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Abstract

Direct model predictive control (MPC) strategies that aehi long prediction horizons with a
modest computational complexity are reviewed in this batiocusing on power electronics applications.
In many MPC problems, a long prediction horizon is requiredensure an adequate closed-loop
performance in steady-state and to avoid stability issHesvever, the computational effort of solving
the optimization problem underlying MPC problems with lgmgediction horizons is often very large,
making the implementation of such schemes in real-time fecdif and challenging task. To overcome
this difficulty, three established methodologies are sygdethat yield long prediction horizons with a
modest computational burden. Case studies are invesligm®ubstantiate the merits of these schemes.
More specifically, for dc-dc boost converters, a move bloglstrategy is reviewed, and for ac medium

voltage (MV) drives, both an extrapolation and an eventbldsorizon strategy are examined.

I. INTRODUCTION

In part, due to their switching nature, power electronictays constitute nonlinear systems
with multiple-inputs and multiple-outputs (MIMO), and gabt to constraints (e.g. the duty
cycle should be limited between zero and one). Over the yaarg/ control strategies have been
proposed that are mainly based on conventional propottiategral-derivative (PID) controllers
combined with nonlinear techniques, such as pulse widthutation (PWM). However, since
PID controllers are best suited to linear, single-inputgk-output (SISO), unconstrained control
problems, the design procedure of PID controllers for madr, MIMO plants with constraints
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becomes cumbersome [1], [2]. Moreover, controllers of thige are usually tuned to achieve
satisfactory performance only in a narrow operating ramggside this range the performance
significantly deteriorates. Therefore, the problems aased with many power electronics ap-
plications and their closed-loop performance still poseotetical and practical challenges.

A control algorithm that has recently been gaining poptyan the field of power electronics
is model predictive control (MPC) [3], [4]. MPC is a contrdrategy that was developed in
the 1970s in the process control industry as an alternatiaéegy to conventional PID control.
Its success is based on the fact that it uses a mathematicl b the plant, which allows
the controller to predict the impact of its control actio®§. [Furthermore, MPC is capable of
handling complex and nonlinear dynamics, and constraamsbe explicitly included in a simple
and effective manner [6]. By imposing constraints on thealdes of concern the plant is able to
operate very near its physical limits without violating tiheHence, the most favorable operation
can be obtained with minimum oversizing of the system, wtiigeoperational limits of the plant
are fully respecteld Thus, MPC has attracted the interest and attention of relsead academic
communities. Furthermore, the continued advance of paverfcroprocessors with increasing
computational capabilities has enabled the applicatioklBC in the field of power electronics
with significant success [7]-[11].

In MPC, the designer defines an objective function that captuhe control objectives.
Moreover, constraints can be imposed on the state variabl@®r the manipulated variables, i.e.
the control inputs. The underlying optimization problensaved in real-time at each time-step
to determine a plan of control actions over a finite predictimrizon. The sequence of control
inputs that minimizes the objective function is tbptimal solution. Out of this sequence only
the first input is applied to the plant. At the next time-stleg planning process is repeated with
updated measurements or estimates, while the time horszehifted one step forward. With this
procedure, known agceding horizon policy12], [13], the control strategy introduces feedback.

Generally speaking, in MPC a longer prediction horizon iowes stability and plant perfor-
mance; the longer the prediction interval, the better thatrob performance is [5] However,

it holds true that the computational complexity—dependamgthe type of the optimization

The variables of interest can be upper, or lower bounded.cbistraints that cannot be violated under any circumsgance
are calledhard constraints those that can be violated, but effort should be put intoidimg such violations are callesoft
constraints

2Note that in the field of power electronics the models arecsipj quite accurate, at least when compared to other eerjime
disciplines such as the process control. As a result, whigig Usng prediction intervals, the accuracy of the prediasi is high.
Moreover, the receding horizon policy in MPC adds feedbauk provides MPC with a high degree of robustness.



problem—grows exponentially with the length of the preidicthorizon and the number of the
manipulated variables [14]. Since, the optimization peoibimust be solved at each time-step, the
time required to solve demanding MPC problems is often moalgér than the usual sampling
interval used in power electronics applications (in theeordf microseconds). Therefore, in
order to facilitate the real-time implementation of MPGséd algorithms, strategies need to be
employed that effectively balance the trade-off betweenlémgth of the prediction horizon and
the number of required computations.

The necessity for utilizing such strategies in the field oivpp electronics comes also from
the fact that MPC is very often implemented as a direct comethod, i.e. the switches of the
converters are directly manipulated without the preserica modulator. Despite the fact that
direct MPC strategies require higher computational butd@empared to modulator-based MPC
schemes, such as generalized predictive control (GPC) [16], these strategies are preferred
since the implementation procedure is more straightfaiwamd simpler. In direct MPC the
optimization problem is solved in most cases using an enatioer strategy [7]-[9], [11] All
possible combinations of the discrete-valued control ispver the prediction horizoW are
enumerated, yielding the so-callegvitching sequencessubsequently, for each sequence the
evolution of the variables of concern is calculated using phediction model of the plant and
the formulated objective function is evaluated. Then, théching sequence with the minimum
associated cost is chosen as the optimal.

In this review articlé, computationally efficient methods that achieve long el intervals
applicable to direct MPC algorithms for power electroniggplecations are discussed. Three
strategies are highlighted, namely the move blocking exsatthe extrapolation strategy, and
the event-based horizon strategy. The selected exam@ahasen to show the effectiveness of
these established strategies, as well as to indicate tietywaf problems that can be addressed.
In Section Il the move blocking strategy is demonstratedhwlit-dc boost converters, while the
extrapolation strategy and the event-based horizon giredee applied to ac medium-voltage

(MV) drives in Sections Ill and IV, respectively.

3This statement holds true when a long prediction horizorsisdui.e. for cases wher¥ > 1.

4An alternative to enumeration strategy is to use precaledlawitching sequences, as recently proposed in [17]. Flea-0
loop switching sequences are modified in real-time by sigfthe switching instants in order to meet the control objest by
adopting the principles of constrained optimal control aaceding horizon policy.

SA preliminary version can be found in [18].



[I. MOVE BLOCKING STRATEGY

As mentioned earlier, in many cases to successfully taclderdrol problem in the field of
power electronics a long prediction intervéll; is required, wheréV is the number of prediction
steps, and’; the sampling interval. However, simply increasing the namiif prediction steps
N results in an exponential increase of the calculationsirequOn the other hand, one could
increase the sampling interval, while keepingVN low, but this leads to unacceptable resolution
of the possible switching instants, since switching caly aalcur at the sampling instants. Thus,
neither option is viable. One technique to overcome thisaegapt contradiction and to achieve
a long prediction horizon with fewer time-stepsand a small effective sampling interval is
the so-callednove blockingstrategy [19].

The key idea behind the move blocking strategy is to divide piediction horizon into
two parts. The first part of the horizon 1§;-steps long, while the second part consists\gf
steps, withN;, N, € N*. Consequently, the total number of steps of the predictiamizbn is
N = Nj + N,. The first N; steps of the horizon are sampled with a small sampling iatéry,
and in order to achieve a long prediction interval tkig steps further in the future are sampled
more coarsely with a multiple df;, i.e. withT! = n,T,, wheren, € NT. Hence, the total length
of the prediction horizon isV, T, + NoT. = (N; + Nong)Ts. It should be pointed out that high
resolution sampling of the plant is mainly required near phesent time-step, i.e. only for the
first V; steps, since, as already mentioned, the state of the sagtcl@vices can only change at
the sampling instants. On the other hand, by sampling theehmadre coarsely for steps farther
in the future both the two desired goals can be accomplished:

« An extension of the prediction interval is realized witha@utsubsequent increase in the

computational burden.

« A sufficiently long, prediction of the future behavior of thmant is achieved, without
decreasing the “effective” timing resolution needed focuaate switching actions. This
approximate view suffices, since it will be later refined tkmro the receding horizon
policy.

To better understand how the moving block scheme is implésdeconsider the following

case. Assume that the plant under investigation is a hybrgd ¢continuous-valued state variables,

discrete-valued input variables), nonlinear system, ikerete-time state-space model of which
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Fig. 1: Without move blocking scheme: The prediction hanizms N = 12 time-steps, and the prediction lengthlT.
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Fig. 2: With move blocking scheme: The prediction horizos Bha= 12 time-steps, and the prediction length2&T.
is given by

x(k+1)=A(wx(k) + B(u)w(k) (1a)

y(k) = Cx(k), (1b)

wherex € R”, w € R™ andy € R are the state, disturbance, and output vectors, resplgctive
The input vector for reasons of simplicity is assumed towbe {0, 1}. Finally, A € R"*" is
the state matrixB € R"*™ is the disturbance matrix, and the output (row) matrix ceissof
n elements and it is assumed to be of the fa@in=[1 0 ... 0]. By setting the input variable
u equal to each of its values, two different affine (linear pbffset) expressions are derived:
Ax(k) + Biw(k) u =0, Mode “1”
x(k+1)= 2
Asx(k) + Bow(k) u=1, Mode “2”
If we assume a 12-element switching sequence of the ©rme [1 0101110101 1],
and directly apply a single sampling interval for the prédit, the output trajectoryy” would
be as shown in Fig. 1. On the other hand, if a move blockingreehis implemented the output

trajectory resulting from the same sequence of control meveuld be as shown in Fig. 2. Note
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Fig. 3: Topology of the dc-dc boost convertex: is the input voltage, and, is the output voltage over the load resist@y
which is considered equal to the voltage, across the capacitaf,. Furthermore;y, is the current through the inductdr,
Ry, is its internal resistance, and is the load current. Finallys and D are the two power switches! is the controllable one,
and D (diode) the uncontrollable.

that for this caseV; = 8, N, = 4, n, = 3, thus despite the fact that the prediction horizon still
has only N = 12 time-steps, now the total prediction length2is7.

Several successful examples of investigations employiagiove blocking strategy in power
electronics applications can be found in the literature, $€], [20], [21]. In this survey paper,
a dc-dc boost converter example is presented to highlightefficacy of the move blocking
strategy. With this electronic circuit (Fig. 3) the inputeegy is temporarily stored and then
released to the load, by appropriately manipulating the controllable switsh Hence, the
converter can produce an output with larger magnitude coedpto the (usually unregulated)
input dc voltage.

The main control objective is to achieve output voltage lation despite changes in the input
voltage or the load. The standard approach is to indireahtrol the output voltage with the
inductor current, i.e. an intermediate current loop is agdgving rise to a cascaded control
concept [22]. This is due to the fact that the output voltage-€entrast to the input current—
exhibits a non-minimum phase behavior with respect to therobinput, i.e. the duty cycfe
For example, when the output voltage reference is increabedduty cycle must also increase,
but initially the output voltage drops before it begins teeriagain.

However, when a voltage-mode controller is designed, he. dautput voltage is directly
controlled by employing only one loop, a sufficiently longegiction horizon is required. In this
way, the controller will be able to “see” beyond the initiadltage drop after the step change
in the reference and potential closed-loop stability issc&n be avoided. Since increasing the
prediction horizon will lead to an exponential increasehs tomputations required, employing

a move blocking strategy is an option to reduce this effe8t.[2

5This means that—assuming a linearized model—the cortrolitput voltage transfer function contains a right haéfre
zero, resulting in a reverse-response system behaviongitransients.
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Fig. 4: Effect of the move blocking scheme for the case of @adboost converter when a step-up change in the output nefere
voltage occurs at instarit7. In (a), without move blocking, a prediction horizon &f = 16 steps of equal time-intervals is
needed. In (b), with the move blocking strategyVa= 9 prediction horizon is requiredN\; = 6, N2 = 3, andns = 4, total
length 187%).

To demonstrate the effectiveness of the move blocking sehfemthe examined case, an
illustrative example is shown in Fig. 4. As already expldinehen the output voltage reference
is stepped up the output voltage initially drops beforeeasing, due to the non-minimum phase
nature of the system. This phenomenon can be clearly sedqg.id.AVhen the output reference
voltage is stepped up at time-stépthe output voltage should follow this change. However,
in order to keep the system stable, and at the same time sahglemodel with a sufficient
resolution, al6 time-step horizon is required, i.éV = 16 (see Fig. 4(a)). Assuming that the
enumeration stratedyis used to solve the optimization problem, the controllerstevaluate
2N sequences at every sampling instant [23]. This means, fG-step horizon, the number of
the switching sequences to be examined in real-time'is= 65536 and the evolution of the
state will be calculated for6 steps into the future. On the other hand, with the move biagki
scheme a much smaller number of steps is required to achievsaime closed-loop result, see
Fig. 4(b). By settingV; = 6, N, = 3, andn, = 4 a 9-step horizon results, the total length of
which is 187;. The number of sequences now requiring evaluatiop’is- 512, and the state
evolution must only be predicted fdr steps. Thus, the computations required are reduced by
three orders of magnitude.

To highlight the performance of the closed-loop system thadient behavior during step
changes in the output reference voltage is examined. Theegen parameters are = 450 uH,
R;, =0.39Q, C, =220 uF, andR = 73 ). Furthermore, the nominal input voltagevis= 10V. A
six-step prediction horizon is implemented, i/é.= 6, and the sampling interval &, = 10 us.

The prediction horizon is split intdv; = 4 and N, = 2 with n, = 2.

’In Section | the enumeration strategy is briefly presented.
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Fig. 5: Closed-loop performance during a step-up changdénoutput voltage reference: a) output voltage, and b) itmduc
current (experimental results).
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Fig. 6: Closed-loop performance during a step-down changée output voltage reference: a) output voltage, and h)dtmt
current (experimental results).

Both, a step-up and a step-down change in the output refereoitage are examined, as
shown in Figs. 5 and 6, respectively. For the first case, tereece voltage is stepped up
from v, rer =15V 10 v, e = 30V at time ¢t = 1.7ms. As is shown in Fig. 5, the current is
instantaneously increased to rapidly charge the outpuwaieg to the new demanded level. The
output voltage reaches its new reference value in abeut.9 ms with no observable overshoot.
After the transient, the inductor current reduces to its meminal value corresponding to the
steady-state power balance. It should be pointed out, teatontroller exhibits this favorable
performance thanks to the implemented long predictionzioori stability is ensured despite the
non-minimum nature of the converter.

In the second case, the output reference voltage changesvfrier = 20V t0 v,ef = 15V at
t ~ 1.9ms. Implementing the MPC algorithm as a direct voltage adletr results in the voltage
decreasing to its new demanded level as fast as possiblsicalty to achieve this, the capacitor
should discharge through the load with no input currentl ilnteaches the new reference value.
Consequently, the controllable switch is turned off and itiductor current quickly drops to

zero. As can be observed, the converter settles to the nexatoygepoint in about ~ 1.2ms.



[Il. EXTRAPOLATION STRATEGY

A second strategy that can be used to emulate a long predictazon, while keeping the
computational complexity modest, éxtrapolation[24]-[29]. Note, that in order to implement
this technique soft constraints on the controlled varsbimplemented as hysteresis bounds,
should be present.

To realize the extrapolation strategy the following typésorizons are defined:

« Switching horizon The switching horizonV, € N* is the number of steps within which
the converter switches can change. It is a constant numigkitas set by the designer.
The evolution of the variables of concern is calculated owes short horizon for all
control input sequences, creating trajectories. Thus, ctr@rolled variables are calcu-
lated from time-stepk + 1 to k£ + N, based on the sequence of control inpui&k) =
[w(k) w(k+1)...u(k+ Ng—1)].

. Prediction horizon The prediction horizonV, € N* includes the switching horizon, i.e.
N, > N,, and is of variable length. In order to calculate the lendtiVp the most “promis-
ing” trajectories [24] are extrapolated from steps- N, — 1 and k& + N,, while from step
k+ Ns+1tok+ N, — 1itis assumed that the state of the switches stays the sameeHe
the total length depends on the final slope of each of the gofaited trajectories; the upper
limit is the time-step where the first controlled variablésha bound. Thus, within this
horizon the evolution of the controlled variables is fineblaulated within the switching

horizon NV, and more coarsely calculated over the extrapolated segment

To visualize the concepts of the switching and the predichiorizons let us consider again
the system given by (1), the simplified model of which is disad by (2), by setting either
u = 1, oru = 0. Assume that the control objective is to keep the outpuiadeiy within given
bounds;y...x is the upper bound, ang,;, is the lower bound. In Fig. 7 three different candidate
switching sequences are illustrated, each of which resuét different prediction horizon; for
the first sequenceéV, = 11, for the secondV, = 6, and for the thirdV,, = 14. However, for all
three sequences the switching horizon is the same)Vi.e= 3.

Direct MPC algorithms employing the extrapolation strgtdgave been used in the field
of power electronics [7], [24], [29] and have been succdlysimplemented in practice, see
e.g. [25]. In this paper, as a case study, consider the fiad-lgctive neutral point clamped
(ANPC-5L) inverter shown in Fig. 8 driving an induction maah (IM). The ANPC-5L inverter

is capable of producing five phase to neutral voltage levetsmalized as{—2, —1,0,+1, +2},



k k+2 k+4 k+6 k+8 k+10k+12k+14k+16 E k42 k+4 k46 k+8 k+10k+12k+14k+16
Time steps Time steps
@) (b)

Fig. 7: Three candidate switching sequences and the megudtitput trajectories when extrapolation is used. Thechivig
horizon is N, = 3; the trajectories are shown as solid lines within this remizThe length of the prediction horizon varies,
depending on the slope of each of the extrapolated trajestand ony(k + Ns). For the trajectory shown in blud, = 11,
for the trajectory shown in redv,, = 6, and for the green oné&/,, = 14. Finally, the uppemmax and lowerymi, bounds are
shown with a magenta dash-dotted line.

Fig. 8: Circuit diagram of the five-level active neutral pootamped (ANPC-5L) voltage source inverter driving an iciiton
machine (IM).

resulting in5® = 125 possible three-phase voltage vectors. However, the numbenique
line-to-line output voltage vectors &l, which means that different three-phase voltage vectors
produce the same output voltage. A set with this charatiteiis called a three-phase redun-
dancy [30]. Furthermore, the phase leg of the ANPC-5L imrehas eight allowed switching
states that can produce the five unique phase to neutrajeoléaels [30], i.e8% = 512 three-
phase vectors that can be produced. Therefore, so callgttghase redundancies exist at the
level of the inverter phase leg, as well.

The control objective is to keep the neutral pointand phase capacitor voltages, ,, with
x ={a,b,c} (see Fig. 8), inside given bounds, while operating the teveat the lowest possible
switching frequency over the whole operating regime. Twmetyof hysteresis bounds are used,
and they are implemented as soft constraints: the innerdso(i3), which are defined by the

desired maximum absolute deviation from the respectivereete voltage values, and the outer
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Fig. 9: Number of switching sequences to be examined withiN,astep prediction horizon, withv, = {1, 2, 3,4}, for the
case of a ANPC-5L inverter, when the switching constraiméstaken into account.

bounds (QB), which are set by the allowed physical limits of the semaduxtor devices. In
order to fulfill the aforementioned goals, the topology #n@nd three-phase redundancies, i.e.
the 512 generated three-phase voltage vectors, must be effgcaxgloited.

In order to find the optimal sequence of control actions thaéts the control objectives, i.e.
the sequence that results in the “best” performance of et phll possible switching transitions
from one voltage vector to another are enumerated. When lzawetive search of all candidate
sequences is considered, without using the extrapolati@egy, 512" sequences must be
evaluated, whereV, = N,. The hard constraints that stem from the topology of therieve
such as minimum pulse width duration, IGBT clamp restritsioand allowed state transitions
of the inverter phase leg, can be takempriori into account, and this significantly reduces the
allowable (orfeasiblg sequences. The feasible sequences to be considered amatgednbased
on the algorithm presented in [29]. In Fig. 9 the number oLseges to be examined ing,-step
prediction horizon, withV, = {1, 2, 3,4}, is shown. As can be seen, even with a relatively short
horizon, such as a three-step horizdy, & 3), the generated feasible sequences to be evaluated
in real-time are too many (for the three-step horizon theee6859 sequences). Hence, under
these conditions, the implementation of an MPC algorithra neal-time system seems to be an
unattainable task.

However, by employing a two-step switching horizaN, (= 2), and then implementing the
extrapolation strategy, there are o8iB feasible sequences, while at the same time the prediction
interval is significantly increased by approximating a lgmgdiction horizon. In Fig. 10, example
trajectories are illustrated that can represent eithenthdral point or a phase capacitor voltage
€ITOr, Un err = Unyref — Up, &N Uphz.err = Upharef — Uphss F€SPectively. The number of steps in the
prediction horizon is determined for each controlled Jagaby the instant that its extrapolated

trajectory crosses one of the inner bounds. The optimaddtajy is the one that corresponds
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Fig. 11: Simulation results for the per unit ripple of intafwoltages with the inner (green dashed line) and outerdaesth-dotted
line) bounds. Operating poin65% speed §2 Hz), 42% load.

to the sequence of control inputs that minimizes a speciflgdctive function. In [29], some
further approaches to this control problem are presentediedl as different objective functions
formulated according to several selection criteria anariyi levels. For example, according
to [29], the most desirable trajectories are those thankele the inner bounds at all time-steps
of the prediction horizon. The optimal trajectory is sedetcfrom this set of trajectories such that
the minimum number of switching transitions occurs. If tleé &f the most desirable trajectories
is empty, then more relaxed selection criteria are definad, reew optimization problems are
formulated.

To evaluate the performance of the closed-loop system, tR€ lelgorithm presented in [29],
is simulated using a MVA ACS 2000 MV drive from ABB coupled to &-kV, 137-A IM driving
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a quadratic torque load. A two-step switching horizdfn & 2) is used, with linear extrapolation
following the two switching events. The algorithm is exesmieveryT, = 25 us. In Fig. 11 the
waveforms of the voltages of the neutral point and the phapaditor of phase are presented.
In addition, the switching frequency is kept low over a widage of operating points, as shown
in Fig. 12. For comparison, the switching frequency reagltirom the current algorithm used
by ABB for this product over the same range of operating points, is also shown in1g.

Before closing this section, it should be pointed out thaneenger prediction horizons can be
achieved with the extrapolation strategy. These predidiiarizons are of variable length (in the
range of50 to more thanl00 time-steps) and can be effectively achieved by combiningiphe
switching horizons (i.e. groups of switch transitions) andrapolation segments. Therefore, a
prediction horizonN, may consist of multiple “S” and “E” elements, where “S” stanfbr
“switch” and “E” for “extrapolate”. Furthermore, there ce an optional extrapolation prior to
the first switching event, this is denoted with “e”. Thus, wtifferent combinations of “S” and
“E” elements, the length of the resulting prediction horizthangey resulting in significantly
improved control results, with a minimum increase in the patational burden, as described
in [26].

8According to the existing strategy, hysteresis bounds aesl to limit the neutral point and phase capacitors voltager e
without introducing excessive switching. Thus, when thetra point voltage error is within its inner bounds, no antiis
taken; the commanded voltage vector is forwarded to the tatmtu On the other hand, if it crosses the inner bounds, sowec
is selected to balance the neutral point without an additiswitching. If the neutral point voltage error crosseiiter bounds
a switching occurs in order to keep the voltage in boundshWgards to the phase capacitors voltages, the singlephas
redundancies are considered to keep the error in boundsjetiier that minimizes the error is chosen. However, if thera

conflict with that required for the neutral point voltage dading then a prioritization is done. For more details thedee is
referred to [30].

°For example consider a prediction horizon of the type “SSE$His means that a switching will occur at stepsndk + 1.
Subsequently, the trajectories of all variables will beedéily extrapolated from stepgs+ 1 and k£ + 2, until one of these hits
the bounds. Assume that this happens at stepl. At that point another switching will occur followed by a flrextrapolation.



IV. EVENT-BASED HORIZON

Recently, in [17] a new MPC algorithm was introduced for coling MV ac drive systems
exhibiting very promising performance. The proposed adrgcheme is a combination of MPC
and optimal pulse patterns (OPPs) [31]. OPPs are calcutdtiate by solving an optimization
problem, the objective of which is to minimize the total hamt distortion (THD) of the
machine currents in the linear and nonlinear range of theumatidn index. Based on these
patterns an optimal stator flux trajectory is derived [32heTcontroller aims to track this
trajectory so as to compensate as quickly as possible thertax To do so, the offline-calculated
switching instants of the OPPs are read from a lookup tabteraadified in real-time. These
modifications are the result of an optimization problem folaed in the MPC framework.

Although the formulated optimization problem proposed 1i7][can be effectively solved,
regardless of the length of the prediction horizon, a deadf@®mputationally and conceptually
simpler) version of the strategy has been proposed [17],edls Wowever, the deadbeat imple-
mentation must be further refined in order to facilitate ttimplementation of the algorithm in a
real-time system without deteriorating the closed-loopaiyic performance. To achieve this, the
calculation of theevent-basegrediction horizon, initially proposed in [17], is refortated [33];
in this way the calculations required are limited, while theperior dynamic behavior of the
controller is guaranteed.

To explain how the event-based horizon is implemented detmsider again the ANCP-5L in-
verter driving an IM, as shown in Fig. 8. The goal is to cortibet flux error, o = 9, (o — ¥,
where ) ¢ is the reference stator flux vector, agd the estimated stator flux vector. To do
so, the pre-calculated (nominal) switching instatjtsz € {a, b, ¢}, of the OPPs, are modified
in real-time by a time interval\t,. Thus, a modified switching instant results:= t! + At,.
By advancing or delaying the nominal switching instants Woé-second area that the pulse
sequence of each phase contributes to the flux is changeaeH#ncan be either increased
or decreased depending on the direction of the modificati@hthe switching transition [17]
(Fig. 13).

The event-based horizon depends on the nominal and modifigchs1g instants. First, the
two future nominal switching instants,.;, andt,..,, which are closest tq, = k7 are identified.
Then the phases that are involved in the flux error corregbimtedure are found. If the two
switching instants that follow, occur in different phases, the flux error vector is projeaiatb

these two phases. In this case, these phases are consulé&@dthe active ones in the flux error
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ty, andtq,, respectively within the horizof}, to t,, within the horizonT,, shown by the black
shown by the black arrow. At = t,,, the horizon arrow. Att = t;,, the horizon is reevaluated.

is reevaluated.

Fig. 13: The MPC controller is activated at time instafii; and it modifies pre-calculated switching instants of a tipkase,
five-level pulse pattern.
correction procedure and come in pairs, ie.b}, {b,c} or {c,a}. On the other hand, if both
switching instants,.;, andt,., occur in the same phase, then switching instants in a single
active phaseq, b or ¢, are available to reduce the flux error. For example, in FR(a)l the
two active switching instantt,.,, = t; andt.., = t; are in different phases (in phasesand
a, respectively). In Fig. 13(b), on the other hand, only onagghis involved in the flux error
correction procedure, since both active switching instgnt, = t; andt.., = t;, are in phase
b.

The length of the horizon is equal to the maximum differeneémeen the initial sampling

instantt, and the nominal or modified switching instants (Fig. 13), i.e
T, = max {t; —to,t; — to}. 3)

The selection of the event-based prediction horizon is kethé application-oriented imple-
mentation of the algorithm initially introduced in [17]. Bestricting the length of the horizon
to include at most two switching events a twofold task is eebd: the computational burden

is significantly reduced relative to an unconstrained mtézhh horizon and a sufficiently long
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Fig. 14: Example of flux erroxp, ., correction within four sampling interval$I’s. The circled numbers in (f) correspond to
the flux error compensation steps shown in (a)—(e).

prediction horizon is achieved to effectively correct thecferror. Therefore, the implementation
of the algorithm [33] on a standard microprocessor or figlogpammable gate array (FPGA)
device is possible. Note that in practice, the horizon igdaéi@t into equal sampling intervals
of fixed lengthTy, based on the execution sampling interval of the algoritiWhen the entire
horizon has been scanned, a new prediction horizpis evaluated according to (3) and the
flux error correction procedure is repeated.

To demonstrate how the flux error correction procedure witreeent-based horizon works,
an illustrative example is shown in Fig. 14. The goal is to pensate the flux errop, o
shown as bold solid lines in Fig. 14(f). In Fig. 14(a), thedtmof the prediction horizof,
is determined. Next, the required time modificatiakg = —(t; —t,,) andAt, = —(t;, —ty,)
are calculated within the first sampling intervidl The flux correction starts taking effect after
the sampling instantt +1)7 in Fig. 14(b) and the error is fully compensated betwg@e#n 3)7}
and (k 4+ 4)Ts. As can be seen, in this example the flux error is eliminatetbim sampling
intervals (Fig. 14(a) to Fig. 14(d)). The new predictionikon 7, is determined in Fig. 14(e).

The performance of the algorithm presented in [33] was destethe laboratory with a
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Fig. 15: Experimental results of the MPC strategy [33], with event-based horizon. The drive operates in steady-state
(f1 = 50 Hz and62% machine current). Optimal pulse patternsdof 10 switching instants per quarter-wave are employed.
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Fig. 16: Experimental results produced by DTC in steadtesteration 1 = 50 Hz and62% machine current). The recorded
waveforms are at the same operating point and switchinguéecy as in Fig. 15.

sampling intervall, = 25 us. The test setup consisted ofl VA ACS 2000 MV drive from
ABB coupled to a6-kV, 137-A induction machine with a constant mechanical load. $tato
voltage and current waveforms recorded in the experimesatalp are shown in Fig. 15 while
the machine was operated=sHz frequency and partial load. The mean fundamental comqpone
of the stator voltage i8.49kV rms (Fig. 15(a)). It is shown only partially in the spectruo

emphasize the harmonic content. In Fig. 15(b), the threes@hstator current is shown. The



fundamental component of the curref A rms) is also shown only partially and the spectrum
is zoomed in to focus on the very low amplitudes of the curtearimonics. The total demand
distortion (TDD) of the stator currents is jus7% referred to the rated current of the controlled
machine (37 A).

In order to highlight the favorable performance of the psgab strategy a comparison with
direct torque control (DTC) [34] was made. The drive was afe at the same operating
point and switching frequency as before. The waveforms efvititages and currents that DTC
produced, as well as the respective harmonic spectra, akensim Fig. 16. As can be seen in
Fig. 16(b) DTC produces stator currents witl37% TDD.

V. CONCLUSIONS

Direct model predictive control (MPC) algorithms implentesh for power electronics ap-
plications are computationally demanding, because a loadigtion horizon is often required
for guaranteed stability and improved performance of thanfplin this article, strategies that
achieve long prediction horizons well within achievableels of computational effort have
been outlined and reviewed. Three techniques have beeideosd, namely the move blocking
strategy, the extrapolation strategy, and the notion ofelent-based horizon. By employing
these strategies, the computational complexity is kept i@atively low level, facilitating the
execution of MPC algorithms in real-time. Moreover, by eatinlg long prediction horizons, the
closed-loop stability margin and the performance is enbdnc

Three different case studies have been considered, whittidit the variety of problems that
can be addressed with the aforementioned strategies. Thassestudies include a dc-dc boost
converter using a move blocking strategy, an ANPC-5L ac omadvoltage (MV) drive first
using an extrapolation strategy, and second using an ®asad horizon. These examples clearly
demonstrate the effectiveness and the advantages of trenadntioned established strategies.

These techniques show just a few possibilities for makingCM@&asible in power electronics,
i.e. by extending the horizon with low computational pepaldther techniques exist and will
surely be developed in the future, see e.g. [35]-[37]. Abtuane of the most challenging
tasks a designer faces is to develop and implement such sshiémat will further improve the

performance of power electronics systems, while keepiegcttmputational burden low.
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