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Abstract—Model predictive control (MPC) is a control strategy
that has been gaining more and more attention in the field of
power electronics. However, in many cases the computational
requirements of the derived MPC-based algorithms are difficult
to meet, even with modern microprocessors that are immensely
powerful and capable of executing complex instructions at a
faster rate than ever before. To overcome this difficulty, three
strategies that can significantly reduce the complexity of com-
putationally demanding MPC schemes are presented in this
paper. Three case studies are examined in order to verify the
effectiveness of the proposed strategies. These include a move
blocking strategy for a dc-dc boost converter and both an
extrapolation strategy and an event-based horizon strategy for a
dc-ac medium-voltage (MV) drive.

I. INTRODUCTION
Power electronics is a mature technology that has been

in use for more than four decades. From air-conditioners
to rail transport and from mobile phones to motor drives,
power electronics circuits have proved indispensable in many
areas because they convert electrical power from one form
to another, such as ac-dc, dc-dc, dc-ac, or even ac-ac with a
variable output magnitude and frequency [1].
Over the years many control strategies for power electronics

have been proposed that have been shown to be reasonably
effective. Mainly, these are strategies based on linear con-
trollers combined with nonlinear techniques, such as pulse
width modulation (PWM). However, controllers of this type
are usually tuned to achieve optimal performance only over
a narrow operating range; outside this range the performance
is significantly deteriorated. Therefore, the problems associ-
ated with many applications and their closed-loop controlled
performance still poses theoretical and practical challenges.
Furthermore, the advent of new applications leads to the need
for new control approaches that will meet the increasingly
demanding performance requirements.
A control algorithm that has been recently gaining more

popularity in the field of power electronics is model predictive
control (MPC) [2], [3]. This control method, which has been
successfully used in the process industry since the 1970s, has
attracted the interest and attention of research and academic
communities due to its numerous advantageous features, such
as design simplicity, explicit inclusion of design criteria and
restrictions, fast dynamics and inherent robustness. In addi-

tion, the emergence of fast microprocessors has increasingly
enabled successful implementation [4]–[8].
In MPC, an optimization problem is formulated based on

an objective function that captures the control objectives over
a finite prediction horizon. The control action is determined
by minimizing in real-time and at every time-step the chosen
objective function, subject to the discrete-time model of the
system and constraints. The sequence of control inputs with
the minimum associated cost is the optimal solution. Out of
this sequence only the first element is applied to the converter.
In the next sampling instant, all the variables are shifted by
one sampling interval and the optimization problem is repeated
based on new measurements or estimates. This procedure is
known as the receding horizon policy [9]. In this way feedback
is provided, allowing one to cope with model uncertainties and
disturbances.
However, MPC-based algorithms are very challenging to

implement because of the high level of computation required.
In general, the computational complexity—depending on the
type of the optimization problem—grows exponentially with
the length of the prediction horizon and the number of the
manipulated variables [10], [11]. One solution to reduce the
number of computations is to keep the horizon as short as
possible, i.e. to employ a one-step horizon. Unfortunately, in
many control problems a long prediction horizon is needed
to sufficiently predict the behavior of the state and output
variables for adequate performance, as well as to avoid sta-
bility problems [12]. Thus, for such problems one must find
methods of predicting over long horizons to improve plant
performance while reducing the complexity of the calculations
so the implementation of the algorithm is possible in real
systems.
In this survey paper existing efficient computational strate-

gies for addressing large-scale MPC problems in power elec-
tronics are highlighted. More specifically, three techniques that
reduce the complexity of MPC are shown: move blocking, ex-
trapolation, and event-based horizons. In addition, illustrative
examples are presented in order to show how the aforemen-
tioned strategies are applied, as well as their effectiveness. The
first strategy is demonstrated with a dc-dc boost converter,
while the other two are applied to a dc-ac medium-voltage
(MV) drive.
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Fig. 1: Topology of the dc-dc boost converter, where vs is the input voltage,
vo is the output voltage over the load resistor R, which is considered equal
to the voltage vCo

across the capacitor Co, iL is the current through the
inductor L (the inductor has an internal resistance RL) and S and D are two
power switches: S is controllable and D (diode) is uncontrollable.

II. MOVE BLOCKING STRATEGY

A move blocking strategy [13] is used to emulate a long
prediction horizon, while the computational complexity is kept
modest. According to this method, a long horizon with only a
few prediction steps N ∈ N

+ can be achieved. The prediction
horizon is split into two parts; N1 are the prediction steps
in the first part of the horizon, and N2 the steps in the last
part. Thus, the total number of time-steps in the horizon is
N = N1 +N2. For the N1 steps the model is sampled with a
sampling interval Ts, while for theN2 steps, i.e. the steps far in
the future, the model is sampled more coarsely with a multiple
of Ts, i.e. nsTs, with ns ∈ N

+ [14]. As a result, by using
different sampling intervals within the prediction horizon, a
long horizon is achieved.
As a case study, consider the dc-dc boost converter shown

in Fig. 1. This converter is capable of producing a controlled
dc output voltage greater in magnitude than the typically
uncontrolled dc input voltage. The control objective is for the
output voltage to accurately track its reference value despite
changes in the input voltage or the load. However, directly
controlling the output voltage without an intermediate current
control loop [15] is not a trivial task. This is due to the
fact that the output voltage exhibits a nonminimum phase
behavior with respect to the control input. For example, when
the output voltage reference is increased, the duty cycle should
also increase, but initially the output voltage drops before it
begins to rise again. This means that the sign of the gain (from
the duty cycle to the output voltage) is not always positive.
Therefore, a sufficiently long prediction interval NTs is

required, in order for the controller to “see” beyond the initial
voltage drop and thus to ensure closed-loop stability. Based
on the discussion above, a long prediction interval can be
achieved with a significant reduction of required computations
by employing a move blocking strategy, as shown in [16]. An
example of dividing the horizon into two parts relative to the
output voltage, input current and control input is shown in
Fig. 2.
In Fig. 3 an example of the effectiveness of the move

blocking strategy is illustrated. At step k the output voltage
reference is increased. However, due to the nonminimum phase
nature of the system, the output voltage initially decreases.
Therefore, a multiple-step prediction horizon is needed to
ensure that MPC is able to predict the final voltage increase
and thus choose the proper control actions that will achieve
this. In the example of Fig. 3 a twenty time-step horizon is
required (N = 20) so that the controller will “see” the positive
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Fig. 2: Prediction horizon with move blocking: a) output voltage, b) inductor
current and c) control input. The prediction horizon has N = 10 time-steps,
but the prediction interval is of length 19Ts, since ns = 4 is used for the
last N2 = 3 steps.
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Fig. 3: Effect of the move blocking scheme. In (a), without move blocking, a
prediction horizon of N = 20 steps of equal time-intervals is needed. In (b),
with the move blocking strategy employed, an N = 11 prediction horizon
is sufficient to achieve the same closed-loop result (N1 = 7, N2 = 4 and
ns = 4, total length 23Ts).

slope of the voltage, meaning that the number of control input
sequences to be examined is 220 = 10485761 and the state
evolution has to be predicted for 20 steps into the future.
If the move blocking strategy is adopted, then a prediction

interval of eleven time-steps NTs = 11, with N1 = 7, N2 = 4
and ns = 4 will suffice; the resulting prediction interval will be
23 steps long. This means that the total number of sequences
will be 211 = 2048 and the evolution of the state will be
calculated only for 11 steps. As a result, the computations
required are decreased by three orders of magnitude, or 99.9%.
To evaluate the performance of the closed-loop system, in

Fig. 4 a step-down change in the output reference voltage
is investigated experimentally. A six-step prediction horizon
is implemented, i.e. N = 6 and the sampling interval is
Ts = 10μs. The prediction horizon is split into N1 = 4 and
N2 = 2 with ns = 2. The output reference voltage changes

1For this example, enumeration strategy is used to solve the optimization
problem. According to this strategy, the controller has to examine 2N

sequences at every iteration [16].
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Fig. 4: Closed-loop performance during a step-down change in the output
voltage reference: a) output voltage and b) inductor current (experimental
results—Parameters: vs = 10V, L = 450μH, RL = 0.3Ω, Co = 220μF,
and R = 73Ω).

from vo,ref = 20V to vo,ref = 15V at t ≈ 1.9ms. As can be
seen the inductor current is instantly reduced to zero so as to
allow the capacitor to discharge through the resistor and the
converter reaches the new steady-state operating point in about
t ≈ 1.2ms.

III. EXTRAPOLATION STRATEGY
Another option to ensure a manageable level of complexity

is to use extrapolation [17]–[22]. The motivation of using
this strategy is similar to that presented in Section II, i.e. the
horizon must be relatively short, but, at the same time, long
enough to accurately capture the dynamics of the variables of
concern. To implement the extrapolation strategy—in contrast
to the move blocking scheme—soft constraints2, implemented
as hysteresis bounds, on the variables of interest should be
present.
To realize the extrapolation strategy, two types of horizons

are defined: the switching horizonNs ∈ N
+ and the prediction

horizonNp ∈ N
+, with Np ≥ Ns, since the prediction horizon

includes the switching horizon. The switching horizon Ns,
the length of which is set by the designer, is defined as the
time interval wherein the state of the converter switches can
change. The evolution of the controlled variables is calculated
over this short horizon for all control input sequences, creating
trajectories. The most “promising” of these trajectories [17]
are extrapolated. The length of the prediction horizon Np is
determined by the result of this extrapolation; its upper limit is
the time-step where the first controlled variable hits a bound.
From step k +Ns + 1 to k +Np − 1 it is assumed that the
state of the switches stays the same.
As a case study, consider the five-level active neutral

point clamped (ANPC-5L) inverter shown in Fig. 5 with an
induction machine (IM) as the load. The ANPC-5L inverter is
capable of producing the following phase to neutral normalized
voltage levels {−2,−1, 0,+1,+2}, resulting in 53 = 125
possible three-phase voltage vectors. These vectors produce 61
unique line-to-line output voltage vectors; each set of three-
phase voltage vectors which produce the same output voltage

2Soft constraints are these constraints that can be violated, but control effort
should be applied to avoid such violations.

vdc
n

Cdc

Cdc

vph,x Cph

is,abc

IM

S1

S2

S3

S4

S5 S6

S7 S8

Fig. 5: Circuit diagram of the five-level active neutral point clamped (ANPC-
5L) voltage source inverter driving an induction machine (IM).
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Fig. 6: Number of switching sequences to be examined within a Np-step
prediction horizon, with Np = {1, 2, 3, 4}, for the case of a ANPC-5L
inverter, when the switching constraints are taken into account.

is termed a three-phase redundancy [23]. Moreover, single-
phase redundancies exist: the phase leg of the ANPC-5L
inverter has eight allowed switching states that can produce
the five unique phase to neutral voltage levels [23]. Hence,
83 = 512 three-phase vectors can be produced. The control
objective is to effectively exploit the topology redundancies,
i.e. to use the 512 three-phase voltage vectors, so as to keep
the neutral point vn and phase capacitor voltages vph,x, with
x = {a, b, c} (see Fig. 5), inside the given bounds, while oper-
ating the converter at the lowest possible switching frequency.
If an exhaustive search of all possible switching transitions

from one voltage vector to another is considered, then 512Np

sequences, where Np = Ns is the prediction horizon, must be
examined. However, constraints that stem from the topology
of the inverter, such as minimum pulse time duration, dc-link
clamp restrictions and allowed state transitions of the inverter
phase leg, significantly reduce the allowable (or feasible)
sequences. According to the sequences generation algorithm
presented in [22], the number of sequences that must be evalu-
ated in a Np-step prediction horizon, with Np = {1, 2, 3, 4}, is
shown in Fig. 6. As can be seen, when a three-step horizon is
employed (Np = 3), there are 6859 sequences to be examined.
Thus, the implementation of an MPC algorithm, even with a
relatively short horizon, in a real-time system is an impossible
task.
However, using a two-step switching horizon, i.e. Ns = 2

with the extrapolation strategy, a twofold task is achieved:
only 343 sequences are generated and the prediction length
is improved, since a long prediction horizon is approx-
imated. In Fig. 7 trajectories that can stand either for
the neutral point vn,err = vn,ref − vn, or the phase capacitor
vph,x,err = vph,x,ref − vph,x voltage error are illustrated. The
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Fig. 7: Examples of internal voltage switching trajectories that illustrate
the effect of extrapolation. The switching horizon is Ns = 2. The internal
voltages are extended by linearly extrapolating the predicted voltage values
from steps k+1 and k+2. For the case of the ANPC-5L inverter two different
bounds are required and illustrated here: the inner bounds (IB) are defined by
the desired maximum absolute deviation from the respective reference voltage
values and the outer bounds (OB) are set by the allowed physical limits of
the semiconductor devices.
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Fig. 8: Simulation results for the per unit ripple of internal voltages with the
inner (green) and outer (red) bounds. Operating point: 65% speed (32Hz),
42% load.

switching horizon is selected to be Ns = 2, while the pre-
diction horizon depends on the final slope of each trajectory.
The optimal trajectory is then defined to correspond to the
sequence of control moves that minimizes a specified objective
function. In [22] different approaches to the control problem
presented here, as well as various formulations of objective
functions based on certain selection criteria are introduced.
The performance of the MPC algorithm presented in [22] is

tested using a 1MVA ACS 2000 MV drive from ABB coupled
to a 6-kV, 137-A IM driving a quadratic torque load. In order
to successfully implement the algorithm, a two-step switching
horizon (Ns = 2, Ts = 25μs) with an extrapolation strategy
is employed. In Fig. 8 the waveforms of the voltages of the
neutral point and the phase capacitor of phase a are depicted.
Furthermore, the switching frequency is kept low over the
whole operating regime, as shown in Fig. 9.

IV. EVENT-BASED HORIZON

Recently, a new control approach has been applied to a MV
ac drive system [24]. The concept of optimal pulse patterns
(OPPs) [25] is adopted in combination with MPC. OPPs are
calculated such that the total harmonic distortion (THD) of the
machine currents is minimized over the linear and nonlinear
range of the modulation index. The offline computed OPPs
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Fig. 9: Switching frequency (fsw) over a range of operating points (simulation
results).

are used to calculate an optimal stator flux trajectory that the
controller tracks in real-time [26]. Thus, the introduced MPC-
based algorithm aims to compensate as quickly as possible
the flux error in real-time by modifying the offline-calculated
switching instants, which are stored in a lookup table, of the
OPPs.
However, a relatively long prediction horizon is required

for the flux error correction procedure. In order to overcome
this obstacle a deadbeat version of the strategy has been
proposed [24], where an event-based prediction horizon is
employed. But, in order to achieve high dynamic performance
in closed loop, the deadbeat implementation must be further
refined, without exceeding computational limitations based on
the length of the prediction horizon. Thereby, in [27] the
event-based prediction horizon is reformulated in order to
limit the calculations needed without deteriorating the dynamic
behavior of the controller.
To make clear how the event-based horizon is implemented,

consider the ANCP-5L inverter driving an IM, as shown in
Fig. 5. The correction of the flux error ψs,err = ψs,ref −ψs,
where ψs,ref is the reference vector, and ψs the estimated
vector, is achieved by modifying in real-time the pre-calculated
(nominal) switching instants, t∗x, x ∈ {a, b, c}, of the OPPs by
a time interval Δtx, resulting in a modified switching instant
tx = t∗x +Δtx. The volt-second area that the pulse sequence
of each phase contributes to the flux is either increased or
decreased depending on the direction of the modification and
the switching transitions effected [24] (Fig. 10).
The event-based horizon depends on the two future nom-

inal switching instants, tact1 and tact2 , which are closest to
t0 = kTs and the modified switching instants of the involved
phases. If the two switching instants that follow t0 occur in
different phases, the flux error vector is projected onto these
two phases. In this case, two phases in pairs, i.e. {a, b}, {b, c}
or {c, a}, are considered as the active phases in the flux error
correction procedure, i.e. two degrees of freedom. On the other
hand, if both switching instants tact1 and tact2 that follow t0
occur in the same phase, then this phase is considered as the
only active phase, i.e. a, b or c. For example, in Fig. 10(a), the
two active switching instants tact1 = t∗b1 and tact2 = t∗a1

are
in phases b and a, respectively. While in Fig. 10(b), only one
phase is involved in the flux error correction procedure, since
both active switching instants tact1 = t∗b1 and tact2 = t∗b2 are
in phase b.
The length of the horizon is equal to the maximum differ-

ence between the initial sampling instant t0 and the nominal
or modified switching instants (Fig. 10), i.e.

Tp = max {t∗x − t0, tx − t0}. (1)
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Fig. 10: The MPC controller is activated at time instant kTs and it modifies pre-calculated switching instants of a three-phase, five-level pulse pattern.
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Fig. 11: Example of flux error ψs,err correction within four sampling intervals 4Ts. The circled numbers in (f) correspond to the flux error compensation
steps shown in (a)–(e).

In Fig. 11 an illustrative example of the flux error correction
is shown. The goal is to compensate the flux error ψs,err
shown as bold solid lines in Fig. 11(f). In Fig. 11(a), the
length of the prediction horizon Tp is determined along
with the required time modifications Δta = −(t∗a1

− ta1
) and

Δtb = −(t
∗

b1
− tb1) within the first sampling interval Ts. The

flux correction starts taking effect after the sampling instant
(k + 1)Ts (Fig. 11(b)) and the error is fully compensated
between (k + 3)Ts (Fig. 11(d)) and (k + 4)Ts (Fig. 11(e)).

As can be seen, in this example the flux error is eliminated
in four sampling intervals (Fig. 11(a) to Fig. 11(d)). The new
prediction horizon Tp is then determined in Fig. 11(e).
Employing an event-based horizon the modified algorithm

presented in [24] was implemented on a 1MVA ACS 2000 MV
drive from ABB coupled to a 6-kV, 137-A IM with a constant
mechanical load. The algorithm is executed every Ts = 25μs.
Stator current waveforms recorded in the experimental setup
with the drive system are shown in Fig. 12 while the machine
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Fig. 12: Experimental results in steady-state operation (f1 = 50Hz and
62% machine current). Optimal pulse patterns of d = 10 switching instants
per quarter-wave are employed. Three-phase stator currents and harmonic
spectrum are shown; the rms value of the phase current is 85A. The total
demand distortion (TDD) is 3.77% referred to the rated current of the
controlled machine (137A).

was operated at 50Hz frequency and at partial load. The
fundamental component of the current was 85A rms and the
spectrum is zoomed in to focus on the very low amplitudes of
the current harmonics. The total demand distortion (TDD) of
the stator currents is just 3.77% referred to the rated current
of the controlled machine (137A).

V. CONCLUSIONS
In this survey paper a number of strategies that can

effectively reduce the computational complexity of model
predictive control (MPC) algorithms that employ the reced-
ing horizon policy have been outlined. Three methods have
been considered, namely the move blocking strategy, the
extrapolation strategy and the event-based horizon strategy.
Furthermore, three examples have been included to highlight
the performance of the proposed strategies: dc-dc converters
with the move blocking strategy, and ac medium voltage
(MV) drives with the extrapolation strategy, and the event-
based horizon. These approaches deliver MPC schemes for
demanding applications with modest computational costs thus
making their implementation possible. An additional major
advantage of the presented techniques is that they can easily
be modified to meet different control tasks. Thereby, different
complex control problems can be successfully tackled by
adopting the most suitable strategy.
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