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Abstract—Model predictive control (MPC) has established
itself as a promising control methodology in power electronics.
This survey paper highlights the most relevant MPC techniques
for power electronic systems. These can be classified into two
major groups, namely, MPC without modulator, referred to as
direct MPC, and MPC with a subsequent modulation stage,
known as indirect MPC. Design choices and parameters that
affect the system performance, closed-loop stability and controller
robustness are discussed. Moreover, solvers and control platforms
that can be employed for the real-time implementation of MPC
algorithms are presented. Finally, the MPC schemes in question
are assessed, among others, in terms of design and computational
complexity, along with their performance and applicability de-
pending on the power electronic system at hand.

Index Terms—Power electronic systems, power converters, ac
drives, model predictive control (MPC), direct control, indirect
control, modulator, integer programming, quadratic progr am-
ming.

I. I NTRODUCTION

M ODEL predictive control (MPC) [1], [2] emerged as a
time-domain control strategy in the1960s [3]–[6]. Over

the next decade, it established itself as an effective control
strategy for nonlinear, multiple-input multiple-output (MIMO),
constrained plants with complex dynamics predominantly used
in the process industry. Later on, and owing to its versatility,
MPC paved its way in numerous other industries, including,
but not limited to, the mining, automotive and aerospace
industries [7].

In the 1980s, the power electronics community started
investigating the potential of MPC [8], [9], but the meager
computational resources of the time combined with the emer-
gence of power semiconductor devices that allowed higher
switching frequencies limited its applicability and perceived
benefits. After a hiatus in the development of MPC-based
algorithms for power electronic systems for about two decades,
the ever-increasing computational power and the subsequent
advent of powerful microprocessors instigated the resurgence
of interest in MPC for power electronics in the2000s [10]–
[13]. Several variants of MPC have thenceforth been developed
for and implemented in power converters used in applications
such as electrical drives, static synchronous compensators
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Fig. 1: Main controller structures.

(STATCOMs), high-voltage dc (HVDC) systems, flexible ac
transmission systems (FACTS), and uninterruptible power
supplies (UPS), to name a few [14]–[20].

MPC schemes for power electronics can be classified into
two main categories depending on whether they employ a
separate modulator or not. In the former case, MPC is imple-
mented as anindirect controller, i.e., the controller computes
the modulating signal/duty ratio which is fed into a modulator
for generation of the switching commands, see Fig. 1(a).
Hence, the control action is a real-valued vector. On the other
hand, when MPC is designed as adirect controller the control
and modulation problems are formulated and solved in one
computational stage, thus, not requiring a dedicated modulator,
see Fig. 1(b). Consequently the elements of the control input
vector are the switching signals, implying that it is an integer
vector.

The aforementioned MPC algorithms can be further divided
into smaller groups as shown in Fig. 2. Direct MPC-based
schemes include controllers with reference tracking, hysteresis
bounds and implicit modulator. Direct MPC with reference
tracking—also known as finite control set MPC (FCS-MPC)—
is the method most favored in academia due to its well-
reported advantages such as its intuitive design procedure
and straightforward implementation [13], [21]–[32]. The aim
is to achieve regulation of the output variables along their
reference trajectories by manipulating the converter switches,
and thus directly affecting their evolution. This variant of
direct MPC, however, comes with pronounced computational
complexity which can potentially lead to computationally
intractable optimization problems, as discussed later in the
paper. Moreover, researchers often—knowingly or not—resort
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Fig. 2: Classification of MPC methods for power electronic systems.

to design simplifications that detract from its effectiveness
and result in inferior performance compared with conventional
control techniques, see [33] for more details.

Direct MPC with hysteresis bounds was the first rudimen-
tary version of this type of controllers developed for power
electronic converters [8], [34]–[37]. This algorithm employs
hysteresis bounds within which the variables of interest, such
as the stator currents, or the electromagnetic torque and stator
flux magnitude of a machine, need to be constrained. Later,
more sophisticated derivatives were devised which adopt a
variety of optimization criteria and/or nontrivial prediction
horizons [38]–[46]. Moreover, the versatility of the method
in discussion allowed for different types of hysteresis bounds
that affect the system performance in terms of, e.g., harmonic
distortions or switching losses [34], [47], [48].

Finally, the third group of direct MPC strategies can be fur-
ther divided into two subgroups. The first one includes meth-
ods that manipulate not only the switching signals, but also
their application time in an attempt to emulate the behaviorof
pulse width modulation (PWM) techniques. More specifically,
these methods—and in contrast to the aforementioned direct
MPC strategies—introduce the concept of variable switching
time instants by changing the state of the switches at any time
instant within the sampling interval. This is done by computing
both the optimal switch positions and the associated duty
cycles [49]–[60]. In doing so, higher granularity of switching
is introduced enabling the reduction of the harmonic distortion
in the variables of concern. Moreover, some of these methods
achieve operation of the power converter at a fixed switching
frequency, thus resulting in deterministic switching losses [51],
[53], [56], [59]–[68].

The second group consists of direct MPC methods that
are combined with programmed PWM [69], i.e., modulation
methods that forgo a fixed modulation interval. The switching
pattern and the switching instants are computed offline based
on some optimization criteria, such as minimization of the
current total harmonic distortion (THD) and/or the elimination
of specific harmonics. Programmed PWM is implemented in
the form of selective harmonic elimination (SHE) [70], [71],
or optimized pulse patterns (OPPs) [72], [73]. The idea of
manipulation of the switching instants of OPPs in a predictive

fashion was introduced in [74], [75], and [76], [77], for stator
current and stator flux reference trajectory tracking, respec-
tively. These methods, however, lack the receding horizon
policy and do not distinguish between the fundamental and the
ripple components, thus complicating the observer design [78].
To address these issues, more sophisticated MPC algorithms
for the control of OPPs deemed necessary, leading to the
methods presented in [79]–[81]. Moreover, SHE with MPC
is presented, e.g., in [82]–[84]. Owing to the nature of the
programmed modulation methods these MPC-based strategies
achieve very low harmonic distortions, but they are fairly
elaborate since fast closed-loop control is challenging.

As for the indirect MPC algorithms, these are methods that
employ carrier-based PWM, such as sinusoidal PWM (SPWM)
or space vector modulation (SVM) [69], [85], [86]. Depending
on the formulation of the MPC problem, i.e., if it is a (mixed)
integer quadratic program ((M)IQP) or merely a (constrained
or unconstrained) quadratic program (QP), these methods can
be split into two groups. The first subgroup of controllers
uses explicit MPC to solve the (M)IQP. Specifically, the
optimization problem underlying MPC is solved offline for
all possible states of the power electronic system. As a result,
the state-feedback control law is obtained and stored in look-
up tables [87], [88], while methods, such as branch-and-
bound (BnB) strategies [89], are employed in real time to
acquire the solution in a computationally efficient manner.
Finally, the control input, e.g., the modulating signal or the
duty cycle, is fed into a modulator, which in turn generates
the switching commands [90]–[98]. Explicit MPC schemes,
however, are ill-suited for problems of higher dimensions since
the memory requirements for storing the explicit control law
increase exponentially with the problem size and complexity.

Finally, the second group of indirect MPC methods totally
masks the switching nature of the power converter. In doing
so, the optimization problem can be cast as a constrained or
unconstrained QP. The former is relatively easier—compared
to the aforementioned methods—to solve in real time owing
to the several existing off-the-self solvers, as discussedlater
in this survey [99]–[104]. The latter allows for an analytical
solution of the MPC problem [105]–[108]. This means that
the state-feedback control law can be computed offline, thus



greatly simplifying the implementation of such controllers.
In the sequel of this paper, the main characteristics of direct

and indirect MPC methods are discussed. Different design
choices for formulating the optimization problem underlying
MPC are presented. Furthermore, tuning parameters, such as
weighting factors, the prediction horizon length as well asthe
sampling interval, and their effect on the system performance
are summarized along with important aspects of MPC strate-
gies, namely their robustness and closed-loop stability per-
formance. Moreover, solvers for the mixed-integer programs
and QPs as well as the associated challenges of the real-
time implementation of MPC algorithms on embedded systems
are analyzed. In addition, a brief assessment of the discussed
MPC methods is provided and their main strong points and
weaknesses are identified. Finally, the survey reflects on the
main contemporary aspects and research directions of MPC.

This survey paper is structured as follows. The main in-
gredients that all MPC-based controllers share in common
are summarized in Section II. Design considerations and
their implications on the performance of the power electronic
system are discussed in Section III. Section IV presents
implementation-related issues and challenges of direct and
indirect MPC, whereas Section V assesses their performance.
Finally, Section VI confers on the current trends of MPC
in academia and industry, and conclusions are drawn in
Section VII.

II. M ODEL PREDICTIVE CONTROL: FEATURES AND

OPERATING PRINCIPLE

Three are the basic pillars of MPC, namely the mathematical
model of the plant, the constrained (linear or nonlinear)
optimal control problem, and the receding horizon policy [2].
In the sequel of this section, the aforementioned fundamental
components of MPC are briefly described.

A. Mathematical Model of the Plant

MPC, as indicated by its name, is a model-based control
method; an accurate model of the system is required for
meaningful predictions of its future behavior, especiallyin
disciplines like power electronics where control actions are
taken within a few tens of microseconds. The vast majority of
models of power electronic systems that serve as prediction
models for MPC have three characteristics in common. First,
they are based on the continuous-time state-space model. To
derive the latter the variables that fully describe its dynamics
are chosen and aggregated to the state vectorx ∈ R

nx . Typi-
cally, such variables are those that relate to the energy storage
elements of the system, such as inductor currents, capacitor
voltages, etc. Moreover, thenu manipulated variables which
affect the future behavior of the system need to be selected.In
case of direct MPC, these can represent the switch positions,
whereas when indirect MPC is of concern they can model
the modulating signal. Assuming, without loss of generality,
a three-phase system (nu = 3), the vector of manipulated
variables in case of direct MPC is integer valued, i.e.,

u = [ua ub uc]
T ∈ Uδ = Uδ × Uδ × Uδ = U3

δ ⊂ Z
3 . (1)

On the other hand, a real-valued input vector results with
indirect MPC, i.e.,

u = [ua ub uc]
T ∈ Uκ = [−1, 1]3 ⊂ R

3 . (2)

As a result, the continuous-time state-space model takes the
form

dx(t)
dt

= fc

(

x(t),u(t)
)

(3a)

y(t) = gc

(

x(t)
)

, (3b)

wherey ∈ R
ny is the vector of theny output variables of the

system which are chosen based on the application in question.
Typical output variables along with relevant applicationsare
shown in Table I. Moreover,f c(⋆) : R

nx × U ǫ → R
nx and

gc(⋆) : R
nx → R

ny are the state-update1 and output func-
tions, respectively, whereǫ ∈ {κ, δ}. In most cases, the power
electronic system (3) is a linear or bilinear system [109].2 In
the former case, the continuous-time state-space model takes
the form

dx(t)
dt

= Acx(t) +Bcu(t) (4a)

y(t) = Ccx(t) , (4b)

whereAc ∈ R
nx×nx , Bc ∈ R

nx×nu , andCc ∈ R
ny×nx are

the system, input, and output matrices respectively. Thesema-
trices can be either time-invariant or time-varying, depending
on the case study. On the other hand, for bilinear systems the
state-update function is of the form [110]–[112]

fc

(

x(t),u(t)
)

=
(

Ac1 +Ac2u(t)
)

x(t) +Bcu(t) .

Second, the modeling of three-phase systems is com-
monly performed in a two-dimensional rotating or station-
ary reference plane. Such a mapping—inherited by linear
control methods where the aim is to achieve decoupling of
the control loops—is realized by transforming any variable
ξabc = [ξa ξb ξc]

T in the three-phase (abc) system into a two-
dimensional variable via the matrix

K(ϕ) =
2

3

[

cosϕ cos
(

ϕ− 2π
3

)

cos
(

ϕ+ 2π
3

)

− sinϕ − sin
(

ϕ− 2π
3

)

− sin
(

ϕ+ 2π
3

)

]

,

whereϕ is the angle between the direct axis of the orthogonal
plane and thea-axis of the three-phase system. Hence, for a
reference plane rotating with angular speedωfr—the so-called
dq-plane—the transformation is of the form

ξdq = K(ϕ)ξabc ,

where ξdq = [ξd ξq]
T . When ωfr = 0, i.e., the plane is

stationary (known as theαβ-plane), the performed mapping
to the variableξαβ = [ξα ξβ ]

T is

ξαβ = K(0)ξabc .

1In presence of external disturbances, functionfc(⋆) has as additional
argument the vector of disturbancesd ∈ Rnd . For sake of simplicity, but
without loss of generality, it is assumed thatd = 0 in the sequel of the
paper.

2It is worth mentioning that even if the state-update function fc(⋆),
see (3a), can be linear/bilinear, the output functiongc(⋆), see (3b), can still be
nonlinear since output variables, such as the flux magnitude, electromagnetic
torque, real and reactive power, etc., represent a nonlinear combination of the
state variables.



TABLE I: Typical output variables in power electronic systems.

Application Output variable Symbol

Electrical drives Stator current or flux is or ψs [26], [113]

Electrical drives Electromagnetic torque, stator or rotorflux magnitude Te, Ψs or Ψr [24], [114], [115]

Neutral point clamped converters Load current, neutral point potential io, vn [21]

Cascaded H-bridge converters Load current, cell capacitorvoltage io, vc [116], [117]

Active front-end rectifiers Real and reactive power, dc-link voltage P , Q, vdc [22], [23], [118]

Current-source rectifiers Reactive power, dc-link current Q, idc [119]

Converters with filters Converter current, filter capacitorvoltage, load current iconv, vc, io [120], [121]

UPS systems Filter capacitor/load voltage vc [122]

Modular multilevel converters Branch currents, module capacitor voltages, load current ix, vx (x ∈ {1, 2, . . . , 6}), io [29], [123]

Matrix converters Input current or reactive power, load current ii or Qi, io [65], [66], [124], [125]

Impedance-source converters Dc-side inductor current, capacitor voltage, load current iL, vc, io [126], [127]

TABLE II: Discretization methods used in MPC for power electronics.

Method Form Linear form

Forward Euler x(k+1) = x(k) + Tsfc

(

(

x(k),u(k)
)

, kTs

)

x(k+1) = (I + TsAc)x(k) + TsBcu(k) [13], [21], [22]

Backward Euler x(k+1) = x(k) + Tsfc

(

(

x(k+1),u(k+1)
)

, (k+1)Ts

)

x(k+1) = x(k) + Ts
(

Acx(k+1) +Bcu(k+1)
)

[27], [98], [128]

Exact x(k+1) = eAcTsx(k) +
(

∫ Ts

0
eAcτdτBc

)

u(k) [26], [129], [130]

Finally, since MPC is a discrete-time controller, the
continuous-time system (3) needs to be discretized

x(k + 1) = f
(

x(k),u(k)
)

(5a)

y(k) = g
(

x(k)
)

, (5b)

wherek ∈ N indicates the discrete time step. To this end,
forward Euler, backward Euler or exact discretization is most
commonly employed [131], see Table II. The first two are
popular because they are computationally cheap, thus, theydo
not increase the—already pronounced—computational load of
MPC. However, the accuracy of both methods deteriorates as
the sampling intervalTs increases, while forward Euler can
also exhibit stability issues [131, Chapter 5]. On the other
hand, exact discretization provides as precise a representation
of the continuous-time dynamics as possible, but at the cost
of higher computational complexity. Moreover, it is worth
mentioning that the latter method is applicable only to linear
time-invariant systems.

B. MPC Problem

The aim of MPC is to find the sequence of manipulated
variables that achieve the most desired system behavior—as
defined by an objective function—within a finite-time interval.
To do so, first the aforementioned sequence is defined over a
finite horizon ofNp ∈ N

+ time steps as

U(k) =
[

uT (k) uT (k + 1) . . . uT (k +Np − 1)
]T

∈ U ,

(6)
whereU = U

Np

ǫ . As can be deduced from (5), the future
behavior of the power electronic system can be predicted over
the prediction horizon based onU(k) and the present state
x(k).

In a following step, the optimal control problem underlying
MPC is formulated based on the chosen control objectives. To

this aim, an objective functionJ : Rnx × U ǫ → R
+ of the

form

J
(

x(k),U(k)
)

=

k+Np−1
∑

ℓ=k

J†
(

x(ℓ + 1),u(ℓ)
)

, (7)

is formulated that captures and quantifies the control ob-
jectives. Some common objective functions are presented in
Table III in order of increasing design complexity. As can be
seen, design choices relate to the norm used for the stage cost
function J†(⋆), e.g., theℓ1- or ℓ2-norm,3 single or multiple
output tracking,4 the penalization (or not) of the control input,
the length of the horizon, the use of a terminal state constraint,
etc. Such issues are briefly discussed in Section III, whereas
they are analyzed in more detail in [33].

Before formulating the optimization problem explicit con-
straints can be imposed on the variables of interest. Such re-
strictions can be implemented in the form of eitherhard or soft
constraints. The former often represent physical limitations
(e.g., on the control input, as indicated by (1) and (2)) and
thus cannot be violated in any way. The latter, on the other
hand, can be interpreted as protection mechanisms that enable
the controller to operate the system within its safety limits.
As such, they are imposed on the system state and, although
they can be violated, effort should be put into avoiding such
violations. To do so, the degree of their violation, usually
modeled by slack variables, needs to be minimized [1].

3Theℓp-norm of a vectorξ ∈ Rn is defined asξ = (|ξ1|p+ |ξ2|p+ . . .+
|ξn|p)1/p, for p ≥ 1.

4Note that in case the output variables are of different quantities, e.g.,
currents, voltages, etc., and prioritization among them isrequired, then the
ℓ1- and ℓ2-norms can appear in the “weighted” form‖Λξ‖pp, whereξ ∈
Rny , andΛ = diag(λ1, λ2, . . . , λny ) is a diagonal, positive (semi)definite
weighting matrix, withλi ∈ R+, i = 1, . . . , ny. Specifically, forp = 1, the
“weighted” ℓ1-norm is of the form‖Λξ‖1 =

∑ny

i=1
λi|ξi| [132], and for

p = 2, the “weighted” ℓ2-norm becomes‖Λξ‖22 =
∑ny

i=1
λ2
i ξ

2
i = ‖ξ‖2Q,

whereQ = diag(q1, q2, . . . , qny ) with qi = λ2
i .



TABLE III: Common objective functions used in MPC for power electronics.

Expression Features

J1 = ‖u(k)− u(k − 1)‖1 Control effort penalization, one-step horizon,ℓ1-norm [39]

J2 = ‖yerr(k + 1)‖1 Output reference tracking (yerr = yref − y), ℓ1-norm [13]

J3 = ‖yerr(k + 1)‖2
2

ℓ2-norm [122]

J4 = ‖Λyerr(k + 1)‖1 Multiple outputs (Λ ≻ 0), one-step horizon,ℓ1-norm [24]

J5 = ‖yerr(k + 1)‖2Q Multiple outputs (Q ≻ 0), one-step horizon,ℓ2-norm [133]

J6 = ‖yerr(k + 1)‖1 + λu‖∆u(k)‖1 ∆u(k) = u(k)− u(k − 1), control effort penalization (λu > 0) [21]

J7 = ‖yerr(k + 1)‖2
2
+ λu‖∆u(k)‖22 Control effort penalization (λu > 0), ℓ2-norm [128]

J8 =
∑k+Np−1

ℓ=k ‖∆u(ℓ)‖1 Control effort penalization, multistep horizon (Np > 1) [46]

J9 =
∑k+Np−1

ℓ=k ‖yerr(ℓ+ 1)‖2
2
+ λu‖∆u(ℓ)‖22 Output reference tracking,Np > 1, λu > 0 [26]

J10 =
∑k+Np−1

ℓ=k ‖yerr(ℓ+ 1)‖2
Q

+ λu‖∆u(ℓ)‖22 Multiple outputs (Q � 0) [134]

J11 = ‖yerr(k +Np)‖2R +
∑k+Np−1

ℓ=k ‖yerr(ℓ)‖
2
Q + λu‖∆u(ℓ)‖22 Terminal cost (R ≻ 0) [129]

With the objective function (7), the system model (5), and
the explicit hard (input) and soft (state) constraints, theMPC
problem that needs to be solved in real time takes the form

minimize
U(k)

J
(

x(k),U(k)
)

subject to x(ℓ+ 1) = f
(

x(ℓ),u(ℓ)
)

y(ℓ+ 1) = g
(

x(ℓ+ 1)
)

u(ℓ) ∈ U ǫ

x(ℓ+ 1) ∈ X ⊆ R
nx

∀ ℓ = k, . . . , k+Np−1 .

(8)

Depending on the nature of the optimization variableU(k)
and the system (5), the optimization problem (8) is a generally
hard-to-solve integer program (IP) [89], [135], or a usually
easy-to-solve convex QP [136]. IPs, if computationally feasi-
ble, can be solved by exhaustively enumerating all candidate
solutions. Alternatively, heuristics or dedicated optimization
algorithms are required that decrease theaverage computa-
tional complexity, thus facilitating their real-time implemen-
tation without sacrificing optimality, see [26], [137], [138].
On the other hand, as mentioned before, convex optimization
problems can be efficiently solved with off-the-shelf embedded
solvers. A more detailed discussion on implementation issues
of MPC is provided in Section IV.

C. Receding Horizon Policy

The solution to (8), i.e., theoptimal sequence of manipu-
lated variables

U∗(k) =
[

u∗T (k) u∗T (k + 1) . . . u∗T (k +Np − 1)
]T

,

(9)
is determined in an open-loop fashion. Therefore, applying
U∗(k) to the system makes it susceptible to external distur-
bances, model inaccuracies, etc. To add feedback and provide
the controller with a high degree of robustness, the notion of
the receding horizon policy is employed, as shown in Fig. 3
for the direct MPC case. As can be seen, out of the sequence
of optimal manipulated variables, only the first elementu∗(k)
is implemented. At the next time step, the optimization process
is repeated over a one time-step shifted horizon based on new
measurements and/or estimates, see Fig. 4.

Past Horizon

Y ref(k)

Y (k)

u∗(k)

U∗(k)

k k + 1 k +Np

t

(a) Horizon at time stepk

Past Horizon

k k + 1 k + 2 k +Np + 1
t

Y ref(k + 1)

Y (k + 1)

u∗(k + 1) U∗(k + 1)

(b) Horizon at time stepk + 1

Fig. 3: Receding horizon policy of direct MPC for a single-input single-
output (SISO) system. The predicted output and its reference trajectory
are shown withY (k) = [y(k + 1) . . . y(k + Np)]T and Y ref(k) =
[yref(k + 1) . . . yref(k+Np)]T , respectively. A six-step prediction horizon
(Np = 6) is assumed.

III. D ESIGN CONSIDERATIONS

This section is dedicated to design considerations for MPC-
based algorithms, either in their direct (Fig. 1(b)) or indirect
(Fig. 1(a)) form. In the sequel, the most relevant design
choices that affect the performance of such control schemes
are discussed.
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A. Objective Function

As mentioned in Section II-B, and also shown in Table III,
the kernel of the MPC problem, i.e., the objective function,
can be designed in several ways and with different degrees
of complexity. This great variety of choices employs the
controller designer with degrees of freedom during the control
formulation process, but it also affects the resulting perfor-
mance. The first design choices one has to make relate to
the norm used and the parameters included in the objective
function.

1) Choice of Norm: When short-horizon direct MPC is
employed, then a popular design choice is to use theℓ1-
norm, see, e.g., [13], [21], [123], [126], [139], [140]. When
the available computational power is of concern, such a choice
is reasonable, since computation of the absolute values of the
variable of concern is computationally cheap and straightfor-
ward. As shown in [141], however,ℓ1-norm can lead to system
performance deterioration and even stability issues, see Fig. 5.

In light of this, using theℓ2-norm with direct MPC is getting
more popular, see, e.g., [26], [32], [120], [129], [142]–[144].
Another advantage of theℓ2-norm is that it turns the objective
function into a quadratic one. When the optimization variable
is a real-valued vector, then the solution to the unconstrained
optimization problem can be easily found by setting the
derivative of the objective function to zero [15]. This feature is
utilized in direct MPC schemes that have an implicit modulator
either when computing the application time of each switch
position [52], [57], [60], [61], [63], or the online modifications
of the offline computed switching patterns [79].

Regarding indirect MPC algorithms, theℓ2-norm is used
in the vast majority—if not all—of the cases for the reasons
mentioned above [101]–[103], [105]–[108]. Specifically, the
formulated optimization problem based on theℓ2-norm is a
QP which in its unconstrained version can be solved very
easily since an analytical solution exists [105]–[108]. When
input and/or state constraints exist, then either efficientQP
solvers can be employed (see Section IV), or the unconstrained
solution can be projected onto the feasible set [108].

2) Control Effort Penalization: According to the optimal
control paradigm [1], [2], the control effort, modeled withthe
term ∆u in Table III, is most commonly penalized in the
objective function.5 Depending on the type of MPC algorithm
this has different interpretations, as explained below.

When direct MPC is concerned, penalization of the incre-
ment of the control signal in most cases implies direct control

5Note that in other disciplines the manipulated variableu itself, rather than
its rate of change∆u, is frequently penalized [2].
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Fig. 5: Trade-off curves (taken from [33]) for direct MPC with reference
tracking and theℓ1- or ℓ2-norm. The current THDITHD is shown for the
achievable range of switching frequenciesfsw. The solid (blue) and dashed
(red) lines are polynomial approximations of the individual simulation results
indicated by squares (ℓ1-norm) and circles (ℓ2-norm), respectively. A system
consisting of a two-level inverter and an induction machineis assumed.

of the switching frequency [15].6 In this context, lack of con-
trol effort penalization means that theaverage switching fre-
quencyfsw is limited only by the chosen sampling frequency
fs, with fs = 1/Ts. Specifically, the theoretical maximum
switching frequency is equal to half the sampling frequency,
i.e., fsw = fs/2, but in reality it is much lower than that [14,
Chapter 4]. Moreover, as stated in [33], lack of penalization
of the control effort leads to inferior system performance as
compared to conventional control and modulation solutions,
thus the potential of MPC is not fully exploited.

Regarding indirect MPC algorithms with a subsequent mod-
ulation stage, penalization of the control effort allows for
less aggressive control actions and gives rise to smoother
control [90], [99]. Moreover, given thatλu > 0, whereλu is
the weighting factor of the control effort, the resulting QPis a
strictly convex optimization problem [136], thus it guarantees
the uniqueness of the solution [2].

B. Tuning Parameters

The main design parameters that affect the controller perfor-
mance are the sampling intervalTs, the number of prediction
horizon stepsNp and the several weighting factors, whether
these relate to the controlled variables or the control effort. In
the sequel, the most common tuning choices are presented.

1) Choice of Sampling Interval: The sampling interval not
only affects the discretization accuracy and the ensuing stabil-
ity of the discrete-time model, as mentioned in Section II-A,
but also the controller performance. In direct MPC without
implicit modulator switching can be performed only at the
discrete time instantskTs, (k + 1)Ts, . . .. Therefore, the aim
is to have as high a sampling frequency as possible for a fine
discretization of the time axis. To this end, sampling intervals
of 150µs or less are commonly chosen, see, e.g., [13], [23],
[31], [127], [129], [144]–[147], withTs being a few tens
of microseconds with modern powerful control platforms, as
discussed in Section IV. As mentioned in Section III-A2,

6Exemption to that are some direct MPC algorithms with implicit mod-
ulator, e.g., MPC with programmed PWM, that achieve constant switching
frequency [67], [79], [82].
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Fig. 6: Direct MPC with output reference tracking. The sampling interval is
Ts = 25 µs (fs = 40 kHz) and the switching frequencyfsw ≈ 1050Hz
(λu = 4.33 · 10−3). A system consisting of a two-level inverter and an
induction machine is assumed.

this implies that the sampling frequency imposes an upper
limit on the achievable switching frequency, which is most
often adjusted by tuning the control effort weighting factor
λu shown in Table III, see Fig. 6. It is worth mentioning,
nonetheless, that as shown in [33], for a fine granularity
of switching the ratio between the sampling and switching
frequencies should be about100.

On the other hand, direct MPC with implicit modulator can
increase the granularity of switching by a factor of two or
three, depending on whether two or three switch positions,
respectively, are applied at the corresponding variable switch-
ing time instants within one sampling intervalTs [49], [50],
[52], [54]–[58]. Moreover, when direct MPC with implicit
modulator achieves operation at a fixed switching frequency
then the latter is directly defined by the sampling interval due
to the deterministic switching within oneTs [51], [53], [56],
[59]–[61], [63], [65], [67], [68]. This implies that the sampling
interval Ts defines the length of the fixed modulation cycle.
For example, in case of two-level converters the relationship
between the switching frequencyfsw andTs is

fsw =
1

2Ts

. (10)

For direct MPC with programmed PWM, however, even
though the switching frequency is constant—and as low as a
few hundred Hz—it is decoupled from the sampling interval
since such methods do not feature a modulation cycle of fixed
length. In these methods,Ts is set as small possible—in the
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Fig. 7: Indirect MPC with asymmetric regularly sampled SPWM. The sam-
pling interval isTs ≈ 476.19 µs (fs = 2100Hz) and the switching frequency
fsw = 1050Hz. A system consisting of a two-level inverter and an induction
machine is assumed.

range of a few tens of microseconds—in order to avoid un-
necessarily big deviations from the offline computed switching
patterns as well as to provide the controller with a high degree
of robustness to disturbances and system nonidealities [79],
[80], [82], [83]. In doing so, both high-bandwidth controllers
result and the applied switch positions manage to produce
current harmonic distortions that are close to their minimum
values.

Finally, similar to direct MPC with fixed switching fre-
quency and modulation cycle, the sampling interval in indirect
MPC with carrier-based PWM sets the operating switching fre-
quency. When SVM or SPWM with asymmetric regular sam-
pling are used then (10) holds for a two-level converter, i.e.,
the sampling frequency is twice the switching frequency [91],
[94], [148], see Fig. 7. When, on the other hand, SPWM
with symmetric regular sampling is used the sampling and
switching frequency are the same if two-level converters are
assumed [92], [97], [103], [105], [106].

2) Length of the Prediction Horizon: Long prediction
horizons can improve the closed-loop system performance.
Moreover, in case of infinite horizon, closed-loop stability is
guaranteed if there exists a solution with a finite associated
cost [1], [2]. Acknowledging such benefits, research effort
has been put into the design and implementation of MPC
algorithms with long horizons.

The benefits of direct MPC with long horizons have been
discussed in, e.g., [33], [134]. Although the performance
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improvement is indisputable—especially when higher-order
systems are of concern, see Fig. 8—the challenge of long-
horizon direct MPC relates to the implementation of the
associated optimization problem. Specifically, as mentioned in
Section II-B, in the vast majority of the cases the direct MPC
problem is formulated as an IP which is NP-hard [89], mean-
ing that its computational complexity increases exponentially
with the number of candidate solutions. The latter depends
on the topology in question and the length of the horizon.
For example, assuming a three-phase two-level converter with
input set

Uδ = {−1, 1}3

then the possible solutions are23Np , while the elements of the
optimization variable are3Np. Hence, it can be understood that
a longer horizon can render the direct MPC problem compu-
tationally intractable. In this sense, the approach of exhaustive
enumeration is impractical with long-horizon direct MPC,
thus one has to resort to other methods [137]. These include
BnB strategies, such as the sphere decoder [26], [142], move
blocking strategies [110], [127], event-based horizons [80],
prediction with extrapolation or interpolation [39], [40], [48],
or their combinations [42].

As for indirect MPC, long horizons improve the perfor-
mance of such algorithms as well [99]. Similar to direct MPC,
the optimization problem of explicit MPC is an IP—namely
an (M)IQP—meaning that the same computational challenges
exist. As a result, the implementation of long horizons can be
demanding, thus the length of the horizon is limited to a few
number of steps [90], [91], [94], [97]. MPC as a QP, however,
allows for longer horizons owing to the convex nature of the
problem, the implementation of which is easier with off-the-
self solvers, as discussed in Section IV. Consequently, such
MPC methods can achieve good closed-loop performance and
avoid stability issues [5]. The same applies to direct MPC
problems that can be formulated as QPs, as is the case of
MPC with implicit modulator with either variable switching
time instants [121] or programmed PWM [79], [81].

3) Tuning of the Weighting Factors: As can be observed
in Table III, the objective functions may consist of more than
one terms, giving rise to multi-criterion optimization problems.
In such a case weighting factors are introduced to prioritize
among the different, and probably conflicting, terms. Tuning
of the associated weighting factors, i.e.,λu (for the control
effort) and the diagonal entries ofΛ andQ (for the output
terms), is not trivial [2].

In principle, the weighting factors in multi-criterion prob-
lems are found by exploring the trade-off curves or surfaces
so as to find the Pareto optimal points [136, Section 4.7]. This,
however, can be not only very time consuming and tedious,
but also the trade-off curves can be nonconvex (i.e., neither
monotonic nor smooth), as in the case of most direct MPC
algorithms, see, e.g., Figs. 5 and 8. This means that choosing
appropriate values for the weighting factors is even more chal-
lenging, motivating practitioners of MPC to resort to empirical
approaches that rely on trial-and-error methods [149], [150].

To avoid heuristics, there have been some methods that
choose the weighting factors based on analytical expressions,
thus avoiding tuning altogether [115], [151], [152]. Moreover,
emerging methods for the weighting factors tuning utilize
techniques from artificial intelligence, such as neural networks
and genetic algorithms [143], [153]–[155]. In this way the
tuning process is automated and the weighting factors can be
adjusted in real time. The downside of the former methods,
however, is that their generalization and applicability todif-
ferent power electronic systems are limited, whereas the latter
require elaborate design process and the training procedure
can be very laborious and non-exhaustive.

C. Robustness

As discussed in Section II-A, MPC requires an accurate sys-
tem model to achieve favorable performance. Even though the
models of power electronic systems are typically accurate—
at least compared to other disciplines—model mismatches
and system nonidealities are always present, due to, e.g.,
component aging, temperature variations, etc. Such inaccura-
cies can adversely affect the system performance [156]. Such
performance deterioration is also amplified by the lack of an
integrating element from MPC that facilitates the elimination
of steady-state errors. Despite the fact that the receding hori-
zon makes the MPC schemes robust to disturbances, model
uncertainties and mismatches, further tools and methods are
required to ensure smooth operation of the power electronic
system.

For addressing the lack of integrating action of MPC and
the ensuing steady-state errors due to model mismatches, etc.,
some techniques have been proposed that add an explicit
integrator either to the objective fucntion [157], [158], or
to the state vector [92]. Alternatively, disturbance observers,
such as integral feedback observers, Luenberger observers,
(extended) Kalman filters, moving horizon estimation, can
be implemented to add an integrating action to the outer
loop [103], [110], [159]–[161]. Moreover, system identifica-
tion algorithms can be employed that either assume knowledge
of the system (i.e., white-box model-based approaches) [162]–
[164], or are model free (i.e., black box methods) [165]–[168].



Note, however, that the former methods fail to estimate all
the system parameters at once, while combinations of dif-
ferent sources of uncertainties/model mismatches are usually
neglected, implying that the estimation performance is notthe
most desired. As for the latter, they rely on measurements of
the input and output signals (e.g., applied voltage and load
current, respectively) and elaborate look-up tables, which are
subsequently utilized by computational demanding identifi-
cation techniques, such as data fitting methods. As a result,
the already pronounced computational load of MPC is further
increased.

D. Stability

MPC is a time-domain nonlinear control technique. Thus,
traditional frequency-domain stability analysis tools are not
applicable. Moreover, depending on the system modeling
and the subsequent control problem formulation, MPC deals
with plants with integer inputs. Stability of such systems is
intrinsically difficult to study and prove.

For the study of closed-loop stability of indirect MPC
Lyapunov stability theory is employed [169]. More specifi-
cally, first, the designer has to define an invariant setXf

under a terminal control law of the formν(⋆) applied after
the horizonNp. Following, a Lyapunov function inXf is
included in the objective function in the form of a terminal
cost, see, e.g., functionJ11 in Table III. Moreover, the state
constraints in problem (8) need to be augmented by a terminal
constraintx(k+Np) ∈ Xf [170], [171]. In doing so, indirect
MPC schemes with carrier-based PWM—either formulated as
QP [111] or (M)IQP which employs explicit MPC [92], [172],
[173]—that guarantee closed-loop stability can be designed.

Regarding direct MPC, closed-loop (practical) asymptotic
stability was shown in [174], [175], assuming power elec-
tronic systems that can be modeled as linear systems with
integer inputs.7 To achieve this, similarly to indirect MPC, a
Lyapunov-based stabilizing quadratic objective functionneeds
to be designed. Based on these works, [141] showed that direct
MPC based on theℓ1-norm can lead to instability provided that
the control effort is penalized (see, functionJ6 in Table III).
On the other hand, whenλu = 0 (see, e.g.,J2 or J4 in
Table III) then potential stability issues are avoided, as also
verified in [176], [177]. Moreover, closed-loop stability of
one-step direct MPC was achieved in [178] by introducing
constraints that ensure the asymptotic convergence of the
controlled variables. Furthermore, an interesting approach for
the verification of the behavior of direct MPC for different
power electronic was proposed in [179]. By employing tools
from statistics, this work aims to take the relevant research
one step further than [174], [175]. Due to the nature of the
adopted tools (i.e., statistical model checking), however, this
method is not deterministic and lacks rigorous mathematical
exactitude. Finally, practical stability of systems governed by
direct MPC with hysteresis bounds as well as conditions to
ensure operation within a safe region were provided in [180].

7The definition and implications of closed-loop practical stability are
provided in [174, Section II] and references therein.

To do so, as with the above-mentioned works, Lyapunov
stability theory was utilized to tackle the problem at hand.

IV. I MPLEMENTATION

Power electronic systems require sampling frequencies of
a few up to several tens of kHz due the very small time
constants that characterize them. For this reason the real-time
implementation of control schemes in the framework of MPC
is not trivial. Specifically, solving in real time the underlying
integer QP (IQP) or QP within the available time of a few
microseconds poses the main challenge.

In this section implementation-related issues of both direct
and indirect MPC are discussed. Available options on how to
solve the associated optimization problems in real time arepre-
sented. Moreover, considering the computational complexity
of most MPC algorithms, powerful control platforms are often
needed to fully utilize the available computational power.To
this end, this section also offers options based on system-on-
chip (SoC) technology with digital signal processors (DSPs)
or field-programmable gate arrays (FPGAs) and ARM proces-
sors.

A. Solvers

As mentioned, direct MPC for power electronics is most
often formulated as an IQP. The common practice for solving
such optimization problems in embedded control systems is
with exhaustive search. Since the problem is NP-hard, such
an approach is impractical for horizons longer than one step
(Np > 1), see Section III-B2. Hence, as discussed in that
section, more sophisticated algorithms are necessary to realize
longer horizons at high sampling frequencies.

From an implementation point of view, a method that
has attracted particular attention in recent years is a BnB
algorithm named sphere decoder [26] thanks to its ostensible
effectiveness; the average computational burden of sphere
decoder scales linearly (instead of exponentially) with the
prediction horizon steps [181]. As a result, this solver has
been implemented in [144], [146], [147], [182], for different
power electronics applications. In [146], a three-step (Np = 3)
direct MPC for a five-level converter was implemented with a
sampling frequencyfs = 10 kHz (Ts = 100µs). A four-step
horizon (Np = 4) for a three-level converter was implemented
in [147], but with the slightly higher sampling intervalTs =
125µs. A four-step horizon was also implemented in [144]
with Ts = 25µs for a two-level converter. All the three
previous works used a dSpace system as control platform.
The first FPGA-based implementation was presented in [182].
Therein, a horizon ofNp = 5 time steps was achieved for a
three-level converter, while the sampling interval was setto
Ts = 25µs.

An alternative approach to solve the IQP underlying direct
MPC in an efficient manner is to adopt the so-called miOSQP
solver [183] which is based on the alternating direction method
of multipliers (ADMM) [184]. This algorithm was employed
in [129] to solve the direct MPC problem for a three-level
converter. As shown, short horizons suffice to achieve favor-
able system performance when a terminal cost—intended to



TABLE IV: Summary of solvers used in MPC for power electronics

Solver Method Problem Matlab interface Open source

qpOASES AS QP yes yes

ODYS IP QP no no

Sphere decoder BnB IQP no no

miOSQP ADMM IQP no yes

approximate an infinite horizon cost—is added to the objective
function. This was verified with results acquired based on an
FPGA implementation forNp = 2 andTs = 25µs.

Regarding MPC problems formulated as QPs (e.g., indirect
MPC with carrier-based PWM, or some direct MPC algorithms
with implicit modulator, such as MPC with programmed
PWM), they can be solved with any of the available (both
open-source and commercial) QP solvers. These options differ
in their approach in solving the optimization problem. Several
algorithms have been proposed in literature, such as interior-
point (IP), active-set (AS), gradient, and explicit methods,
as well as the aforementioned ADMM. A comprehensive
assessment of different QP solvers is given in [185] and,
with more focus on FPGA implementation, in [186]. Besides
numerical accuracy, the computational speed of the solver is
crucial. It is important to note that the relevant quantity is the
worst-case execution time as this determines the maximum
sampling frequency. The execution time depends on many
factors, such as the size of the state and input vectors, number
of constraints, steps of the horizon as well as the type of
calculation unit used. Another aspect when choosing a solver is
which interfaces are offered. For the power electronics domain,
an interface to software such as Matlab/Simulink would be the
favored choice, as it allows simple integration into closed-loop
simulations.

A solver that has been gaining popularity in the power
electronics community is qpOASES [187]. This solver was
employed in [101] to solve a linear QP underlying indirect
MPC for a motor drive system in less than100µs. Moreover,
this solver was used in combination with the ACADO [188]
and casADi [189] toolkits in [103] and [100], respectively,
again for electrical drives. In all the above works the solver
was implemented on a dSpace system. Another advantage of
qpOASES is that it is suitable for nonlinear QPs owing to
available abstraction tools that tailor the solver to the QP
at hand and generate an optimized code that can also take
the processor architecture into account, see, e.g., [190]–[192].
Finally, ODYS, a QP solver with low computational and
memory requirements that employs an AS method, showed
promising results with a drive system [102].

Given the above, Table IV summarizes some key aspects
about solvers that have been used with a telling effect in MPC
for power electronics.

B. Systems

One of the main challenges in implementing MPC algo-
rithms is handling the potentially high computational burden
within the small sampling intervals. This leads to the question
of a suitable embedded calculation platform. The list of candi-
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Fig. 9: FPGA-based SoC structure for the implementation of direct MPC.

dates includes DSPs, FPGAs, micro-controller units (MCUs),
and their combinations. Typically, an embedded control system
for power electronics includes an FPGA to manage the inputs
and outputs (IOs) of the system, such as generation of the
gate signals and the reading values from the analog-to-digital
converters (ADCs). In conjunction with the FPGA, often one
or more MCUs or DSPs are added to calculate the entire (or
a part) of the control algorithm and realize interfaces to other
systems.

Due to the fact that most direct MPC algorithms require a
sampling frequency of about two orders of magnitude higher
than the desired switching frequency [33], FPGAs are the
most promising control platform owing to their ability to
perform calculations in a highly pipelined and parallelized
manner [129], [182]. For example, direct MPC with horizon
Np = 2 and sampling intervalTs = 10µs (fs = 100 kHz)
was solved with exhaustive search on an FPGA by pipelining
all possible predictions [193].

One drawback of these multi-chip solutions is the possible
communication bottleneck between the FPGA and the other
calculation units. An FPGA-based SoC overcomes this issue
by combining the FPGA and multiple processor cores in one
silicon chip. The calculation units are highly interconnected by
the standardized advanced extensible interface (AXI) which
provides an on-chip, high bandwidth, low latency interface
between the processing system (PS) and the programmable
logic (PL). This allows to leverage the advantages of an FPGA
in multiple ways, namely, the FPGA can be used for the
calculation of all the control-associated procedures and by this
closing the control loop directly in the PL. Another option is
to use the FPGA as an accelerator for the processor and use
the PS for operations that can be done more efficiently there,
e.g., divisions, or matrix inversions. Following, parallelizable
computations can be offloaded to the FPGA. In recent years,
several research groups have built their own control platforms
based on FPGA SoCs, see, e.g., [193]–[198].

Fig. 9 depicts a simplified example of the implementation
of direct MPC on an SoC FPGA. First, the measurements are
read from the ADCs and processed by an optional observer to
get the current statex(k).8 Subsequently, the MPC algorithm

8To simplify the diagram, the delay compensation is omitted.



TABLE V: Assessment of direct MPC schemes. “MPC w. ref. track.” stands for MPC with reference tracking (i.e., FCS-MPC), “MPC w. hyst. bounds” for
MPC with hysteresis bounds, “MPC w. var. sw. inst.” for MPC with variable switching time instants, and “MPC w. prog. PWM” for MPC with programmed
PWM. Only the relevant objective functions for each MPC scheme are indicated.

Objective function (Table III) Direct MPC scheme
Design Computational

Performance Stabilitycomplexity complexity

J1 = ‖u(k)− u(k − 1)‖1 MPC w. hyst. bounds Simple Low Good Stable

J2 = ‖yerr(k + 1)‖1
MPC w. ref. track. Simple Low Poor Stable

MPC w. var. sw. inst. Simple Moderate Poor Stable

J3 = ‖yerr(k + 1)‖22

MPC w. ref. track. Simple Moderate Poor Stable

MPC w. var. sw. inst. Simple Moderate Good Stable

MPC w. prog. PWM Moderate Low Very good Stable

J4 = ‖Λyerr(k + 1)‖1
MPC w. ref. track. Complex Low Poor Stable

MPC w. var. sw. inst. Complex Moderate Poor Stable

J5 = ‖yerr(k + 1)‖2
Q

MPC w. ref. track. Complex Moderate Poor Stable

MPC w. var. sw. inst. Complex Moderate Good Stable

MPC w. prog. PWM Complex Low Very good Stable

J6 = ‖yerr(k + 1)‖1 + λu‖∆u(k)‖1
MPC w. ref. track. Moderate Low Poor Potentially unstable

MPC w. var. sw. inst. Complex Moderate Poor Potentially unstable

J7 = ‖yerr(k + 1)‖2
2
+ λu‖∆u(k)‖22

MPC w. ref. track. Moderate Moderate Very good Stable

MPC w. var. sw. inst. Complex Moderate Very good Stable

MPC w. prog. PWM Complex Low Excellent Stable

J8 =
∑k+Np−1

ℓ=k ‖∆u(ℓ)‖1 MPC w. hyst. bounds Moderate Moderate Excellent Stable

J9 =
∑k+Np−1

ℓ=k ‖yerr(ℓ+ 1)‖22+

λu‖∆u(ℓ)‖22

MPC w. ref. track. Complex High Excellent Stable

MPC w. var. sw. inst. Complex Moderate/High Very good Stable

MPC w. prog. PWM Complex Moderate Excellent Stable

J10 =
∑k+Np−1

ℓ=k ‖yerr(ℓ+ 1)‖2Q+

λu‖∆u(ℓ)‖22

MPC w. ref. track. Complex High Excellent Stable

MPC w. var. sw. inst. Complex Moderate/High Very good Stable

MPC w. prog. PWM Complex Moderate Excellent Stable

J11 = ‖yerr(k +Np)‖2R+
∑k+Np−1

ℓ=k ‖yerr(ℓ)‖
2
Q + λu‖∆u(ℓ)‖22

MPC w. ref. track. Complex High Excellent Stable

MPC w. var. sw. inst. Complex Moderate/High Very good Stable

MPC w. prog. PWM Complex Moderate Excellent Stable

TABLE VI: Assessment of indirect MPC schemes. Only the relevant objective functions for each MPC scheme are indicated.

Objective function (Table III) Indirect MPC scheme
Design Computational

Performance Stabilitycomplexity complexity

J3 = ‖yerr(k + 1)‖2
2

MPC as (M)IQP Simple Moderate Good Stable

MPC as QP Simple Low Good Stable

J5 = ‖yerr(k + 1)‖2Q
MPC as (M)IQP Complex Moderate Good Stable

MPC as QP Complex Low Good Stable

J7 = ‖yerr(k + 1)‖2
2
+ λu‖∆u(k)‖22

MPC as (M)IQP Moderate Moderate Very good Stable

MPC as QP Moderate Low Very good Stable

J9 =
∑k+Np−1

ℓ=k ‖yerr(ℓ+ 1)‖2
2
+

λu‖∆u(ℓ)‖22

MPC as (M)IQP Complex High Very good Stable

MPC as QP Moderate Moderate Very good Stable

J10 =
∑k+Np−1

ℓ=k ‖yerr(ℓ+ 1)‖2
Q
+

λu‖∆u(ℓ)‖22

MPC as (M)IQP Complex High Very good Stable

MPC as QP Complex Moderate Very good Stable

J11 = ‖yerr(k +Np)‖2R+
∑k+Np−1

ℓ=k ‖yerr(ℓ)‖
2
Q + λu‖∆u(ℓ)‖22

MPC as (M)IQP Complex High Very good Stable

MPC as QP Complex Moderate Very good Stable

is executed in the FPGA. The referenceyref(k) is provided
by an outer control loop, which runs at a lower frequency
on the ARM processor1. The interface between the control
loops is realized by the integrated AXI. The other depicted
ARM processor is not part of the control loop and attends
“housekeeping” tasks, such as the initialization of the FPGA,
data logging and communication with the other systems and
the user.

In addition to embedded control systems, commercial rapid-
control-prototyping (RCP) systems have been used in com-
bination with the solvers discussed in Section IV-A for the
experimental validation of indirect MPC algorithms. Such
systems include the aforementioned dSpace, and the realized
sampling frequencies are in the order of10 kHz [101], [103],
[192]. In addition indirect MPC has also been implemented
using OPAL RT, which combines multi-core CPUs linked to an
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Fig. 10: Trade-off between current THDITHD and switching frequencyfsw
for direct MPC with output reference tracking (DMPC-I; shown with a solid,
blue line), direct MPC with variable switching time instants (DMPC-II; shown
with a dashed, green line), and indirect MPC with SVM (IMPC; shown with
a dash-dotted, red line). The individual simulations are shown as squares
(DMPC-I), rhombi (DMPC-II), and asterisks (IMPC). A systemconsisting of
a two-level inverter and an induction machine is assumed.

FPGA, see [199], or even low-cost DSP-based platforms [102].

V. A SSESSMENT

In this section a brief assessment of MPC methods for
power electronics is provided. First, Tables V and VI present
a qualitative evaluation of the discussed direct and indi-
rect MPC algorithms, respectively, in terms of design and
computational complexity, resulting system performance and
closed-loop stability. This is done for the different objective
functions presented in Table III. The aim of Tables V and VI
is to indicate in a concise manner the associated potential,
challenges and pitfalls of the different formulations of the
MPC problem. As can be seen, MPC, both in its direct and
indirect versions, achieves the best performance when long
horizons are implemented. This, however, comes at a cost of
increased computational and design complexity, implying that
MPC algorithms most often require powerful control platforms
to be realized in a real-world setup, see Section IV-B. Hence,
MPC is mostly relevant for applications where the cost of such
platforms is negligible—or, at least, low—when compared to
the cost of the power electronic system in question, and—more
importantly—to the associated cost savings achieved due tothe
performance improvement accredited to MPC.

Fig. 10 presents a comparison between direct MPC with
reference tracking (Np = 1, Ts = 5µs), direct MPC with

implicit modulator and one variable switching time instant
(Np = 1, Ts = 10µs) [200], and indirect MPC with SVM
(Np = 1, Ts chosen according to (10)) in terms of stator
current THD over a wide range of switching frequencies. The
objective function used in all cases isJ7 from Table III. The
case study relates to an electrical drive system consistingof a
two-level inverter and an induction machine; the parameters of
the system are given in [33, Appendix A]. As can be observed,
direct MPC, regardless of its implementation, outperforms
indirect MPC with SVM as the switching frequency decreases.
The reason is that switching with indirect MPC is deterministic
and constrained by the dedicated modulator, whereas direct
MPC has the freedom to make decisions and apply a new
switch position at a much higher frequency rate.

However, although Fig. 10 indicates the superiority of direct
MPC—in terms of current THD—for drive systems, indirect
MPC is an excellent option for grid-connected converters. Di-
rect MPC—with the exemption of some direct MPC schemes
with implicit modulator, such as programmed PWM—due
to the lack of a modulator produces switching patterns that
are not repetitive. This implies that the harmonic spectra are
nondeterministic, with the harmonic energy spread over the
whole range of frequencies. A direct consequence of this is
that grid standards, such as the IEEE 519 [201], cannot be
met since they impose stringent limits on harmonics at the
point of common coupling (PCC), especially of even order
and interharmonics.

To further explain why direct—as opposed to indirect—
MPC may not be suitable for grid-tied converters an example
is provided hereafter. Consider a grid-tied two-level converter
with anLCL filter with resonance frequencyfres = 1203.3Hz
and direct MPC with reference tracking with a three-step
prediction horizon (Np = 3) and sampling intervalTs = 40µs.
For a switching frequency of about2850Hz, the output current
spectrum is shown in Fig. 11(a). In addition, Fig. 11(b) depicts
the harmonics of non-integer order lumped together to the
closest integer harmonic by computing an equivalent rms value
along with the harmonic limits imposed by the standard. By
doing so, a direct comparison with the limits imposed by the
IEEE 519 standard can be performed. Specifically, the standard
limits are shown as light gray bars, harmonics that meet these
limits are shown as blue bars, and harmonics violating their
limits as red bars. As can be seen, although the odd harmonics
can meet the limits, harmonics of even order within the range
10 to 25 violate—even marginally—their limits. For example,
the12th harmonic has amplitude0.91% which is greater than
the 0.875% limit of the standard.

Moreover, it can be observed that the harmonic energy is
not concentrated around the switching frequency, i.e.,2850Hz,
but it is spread over low-order harmonics. This is because
harmonics beyond the resonance frequency (here1203.3Hz)
are effectively attenuated, whereas low-frequency harmonics
are not. As a result, all these low-order harmonics are not
filtered out but appear in the spectrum. Such a characteristic
renders direct MPC unsuitable for grid-tied converters, unless
long horizons are used to drastically reduce the harmonic
distortions, see Fig. 8 and [33].

On the other hand, owing to the deterministic spectrum of
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PCC based on the IEEE 519 standard for a short-circuit ratio of ksc = 20.

Fig. 11: Current harmonic spectrum produced by direct MPC.

PWM, the harmonic energy of the grid current with indirect
MPC is concentrated at the sideband harmonics, see Fig. 12.
Hence, low-frequency harmonics are of very small amplitude,
whereas harmonics at frequencies higher than the resonance
are effectively filtered out.

VI. T RENDS

The last part of this survey provides the current trends and
contemporary aspects of MPC in academia and industry.

As highlighted in Section III-B1, the sampling interval for
direct MPC needs to be as low as possible to achieve a
fine granularity of switching. Because of this, the research
interest moves towards control platforms that can enable the
implementation of MPC algorithms with very high sampling
frequencies—see also Section IV-B—as well as algorithms
that can keep the computational complexity of MPC at bay.

The latter is a very relevant research question from an
industrial point of view as well. Specifically, one of the main
industrial research focuses is on techniques that mitigatethe
pronounced computational complexity [202]. Such methods
will facilitate the real-time implementation of refined MPC
algorithms and, as a result, their potential will be utilized
to its full extent. In doing so, MPC will be able to bring
palpable benefits to the industry, such as reduction of the
investment or operating costs of the power electronic sys-
tem [202], thus establishing it as a superior control alternative
to the conventional solutions. It is worth mentioning that the
existing MPC-based industrial control solutions support the
above argument [79], [190].
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Fig. 12: Current harmonic spectrum produced by indirect MPC.

Another emerging research direction relates to the formu-
lation of the MPC problem. Many of the derived MPC algo-
rithms and/or solvers assume linear systems of the form (4)
with integer or real-valued inputs, see, e.g., [26], [105].Given
that many power electronic systems do not meet such a pre-
requisite, this means that they either have to be linearized[99],
[203], thus detracting from the accuracy of the model, or other
methods need to be developed and/or solvers employed. To
tackle these issues, MPC needs to be addressed as a nonlinear
problem [204]. Moreover, solvers, such as the aforementioned
qpOASES [187], FORCES [205], etc., and toolkits, e.g.,
ACADO [188], casADi [189], VIATOC [206], etc., can be
adopted for indirect MPC. As for direct MPC, either existing
methods, such as the sphere decoder [26], need to be extended
to nonlinear systems and the optimization problem to be
reformulated [207], or new algorithms need to be developed.

Finally, an interesting topic is the development of MPC
algorithms that achieve both low harmonic distortions with
discrete harmonic spectra as well as excellent dynamic behav-
ior. As highlighted in Section V, indirect MPC with carrier-
based PWM can produce spectra with harmonics appearing
at odd non-triplen multiples of the fundamental frequency.
Moreover, it can potentially achieve very low THD (e.g.,
whenLC or LCL filters are present). However, its dynamic
behavior is worse than that of direct MPC due to the existence
of the explicit modulator. Therefore, combining principles
from both direct and indirect MPC is apropos. To this aim,
direct MPC with implicit modulator, either in the form of
programmed PWM [79], [208], [209], or variable switching



time instants [67], [121], seems as a very promising direction.

VII. C ONCLUSIONS

MPC, either with modulator (i.e., indirect MPC) or without
(i.e., direct MPC), has been an emerging control method in
the field of power electronics. In this survey, the formulation
of the optimization problem underlying MPC has been dis-
cussed along with the most relevant design considerations and
the associated controller robustness and closed-loop system
stability. A properly designed objective function is vitalto
avoid stability issues, while tuning parameters, such as the
sampling interval, the length of the horizon and the weighting
factors (when present) profoundly affect the performance of
the controller. Based on the presented assessment of the most
common MPC methods, it can be concluded that MPC, when
properly designed for and tailored to a given case study, can
achieve favorable system performance. This, however, comes
at the expense of pronounced computational complexity—
especially when implemented naively—implying that powerful
control platforms and efficient real-time solvers are required
in many cases. To this end, the most up-to-date systems and
solvers have been identified and their potential and applica-
bility presented. Nevertheless, despite the existing solutions
further research is required to fully utilize the potentialof
MPC. For this reason, future meaningful directions have been
pinpointed aiming to motivate current and future practitioners
of MPC in the field of power electronics.
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“Model predictive control of an AFE rectifier with dynamic references,”
IEEE Trans. Power Electron., vol. 27, no. 7, pp. 3128–3136, Jul. 2012.

[24] J. Rodrı́guez, R. M. Kennel, J. R. Espinoza, M. Trincado, C. A. Silva,
and C. A. Rojas, “High-performance control strategies for electrical
drives: An experimental assessment,”IEEE Trans. Ind. Electron.,
vol. 59, no. 2, pp. 812–820, Feb. 2012.

[25] V. Yaramasu and B. Wu, “Predictive control of a three-level boost
converter and an NPC inverter for high-power PMSG-based medium
voltage wind energy conversion systems,”IEEE Trans. Power Electron.,
vol. 29, no. 10, pp. 5308–5322, Oct. 2014.

[26] T. Geyer and D. E. Quevedo, “Multistep finite control setmodel
predictive control for power electronics,”IEEE Trans. Power Electron.,
vol. 29, no. 12, pp. 6836–6846, Dec. 2014.

[27] M. Narimani, B. Wu, V. Yaramasu, Z. Cheng, and N. R. Zargari,
“Finite control-set model predictive control (FCS-MPC) ofnested neu-
tral point-clamped (NNPC) converter,”IEEE Trans. Power Electron.,
vol. 30, no. 12, pp. 7262–7269, Dec. 2015.

[28] K. Antoniewicz, M. Jasinski, M. P. Kazmierkowski, and M. Ma-
linowski, “Model predictive control for three-level four-leg flying
capacitor converter operating as shunt active power filter,” IEEE Trans.
Ind. Electron., vol. 63, no. 8, pp. 5255–5262, Aug. 2016.

[29] A. Dekka, B. Wu, V. Yaramasu, and N. R. Zargari, “Model predictive
control with common-mode voltage injection for modular multilevel
converter,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1767–
1778, Mar. 2017.

[30] Z. Zhang, C. M. Hackl, and R. Kennel, “Computationally efficient
DMPC for three-level NPC back-to-back converters in wind turbine
systems with PMSG,”IEEE Trans. Power Electron., vol. 32, no. 10,
pp. 8018–8034, Oct. 2017.

[31] M. Siami, D. A. Khaburi, and J. Rodrı́guez, “Simplified finite control
set-model predictive control for matrix converter-fed PMSM drives,”
IEEE Trans. Power Electron., vol. 33, no. 3, pp. 2438–2446, Mar. 2018.
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