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Abstract

Direct model predictive control (MPC) strategies that achieve long prediction horizons with a

modest computational complexity are reviewed in this article, focusing on power electronics applications.

In many MPC problems, a long prediction horizon is required to ensure an adequate closed-loop

performance in steady-state and to avoid stability issues.However, the computational effort of solving

the optimization problem underlying MPC problems with longprediction horizons is often very large,

making the implementation of such schemes in real-time a difficult and challenging task. To overcome

this difficulty, three established methodologies are surveyed that yield long prediction horizons with a

modest computational burden. Case studies are investigated to substantiate the merits of these schemes.

More specifically, for dc-dc boost converters, a move blocking strategy is reviewed, and for ac medium

voltage (MV) drives, both an extrapolation and an event-based horizon strategy are examined.

I. INTRODUCTION

In part, due to their switching nature, power electronic systems constitute nonlinear systems

with multiple-inputs and multiple-outputs (MIMO), and subject to constraints (e.g. the duty

cycle should be limited between zero and one). Over the yearsmany control strategies have been

proposed that are mainly based on conventional proportional-integral-derivative (PID) controllers

combined with nonlinear techniques, such as pulse width modulation (PWM). However, since

PID controllers are best suited to linear, single-input, single-output (SISO), unconstrained control

problems, the design procedure of PID controllers for nonlinear, MIMO plants with constraints
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becomes cumbersome [1], [2]. Moreover, controllers of thistype are usually tuned to achieve

satisfactory performance only in a narrow operating range;outside this range the performance

significantly deteriorates. Therefore, the problems associated with many power electronics ap-

plications and their closed-loop performance still poses theoretical and practical challenges.

A control algorithm that has recently been gaining popularity in the field of power electronics

is model predictive control (MPC) [3], [4]. MPC is a control strategy that was developed in

the 1970s in the process control industry as an alternative strategy to conventional PID control.

Its success is based on the fact that it uses a mathematical model of the plant, which allows

the controller to predict the impact of its control actions [5]. Furthermore, MPC is capable of

handling complex and nonlinear dynamics, and constraints can be explicitly included in a simple

and effective manner [6]. By imposing constraints on the variables of concern the plant is able to

operate very near its physical limits without violating them. Hence, the most favorable operation

can be obtained with minimum oversizing of the system, whilethe operational limits of the plant

are fully respected1. Thus, MPC has attracted the interest and attention of research and academic

communities. Furthermore, the continued advance of powerful microprocessors with increasing

computational capabilities has enabled the application ofMPC in the field of power electronics

with significant success [7]–[11].

In MPC, the designer defines an objective function that captures the control objectives.

Moreover, constraints can be imposed on the state variablesand/or the manipulated variables, i.e.

the control inputs. The underlying optimization problem issolved in real-time at each time-step

to determine a plan of control actions over a finite prediction horizon. The sequence of control

inputs that minimizes the objective function is theoptimal solution. Out of this sequence only

the first input is applied to the plant. At the next time-step the planning process is repeated with

updated measurements or estimates, while the time horizon is shifted one step forward. With this

procedure, known asreceding horizon policy[12], [13], the control strategy introduces feedback.

Generally speaking, in MPC a longer prediction horizon improves stability and plant perfor-

mance; the longer the prediction interval, the better the control performance is [5]2. However,

it holds true that the computational complexity—dependingon the type of the optimization

1The variables of interest can be upper, or lower bounded. Theconstraints that cannot be violated under any circumstances
are calledhard constraints; those that can be violated, but effort should be put into avoiding such violations are calledsoft
constraints.

2Note that in the field of power electronics the models are typically quite accurate, at least when compared to other engineering
disciplines such as the process control. As a result, when using long prediction intervals, the accuracy of the predictions is high.
Moreover, the receding horizon policy in MPC adds feedback and provides MPC with a high degree of robustness.



problem—grows exponentially with the length of the prediction horizon and the number of the

manipulated variables [14]. Since, the optimization problem must be solved at each time-step, the

time required to solve demanding MPC problems is often much longer than the usual sampling

interval used in power electronics applications (in the order of microseconds). Therefore, in

order to facilitate the real-time implementation of MPC-based algorithms, strategies need to be

employed that effectively balance the trade-off between the length of the prediction horizon and

the number of required computations.

The necessity for utilizing such strategies in the field of power electronics comes also from

the fact that MPC is very often implemented as a direct control method, i.e. the switches of the

converters are directly manipulated without the presence of a modulator. Despite the fact that

direct MPC strategies require higher computational burden3 compared to modulator-based MPC

schemes, such as generalized predictive control (GPC) [15], [16], these strategies are preferred

since the implementation procedure is more straightforward and simpler. In direct MPC the

optimization problem is solved in most cases using an enumeration strategy [7]–[9], [11]4. All

possible combinations of the discrete-valued control inputs over the prediction horizonN are

enumerated, yielding the so-calledswitching sequences. Subsequently, for each sequence the

evolution of the variables of concern is calculated using the prediction model of the plant and

the formulated objective function is evaluated. Then, the switching sequence with the minimum

associated cost is chosen as the optimal.

In this review article5, computationally efficient methods that achieve long prediction intervals

applicable to direct MPC algorithms for power electronics applications are discussed. Three

strategies are highlighted, namely the move blocking strategy, the extrapolation strategy, and

the event-based horizon strategy. The selected examples are chosen to show the effectiveness of

these established strategies, as well as to indicate the variety of problems that can be addressed.

In Section II the move blocking strategy is demonstrated with dc-dc boost converters, while the

extrapolation strategy and the event-based horizon strategy are applied to ac medium-voltage

(MV) drives in Sections III and IV, respectively.

3This statement holds true when a long prediction horizon is used, i.e. for cases whereN > 1.
4An alternative to enumeration strategy is to use precalculated switching sequences, as recently proposed in [17]. The open-

loop switching sequences are modified in real-time by shifting the switching instants in order to meet the control objectives, by
adopting the principles of constrained optimal control andreceding horizon policy.

5A preliminary version can be found in [18].



II. M OVE BLOCKING STRATEGY

As mentioned earlier, in many cases to successfully tackle acontrol problem in the field of

power electronics a long prediction intervalNTs is required, whereN is the number of prediction

steps, andTs the sampling interval. However, simply increasing the number of prediction steps

N results in an exponential increase of the calculations required. On the other hand, one could

increase the sampling intervalTs, while keepingN low, but this leads to unacceptable resolution

of the possible switching instants, since switching can only occur at the sampling instants. Thus,

neither option is viable. One technique to overcome this apparent contradiction and to achieve

a long prediction horizon with fewer time-stepsN and a small effective sampling intervalTs is

the so-calledmove blockingstrategy [19].

The key idea behind the move blocking strategy is to divide the prediction horizon into

two parts. The first part of the horizon isN1-steps long, while the second part consists ofN2

steps, withN1, N2 ∈ N
+. Consequently, the total number of steps of the prediction horizon is

N = N1 +N2. The firstN1 steps of the horizon are sampled with a small sampling interval Ts,

and in order to achieve a long prediction interval theN2 steps further in the future are sampled

more coarsely with a multiple ofTs, i.e. withT ′

s = nsTs, wherens ∈ N
+. Hence, the total length

of the prediction horizon isN1Ts +N2T
′

s = (N1 +N2ns)Ts. It should be pointed out that high

resolution sampling of the plant is mainly required near thepresent time-step, i.e. only for the

first N1 steps, since, as already mentioned, the state of the switching devices can only change at

the sampling instants. On the other hand, by sampling the model more coarsely for steps farther

in the future both the two desired goals can be accomplished:

• An extension of the prediction interval is realized withouta subsequent increase in the

computational burden.

• A sufficiently long, prediction of the future behavior of theplant is achieved, without

decreasing the “effective” timing resolution needed for accurate switching actions. This

approximate view suffices, since it will be later refined thanks to the receding horizon

policy.

To better understand how the moving block scheme is implemented consider the following

case. Assume that the plant under investigation is a hybrid (e.g. continuous-valued state variables,

discrete-valued input variables), nonlinear system, the discrete-time state-space model of which
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Fig. 1: Without move blocking scheme: The prediction horizon hasN = 12 time-steps, and the prediction length is12Ts.
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Fig. 2: With move blocking scheme: The prediction horizon has N = 12 time-steps, and the prediction length is20Ts.

is given by

x(k + 1) = A(u)x(k) +B(u)w(k) (1a)

y(k) = Cx(k) , (1b)

wherex ∈ R
n, w ∈ R

m andy ∈ R are the state, disturbance, and output vectors, respectively.

The input vector for reasons of simplicity is assumed to beu ∈ {0, 1}. Finally, A ∈ R
n×n is

the state matrix,B ∈ R
n×m is the disturbance matrix, and the output (row) matrix consists of

n elements and it is assumed to be of the formC = [1 0 . . . 0]. By setting the input variable

u equal to each of its values, two different affine (linear plusoffset) expressions are derived:

x(k + 1) =











A1x(k) +B1w(k) u = 0, Mode “1”

A2x(k) +B2w(k) u = 1, Mode “2”
(2)

If we assume a 12-element switching sequence of the formU = [1 0 1 0 1 1 1 0 1 0 1 1],

and directly apply a single sampling interval for the prediction, the output trajectoryY would

be as shown in Fig. 1. On the other hand, if a move blocking scheme is implemented the output

trajectory resulting from the same sequence of control moves would be as shown in Fig. 2. Note
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Fig. 3: Topology of the dc-dc boost converter:vs is the input voltage, andvo is the output voltage over the load resistorR,
which is considered equal to the voltagevCo

across the capacitorCo. Furthermore,iL is the current through the inductorL,
RL is its internal resistance, andio is the load current. Finally,S andD are the two power switches:S is the controllable one,
andD (diode) the uncontrollable.

that for this caseN1 = 8, N2 = 4, ns = 3, thus despite the fact that the prediction horizon still

has onlyN = 12 time-steps, now the total prediction length is20Ts.

Several successful examples of investigations employing the move blocking strategy in power

electronics applications can be found in the literature, see [7], [20], [21]. In this survey paper,

a dc-dc boost converter example is presented to highlight the efficacy of the move blocking

strategy. With this electronic circuit (Fig. 3) the input energy is temporarily stored and then

released to the loadR, by appropriately manipulating the controllable switchS. Hence, the

converter can produce an output with larger magnitude compared to the (usually unregulated)

input dc voltage.

The main control objective is to achieve output voltage regulation despite changes in the input

voltage or the load. The standard approach is to indirectly control the output voltage with the

inductor current, i.e. an intermediate current loop is added, giving rise to a cascaded control

concept [22]. This is due to the fact that the output voltage—in contrast to the input current—

exhibits a non-minimum phase behavior with respect to the control input, i.e. the duty cycle6.

For example, when the output voltage reference is increased, the duty cycle must also increase,

but initially the output voltage drops before it begins to rise again.

However, when a voltage-mode controller is designed, i.e. the output voltage is directly

controlled by employing only one loop, a sufficiently long prediction horizon is required. In this

way, the controller will be able to “see” beyond the initial voltage drop after the step change

in the reference and potential closed-loop stability issues can be avoided. Since increasing the

prediction horizon will lead to an exponential increase of the computations required, employing

a move blocking strategy is an option to reduce this effect [23].

6This means that—assuming a linearized model—the control-to-output voltage transfer function contains a right half-plane
zero, resulting in a reverse-response system behavior during transients.
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Fig. 4: Effect of the move blocking scheme for the case of a dc-dc boost converter when a step-up change in the output reference
voltage occurs at instantkTs. In (a), without move blocking, a prediction horizon ofN = 16 steps of equal time-intervals is
needed. In (b), with the move blocking strategy aN = 9 prediction horizon is required (N1 = 6, N2 = 3, andns = 4, total
length18Ts).

To demonstrate the effectiveness of the move blocking scheme for the examined case, an

illustrative example is shown in Fig. 4. As already explained, when the output voltage reference

is stepped up the output voltage initially drops before increasing, due to the non-minimum phase

nature of the system. This phenomenon can be clearly seen in Fig. 4. When the output reference

voltage is stepped up at time-stepk the output voltage should follow this change. However,

in order to keep the system stable, and at the same time samplethe model with a sufficient

resolution, a16 time-step horizon is required, i.e.N = 16 (see Fig. 4(a)). Assuming that the

enumeration strategy7 is used to solve the optimization problem, the controller must evaluate

2N sequences at every sampling instant [23]. This means, for a16-step horizon, the number of

the switching sequences to be examined in real-time is216 = 65536 and the evolution of the

state will be calculated for16 steps into the future. On the other hand, with the move blocking

scheme a much smaller number of steps is required to achieve the same closed-loop result, see

Fig. 4(b). By settingN1 = 6, N2 = 3, andns = 4 a 9-step horizon results, the total length of

which is 18Ts. The number of sequences now requiring evaluation is29 = 512, and the state

evolution must only be predicted for9 steps. Thus, the computations required are reduced by

three orders of magnitude.

To highlight the performance of the closed-loop system the transient behavior during step

changes in the output reference voltage is examined. The converter parameters areL = 450µH,

RL = 0.3Ω, Co = 220µF, andR = 73Ω. Furthermore, the nominal input voltage isvs = 10V. A

six-step prediction horizon is implemented, i.e.N = 6, and the sampling interval isTs = 10µs.

The prediction horizon is split intoN1 = 4 andN2 = 2 with ns = 2.

7In Section I the enumeration strategy is briefly presented.



Time [ms]

v
o

[V
]

0 1 2 3 4 5 6
10

15

20

25

30

35

(a)
Time [ms]

i L
[A

]

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

(b)

Fig. 5: Closed-loop performance during a step-up change in the output voltage reference: a) output voltage, and b) inductor
current (experimental results).
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Fig. 6: Closed-loop performance during a step-down change in the output voltage reference: a) output voltage, and b) inductor
current (experimental results).

Both, a step-up and a step-down change in the output reference voltage are examined, as

shown in Figs. 5 and 6, respectively. For the first case, the reference voltage is stepped up

from vo,ref = 15V to vo,ref = 30V at time t ≈ 1.7ms. As is shown in Fig. 5, the current is

instantaneously increased to rapidly charge the output capacitor to the new demanded level. The

output voltage reaches its new reference value in aboutt ≈ 1.9ms with no observable overshoot.

After the transient, the inductor current reduces to its newnominal value corresponding to the

steady-state power balance. It should be pointed out, that the controller exhibits this favorable

performance thanks to the implemented long prediction horizon; stability is ensured despite the

non-minimum nature of the converter.

In the second case, the output reference voltage changes from vo,ref = 20V to vo,ref = 15V at

t ≈ 1.9ms. Implementing the MPC algorithm as a direct voltage controller results in the voltage

decreasing to its new demanded level as fast as possible. Physically to achieve this, the capacitor

should discharge through the load with no input current until it reaches the new reference value.

Consequently, the controllable switch is turned off and theinductor current quickly drops to

zero. As can be observed, the converter settles to the new operating point in aboutt ≈ 1.2ms.



III. EXTRAPOLATION STRATEGY

A second strategy that can be used to emulate a long prediction horizon, while keeping the

computational complexity modest, isextrapolation[24]–[29]. Note, that in order to implement

this technique soft constraints on the controlled variables, implemented as hysteresis bounds,

should be present.

To realize the extrapolation strategy the following types of horizons are defined:

• Switching horizon: The switching horizonNs ∈ N
+ is the number of steps within which

the converter switches can change. It is a constant number and it is set by the designer.

The evolution of the variables of concern is calculated overthis short horizon for all

control input sequences, creating trajectories. Thus, thecontrolled variables are calcu-

lated from time-stepk + 1 to k +Ns based on the sequence of control inputs:U(k) =

[u(k) u(k + 1) . . .u(k +Ns − 1)].

• Prediction horizon: The prediction horizonNp ∈ N
+ includes the switching horizon, i.e.

Np ≥ Ns, and is of variable length. In order to calculate the length of Np the most “promis-

ing” trajectories [24] are extrapolated from stepsk +Ns − 1 andk +Ns, while from step

k +Ns + 1 to k +Np − 1 it is assumed that the state of the switches stays the same. Hence,

the total length depends on the final slope of each of the extrapolated trajectories; the upper

limit is the time-step where the first controlled variable hits a bound. Thus, within this

horizon the evolution of the controlled variables is finely calculated within the switching

horizonNs and more coarsely calculated over the extrapolated segment.

To visualize the concepts of the switching and the prediction horizons let us consider again

the system given by (1), the simplified model of which is described by (2), by setting either

u = 1, or u = 0. Assume that the control objective is to keep the output variabley within given

bounds;ymax is the upper bound, andymin is the lower bound. In Fig. 7 three different candidate

switching sequences are illustrated, each of which result in a different prediction horizon; for

the first sequenceNp = 11, for the secondNp = 6, and for the thirdNp = 14. However, for all

three sequences the switching horizon is the same, i.e.Ns = 3.

Direct MPC algorithms employing the extrapolation strategy have been used in the field

of power electronics [7], [24], [29] and have been successfully implemented in practice, see

e.g. [25]. In this paper, as a case study, consider the five-level active neutral point clamped

(ANPC-5L) inverter shown in Fig. 8 driving an induction machine (IM). The ANPC-5L inverter

is capable of producing five phase to neutral voltage levels normalized as,{−2,−1, 0,+1,+2},
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Fig. 8: Circuit diagram of the five-level active neutral point clamped (ANPC-5L) voltage source inverter driving an induction
machine (IM).

resulting in 53 = 125 possible three-phase voltage vectors. However, the numberof unique

line-to-line output voltage vectors is61, which means that different three-phase voltage vectors

produce the same output voltage. A set with this characteristic is called a three-phase redun-

dancy [30]. Furthermore, the phase leg of the ANPC-5L inverter has eight allowed switching

states that can produce the five unique phase to neutral voltage levels [30], i.e.83 = 512 three-

phase vectors that can be produced. Therefore, so called single-phase redundancies exist at the

level of the inverter phase leg, as well.

The control objective is to keep the neutral pointvn and phase capacitor voltagesvph,x, with

x = {a, b, c} (see Fig. 8), inside given bounds, while operating the inverter at the lowest possible

switching frequency over the whole operating regime. Two types of hysteresis bounds are used,

and they are implemented as soft constraints: the inner bounds (IB), which are defined by the

desired maximum absolute deviation from the respective reference voltage values, and the outer
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bounds (OB), which are set by the allowed physical limits of the semiconductor devices. In

order to fulfill the aforementioned goals, the topology single- and three-phase redundancies, i.e.

the 512 generated three-phase voltage vectors, must be effectively exploited.

In order to find the optimal sequence of control actions that meets the control objectives, i.e.

the sequence that results in the “best” performance of the plant, all possible switching transitions

from one voltage vector to another are enumerated. When an exhaustive search of all candidate

sequences is considered, without using the extrapolation strategy, 512Np sequences must be

evaluated, whereNp = Ns. The hard constraints that stem from the topology of the inverter,

such as minimum pulse width duration, IGBT clamp restrictions, and allowed state transitions

of the inverter phase leg, can be takena priori into account, and this significantly reduces the

allowable (orfeasible) sequences. The feasible sequences to be considered are generated based

on the algorithm presented in [29]. In Fig. 9 the number of sequences to be examined in aNp-step

prediction horizon, withNp = {1, 2, 3, 4}, is shown. As can be seen, even with a relatively short

horizon, such as a three-step horizon (Np = 3), the generated feasible sequences to be evaluated

in real-time are too many (for the three-step horizon there are 6859 sequences). Hence, under

these conditions, the implementation of an MPC algorithm ina real-time system seems to be an

unattainable task.

However, by employing a two-step switching horizon (Ns = 2), and then implementing the

extrapolation strategy, there are only343 feasible sequences, while at the same time the prediction

interval is significantly increased by approximating a longprediction horizon. In Fig. 10, example

trajectories are illustrated that can represent either theneutral point or a phase capacitor voltage

error, vn,err = vn,ref − vn and vph,x,err = vph,x,ref − vph,x, respectively. The number of steps in the

prediction horizon is determined for each controlled variable by the instant that its extrapolated

trajectory crosses one of the inner bounds. The optimal trajectory is the one that corresponds
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to the sequence of control inputs that minimizes a specified objective function. In [29], some

further approaches to this control problem are presented, as well as different objective functions

formulated according to several selection criteria and priority levels. For example, according

to [29], the most desirable trajectories are those that lie inside the inner bounds at all time-steps

of the prediction horizon. The optimal trajectory is selected from this set of trajectories such that

the minimum number of switching transitions occurs. If the set of the most desirable trajectories

is empty, then more relaxed selection criteria are defined, and new optimization problems are

formulated.

To evaluate the performance of the closed-loop system, the MPC algorithm presented in [29],

is simulated using a1MVA ACS 2000 MV drive from ABB coupled to a6-kV, 137-A IM driving
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a quadratic torque load. A two-step switching horizon (Ns = 2) is used, with linear extrapolation

following the two switching events. The algorithm is executed everyTs = 25µs. In Fig. 11 the

waveforms of the voltages of the neutral point and the phase capacitor of phasea are presented.

In addition, the switching frequency is kept low over a wide range of operating points, as shown

in Fig. 12. For comparison, the switching frequency resulting from the current algorithm used

by ABB for this product8 over the same range of operating points, is also shown in Fig.12.

Before closing this section, it should be pointed out that even longer prediction horizons can be

achieved with the extrapolation strategy. These prediction horizons are of variable length (in the

range of50 to more than100 time-steps) and can be effectively achieved by combining multiple

switching horizons (i.e. groups of switch transitions) andextrapolation segments. Therefore, a

prediction horizonNp may consist of multiple “S” and “E” elements, where “S” stands for

“switch” and “E” for “extrapolate”. Furthermore, there canbe an optional extrapolation prior to

the first switching event, this is denoted with “e”. Thus, with different combinations of “S” and

“E” elements, the length of the resulting prediction horizon changes9, resulting in significantly

improved control results, with a minimum increase in the computational burden, as described

in [26].

8According to the existing strategy, hysteresis bounds are used to limit the neutral point and phase capacitors voltage error
without introducing excessive switching. Thus, when the neutral point voltage error is within its inner bounds, no action is
taken; the commanded voltage vector is forwarded to the modulator. On the other hand, if it crosses the inner bounds, a vector
is selected to balance the neutral point without an additional switching. If the neutral point voltage error crosses itsouter bounds
a switching occurs in order to keep the voltage in bounds. With regards to the phase capacitors voltages, the single-phase
redundancies are considered to keep the error in bounds; thevector that minimizes the error is chosen. However, if thereis a
conflict with that required for the neutral point voltage balancing then a prioritization is done. For more details the reader is
referred to [30].

9For example consider a prediction horizon of the type “SSESE”. This means that a switching will occur at stepsk andk + 1.
Subsequently, the trajectories of all variables will be linearly extrapolated from stepsk + 1 andk + 2, until one of these hits
the bounds. Assume that this happens at stepk + ℓ. At that point another switching will occur followed by a final extrapolation.



IV. EVENT-BASED HORIZON

Recently, in [17] a new MPC algorithm was introduced for controlling MV ac drive systems

exhibiting very promising performance. The proposed control scheme is a combination of MPC

and optimal pulse patterns (OPPs) [31]. OPPs are calculatedoffline by solving an optimization

problem, the objective of which is to minimize the total harmonic distortion (THD) of the

machine currents in the linear and nonlinear range of the modulation index. Based on these

patterns an optimal stator flux trajectory is derived [32]. The controller aims to track this

trajectory so as to compensate as quickly as possible the fluxerror. To do so, the offline-calculated

switching instants of the OPPs are read from a lookup table and modified in real-time. These

modifications are the result of an optimization problem formulated in the MPC framework.

Although the formulated optimization problem proposed in [17] can be effectively solved,

regardless of the length of the prediction horizon, a deadbeat (computationally and conceptually

simpler) version of the strategy has been proposed [17], as well. However, the deadbeat imple-

mentation must be further refined in order to facilitate the implementation of the algorithm in a

real-time system without deteriorating the closed-loop dynamic performance. To achieve this, the

calculation of theevent-basedprediction horizon, initially proposed in [17], is reformulated [33];

in this way the calculations required are limited, while thesuperior dynamic behavior of the

controller is guaranteed.

To explain how the event-based horizon is implemented, let us consider again the ANCP-5L in-

verter driving an IM, as shown in Fig. 8. The goal is to correctthe flux errorψs,err = ψs,ref −ψs,

whereψs,ref is the reference stator flux vector, andψs the estimated stator flux vector. To do

so, the pre-calculated (nominal) switching instantst∗x, x ∈ {a, b, c}, of the OPPs, are modified

in real-time by a time interval∆tx. Thus, a modified switching instant results:tx = t∗x + ∆tx.

By advancing or delaying the nominal switching instants thevolt-second area that the pulse

sequence of each phase contributes to the flux is changed. Hence, it can be either increased

or decreased depending on the direction of the modification and the switching transition [17]

(Fig. 13).

The event-based horizon depends on the nominal and modified switching instants. First, the

two future nominal switching instants,tact1 andtact2 , which are closest tot0 = kTs are identified.

Then the phases that are involved in the flux error correctionprocedure are found. If the two

switching instants that followt0 occur in different phases, the flux error vector is projectedonto

these two phases. In this case, these phases are considered to be the active ones in the flux error
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Fig. 13: The MPC controller is activated at time instantkTs and it modifies pre-calculated switching instants of a three-phase,
five-level pulse pattern.

correction procedure and come in pairs, i.e.{a, b}, {b, c} or {c, a}. On the other hand, if both

switching instantstact1 and tact2 occur in the same phase, then switching instants in a single

active phase,a, b or c, are available to reduce the flux error. For example, in Fig. 13(a), the

two active switching instantstact1 = t∗b1 and tact2 = t∗a1 are in different phases (in phasesb and

a, respectively). In Fig. 13(b), on the other hand, only one phase is involved in the flux error

correction procedure, since both active switching instants tact1 = t∗b1 and tact2 = t∗b2 are in phase

b.

The length of the horizon is equal to the maximum difference between the initial sampling

instantt0 and the nominal or modified switching instants (Fig. 13), i.e.

Tp = max {t∗x − t0, tx − t0}. (3)

The selection of the event-based prediction horizon is key to the application-oriented imple-

mentation of the algorithm initially introduced in [17]. Byrestricting the length of the horizon

to include at most two switching events a twofold task is achieved: the computational burden

is significantly reduced relative to an unconstrained prediction horizon and a sufficiently long
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Fig. 14: Example of flux errorψs,err correction within four sampling intervals4Ts. The circled numbers in (f) correspond to
the flux error compensation steps shown in (a)–(e).

prediction horizon is achieved to effectively correct the flux error. Therefore, the implementation

of the algorithm [33] on a standard microprocessor or field-programmable gate array (FPGA)

device is possible. Note that in practice, the horizon is divided into equal sampling intervals

of fixed lengthTs, based on the execution sampling interval of the algorithm.When the entire

horizon has been scanned, a new prediction horizonTp is evaluated according to (3) and the

flux error correction procedure is repeated.

To demonstrate how the flux error correction procedure with an event-based horizon works,

an illustrative example is shown in Fig. 14. The goal is to compensate the flux errorψs,err

shown as bold solid lines in Fig. 14(f). In Fig. 14(a), the length of the prediction horizonTp

is determined. Next, the required time modifications∆ta = −(t∗a1 − ta1) and∆tb = −(t∗b1 − tb1)

are calculated within the first sampling intervalTs. The flux correction starts taking effect after

the sampling instant(k+1)Ts in Fig. 14(b) and the error is fully compensated between(k+3)Ts

and (k + 4)Ts. As can be seen, in this example the flux error is eliminated infour sampling

intervals (Fig. 14(a) to Fig. 14(d)). The new prediction horizon Tp is determined in Fig. 14(e).

The performance of the algorithm presented in [33] was tested in the laboratory with a
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Fig. 15: Experimental results of the MPC strategy [33], withan event-based horizon. The drive operates in steady-state
(f1 = 50Hz and62% machine current). Optimal pulse patterns ofd = 10 switching instants per quarter-wave are employed.
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Fig. 16: Experimental results produced by DTC in steady-state operation (f1 = 50Hz and62% machine current). The recorded
waveforms are at the same operating point and switching frequency as in Fig. 15.

sampling intervalTs = 25µs. The test setup consisted of a1MVA ACS 2000 MV drive from

ABB coupled to a6-kV, 137-A induction machine with a constant mechanical load. Stator

voltage and current waveforms recorded in the experimentalsetup are shown in Fig. 15 while

the machine was operated at50Hz frequency and partial load. The mean fundamental component

of the stator voltage is3.49 kV rms (Fig. 15(a)). It is shown only partially in the spectrum to

emphasize the harmonic content. In Fig. 15(b), the three-phase stator current is shown. The



fundamental component of the current (85A rms) is also shown only partially and the spectrum

is zoomed in to focus on the very low amplitudes of the currentharmonics. The total demand

distortion (TDD) of the stator currents is just3.77% referred to the rated current of the controlled

machine (137A).

In order to highlight the favorable performance of the proposed strategy a comparison with

direct torque control (DTC) [34] was made. The drive was operated at the same operating

point and switching frequency as before. The waveforms of the voltages and currents that DTC

produced, as well as the respective harmonic spectra, are shown in Fig. 16. As can be seen in

Fig. 16(b) DTC produces stator currents with6.37% TDD.

V. CONCLUSIONS

Direct model predictive control (MPC) algorithms implemented for power electronics ap-

plications are computationally demanding, because a long prediction horizon is often required

for guaranteed stability and improved performance of the plant. In this article, strategies that

achieve long prediction horizons well within achievable levels of computational effort have

been outlined and reviewed. Three techniques have been considered, namely the move blocking

strategy, the extrapolation strategy, and the notion of theevent-based horizon. By employing

these strategies, the computational complexity is kept at arelatively low level, facilitating the

execution of MPC algorithms in real-time. Moreover, by emulating long prediction horizons, the

closed-loop stability margin and the performance is enhanced.

Three different case studies have been considered, which highlight the variety of problems that

can be addressed with the aforementioned strategies. Thesecase studies include a dc-dc boost

converter using a move blocking strategy, an ANPC-5L ac medium voltage (MV) drive first

using an extrapolation strategy, and second using an event-based horizon. These examples clearly

demonstrate the effectiveness and the advantages of the aforementioned established strategies.

These techniques show just a few possibilities for making MPC feasible in power electronics,

i.e. by extending the horizon with low computational penalty. Other techniques exist and will

surely be developed in the future, see e.g. [35]–[37]. Actually, one of the most challenging

tasks a designer faces is to develop and implement such schemes that will further improve the

performance of power electronics systems, while keeping the computational burden low.
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