by the sphere decoder.

This smaller sphere is centered at
∼
Urlx and has radius ρ̂ that

is given by (9), with the difference that the first option results

by rounding U rlx(k) = M
∼
H
−1 ∼

Urlx(k) to the nearest integer
point, i.e., similarly to (10a) with the difference that �U rlx(k)�
is the estimated solution.

The downside of this approach is that the shape of the
convex hull conv

∼
U is nontrivial (it is an n-dimensional

polyhedron) that depends on
∼
H . Since

∼
H depends on the

rotor speed (see Appendix B), the convex hull needs to be
recomputed when this parameter changes. This increases the
computational burden of the approach rendering its benefits
less tangible.

A workaround is to solve the equivalent problem of (12) in
the original space, as motivated by the following remark.

Remark 1: The objective function || ∼Uunc(k)− ∼
H
∼
U(k)||22

can be written as (Uunc(k) − U(k))TQ(Uunc(k) − U(k))
with Q = HTH .

Proof : According to the definitions in Section III, it is true
that

∼
Uunc(k) =

∼
H M−1Uunc(k) , (13)

∼
U(k) = M−1U(k) , (14)

∼
H = V THM . (15)

Then for the function J(k) = || ∼Uunc(k)− ∼
H
∼
U(k)||22, it holds

that

J(k) = || ∼Uunc(k)− ∼
H
∼
U(k)||22

= ||V THMM−1Uunc(k)− V THMM−1U(k)||22
(from (13)–(15))

= ||V THUunc(k)− V THU(k)||22 (detM = ±1)

= ||HUunc(k)−HU(k)||22 (V T = V −1)

= (Uunc(k)−U(k))THTH(Uunc(k)−U(k))

= (Uunc(k)−U(k))TQ(Uunc(k)−U(k))
(from (19))

�
The convex hull in the original space convU is trivial since

it is a hypercube (n-dimensional cube), centered at the origin
and of side length 2. Therefore the projection of Uunc(k) on
convU, i.e., U rlx(k) ∈ convU can be found by solving the
following box-constrained QP

minimize
U(k)

(Uunc(k)−U(k))TQ(Uunc(k)−U(k))

subject to

[
I 0

0 −I

] [
U(k)

U(k)

]
�
[
1

−1

]
,

(16)
where I and 0 are the n-dimensional identity and zero
matrices, respectively, 1 is an n-dimensional vector with all
components one, and � denotes the componentwise inequality.
Because convU is nonempty, problem (16) is by definition
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Algorithm 1 Long-Horizon Direct MPC

1: function U∗ = DMPCC(Uunc,U ed,Ubab)
2: if Uunc /∈ convU then
3: U rlx ← argminU∈convU ||Uunc −U ||Q
4: Ubab ← �U rlx�
5: Uunc ← U rlx

6: end if
7:

∼
Uunc ← ∼

H M−1Uunc

8:
∼
Ubab ←M−1Ubab

9:
∼
Ued ←M−1U ed.

10: ρ← min{ρa, ρb} � see (9)
11: SPHDEC([ ],

∼
Uunc, 0, n, ρ

2)

12: U∗ ←M
∼
U∗

13: end function
14:

15: function
∼
U∗ = SPHDEC(

∼
U,

∼
Uunc, d

2, i, ρ2)
16: for each ũ ∈ U do
17:

∼
Ui ← ũ

18: d′2 ← || ∼Uunci−
∼
H(i,i:n)

∼
Ui:n||22 + d2

19: if d′2 ≤ ρ2 then
20: if i > 1 then
21: SPHDEC(

∼
U,

∼
Uunc, d

′2, i− 1, ρ2)
22: else
23:

∼
U∗ ← ∼

U
24: ρ2 ← d′2

25: end if
26: end if
27: end for
28: end function

feasible. Furthermore, it is convex with n optimization vari-
ables and 2n inequality constraints, thus relatively small and
easy to solve [25]. More specifically, a plethora of effective
solvers is readily available, and any of iterative projection
algorithms, such as [26], [27], gradient projection methods,
e.g., [28]–[30], or derivatives [31]–[33] can be employed with
negligible differences in computational time, given the small
size of the problem at hand.

With the projection point U rlx obtained, the next step is to
map it into the

∼
H-generated space, i.e.,

∼
Urlx =

∼
H M−1U rlx.

Subsequently, the radius ρ̂ of the new sphere, centered at∼
Urlx, is computed—as explained above, and the optimization
process begins. The pseudocode of the proposed algorithm is
presented in Algorithm 1. The initial values of the arguments
are computed as explained in Section III.

Projecting the infeasible unconstrained solution on the
convex hull (i.e., the feasible set) greatly reduces the com-
putational complexity of the sphere decoder, as shown in
Section VI. However, it does not guarantee optimality. This
means that the lattice point that is actually closest to

∼
Uunc(k)

may not be the one closest to
∼
Urlx(k). This is explained

with an illustrative example in Fig. 3. It is worth mentioning,
nonetheless, that thanks to the well-conditioned

∼
H (i.e., the

lattice is almost orthogonal and all sides are of comparable

U rlx

Uunc

convU

U∗

(a)

∼
Urlx

∼
Uunc

conv
∼
Ud4

d2

d1d3

∼
U∗

∼
Usub

(b)

Fig. 3: Convex hull (shown shaded) of four points (shown as black solid
circles) in the two-dimensional space. (a) Original space: The level sets of
the objective function of problem (16) are shown as dashed ellipses. The
projection of Uunc (shown as circle) on convU is the point Urlx (shown
as gray solid circle), i.e., the point where the level sets “touch” the convex
hull. (b)

∼
H-generated space: The level sets of the function of problem (12)

are shown as dashed circles. The projection of
∼
Uunc on conv

∼
U is the point∼

Urlx. Consider the following case with lengths d1 = 0.4, d2 = 0.3 (thus
d3 = 0.5), and d4 = 0.2. Therefore, the lattice point closest to

∼
Uunc (i.e.,

the optimal solution) is the one labeled as
∼
U∗, while the point closest to

the projected point
∼
Urlx is the point labeled as

∼
Usub, which is clearly a

suboptimal option.

lengths) the probability for the optimal solution to be inside
the sphere centered at

∼
Urlx is very high, see Section VI.

V. COMPUTATIONAL COMPLEXITY

Analyzing the computational complexity of Algorithm 1,
the main effort is put into solving (16) (see line 3) and the
sphere decoder (lines 15–29). As mentioned in Section IV,
problem (16) is a box-constrained QP which means that it
can be solved in polynomial time. For example, in [26],
[31] it is shown that the proposed schemes exhibit a global
convergence rate O(1/κ2), where κ is the number of iterations.
Therefore, (16) can be easily solved within 12–18 iterations
on average, depending on the size of the problem which varies
linearly with the length of the prediction horizon.

With regards to the computational complexity of the sphere
decoding algorithm, this is analyzed based on the flops
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(c) Three-phase switch position u.
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(d) Electromagnetic torque (solid line) Te and its
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(e) Three-phase stator current is (solid lines) and
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(f) Three-phase switch position u.

Fig. 4: Torque reference steps for direct MPC with a ten-step horizon (N = 10) at nominal speed. The sampling interval is Ts = 25μs and the switching
frequency is approximately 300Hz (λu = 0.1). (Upper row) Simulated waveforms with the original sphere decoder (see [2]). (Lower row) Simulated
waveforms with the modified sphere decoder (i.e., the proposed approach).

performed in real time. As can be seen in Algorithm 1,
when an m-dimensional node, with m = 1, . . . , n, is visited,
n−m+ 1 additions3 are required for the computation and
update of the intermediate (squared) radius d (n−m for the
computation of the radius at level m, i.e.,

∼
H(m,m:n)

∼
Um:n,

and one for the update || ∗ ||22 + d2), see line 18. Moreover
one subtraction is required. Regarding the multiplications, only
one is required per node (for squaring the Euclidean norm
|| ∗ ||22) regardless of its dimension; since U ∈ U the result of
each one of the n−m multiplications required to compute
the product

∼
H(m,m:n)

∼
Um:n is either h̃m,i, −h̃m,i, or 0, with

m ≤ i ≤ n. Finally, since the cardinality of the input set
U is three, this implies that for each node visited both its
sibling nodes need to be checked to ascertain whether they
are inside the hypersphere or not. A more detailed analysis
of the operations performed by the direct long-horizon MPC
scheme and the employed optimizer can be found in [2], [34].

VI. PERFORMANCE EVALUATION

To obtain the simulation results presented in this section, an
MV drive (Fig. 1) consisting of a squirrel cage IM with 3.3 kV
rated voltage, 356A rated current, 2MVA rated power, 50Hz
nominal frequency, 0.25 p.u. total leakage inductance, and a
three-level NPC with constant dc-link voltage Vdc = 5.2 kV
and a fixed neutral point N, is considered. For all cases
examined, the controller was operated with the sampling
interval Ts = 25μs. All results are shown in the p.u. system.

The performance of the proposed direct MPC scheme is
examined during torque transients to examine its dynamical

3Except when m = n, where no additions are performed.

TABLE I: The percentage of times the solution computed by the proposed
approach Uappl is the (global) optimal solution U∗ for different prediction
horizons.

Prediction horizon N Uappl = U
∗ %

1 100

2 100

3 100

4 100

5 99.8

7 99.3

10 98.5

behavior in terms of settling time and reference regulation.
The horizon N = 10 case is investigated; the weighting
factor λu = 0.1 is chosen, such that a switching frequency of
approximately 300Hz results. While operating at rated speed,
reference torque steps of magnitude one are imposed. The
response of the drive controlled with the sphere decoder in [2]
(i.e., optimality is guaranteed) is shown in the upper row of
Fig. 4, whereas that of the proposed approach in the lower
row of the same figure. As can be seen, the electromagnetic
torque in both cases tracks the new desired values as quickly
as possible, with the settling time being limited only by the
available dc-link voltage (see Figs. 4(a) and 4(d), respectively).
In effect the controller behaves like a deadbeat controller. As
for the currents, they accurately track their new references
(the torque steps on the torque reference are translated into
the corresponding current steady-state references), as shown
in Figs. 4(b) and 4(e). Finally, in Figs. 4(c) and 4(f) the three-
phase switching sequences are shown.
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TABLE II: Maximum number of nodes μ explored by (a) the exhaustive search algorithm, (b) the sphere decoder in [2], and (c) the proposed algorithm,
during the step-down (μd) and step-up (μu) torque reference changes shown in Fig. 4 for different prediction horizons.

Prediction Horizon N

1 2 3 4 5 7 10

Exhaustive enumeration

max(μd)

39 1,092 29,523 797,160 21,523,359 > 1.5 · 1010 > 3 · 1014
Sphere decoder [2] 7 23 43 165 460 1,433 1,760

Proposed approach 5 14 18 26 32 58 92

Exhaustive enumeration

max(μu)

39 1,092 29,523 797,160 21,523,359 > 1.5 · 1010 > 3 · 1014
Sphere decoder [2] 4 14 36 82 202 1,579 36,092

Proposed approach 3 9 14 18 24 61 114

Length of prediction horizon N (number of steps)

Fl
op

s

1 2 3 4 5 6 7 8 9 10
100

104

108
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1016

(a) Three-phase switch position u.

Length of prediction horizon N (number of steps)

Fl
op

s

1 2 3 4 5 6 7 8 9 10
100

104

108

1012

1016

(b) Three-phase switch position u.

Fig. 5: Maximum flops preformed during the search process when the (a) step-
down and (b) step-up torque reference changes in Fig. 4 occur as a function
of the prediction horizon N . The solid (blue) line refers to the sphere decoder
in [2], the dashed (red) line to the presented algorithm, and the dash-dotted
(green) line to the exhaustive enumeration.

In Table I the proposed approach is compared with the
sphere decoder in [2] in terms of (sub)optimality for different
lengths of the prediction horizon. As can be seen, thanks
to the well-conditioned

∼
H optimality is sacrificed only for

longer prediction horizons (N ≥ 5), and even then marginally,
without any significant effect on the drive performance, as
shown in Fig. 4. As for the computational complexity, a first
rough analysis for the two aforementioned techniques and
the strategy of exhaustive enumeration in terms of the nodes
evaluated as a function of the prediction horizon length is
presented in Table II. Moreover, the flops required by these
three strategies—when the same conditions are considered—
are depicted in Fig. 5. As can be seen, the sphere decoding
algorithm with the refinements proposed here significantly re-
duces the number of examined nodes and real-time flops, even
compared with the approach proposed in [2]. For example,
the discussed method can visit less nodes and perform less
operations by up to 99.7% when a ten-step horizon and a
step-up torque reference change are examined.

VII. CONCLUSIONS

This paper proposes refinements for the sphere decoding
algorithm employed to solve the long-horizon direct model
predictive control (MPC) problem for transient operation. By
exploiting the geometry of the underlying quadratic program
(QP) a new, tighter sphere is computed that, although it
sacrifices optimality (to some degree) when longer horizons
are of concern, it can significantly reduce the computational
complexity of the integer problem. Thanks to the proposed
modifications, the computational burden can be reduced by
up to 99.7% for long horizons and a three-level converter,
compared to that required for the search algorithm in [2].

APPENDIX A
CONTINUOUS-TIME MODEL OF THE DRIVE

The matrices D, E, and F of the continuous-time state-
space model of the drive (3) are

D =

⎡
⎢⎢⎢⎣
− 1

τs
0 Xm

τrΦ
ωr

Xm

Φ

0 − 1
τs

−ωr
Xm

Φ
Xm

τrΦ
Xm

τr
0 − 1

τr
−ωr

0 Xm

τr
ωr − 1

τr

⎤
⎥⎥⎥⎦ ,

E =
Xr

Φ

Vdc

2

⎡
⎢⎢⎢⎣
1 0

0 1

0 0

0 0

⎤
⎥⎥⎥⎦ , F =

[
1 0 0 0

0 1 0 0

]
.

APPENDIX B
DERIVATION OF THE ILS PROBLEM

By introducing Y (k) = [yT (k + 1) . . . yT (k +N)]T and
Y ref(k) = [yT

ref(k + 1) . . . yT
ref(k + N)]T to denote the

output and the corresponding output reference sequences over
the horizon, respectively, function (5) can be written in vector
form as

J = ||Γx(k)+ΥU(k)−Y ref ||22+λu||SU(k)−Ξu(k−1)||22 ,
(17)

where it was used the fact that Y (k) = Γx(k)+ΥU(k), with
the matrices Υ, Γ, S and Ξ being

Υ =

⎡
⎢⎢⎢⎢⎣

CBK 0 · · · 0

CABK CBK · · · 0
...

...
...

CAN−1BK CAN−2BK · · · CBK

⎤
⎥⎥⎥⎥⎦ ,
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Γ =

⎡
⎢⎢⎢⎢⎣

CA

CA2

...

CAN

⎤
⎥⎥⎥⎥⎦ , S =

⎡
⎢⎢⎢⎢⎢⎢⎣

I 0 · · · 0

−I I · · · 0

0 −I · · · 0
...

...
...

0 0 · · · I

⎤
⎥⎥⎥⎥⎥⎥⎦ , Ξ =

⎡
⎢⎢⎢⎢⎢⎢⎣

I

0

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

where 0 is the zero matrix of appropriate dimensions.
After some algebraic manipulations, (17) takes the form

J(k) = ||U(k) +Q−1Λ(k)||2Q + ζ(k)−ΛT (k)Q−TΛ(k)︸ ︷︷ ︸
const(k)

.

(18)
where

ζ(k) = ||Γx(k)− Y ref(k)||+ λu||Ξu(k − 1)|| ,
Q = ΥTΥ+ λuS

TS ,

Λ(k) = ΥT
(
Γx(k)− Y ref(k)

)− λuS
TΞu(k − 1) .

Following, by noticing that λu > 0⇒ Q 
 0, then Q can be
decomposed as

Q = HTH . (19)

Using (19) and the unconstrained solution of (18), i.e.,
Uunc(k) = −Q−1Λ(k), and by neglecting the constant term
since it is independent of U(k), (18) is written as

J = ||Ūunc(k)−HU(k)||22 , (20)

which is the ILS function of problem (7). �
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