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Abstract—Model predictive control (MPC) has established Yref Vret Uabe y
itself as a promising control methodology in power electroits. —=> Controller —=> Modulator ——=> System —>
This survey paper highlights the most relevant MPC techniqes
for power electronic systems. These can be classified into aw t
major groups, namely, MPC without modulator, referred to as ﬁ T
direct MPC, and MPC with a subsequent modulation stage,
known as indirect MPC. Design choices and parameters that (@) Indirect control scheme
affect the system performance, closed-loop stability andomtroller
robustness are discussed. Moreover, solvers and controlgiforms
that can be employed for the real-time implementation of MPC
algorithms are presented. Finally, the MPC schemes in queisin
are assessed, among others, in terms of design and computatal ﬁ

Yref Controller | %abe Y
—— — System ——>
& modulator y

complexity, along with their performance and applicability de-
pending on the power electronic system at hand.

xr

Index Terms—Power electronic systems, power converters, ac (b) Direct control scheme

drives, model predictive control (MPC), direct control, indirect
control, modulator, integer programming, quadratic program-
ming.

Fig. 1: Main controller structures.

(STATCOMS), high-voltage dc (HVDC) systems, flexible ac
|. INTRODUCTION transmission systems (FACTS), and uninterruptible power

ODEL predictive control (MPC) [1], [2] emerged as @>UPPlies (UPS), to name a few [14]-[20]. o

time-domain control strategy in tH®60s [3]—[6]. Over MPC .schemes for power eI_ectromcs can be classified into
the next decade, it established itself as an effective obntf0 main categories depending on whether they employ a
strategy for nonlinear, multiple-input multiple-outpMiMO), ~ Separate modulgtor or not. In the former case, MPC is imple-
constrained plants with complex dynamics predominantydusmented as amdirect controller, i.e., the controller computes
in the process industry. Later on, and owing to its versgtili the modulating signal/duty ratio which is fed into a modotat

MPC paved its way in numerous other industries, includinf" generation of the switching commands, see Fig. 1(a).
but not limited to, the mining, automotive and aerospacdence, the control action is a real-valued vector. On theroth

industries [7]. hand, when MPC is designed asliaect controller the control

In the 1980s, the power electronics community starte@nd modulation problems are formulated and solved in one
investigating the potential of MPC [8], [9], but the meagefOmputational stage, thus, not requiring a dedicated natolyl
computational resources of the time combined with the em&ge Fig. 1(b). Consequently the elements of the controltinpu
gence of power semiconductor devices that allowed highégctor are the switching signals, implying that it is an gee
switching frequencies limited its applicability and pevesl VECtor.
benefits. After a hiatus in the development of MPC-based The aforementioned MPC algorithms can be further divided
algorithms for power electronic systems for about two desad into smaller groups as shown in Fig. 2. Direct MPC-based
the ever-increasing computational power and the subsequéghemes include controllers with reference tracking, éngsis
advent of powerful microprocessors instigated the resurge bounds and implicit modulator. Direct MPC with reference
of interest in MPC for power electronics in th®00s [10]- tracking—also known as finite control set MPC (FCS-MPC)—
[13]. Several variants of MPC have thenceforth been deeelops the method most favored in academia due to its well-
for and implemented in power converters used in applicatiofeported advantages such as its intuitive design procedure

such as electrical drives, static synchronous comperssat®id straightforward implementation [13], [21]-[32]. Thiena
is to achieve regulation of the output variables along their
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Fig. 2: Classification of MPC methods for power electronisteyns.
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to design simplifications that detract from its effectiveme fashion was introduced in [74], [75], and [76], [77], for &
and result in inferior performance compared with converalo current and stator flux reference trajectory tracking, eesp
control techniques, see [33] for more detalils. tively. These methods, however, lack the receding horizon
Direct MPC with hysteresis bounds was the first rudimenpolicy and do not distinguish between the fundamental aed th
tary version of this type of controllers developed for poweipple components, thus complicating the observer desigh [
electronic converters [8], [34]-[37]. This algorithm emps To address these issues, more sophisticated MPC algorithms
hysteresis bounds within which the variables of interasths for the control of OPPs deemed necessary, leading to the
as the stator currents, or the electromagnetic torque aok st methods presented in [79]-[81]. Moreover, SHE with MPC
flux magnitude of a machine, need to be constrained. Latisr,presented, e.g., in [82]-[84]. Owing to the nature of the
more sophisticated derivatives were devised which adoptpeogrammed modulation methods these MPC-based strategies
variety of optimization criteria and/or nontrivial pretdan achieve very low harmonic distortions, but they are fairly
horizons [38]-[46]. Moreover, the versatility of the metho elaborate since fast closed-loop control is challenging.
in discussion allowed for different types of hysteresisimal  As for the indirect MPC algorithms, these are methods that
that affect the system performance in terms of, e.g., harenoemploy carrier-based PWM, such as sinusoidal PWM (SPWM)
distortions or switching losses [34], [47], [48]. or space vector modulation (SVM) [69], [85], [86]. Deperglin
Finally, the third group of direct MPC strategies can be fuen the formulation of the MPC problem, i.e., if it is a (mixed)
ther divided into two subgroups. The first one includes methiteger quadratic program ((M)IQP) or merely a (constrdine
ods that manipulate not only the switching signals, but alsw unconstrained) quadratic program (QP), these methats ca
their application time in an attempt to emulate the behawfor be split into two groups. The first subgroup of controllers
pulse width modulation (PWM) techniques. More specificallyses explicit MPC to solve the (M)IQP. Specifically, the
these methods—and in contrast to the aforementioned direptimization problem underlying MPC is solved offline for
MPC strategies—introduce the concept of variable swighirall possible states of the power electronic system. As dtresu
time instants by changing the state of the switches at arg tithe state-feedback control law is obtained and stored ik-loo
instant within the sampling interval. This is done by compgit up tables [87], [88], while methods, such as branch-and-
both the optimal switch positions and the associated dutpund (BnB) strategies [89], are employed in real time to
cycles [49]-[60]. In doing so, higher granularity of swiich acquire the solution in a computationally efficient manner.
is introduced enabling the reduction of the harmonic digior Finally, the control input, e.g., the modulating signal bet
in the variables of concern. Moreover, some of these methadlgy cycle, is fed into a modulator, which in turn generates
achieve operation of the power converter at a fixed switchirige switching commands [90]-[98]. Explicit MPC schemes,
frequency, thus resulting in deterministic switching Es§s1], however, are ill-suited for problems of higher dimensianses
[53], [56], [59]-[68]. the memory requirements for storing the explicit controV la
The second group consists of direct MPC methods thacrease exponentially with the problem size and complexit
are combined with programmed PWM [69], i.e., modulation Finally, the second group of indirect MPC methods totally
methods that forgo a fixed modulation interval. The switghinmasks the switching nature of the power converter. In doing
pattern and the switching instants are computed offlinedas®, the optimization problem can be cast as a constrained or
on some optimization criteria, such as minimization of thenconstrained QP. The former is relatively easier—contgpare
current total harmonic distortion (THD) and/or the elintiopa to the aforementioned methods—to solve in real time owing
of specific harmonics. Programmed PWM is implemented to the several existing off-the-self solvers, as discudatat
the form of selective harmonic elimination (SHE) [70], [71]in this survey [99]-[104]. The latter allows for an analgtic
or optimized pulse patterns (OPPs) [72], [73]. The idea @blution of the MPC problem [105]-[108]. This means that
manipulation of the switching instants of OPPs in a predicti the state-feedback control law can be computed offline, thus



greatly simplifying the implementation of such contrafler On the other hand, a real-valued input vector results with
In the sequel of this paper, the main characteristics ottirendirect MPC, i.e.,
and indirect MPC methods are discussed. Different design T 3 3
. : A . = [uq . . =[—1,1? c R>. 2
choices for formulating the optimization problem undentyi w=[ua wu” €U [ s (2)
MPC are presented. Furthermore, tuning parameters, suchAasa result, the continuous-time state-space model tales th
weighting factors, the prediction horizon length as weltles form

sampling interval, and their effect on the system perforcean dz(t)
are summarized along with important aspects of MPC strate- dt PACIORTO) (3a)
gies, namely their robustness and closed-loop stability pe y(t) = g.((t)), (3b)

formance. Moreover, solvers for the mixed-integer program

and QPs as well as the associated challenges of the re§fférey € R" is the vector of the:, output variables of the
time implementation of MPC algorithms on embedded systerfi¢Ste™ Which are chosen based on the application in question
are analyzed. In addition, a brief assessment of the diedusdYPic@l output variables along with relevant applicatiare

MPC methods is provided and their main strong points arfgoWn in Table I. Moreoverf () : R x U — R™* and

weaknesses are identified. Finally, the survey reflects en fhe(*) : R"* — R™ are the state-updatend output func-

main contemporary aspects and research directions of MPHONS: respectively, wheree {x, d}. In most cases, the power
lectronic system (3) is a linear or bilinear system [19D8].

This survey paper is structured as follows. The main inf ; h : . de tak
gredients that all MPC-based controllers share in comm ormer case, the continuous-time state-space modes ta

are summarized in Section Il. Design considerations al%e form

their implications on the performance of the power eledtron daz (1) = A.z(t) + Bou(t) (4a)
system are discussed in Section Ill. Section IV presents dt
implementation-related issues and challenges of diredt an y(t) = Cez(t), (4b)

indirect MPC, whereas Section V assesses their performang@hereAc € Rm=xne, B, € R"%*™ andC. € R™*"= are

Finally, Se(;tion Vi _confers on the current trends of MPC{he system, input, and output matrices respectively. These

in ag:adem|a and industry, and conclusions are drawn {fives can be either time-invariant or time-varying, defieg

Section VII. on the case study. On the other hand, for bilinear systems the
state-update function is of the form [110]-[112]

Fo(z(t),u®)) = (Ac + Acpu(t))x(t) + Beul(t) .

Three are the basic pillars of MPC, namely the mathematical>econd. the mpdeling of_three_-phase systems s com-
model of the plant, the constrained (linear or nonlineamonly performed in a two-d|menS|0|_'1aI rotating or station-
optimal control problem, and the receding horizon policy [Zary reference plane. Such a mapping—inherited by linear

In the sequel of this section, the aforementioned fundaaterfONtrol methods where the aim is to achieve decoupling of
components of MPC are briefly described the control loops—is realized by transforming any variable
' Eve = [€a & &)T in the three-phaseibc) system into a two-

dimensional variable via the matrix

II. MODEL PREDICTIVE CONTROL: FEATURES AND
OPERATING PRINCIPLE

A. Mathematical Model of the Plant o 2
2| cosyp cos(cp— T) cos(go—i— ?)

MPC, as indicated by its name, is a model-based controf (») = 3 . . o ; oxy |
method; an accurate model of the system is required for —sing —sin{p— ) —sin(p+ )
meaningful predictions of its future behavior, especially wherey is the angle between the direct axis of the orthogonal
disciplines like power electronics where control actiome aplane and thei-axis of the three-phase system. Hence, for a
taken within a few tens of microseconds. The vast majority o¢ference plane rotating with angular spegé—the so-called
models of power electronic systems that serve as predictidnrplane—the transformation is of the form

models for MPC have three characteristics in common. First, ¢, = K(p)t
they are based on the continuous-time state-space model. To dq abe _ _
derive the latter the variables that fully describe its dyits Where £,, = [£4 &]7. Whenwy = 0, ie., the plane is

are chosen and aggregated to the state veetrR"=. Typi- Stationary (known as the3-plane), the performed mapping
cally, such variables are those that relate to the energsgeto to the variablet ,; = [¢, &3]7 is
elements of the system, such as inductor currents, capacito — K(0
. . . éaﬁ - ( )éabc :
voltages, etc. Moreover, the, manipulated variables which
affect the future behavior of the system need to be selebited. 5y ¢ external disturb functipa(e) b dditional
. . e n presence or externa Isturpances, tunctipp(* as as adaditiona

case of direct M_PQ’ these Can_ represent the switch positio ument the vector of disturbancese R™<. For sake of simplicity, but
whereas when indirect MPC is of concern they can modethout loss of generality, it is assumed thdt= 0 in the sequel of the
the modulating signal. Assuming, without loss of geneyalitpaper. ) oning th ‘i date furetig,(4)

_ _ H It is wortl mentioning that even if the state-update functi (%),
a three phase SySten?'h( B 3)' t_he_ vector of man_IpUIated see (3a), can be linear/bilinear, the output funciiix), see (3b), can still be
variables in case of direct MPC is integer valued, i.e., nonlinear since output variables, such as the flux magniteidetromagnetic

T 3 3 torque, real and reactive power, etc., represent a nonlc@abination of the
u = [ug up ue]" EUs =Us xUs X Us =U5 CZ>. (1) state variables.



TABLE [: Typical output variables in power electronic sysig

Application Output variable Symbol
Electrical drives Stator current or flux 15 OF g [26], [113]
Electrical drives Electromagnetic torque, stator or rdtox magnitude Te, Vs Or U, [24], [114], [115]
Neutral point clamped converters Load current, neutrahtppotential 10, Un [21]
Cascaded H-bridge converters Load current, cell capaeciltage 10, Uc [116], [117]
Active front-end rectifiers Real and reactive power, dé-lioltage P, Q, vgc [22], [23], [118]
Current-source rectifiers Reactive power, dc-link current Q, idc [119]
Converters with filters Converter current, filter capacitoitage, load current Zconvs Ve, To [120], [121]
UPS systems Filter capacitor/load voltage Ve [122]
Modular multilevel converters Branch currents, moduleac#pr voltages, load current iy, vy (z € {1,2,...,6}), 20 [29], [123]
Matrix converters Input current or reactive power, loadreot 2; Or Qj, o [65], [66], [124], [125]
Impedance-source converters Dc-side inductor currepiaitor voltage, load current iL, Ve, to [126], [127]
TABLE II: Discretization methods used in MPC for power etecics.
Method Form Linear form
Forward Euler a(k+1) = (k) + Ts f. ((m(k), u(k)), kTS) e(k+1) = (I + Ts Az (k) + T Bou(k) [13], [21], [22]
Backward Euler z(k+1) = z(k) + Tsfc((m(k+1), u(k+1)), (k+ 1)TS) a(k+1) = x(k) + Ts (Acx(k+1) + Bou(k+1))  [27], [98], [128]
Exact z(k+1) = eAeTox(k) + (f() : eAcfdch) w(k) [26], [129], [130]

Finally, since MPC is a discrete-time controller, thehis aim, an objective functiow’ : R"» x U, — RT of the

continuous-time system (3) needs to be discretized form
k+1) = f(xk),ulk (5a) k+Np—1
" y(k; - g((jfk;)?( ! (5b) J@®.Um) = > J(=t+Du@). @

{=k

wherek € N indicates the discrete time step. To this ends formulated that captures and quantifies the control ob-
forward Euler, backward Euler or exact discretization isSMOjectives. Some common objective functions are presented in
commonly employed [131], see Table Il. The first two argapie |11 in order of increasing design complexity. As can be
popular because they are computationally cheap, thus dbeyseen, design choices relate to the norm used for the stage cos
not increase the—already pronounced—computational léadignction Ji(x), e.g., thel;- or £5-norm? single or multiple
MPC. However, the accuracy of both methods deteriorates @siput tracking’ the penalization (or not) of the control input,
the sampling intervall; increases, while forward Euler cany,e |ength of the horizon, the use of a terminal state coingtra

also exhibit stability issues [131, Chapter 5]. On the othgfc Sych issues are briefly discussed in Section Ill, wiserea
hand, exact discretization provides as precise a rep@semt hey are analyzed in more detail in [33].

of the continuous-time dynamics as possible, but at the coSgefore formulating the optimization problem explicit con-
of higher computational complexity. Moreover, it is wWOrthyqints can be imposed on the variables of interest. Such re
mentioning that the latter method is applicable only todine gyrictions can be implemented in the form of eitherd or soft
time-invariant systems. constraints. The former often represent physical linotadi
(e.g., on the control input, as indicated by (1) and (2)) and
thus cannot be violated in any way. The latter, on the other
hand, can be interpreted as protection mechanisms thakeenab

The aim of MPC is to find the sequence of manipulategie controller to operate the system within its safety kmit
variables that achieve the most desired system behavior—A&ssuch, they are imposed on the system state and, although
defined by an objective function—within a finite-time intatv they can be violated, effort should be put into avoiding such
To do so, first the aforementioned sequence is defined oveyialations. To do so, the degree of their violation, usually
finite horizon of N, € N* time steps as modeled by slack variables, needs to be minimized [1].

B. MPC Problem

T
Uk)=|uf(k) uT(k+1) ... uT(k+N,— 1)} elU, 3The £,-norm of a vecto € R™ is defined ag = (|&1]P + |&2/P +. . .+
(6) |nl")'/ forp>1.
7 ! i . .
4N Note that in case the output variables are of different dtiesit e.g.,
where.IU = U_*. As can be deduced from (5), the_ fUtur%urrents, voltages, etc., and prioritization among themetgired, then the
behavior of the power electronic system can be predicted ove and ¢>-norms can appear in the “weighted” forffné||5, where ¢ ¢
the prediction horizon based dif (k) and the present stateR". andA = diagA1, Az, ..., An, ) is @ diagonal, positive (semi)definite
k) weighting matrix, withA; € Rt, i = 1,...,n,. Specifically, forp = 1, the
(k). ) ) . “weighted” ¢1-norm is of the form||A&|l1 = 3%, A& [132], and for
In a following step, the optimal control problem underlying, — 2, the “weighted” ¢>-norm becomeg|A£|2 = S, A2¢2 = €112,

i=1 " 5%
MPC is formulated based on the chosen control objectives. WoereQ = diag(g1, g2, - - -, gn,,) With ¢; = X2,



TABLE Ill: Common objective functions used in MPC for powde&ronics.

Expression Features
Ji = ||lu(k) —u(k — 1)1 Control effort penalization, one-step horizah,-norm [39]
J2 = ||Yen(k + 1)1 Output reference trackinayg,, = Yt — ¥), £1-norm [13]
J3 = ||Yen(k + 1)|12 £-norm [122]
Jas = || Ayen(k + 1)1 Multiple outputs A > 0), one-step horizon¢;-norm [24]
Js = || Yen(k + 1)||2fQ Multiple outputs 2 > 0), one-step horizon{2-norm [133]
Jo = |Yern(k + D1 + Au||Au(k)|1 Au(k) = u(k) — u(k — 1), control effort penalizationX, > 0) [21]
J7 = |Yerlk + D12 + Aul|Au(k)]|2 Control effort penalizationX,, > 0), £2-norm [128]
Jg = ?Livp*l [[Au(f)|1 Control effort penalization, multistep horizoivf, > 1) [46]
Jg = ?Liv"*l lYer(€+ D12 + AullAu(0)]|3 Output reference trackingV, > 1, Ay > 0 [26]
J10 = Sy en(€+ DIZ + Aull Au(0)|3 Multiple outputs @ > 0) [134]
J11 = [Wenlk + Np)l% + 000" Ien(@)lI + Al Au(0)]3 Terminal cost R >~ 0) [129]

With the objective function (7), the system model (5), and
the explicit hard (input) and soft (state) constraints, MeC

problem that needs to be solved in real time takes the form Horizon -~
mllr}|(r]1€1)|ze J(x(k),U(k)) Y (k) o
subjectto (¢ + 1) = f(x(¢),u(()) o= -
y(l+1) =g(z(l+1)) (8) o/
Yref(k) *
u(l) € U U™ (k)

z({+1) e X CR"™
VO=F, ... k+N,—1.

Depending on the nature of the optimization variabl¢k)
and the system (5), the optimization problem (8) is a geheral (a) Horizon at time steg:
hard-to-solve integer program (IP) [89], [135], or a usyall
easy-to-solve convex QP [136]. IPs, if computationallysfea
ble, can be solved by exhaustively enumerating all candidat
solutions. Alternatively, heuristics or dedicated opfiation
algorithms are required that decrease #verage computa-
tional complexity, thus facilitating their real-time ingrhen-
tation without sacrificing optimality, see [26], [137], [8B
On the other hand, as mentioned before, convex optimizatio
problems can be efficiently solved with off-the-shelf emibed
solvers. A more detailed discussion on implementationeissu
of MPC is provided in Section IV.

Horizon

C. Receding Horizon Policy E ok+1k+2 E+N,+1

The solution to (8), i.e., theptimal sequence of manipu- (b) Horizon at time stegk + 1

lated variables
T Fig. 3: Receding horizon policy of direct MPC for a singl@in single-
U*(k) = [u*T(k) wl(k+1) ... u*T(k+Np - 1)} , output (SISO) system. The predicted output and its referemajectory
( are shown withY (k) = [y(k + 1) ... y(k + Np)]T and Yiet(k) =
. . . . [yret(k + 1) ... yret(k + Np)]T, respectively. A six-step prediction horizon
is determined in an open-loop fashion. Therefore, applying, = 6) is assumed.

U*(k) to the system makes it susceptible to external distur-

bances, model inaccuracies, etc. To add feedback and provid

the controller with a high degree of robustness, the notion o I1l. D ESIGN CONSIDERATIONS

the receding horizon policy is employed, as shown in Fig. 3

for the direct MPC case. As can be seen, out of the sequenc@&his section is dedicated to design considerations for MPC-
of optimal manipulated variables, only the first elemahtk) based algorithms, either in their direct (Fig. 1(b)) or nedi

is implemented. At the next time step, the optimization pssc (Fig. 1(a)) form. In the sequel, the most relevant design

is repeated over a one time-step shifted horizon based on rewices that affect the performance of such control schemes
measurements and/or estimates, see Fig. 4. are discussed.
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As mentioned in Section |I-B, and also shown in Table IlI, fow [KHZ]

the kernel of the MPC problem, i.e., the objective functiorkjg. 5: Trade-off curves (taken from [33]) for direct MPC liteference

: : : ; king and the/;- or ¢2-norm. The current THDItyp is shown for the
can be deSIQned in several ways and with different degréac ievable range of switching frequenciés,. The solid (blue) and dashed

of complexity_. This _great variety of choices .employs th@ed) lines are polynomial approximations of the indivitlsanulation results
controller designer with degrees of freedom during the rdnt indicated by squareg{-norm) and circles fz-norm), respectively. A system

formulation process, but it also affects the resulting qerf consisting of a two-level inverter and an induction machmeassumed.
mance. The first design choices one has to make relate to

the norm used and the parameters included in the objectivMethe switching frequency [15]In this context, lack of con-
function. trol effort penalization means that tlawerage switching fre-

1) Choice of Norm: When short-horizon direct MPC is quency fsy is limited only by the chosen sampling frequency
employed, then a popular design choice is to use #he fs, with f, = 1/T,. Specifically, the theoretical maximum
norm, see, e.g., [13], [21], [123], [126], [139], [140]. Whe switching frequency is equal to half the sampling frequency
the available computational power is of concern, such agehoi.e., fsw = fs/2, but in reality it is much lower than that [14,
is reasonable, since computation of the absolute valudseof €hapter 4]. Moreover, as stated in [33], lack of penalizatio
variable of concern is computationally cheap and stragghtf of the control effort leads to inferior system performanse a
ward. As shown in [141], howevef,-norm can lead to systemcompared to conventional control and modulation solutions
performance deterioration and even stability issues, gpebF thus the potential of MPC is not fully exploited.

In light of this, using the/s-norm with direct MPC is getting  Regarding indirect MPC algorithms with a subsequent mod-
more popular, see, e.g., [26], [32], [120], [129], [142}441. ulation stage, penalization of the control effort allows fo
Another advantage of th&-norm is that it turns the objective less aggressive control actions and gives rise to smoother
function into a quadratic one. When the optimization vagabcontrol [90], [99]. Moreover, given thak, > 0, where), is
is a real-valued vector, then the solution to the uncomstchi the weighting factor of the control effort, the resulting @R
optimization problem can be easily found by setting thetrictly convex optimization problem [136], thus it guatees
derivative of the objective function to zero [15]. This featis the uniqueness of the solution [2].
utilized in direct MPC schemes that have an implicit modurdat
eith_er when computing the application time of ea_u?h switc Tuning Parameters
position [52], [57], [60], [61], [63], or the online modifitans
of the offline computed switching patterns [79].

Regarding indirect MPC algorithms, thi-norm is use
in the vast majority—if not all—of the cases for the reaso
mentioned above [101]-[103], [105]-[108]. Specificallget
formulated optimization problem based on thenorm is a
QP which in its unconstrained version can be solved ve(r)y
easily since an analytical solution exists [105]-[108]. &h n
input and/or state constraints exist, then either efficioRt

The main design parameters that affect the controller perfo

4 Mance are the sampling interv&)], the number of prediction
r%orizon stepsV, and the several weighting factors, whether

these relate to the controlled variables or the controlreffa

the sequel, the most common tuning choices are presented.

1) Choice of Sampling Interval: The sampling interval not

ly affects the discretization accuracy and the ensuiglgjlst
ity of the discrete-time model, as mentioned in Section |I-A
solvers can be employed (see Section 1V), or the unconetﬂairpm 9'.50 the controlle_r pgrformance. In direct MPC without
implicit modulator switching can be performed only at the

solution can be projected onto the feasible set [108]. di te 1 instantsT.. (k + 1T Theref the ai
2) Control Effort Penalization: According to the optimal discrete ime Instan s (k+ 1)T;,.... Therefore, the aim

control paradigm [1], [2], the control effort, modeled withe is to have as high a sampling frequency as possible for a fine
term Aw in Table II’I is' most commonly’ penalized in thediscretization of the time axis. To this end, sampling indés

L . : . f 150 us or less are commonly chosen, see, e.g., [13], [23],
objective functior®. Depending on the type of MPC aIgorlthm0 . )
this has different interpretations, as explained below. [31], [127], [129], [144]-[147], withT; being a few tens

When direct MPC is concerned, penalization of the incrg—f microseconds with modern powerful control platforms, as

. . L ! discussed in Section IV. As mentioned in Section IlI-A2,
ment of the control signal in most cases implies direct aintr
SExemption to that are some direct MPC algorithms with iniplinod-

5Note that in other disciplines the manipulated variabléself, rather than ulator, e.g., MPC with programmed PWM, that achieve corssavitching
its rate of changeAw, is frequently penalized [2]. frequency [67], [79], [82].
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Fig. 6: Direct MPC with output reference tracking. The samplinterval is Fig. 7: Indirect MPC with asymmetric regularly sampled SPWKhe sam-

Ts = 25us (fs = 40kHz) and the switching frequencysw =~ 1050Hz  pling interval isTs ~ 476.19 us (fs = 2100 Hz) and the switching frequency
(M = 4.33 -1073). A system consisting of a two-level inverter and anfsy = 1050 Hz. A system consisting of a two-level inverter and an iniurct

induction machine is assumed. machine is assumed.

this implies that the sampling frequency imposes an uppgge of a few tens of microseconds—in order to avoid un-
limit on the achievable switching frequency, which is mostecessarily big deviations from the offline computed sviitgh
often adjusted by tuning the control effort weighting factoaiterns as well as to provide the controller with a high degr
Au shown in Table Ill, see Fig. 6. It is worth mentioning ot rohystness to disturbances and system nonidealitids [79
nonet_helgss, that as shown in [33], for a fine granula_rlfgo]’ [82], [83]. In doing so, both high-bandwidth contrei

of switching the ratio between the sampling and switchings it and the applied switch positions manage to produce

frequencies should be abol(0. o current harmonic distortions that are close to their mimmu
On the other hand, direct MPC with implicit modulator cages.

increase the granularity of switching by a factor of two or Finally, similar to direct MPC with fixed switching fre-

three, o_lepending on_whether two or thre_e SWitC_h positiorm,jency and modulation cycle, the sampling interval in ieclr
_resp_ectlv_ely, are ap_pll_ed at the correspo nding variableckw MPC with carrier-based PWM sets the operating switching fre
ing time instants within one sampl!ng interval [49]’.[50].' . quency. When SVM or SPWM with asymmetric regular sam-
[52], [54]_[58]‘_ Moreover, yvhen d|r(_act MPC,: W,'th implicit pling are used then (10) holds for a two-level converter, i.e
modulator achieves operation at a fixed switching frequenﬁﬂye sampling frequency is twice the switching frequency,[91
then the latter is directly defined by the sampling intervat d [94], [148], see Fig. 7. When, on the other hand, SPWM

to the deterministic switching within ori& [51], [53], [56], \ih s : o ;

S . ymmetric regular sampling is used the sampling and
.[59]_[61]’ [63]’. [65], [67], [68]. This 'mP"eS that the s_ephng switching frequency are the same if two-level convertees ar
interval T; defines the length of the fixed modulation cycle, (o 1aq [92], [97], [103], [105], [106].

For example, in case of two-level converters the relatignsh

between the switching frequengi, and T, is 2) Length of the Prediction Horizon: Long prediction

horizons can improve the closed-loop system performance.
Fow = 1 _ (10) Moreover, in case of infinite horizon, closed-loop stabili
275 guaranteed if there exists a solution with a finite assodiate
For direct MPC with programmed PWM, however, evegost [1], [2]. Acknowledging such benefits, research effort

though the switching frequency is constant—and as low adias been put into the design and implementation of MPC
few hundred Hz—it is decoupled from the sampling intervalgorithms with long horizons.
since such methods do not feature a modulation cycle of fixedThe benefits of direct MPC with long horizons have been
length. In these method§ is set as small possible—in thediscussed in, e.g., [33], [134]. Although the performance



3) Tuning of the Weighting Factors. As can be observed
in Table 11, the objective functions may consist of morertha
one terms, giving rise to multi-criterion optimization piems.

In such a case weighting factors are introduced to pri@ritiz
| among the different, and probably conflicting, terms. Tgnin

50

40t

S | and. .
= , of the associated weighting factors, i.e,, (for the control
£ 20} Mjﬁfzw'fh effort) and the diagonal entries o€ and Q (for the output

: terms), is not trivial [2].
MPC with Lo : . . L

10+ % N, =20 In principle, the weighting factors in multi-criterion gre

%8@%&4% ) lems are found by exploring the trade-off curves or surfaces

00 o5 1 15 2 25 3 3% a4 as so as to find the Pareto optimal p_omts [136, S_ectlon 4.7]s,'_|'h|
fsw [KHZ] however, can be not only very time consuming and tedious,

Fig. 8: Trade-off curves (taken from [33]) between statorent THD Itup ~ but also the trade-off curves can be nonconvex (i.e., neithe
and switching frequencyfsw for direct MPC with output reference tracking monotonic nor smooth), as in the case of most direct MPC
for N, = 1 (solid, blue line), andV,, = 20 (dashed, red line). The individual | ith Fi 5 d 8. Thi h .
simulation results are shown with squares (MPC wifh = 1), and circles algorit r_ns’ see, e.g., Figs. _an " O IS m_eans that C@Osm
(MPC with N,, = 20). A third-order system consisting of a two-level inverter,appropriate values for the weighting factors is even moged-ch
an LC filter and an induction machine is assumed. The resonanqadney Ienging, motivating practitioners of MPC to resort to ericpif
iS fres~ 830 Hz. .

approaches that rely on trial-and-error methods [149]0]15

To avoid heuristics, there have been some methods that

improvement is indisputable—especially when higher-ordehoose the weighting factors based on analytical expnessio
systems are of concern, see Fig. 8—the challenge of lorijus avoiding tuning altogether [115], [151], [152]. Moveo,
horizon direct MPC relates to the implementation of themerging methods for the weighting factors tuning utilize
associated optimization problem. Specifically, as meetibin techniques from artificial intelligence, such as neuraivoeks
Section 1I-B, in the vast majority of the cases the direct MP@nd genetic algorithms [143], [153]-[155]. In this way the
problem is formulated as an IP which is NP-hard [89], meaftning process is automated and the weighting factors can be
ing that its computational complexity increases expormadigti adjusted in real time. The downside of the former methods,
with the number of candidate solutions. The latter depentigwever, is that their generalization and applicabilitydié

on the topology in question and the length of the horizofgrent power electronic systems are limited, whereas tierla

For example, assuming a three-phase two-level convertar wiequire elaborate design process and the training proeedur
input set can be very laborious and non-exhaustive.

Us ={-1,1}° C. Robustness
As discussed in Section II-A, MPC requires an accurate sys-

the_n t_he possml_e solutions a2&"”, Wh'le the elements of the yo ) oqel to achieve favorable performance. Even though the
optimization yarlable argN,. Hence_, it can be understood thar'nodels of power electronic systems are typically accurate—
a I_onger honzon can rend_er the direct MPC problem COMPYf |east compared to other disciplines—model mismatches
tationally !ntra_cta_ble. In t_h's Sense, the app_roach _Of astiee and system nonidealities are always present, due to, e.g.,
enumeration is impractical with long-horizon direct MPCcomponent aging, temperature variations, etc. Such imaecu
thus one has to resort to other methods [137]. These includgs .an adversely affect the system performance [L56] Suc

EIangtrategies, such as the sphere decgderd[zrt?], [142], mOy&tormance deterioration is also amplified by the lack of an
ocking strategies [110], [127], event-based horizor8],[8 ;o rating element from MPC that facilitates the elimiaat

prediction with extrapolation or interpolation [39], [4QH8], 4t steady-state errors. Despite the fact that the recedinig h
or their combinations [42]. . _ zon makes the MPC schemes robust to disturbances, model
As for indirect MPC, long horizons improve the perforyncertainties and mismatches, further tools and methoels ar
mance of such algorithms as well [99]. Similar to direct MPGequired to ensure smooth operation of the power electronic
the optimization problem of explicit MPC is an IP—namelyygtem,
an (M)IQP—meaning that the same computational challenges-or addressing the lack of integrating action of MPC and
exist. As a result, the implementation of long horizons can ke ensuing steady-state errors due to model mismatctoes, et
demanding, thus the length of the horizon is limited to a fewpme techniques have been proposed that add an explicit
number of steps [90], [91], [94], [97]. MPC as a QP, howevegytegrator either to the objective fucntion [157], [158] o
allows for longer horizons owing to the convex nature of thg, the state vector [92]. Alternatively, disturbance obses,
problem, the implementation of which is easier with off-theg;ch as integral feedback observers, Luenberger observers
self solvers, as discussed in Section IV. Consequentlyy sygxtended) Kalman filters, moving horizon estimation, can
MPC methods can achieve good closed-loop performance apd implemented to add an integrating action to the outer
avoid stability issues [5]. The same applies to direct MPfgq [103], [110], [159]-[161]. Moreover, system identific
problems that can be formulated as QPs, as is the casejgh algorithms can be employed that either assume knowledg
MPC with implicit modulator with either variable switchinggf the system (i.e., white-box model-based approacheg}{16
time instants [121] or programmed PWM [79], [81]. [164], or are model free (i.e., black box methods) [165]-gL6



Note, however, that the former methods fail to estimate alb do so, as with the above-mentioned works, Lyapunov
the system parameters at once, while combinations of détability theory was utilized to tackle the problem at hand.
ferent sources of uncertainties/model mismatches arelysua

neglected, implying that the estimation performance isthet IV. | MPLEMENTATION

most desired. As for the latter, they rely on measurements ofP
the input and output signals (e.g., applied voltage and Iogdf

current, respectively) and elaborate look-up tables, i fconstants that characterize them. For this reason theineal-

sutpseqtuer;tl)_/ utilized lt;]y co;nﬁut?';(_)nal det?a:jndn;g |dent|| tplementation of control schemes in the framework of MPC
cation techniques, such as data Titing metnods. AS a TeSyL, o yrjyjg. Specifically, solving in real time the undgrig

the already pronounced computational load of MPC is furthﬁ{teger QP (IQP) or QP within the available time of a few
increased.

microseconds poses the main challenge.

In this section implementation-related issues of bothatire
D. Sability and indirect MPC are discussed. Available options on how to

solve the associated optimization problems in real timeege

MPC is a time-domain nonlinear control technique. Thugented. Moreover, considering the computational comgylexi
traditional frequency-domain stability analysis tool® arot of most MPC algorithms, powerful control platforms are afte
applicable. Moreover, depending on the system modelifgeded to fully utilize the available computational povir.
and the Subsequent control problem formulation, MPC deq"ﬁs end, this section also offers Options based on Sys"e.rn_o
W|th p|antS W|th integer inputS. Stablllty Of Such SySterBS |Ch|p (SOC) techn0|ogy W|th d|g|ta| Signal processors (D)SPS

intrinsically difficult to study and prove. or field-programmable gate arrays (FPGAs) and ARM proces-
For the study of closed-loop stability of indirect MPCgqrs.

Lyapunov stability theory is employed [169]. More specifi-

cally, first, the designer has to define an invariant Xet A Sl

under a terminal control law of the form(x) applied after "~ vers _ _ o

the horizonN,. Following, a Lyapunov function inX ; is As mentioned, direct MPC for power electrqnlcs is mqst
included in the objective function in the form of a terminafften formulated as an IQP. The common practice for solving
cost, see, e.g., functios; in Table Ill. Moreover, the state SUch optimization problems in embedded control systems is
constraints in problem (8) need to be augmented by a termiMéfh exhaustive search. Since the problem is NP-hard, such
constraintz(k+ N,) € X s [170], [174]. In doing so, indirect an approach is |mpr§ct|cal for horizons Iong_er than one step
MPC schemes with carrier-based PWM—either formulated §§» > 1), see Section Ill-B2. Hence, as discussed in that
QP [111] or (M)IQP which employs explicit MPC [92], [172],section, more sophigticated algorithms are .necessaryititzee
[173]—that guarantee closed-loop stability can be designe longer horizons at high sampling frequencies.

Regarding direct MPC, closed-loop (practical) asymptotic From an implementation point of view, a method that
stability was shown in [174], [175], assuming power eled1as attracted particular attention in recent years is a B_nB
tronic systems that can be modeled as linear systems wigorithm named sphere decoder [26] thanks to its ostensibl
integer inputd. To achieve this, similarly to indirect MPC, a&ffectiveness; the average computational burden of sphere
Lyapunov-based stabilizing quadratic objective functimeds decoder scales linearly (instead of exponentially) wite th
to be designed. Based on these works, [141] showed that difdediction horizon steps [181]. As a result, this solver has
MPC based on thé,-norm can lead to instability provided that?€€n implemented in [144], [146], [147], [182], for differe
the control effort is penalized (see, functidg in Table 1II). POWer electronics applications. In [146], a three-s®&p € 3)

On the other hand, when, = 0 (see, e.g..Jo or Jy in direct MPC for a five-level converter was implemented with a

Table 11l) then potential stability issues are avoided, o a Sampling frequency; = 10kHz (7 = 100 us). A four-step
verified in [176], [177]. Moreover, closed-loop stabilityf o Norizon (v, = 4) for a three-level converter was implemented
one-step direct MPC was achieved in [178] by introducirl§ [147], but with the slightly higher sampling interval =
constraints that ensure the asymptotic convergence of e /S A four-step horizon was also implemented in [144]
controlled variables. Furthermore, an interesting apghdar With 7s = 25us for a two-level converter. All the three
the verification of the behavior of direct MPC for differenPrévious works used a dSpace system as control platform.
power electronic was proposed in [179]. By employing toolshe f|r_st FPGA_—based |mpIem.entat|on was presepted in [182].
from statistics, this work aims to take the relevant regeardnerein, a horizon ofV, = 5 time steps was achieved for a
one step further than [174], [175]. Due to the nature of iHBree-level converter, while the sampling interval was tset
adopted tools (i.e., statistical model checking), howetlds Ts =25 pis. _ _ _
method is not deterministic and lacks rigorous mathemiatica An alternative approach to solve the IQP underlying direct
exactitude. Finally, practical stability of systems gawent by MPC in an efficient manner is to adopt the so-called miOSQP
direct MPC with hysteresis bounds as well as conditions §!Ver [183] which is based on the alternating directionimodt

ensure operation within a safe region were provided in [18¢f multipliers (ADMM) [184]. This algorithm was employed
in [129] to solve the direct MPC problem for a three-level

"The definition and implications of closed-loop practicahbslity are converter. As shown, short horizons Suﬁlce to aCh_leve favor
provided in [174, Section 1] and references therein. able system performance when a terminal cost—intended to

ower electronic systems require sampling frequencies of
ew up to several tens of kHz due the very small time



TABLE IV: Summary of solvers used in MPC for power electranic

SoC
Solver Method Problem Matlab interface  Open soufce m u* System Y
qpOASES AS QP yes yes - MPC r
oDYS P QP no ho Outer Nz
Sphere decoder BnB IQP no no loop x Yy
miOSQP ADMM  IQP no yes T Observetn ADCs
Shared memory
ARM 2 <
approximate an infinite horizon cost—is added to the objecti FPGA init. | | < FPGA
function. This was verified with results acquired based on § ’m‘
FPGA implementation fotV,, = 2 and T = 25 us. ]
Regarding MPC problems formulated as QPs (e.g., indirg | |Communicatio

MPC with carrier-based PWM, or some direct MPC algorithm=
with implicit modulator, such as MPC with programmedFig. 9: FPGA-based SoC structure for the implementationirfctl MPC.
PWM), they can be solved with any of the available (both

open-source and pommt_arual) QP gol_ver;. These opt|0rad|f(§ates includes DSPs, FPGAs, micro-controller units (MGUS)
in their approach in solving the optimization problem. SaVve

algorithms have been proposed in literature, such as tim{eriand their combinations. Typically, an embedded contraesys

point (IP), active-set (AS), gradient, and explicit metbpdfor power electronics includes an FPGA to manage the inputs

as well as the aforementioned ADMM. A comprehensiv%nd outputs (IOs) of the system, such as generation of the

assessment of different QP solvers is given in [185] an%ate signals and the reading values from the analog-ttadligi

with more focus on FPGA implementation, in [186]. Beside%(bnverters (ADCs). In conjunction with the FPGA, often_ one
numerical accuracy, the computational speed of the sobyerdl more MCUs or DSPs are added to calculate the entire (or

crucial. It is important to note that the relevant quant#tythie a part) of the control algorithm and realize interfaces toeot
: ) X . . systems.
worst-case execution time as this determines the maxmu??3

sampling frequency. The execution time depends on man ue to the fact that most direct MPC algorithm_s requ_ire a
factors, such as the size of the state and input vectors, @um mpling frequency of about two orders of magnitude higher

of constraints, steps of the horizon as well as the type n the desired switching frequency [33], FPGAs are the

calculation unit used. Another aspect when choosing astsve™OSt promising _contr_ol plat.form olwin.g o their ability to

which interfaces are offered. For the power electronicsalom perform calculations in a highly p|p.el|ned and paralledjze

an interface to software such as Matlab/Simulink would lee t anfe2r [12(;9]' [182|1' qu texaa?pli cilgect MPC_: Vi’gg kr:_c')nzon

favored choice, as it allows simple integration into clo$sab p = = and sampiing intervat; = 104S s = X Z). .

simulations. was solyed with _ex_haust|ve search on an FPGA by pipelining
A solver that has been gaining popularity in the poweaf*II possible predictions [193].

electronics community is qpOASES [187]. This solver was One drawpack of these multi-chip solutions is the possible
employed in [101] to solve a linear QP underlying indirecommunication bottleneck between the FPGA and the other

MPC for a motor drive system in less thano us. Moreover calculation units. An FPGA-based SoC overcomes this issue

this solver was used in combination with the ACADO [188?_3/_ combi_ning the FPGA_ and m“'“p'e processor cores Iin one
and casADi [189] toolkits in [103] and [100], respectivelys'l'con chip. The calculation units are h|g_hly|nterco y
again for electrical drives. In all the above works the splvée Standardized advanced extensible interface (AXI) whic
was implemented on a dSpace system. Another advantagé’r(ﬁv'des an on-chip, ,h'gh bandwidth, low latency interface
gpOASES is that it is suitable for nonlinear QPs owing tgetyveen the Jprocessing system (PS) and the programmable
available abstraction tools that tailor the solver to the dggm (PL). This allows to leverage the advantages of an FPGA

at hand and generate an optimized code that can also tikdnultiple ways, namely, the FPGA can be used for the
the processor architecture into account, see, e.g., [1BER} calculation of all the control-associated procedures gnthis

Finally, ODYS, a QP solver with low computational anoclosing the control loop directly in the PL. Another optian i
memory requirements that employs an AS method, sho use the FPGA.as an accelerator for the processor and use
promising results with a drive system [102]. the PS for operations that can be done more efficiently there,

Given the above, Table IV summarizes some key aspe@tg" divisions, or matrix inversions. Following, paréfieble

about solvers that have been used with a telling effect in MPEMputations can be offloaded t(_) the _FPGA' In recent years,
for power electronics. several research groups have built their own control platfo

based on FPGA SoCs, see, e.g., [193]-[198].
Fig. 9 depicts a simplified example of the implementation
B. Systems of direct MPC on an SoC FPGA. First, the measurements are
One of the main challenges in implementing MPC algaead from the ADCs and processed by an optional observer to
rithms is handling the potentially high computational lemd get the current state(k).8 Subsequently, the MPC algorithm
within the small sampling intervals. This leads to the gioest
of a suitable embedded calculation platform. The list ofdian  8To simplify the diagram, the delay compensation is omitted.



TABLE V: Assessment of direct MPC schemes. “MPC w. ref. traskands for MPC with reference tracking (i.e., FCS-MPQYIPC w. hyst. bounds” for
MPC with hysteresis bounds, “MPC w. var. sw. inst.” for MPQtwvariable switching time instants, and “MPC w. prog. PWNt MPC with programmed
PWM. Only the relevant objective functions for each MPC sobeare indicated.

Objective function (Table 111) Direct MPC scheme coEr):;g:ity Cgcr)nrsglt:;:(t);ml Performance Stability
Ji = ||lu(k) —u(k — 1)1 MPC w. hyst. bounds Simple Low Good Stable
Ja = ek + Dl MPC w. ref. trat?k. Simple Low Poor Stable
MPC w. var. sw. inst. Simple Moderate Poor Stable
MPC w. ref. track. Simple Moderate Poor Stable
J3 = || Yer(k + 1)||2 MPC w. var. sw. inst. Simple Moderate Good Stable
MPC w. prog. PWM Moderate Low Very good Stable
Ja = [ Ayen(k + Dl MPC w. ref. trat?k. Complex Low Poor Stable
MPC w. var. sw. inst. Complex Moderate Poor Stable
MPC w. ref. track. Complex Moderate Poor Stable
Js = ||Yenl(k + 1)H2Q MPC w. var. sw. inst. Complex Moderate Good Stable
MPC w. prog. PWM Complex Low Very good Stable
o = ek + Dl + AallAu(B)]: MPC w. ref. trat?k. Moderate Low Poor Potentifilly unstable
MPC w. var. sw. inst. Complex Moderate Poor Potentially ablet
MPC w. ref. track. Moderate Moderate Very good Stable
J7 = [Yer(k + )13 + AullAu(k)|3 MPC w. var. sw. inst. Complex Moderate Very good Stable
MPC w. prog. PWM Complex Low Excellent Stable
Jg = ?:,ivp*l [[Aw(f)]]1 MPC w. hyst. bounds Moderate Moderate Excellent Stable
Jo = Ej;\;p,l lyar? + 1)”%+ MPC w. ref. trat?k. Complex High . Excellent Stable
= N MPC w. var. sw. inst. Complex Moderate/High Very good Stable
Auf|Au (@)l MPC w. prog. PWM Complex Moderate Excellent Stable
o = ;Z;g\;p,l genr(C + 1)”2Q+ MPC w. ref. tra(':k. Complex High . Excellent Stable
5 MPC w. var. sw. inst. Complex Moderate/High Very good Stable
Aull Au ()]l MPC w. prog. PWM Complex Moderate Excellent Stable
Tt = l[yen(k + Np)”%{“ﬂ' MPC w. ref. trat?k. Complex High . Excellent Stable
k+Np—1 9 5 MPC w. var. sw. inst. Complex Moderate/High Very good Stable
=k lyen(®lig + AullAu()]z MPC w. prog. PWM Complex Moderate Excellent Stable

TABLE VI: Assessment of indirect MPC schemes. Only the ratgvobjective functions for each MPC scheme are indicated.

Objective function (Table 111) Indirect MPC scheme coDme;IE:ity ng]nﬁsr:;ii?;al Performance Stability
Ts = l[en(k + 1)”3 MPC as (M)IQP Si.mple Moderate Good Stable
MPC as QP Simple Low Good Stable
= e S T
J1 = [enll + DI + Ml Su(b)]3 remtn e e e e
Jg = Iz;rlivpfl lyen(€+1)|12+ MPC as (M)IQP Complex High Very good Stable
AullAu(e)))? MPC as QP Moderate Moderate Very good Stable
Jio = if:;vp*l l1yer(€ + 1)||2Q+ MPC as (M)IQP Complex High Very good Stable
AuHA’u(Z)H% MPC as QP Complex Moderate Very good Stable
J11 = |Yen(k + Np)|| %+ MPC as (M)IQP Complex High Very good Stable
f;ﬁvp*l Hyen(é)H?Q + Aul|Au(f)||2 MPC as QP Complex Moderate Very good Stable

is executed in the FPGA. The referengg:(k) is provided In addition to embedded control systems, commercial rapid-
by an outer control loop, which runs at a lower frequenagontrol-prototyping (RCP) systems have been used in com-
on the ARM processot. The interface between the controbination with the solvers discussed in Section IV-A for the
loops is realized by the integrated AXI. The other depictegkperimental validation of indirect MPC algorithms. Such
ARM processor is not part of the control loop and attends/stems include the aforementioned dSpace, and the rbalize
“housekeeping” tasks, such as the initialization of the BPG sampling frequencies are in the orderldfkHz [101], [103],
data logging and communication with the other systems afiB2]. In addition indirect MPC has also been implemented
the user. using OPAL RT, which combines multi-core CPUs linked to an



implicit modulator and one variable switching time instant
(N, = 1, Ty, = 10 us) [200], and indirect MPC with SVM
(N, = 1, T, chosen according to (10)) in terms of stator
current THD over a wide range of switching frequencies. The
objective function used in all cases.Js from Table Ill. The
case study relates to an electrical drive system consisfirg
| two-level inverter and an induction machine; the paransatér
DMPC-II the system are given in [33, Appendix A]. As can be observed,
~ direct MPC, regardless of its implementation, outperforms
N e e indirect MPC with SVM as the switching frequency decreases.
0 25 5 75 10 125 15 175 20 225 25 The reason is that switching with indirect MPC is deterntiais
@ IJ;ZWD['\‘/':Z}SW and constrained by the dedicated modulator, whereas direct
MPC has the freedom to make decisions and apply a new
switch position at a much higher frequency rate.

However, although Fig. 10 indicates the superiority of clire
MPC—in terms of current THD—for drive systems, indirect
MPC is an excellent option for grid-connected converteis. D
rect MPC—uwith the exemption of some direct MPC schemes
with implicit modulator, such as programmed PWM—due
to the lack of a modulator produces switching patterns that
are not repetitive. This implies that the harmonic spectea a
- nondeterministic, with the harmonic energy spread over the
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ L whole range of frequencies. A direct consequence of this is

0 05 1 15 2 25 3 35 4 45 5 that grid standards, such as the IEEE 519 [201], cannot be
(b) Ithp VS few (z00med in) met since they impose stringent limits on harmonics at the
point of common coupling (PCC), especially of even order
Fig. 10: Trade-off between current THEp and switching frequencysw  gnd interharmonics.

o et M W QU eference e (DM oo 2201 To further explain why direct—as opposed to indirect—
with a dashed, green line), and indirect MPC with SVM (IMP@own with MPC may not be suitable for grid-tied converters an example
anAasg'?)Otrtﬁg;nL‘?O('D'mg)-c ﬁ;]eari]f;dgfggﬁékz"mgﬁg)ns/\Zfzﬂnﬁzi;?nuags is provided hereafter. Consider a grid-tied two-level cmter
;two-levél inverter and an induction machine is aésum)e;d. ’ with an LCL filter Wllth resonance frequ?n%’es_: 1203.3 Hz
and direct MPC with reference tracking with a three-step
ediction horizon §,, = 3) and sampling interval’s = 40 us.
r a switching frequency of abo2&50 Hz, the output current
spectrum is shown in Fig. 11(a). In addition, Fig. 11(b) dépi
V. ASSESSMENT the harmonics of non-integer order lumped together to the
In this section a brief assessment of MPC methods folosest integer harmonic by computing an equivalent rmseval
power electronics is provided. First, Tables V and VI présenlong with the harmonic limits imposed by the standard. By
a qualitative evaluation of the discussed direct and indioing so, a direct comparison with the limits imposed by the
rect MPC algorithms, respectively, in terms of design an&EE 519 standard can be performed. Specifically, the stdnda
computational complexity, resulting system performancé alimits are shown as light gray bars, harmonics that meegthes
closed-loop stability. This is done for the different olijee limits are shown as blue bars, and harmonics violating their
functions presented in Table Ill. The aim of Tables V and Mimits as red bars. As can be seen, although the odd harmonics
is to indicate in a concise manner the associated potent@dn meet the limits, harmonics of even order within the range
challenges and pitfalls of the different formulations ok th10 to 25 violate—even marginally—their limits. For example,
MPC problem. As can be seen, MPC, both in its direct anitle 12" harmonic has amplitude.91 % which is greater than
indirect versions, achieves the best performance when log 0.875 % limit of the standard.
horizons are implemented. This, however, comes at a cost oMoreover, it can be observed that the harmonic energy is
increased computational and design complexity, implyheg t not concentrated around the switching frequency,2&h(0 Hz,
MPC algorithms most often require powerful control platier but it is spread over low-order harmonics. This is because
to be realized in a real-world setup, see Section IV-B. Hendearmonics beyond the resonance frequency (he6s.3 Hz)
MPC is mostly relevant for applications where the cost ohsuare effectively attenuated, whereas low-frequency haioson
platforms is negligible—or, at least, low—when compared tare not. As a result, all these low-order harmonics are not
the cost of the power electronic system in question, and—emdiltered out but appear in the spectrum. Such a characteristi
importantly—to the associated cost savings achieved dtheeto renders direct MPC unsuitable for grid-tied converterdesm
performance improvement accredited to MPC. long horizons are used to drastically reduce the harmonic
Fig. 10 presents a comparison between direct MPC witlistortions, see Fig. 8 and [33].
reference tracking/{, = 1, Tx = 5pus), direct MPC with  On the other hand, owing to the deterministic spectrum of
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Fig. 11: Current harmonic spectrum produced by direct MPC.
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Fig. 12: Current harmonic spectrum produced by indirect MPC

PWM, the harmonic energy of the grid current with indirect Another emerging research direction relates to the formu-
MPC is concentrated at the sideband harmonics, see Fig. (Kdion of the MPC problem. Many of the derived MPC algo-
Hence, low-frequency harmonics are of very small amplitudgthms and/or solvers assume linear systems of the form (4)
whereas harmonics at frequencies higher than the resonagfifi integer or real-valued inputs, see, e.g., [26], [L@ijen
are effectively filtered out. that many power electronic systems do not meet such a pre-
requisite, this means that they either have to be lineaf@ef
VI. TRENDS [203], thus detracting from the accuracy of the model, oepth

The last part of this survey provides the current trends angethods need to be developed and/or solvers employed. To
contemporary aspects of MPC in academia and industry. tackle these issues, MPC needs to be addressed as a nonlinear

As highlighted in Section 111-B1, the sampling interval forproblem [204]. Moreover, solvers, such as the aforemeation
direct MPC needs to be as low as possible to achievegpOASES [187], FORCES [205], etc., and toolkits, e.g.,
fine granularity of switching. Because of this, the researéddCADO [188], casADi [189], VIATOC [206], etc., can be
interest moves towards control platforms that can enalde thdopted for indirect MPC. As for direct MPC, either existing
implementation of MPC algorithms with very high samplingnethods, such as the sphere decoder [26], need to be extended
frequencies—see also Section IV-B—as well as algorithnt@ nonlinear systems and the optimization problem to be
that can keep the computational complexity of MPC at bayreformulated [207], or new algorithms need to be developed.

The latter is a very relevant research question from anFinally, an interesting topic is the development of MPC
industrial point of view as well. Specifically, one of the mai algorithms that achieve both low harmonic distortions with
industrial research focuses is on techniques that mitigage discrete harmonic spectra as well as excellent dynamicvbeha
pronounced computational complexity [202]. Such methodsr. As highlighted in Section V, indirect MPC with carrier-
will facilitate the real-time implementation of refined MPChased PWM can produce spectra with harmonics appearing
algorithms and, as a result, their potential will be utiizeat odd non-triplen multiples of the fundamental frequency.
to its full extent. In doing so, MPC will be able to bringMoreover, it can potentially achieve very low THD (e.g.,
palpable benefits to the industry, such as reduction of tiden LC or LCL filters are present). However, its dynamic
investment or operating costs of the power electronic sylsehavior is worse than that of direct MPC due to the existence
tem [202], thus establishing it as a superior control alitme of the explicit modulator. Therefore, combining principle
to the conventional solutions. It is worth mentioning thia¢ t from both direct and indirect MPC is apropos. To this aim,
existing MPC-based industrial control solutions suppbg t direct MPC with implicit modulator, either in the form of
above argument [79], [190]. programmed PWM [79], [208], [209], or variable switching



time instants [67], [121], seems as a very promising dioecti [13]

VIlI. CONCLUSIONS [14]

MPC, either with modulator (i.e., indirect MPC) or without [15]
(i.e., direct MPC), has been an emerging control method iﬂs]
the field of power electronics. In this survey, the formulati
of the optimization problem underlying MPC has been dis-
cussed along with the most relevant design consideratioas all’]
the associated controller robustness and closed-loograyst
stability. A properly designed objective function is vitad
avoid stability issues, while tuning parameters, such as tH18l
sampling interval, the length of the horizon and the weitgdti
factors (when present) profoundly affect the performanice o
the controller. Based on the presented assessment of thte mi3$l
common MPC methods, it can be concluded that MPC, when
properly designed for and tailored to a given case study, can
achieve favorable system performance. This, however, som&0
at the expense of pronounced computational complexity—
especially when implemented naively—implying that poweérf
control platforms and efficient real-time solvers are reeghi [21]
in many cases. To this end, the most up-to-date systems and
solvers have been identified and their potential and applicée?2]
bility presented. Nevertheless, despite the existing tewis
further research is required to fully utilize the potented| o3
MPC. For this reason, future meaningful directions havenbee
pinpointed aiming to motivate current and future practitcs

of MPC in the field of power electronics. [24]
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