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Abstract

This thesis focuses on Model Predictive Control (MPC) of discrete-time hybrid systems.

Hybrid systems contain continuous and discrete valued components, and are located at

the intersection between the fields of control theory and computer science. MPC uses an

internal model of the controlled plant to predict the future evolution of the controlled

variables over a prediction horizon. A cost function is minimized to obtain the optimal

control input sequence, which is applied to the plant by means of a receding horizon policy.

The latter implies that only the first control input of the input sequence is implemented,

the horizon is shifted by one time-step and the above procedure is repeated at the next

sampling instant. Most importantly, theory and tools are available to off-line derive the

piecewise affine (PWA) state-feedback control law. Hence, any time-consuming on-line

computation of the control input is avoided and plants with high sampling frequencies

can be controlled.

The thesis is divided into two parts: The first part is devoted to theory and algorithms,

whereas the second part tackles applications in the fields of power electronics and power

systems. In the first part, using the notion of cell enumeration in hyperplane arrangements

from computational geometry, we propose an algorithm that efficiently enumerates all

feasible modes of a composition of hybrid systems. This technique allows the designer to

evaluate the complexity of the compound model, to efficiently translate the model into a

PWA representation, and to reduce the computational burden of optimal control schemes

by adding cuts that prune infeasible modes from the model.

With respect to implementation, an important issue is the complexity reduction of PWA

state-feedback controllers. Hence, we propose two algorithms that solve the problem of

deriving a PWA representation that is both equivalent to the given one and minimal in the

number of regions. As both algorithms refrain from solving additional Linear Programs,

they are not only optimal but also computationally feasible. In many cases, the optimal

complexity reduction constitutes an enabling technique when implementing the optimal

controllers as look-up tables in hardware.

In the second part of the thesis, we consider the field of power electronics that is intrin-

sically hybrid, since the positions of semiconductor switches are described by binary vari-

ables. The fact that the methodologies of MPC and hybrid systems are basically unknown

in the power electronics community has motivated us to consider such problems, namely
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iv Abstract

switch-mode DC-DC converters and induction machines driven by three-phase inverters

using the notion of Direct Torque Control (DTC). For these problems, we propose novel

modelling and control schemes that are conceptually simple, easy to devise, understand

and tune, and most importantly, implementable.

Specifically for DTC, we present a low complexity modelling approach of the induction

machine, based on which we propose three novel Model Predictive Control (MPC) ap-

proaches to tackle the DTC problem, namely MPC based on Priority Levels, MPC based

on Feasibility and Move Blocking, and MPC based on Extrapolation. In particular the

third control scheme is expected to be implementable, what has motivated our industrial

partner to protect the scheme by a patent.

Considering the synchronous step-down DC-DC converter as an illustrative example for

DC-DC converters, we derive a hybrid model of the converter that is valid for the whole

operating regime, and for which we formulate and solve off-line an MPC problem leading

to a state-feedback control law parameterized over the whole state-space. The analysis

of the controller shows that the considered state-space is control invariant, and that the

nominal closed-loop system is globally exponentially stable what is proved by a piecewise

quadratic (PWQ) Lyapunov function. Moreover, the controller rejects large disturbances

in the input voltage and the load.

Alike power electronics, power systems possess many hybrid features including inte-

ger manipulated variables such as load-shedding and capacitor switching, and internal

controllers based on logic and finite state machines such as tap changers in transformers.

Motivated by the recent severe blackouts in the US and Europe, we propose an emergency

voltage control scheme that stabilizes the voltages in spite of major outages in order to

prevent a voltage collapse and a blackout. To avoid unnecessary disruptive control actions,

the control moves are classified into nominal and emergency control actions, and corre-

sponding penalty levels are used in the objective function triggering disruptive control

moves such as load-shedding only if absolutely necessary.



Zusammenfassung

Der Fokus dieser Dissertation liegt auf der Modellprädiktiven Regelung von zeitdiskre-

ten hybriden Systemen. Hybride Systeme, welche sowohl wertekontinuierliche als auch

wertediskrete Komponenten enthalten, sind an der Schnittstelle zwischen den Bereichen

der Regelungstechnik und der Informatik angesiedelt. Die Modellprädiktive Regelung ver-

wendet ein internes Modell der zu regelnden Strecke, um das zukünftige Verhalten der

Regelgrößen innerhalb eines Horizontes vorherzusagen. Die Minimierung einer Zielfunk-

tion unter Einbezug des Modells und weiterer Beschränkungen ergibt die optimale Stell-

größensequenz. Von dieser wird nur das erste Element auf die Strecke angewendet, der

Horizont wird anschließend um einen Zeitschritt verschoben, und die obige Prozedur wird

beim nächsten Abtastzeitpunkt wiederholt. Dies wird als Receding Horizon Verfahren

bezeichnet. Darüber hinaus ist die Tatsache entscheidend, daß theoretische Ergebnisse

und Softwaretools existieren, um offline den entsprechenden abschnittsweisen affinen Zu-

standsregler zu berechnen. Dadurch wird eine zeitaufwendige Berechnung der Stellgröße

vermieden und die Regelung von Strecken mit hohen Abtastfrequenzen ermöglicht.

Die Dissertation gliedert sich in zwei Teile auf: Der erste Teil beschäftigt sich mit Theo-

rie und Algorithmen, während der zweite Teil Anwendungen in der Leistungselektronik

und in Energiesystemen beschreibt. Basierend auf dem Aufzählen aller Zellen eines Arran-

gements von Hyperebenen, welches ein Konzept aus dem Gebiet der Algorithmischen Geo-

metrie darstellt, entwickeln wir im ersten Teil der Dissertation einen Algorithmus, der alle

zulässigen Modi einer Zusammenschaltung hybrider Systeme bestimmt. Dies ermöglicht

dem Designer, die Komplexität der Zusammenschaltung zu bestimmen, diese effizient in

eine abschnittsweise affine Darstellung zu transformieren, und außerdem den Rechenauf-

wand insbesondere von Modellprädiktiver Regelung zu verringern. Dazu werden Schnitte

(so genannte Cuts) dem Modell hinzugefügt, die die nicht zulässigen Modi vom Modell

entfernen.

Die Komplexitätsreduktion der abschnittsweisen affinen Zustandsregler ist für die Reg-

lerimplementierung von großer Bedeutung. Daher stellen wir zwei Algorithmen vor, die

eine abschnittsweise affine Darstellung herleiten, welche äquivalent zum gegebenen Regler

ist und die kleinstmögliche Anzahl von Regionen besitzt. Beide Algorithmen sind sowohl

optimal als auch vom Rechenaufwand her praktikabel. In vielen Fällen stellt die optimale

Komplexitätsreduktion die einzige Möglichkeit dar, die Komplexität der Regler so weit
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vi Zusammenfassung

zu verringern, so daß diese in Form von Look-up Tables in Hardware realisiert werden

können.

Im zweiten Teil der Dissertation widmen wir uns dem Gebiet der Leistungselektronik,

welches von inhärent hybrider Natur ist, da die Schaltzustände der Halbleiterschalter durch

binäre Variablen beschrieben werden können. Die Tatsache, daß die Methoden der Mo-

dellprädiktiven Regelung und der hybriden Systeme hier im wesentlichen unbekannt sind,

hat uns motiviert, solche Probleme zu bearbeiten – insbesondere getaktete Gleichspan-

nungswandler und Asynchronmaschinen, wobei letztere von Dreiphasen-Wechselrichtern

unter Verwendung des Konzeptes der Direkten Drehmomentregelung angesteuert werden.

Für diese Anwendungen stellen wir neuartige Modellierungsansätze und Reglerschemata

vor, welche nicht nur konzeptionell einfach, sondern auch leicht zu entwerfen, zu verstehen

und zu tunen sind und, was entscheidend ist, praktisch anwendbar sind.

Für die Direkte Drehmomentregelung leiten wir ein Modell geringer Komplexität her,

basierend auf dem wir drei neuartige Modellprädiktive Regelungskonzepte entwickeln –

insbesondere ein Verfahren beruhend auf einer Zielfunktion mit verschiedenen Prioritäten,

ein weiteres Verfahren basierend auf der Realisierbarkeit und dem Einfrieren von Stell-

größenänderungen, und ein drittes Verfahren, das auf Extrapolation beruht. Vor allem

beim dritten Regelungsverfahren ist davon auszugehen, daß es praktisch anwendbar ist,

was unseren Industriepartner veranlaßt hat, dieses durch ein Patent zu schützen.

Für den synchronen Tiefsetzsteller, den wir als anschauliches Beispiel für einen Gleich-

spannungswandler betrachten, leiten wir ein hybrides Modell her, das für alle Arbeitspunk-

te Gültigkeit besitzt. Unter Verwendung dieses Modells formulieren und lösen wir offline

ein Modellprädiktives Regelungsproblem, das einen Zustandsregler ergibt, welcher über

den gesamten betrachteten Zustandsraum parametrisiert ist. Eine nachfolgende Regler-

analyse zeigt, daß der gesamte betrachtete Zustandsraum regelungsinvariant ist und daß

der nominelle geschlossene Regelkreis exponentiell stabil ist, was durch eine abschnittswei-

se quadratische Lyapunovfunktion bewiesen wird. Darüber hinaus kompensiert der Regler

große Störungen in der Eingangsspannung und der Last.

Ebenso wie leistungselektronische Systeme besitzen Energiesysteme zahlreiche hybride

Eigenschaften. Hierzu gehören ganzzahlige Stellgrößen, die das Abtrennen von Verbrau-

chern oder das Hinzuschalten von Kondensatorenbänken beschreiben, ebenso wie interne

Regelschleifen, welche häufig Logikkomponenten und Zustandsautomaten besitzen, wie

bspw. Transformatoren mit stufbarem Windungsverhältnis. Angeregt durch die in den

letzten Jahren stattgefundenen weiträumigen Stromausfälle in den USA und in Europa,

stellen wir ein Notfallspannungsregelungskonzept vor, das die Spannung trotz schwerer

Ausfälle stabilisiert und so einen Spannungszusammenbruch und einen Stromausfall ver-

hindert. Um unnötige und für den Verbraucher unangenehme Reglervorgänge zu mini-

mieren, unterteilen wir die Regleraktionen in Standard- und in Notfallmaßnahmen. In der
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Zielfunktion des Modellprädiktiven Reglers werden entsprechende Gewichte verwendet,

so daß Maßnahmen wie das Abtrennen von Verbrauchern vom Netz nur dann ausgelöst

werden, wenn diese unabdingbar für den Erhalt der Spannungsstabilität im Netz sind.
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Introduction

This thesis focuses on the constrained optimal control of hybrid systems. Hybrid sys-

tems are heterogenous systems incorporating both continuous-valued components, which

are governed by differential or difference equations, and discrete-valued components, such

as finite state machines, if-then-else rules, on/off switches, digital circuits and software

code. Hybrid systems switch between different operating modes, where each mode is gov-

erned by a dynamical law. Mode transitions are triggered by variables crossing specific

thresholds, by the elapse of certain time periods, or by external inputs. With respect to

hybrid systems, modelling, controller synthesis, monitoring schemes for estimation and

fault detection, verification of safety properties, and analysis of stability, robustness and

performance have recently become a very active area of research, both in control engi-

neering and computer science. This is due to the fact that hybrid systems not only pose

many theoretical challenges, but also offer novel ways and opportunities to improve on

traditional control schemes. Most important, enabled by the rapid and steady progress in

the computational power available, many intrinsically “hard” yet practically relevant and

traditionally unsystematically solved problems related to the modelling, analysis and con-

trol of hybrid systems can be nowadays successfully tackled. We will consider linear hybrid

systems in the discrete-time domain given in Mixed Logical Dynamical (MLD) [BM99a]

or Piecewise Affine (PWA) [Son81] form.

For hybrid systems, control schemes are proposed that are based on discrete-time con-

strained finite-time optimal control with a receding horizon policy, often referred to as

Model Predictive Control (MPC) [Mac02]. In MPC, the current control input is obtained

by solving at each sampling instant an open-loop constrained optimal control problem

over a finite horizon using the current state of the plant as the initial state. The under-

lying optimization procedure yields an optimal control sequence that minimizes a given

objective function. The receding horizon policy refers to only applying the first control

input of this sequence and to recomputing the control sequence at the next sampling

instant over a shifted horizon, thus providing feedback and closing the control loop. The

significant advantages of MPC, including its ability to systematically cope with hard

1
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constraints on manipulated variables, states and outputs, and to easily address systems

with multiple inputs and outputs, have led to its success and widespread use, which

initiated in the process industry more than two decades ago. Recent survey papers on

MPC include [MRRS00] and [QB03], while the monographs [CB99] and [Mac02] provide

introductions to the various classes of MPC.

As introduced in [BM99a], the MLD framework can be straightforwardly embedded in

MPC allowing one to use hybrid models given in MLD form as prediction models for MPC.

The underlying optimization problem is a Mixed-Integer Program, for which efficient off-

the-shelf solvers exist [ILO02]. In practical applications, however, the computation time

for solving the optimal control problem on-line often exceeds the sampling interval thus

prohibiting the direct implementation of the controller. This obstacle is overcome by

pre-computing off-line the solution to the optimal control problem for the whole state-

space using Dynamic Programming and multi-parametric programming, where the state

vector is treated as a parameter. For hybrid systems, such a method has been recently

introduced, which is based on a PWA description of the controlled system [Bor03]. The

result is a PWA state-feedback control law that can be easily implemented in form of a

look-up table.

1.1 Mode Enumeration and Optimal Complexity

Reduction

Introduction

When deriving models and designing controllers, in particular for hybrid systems, two

issues commonly arise: The derivation of the set of (feasible) modes of the model, and

the complexity reduction of PWA systems comprising both PWA models and PWA state-

feedback control laws.

The modelling stage is often and most easily performed using the HYbrid Systems

Description Language (Hysdel). Hybrid models given in Hysdel can be considered

as compositions of Discrete Hybrid Automata (DHA) [TB04], which are a mathematical

abstraction of the features provided by other computation oriented and domain specific

hybrid system frameworks. In general, compositions of hybrid models are very complex,

as the number of different operational modes depends exponentially on the number of

component systems. The explosion of the number of possible modes leads to computational

difficulties as the time and space complexity of most algorithms depends on it. Yet, most

of these modes are infeasible due to the model dynamics, their interaction and additional

constraints. To compute the set of (feasible) modes of a composition of models is beneficial

for several reasons, among them being that these modes not only allow for reducing the
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computational burden of related algorithms, but also form a basis to efficiently translate

Hysdel code into PWA form.

On the other hand, the complexity of PWA systems, which is approximately given

by the number of polyhedra, is often required to be as small as possible. As an example

consider the case where the state-feedback control law is computed off-line based on a PWA

model. Due to the combinatorial nature of the problem, both the computation time and

the controller complexity are in the worst case exponential in the number of polyhedra of

the PWA model [Bor03]. On the other hand, once the PWA state-feedback control law has

been derived and is implemented as a look-up table in hardware, the memory requirement

and the on-line computation time are linear in the number of polyhedra of the feedback

law when using standard search techniques. Hence it is often of major importance to

obtain a control law of minimal complexity.

Contributions

Both problems are addressed here. Using the notion of cell enumeration in hyperplane

arrangements from computational geometry, we propose in Chapter 3 an algorithm that

efficiently enumerates all feasible modes of a composition of DHAs. The impact of those

techniques on applications is threefold. At the modelling stage, the enumeration of modes

allows the designer to understand the real complexity of the compound model. After the

modelling, the model can be efficiently translated into a PWA representation, which the

model is generally required to be in when deriving the PWA state-feedback control law.

Compared to a recently published related algorithm for deriving the PWA model [Bem02],

the one presented here is of one to two orders of magnitudes faster. During the compu-

tational stage (i.e. analysis and control), the explicit computation of the set of feasible

modes of the compound system can be used as structural information to prune infeasible

modes from the resulting model and thus to reduce the computational burden of related

algorithms, like optimal control schemes. Furthermore, the presented algorithm is able to

deal with loops that may be present in compositions, and to determine if a composition

is well-posed or not.

The information provided by the mode enumeration algorithm, namely the so-called

markings, can be also used to determine a priori – i.e. without solving any Linear Program

(LP) – if a given combination of polyhedra is convex. Exploiting this fact, we propose

in Chapter 4 two algorithms that solve the problem of deriving a PWA model that is

both equivalent to the former and minimal in the number of regions. The first algorithm

executes a branch and bound on the markings yielding a new set of disjoint polyhedra,

where additional heuristics on the branching strategy are employed to reduce the compu-

tation time. The second approach relies on the fact that the optimal complexity reduction

problem can be reformulated as a logic minimization problem by replacing the markings
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by Boolean variables and minterms [Kat94]. Logic minimization is a fundamental problem

in digital circuit, and efficient tools have been developed to successfully tackle these prob-

lems, which often encounter hundreds or thousands of variables [BHMS84]. The resulting

polyhedra are in general not disjoint and thus overlapping. As both algorithms refrain

from solving additional LPs, they are not only optimal but also computationally feasible.

The applicability of the algorithms can be extended to general PWA systems lacking the

hyperplane arrangement (like PWA state-feedback control laws) by first computing the

hyperplane arrangement. In many cases, the optimal complexity reduction enables the

implementation of the optimal controllers as look-up tables in hardware.

Publications

Chapter 3 is almost entirely based on

[GTM03a] Geyer, T., F.D. Torrisi and M. Morari: Efficient Mode Enumeration

of Compositional Hybrid Models. Technical Report AUT03-01, Automatic

Control Laboratory ETH Zurich, http://control.ee.ethz.ch/, 2003.

Preliminary results have appeared in

[GTM03b] Geyer, T., F.D. Torrisi and M. Morari: Efficient Mode Enumeration

of Compositional Hybrid Systems. In Pnueli, A. and O. Maler (editors):

Hybrid Systems: Computation and Control, volume 2623 of Lecture Notes

in Computer Science, pages 216–232. Springer-Verlag, 2003.

Apart from the logic minimization scheme, which is an extension, Chapter 4 is based on

[GTM04] Geyer, T., F.D. Torrisi and M. Morari: Optimal Complexity Reduc-

tion of Piecewise Affine Models Based on Hyperplane Arrangements. In

Proceedings of the American Control Conference, pages 1190–1195, Boston,

MA, June 2004.

Software Codes

The mode enumeration algorithm is implemented in Matlab and assumes that the com-

position of DHAs is given as Hysdel code. The latest version of the algorithm can be

downloaded from http://control.ethz.ch/∼hybrid/hysdel. Also the complexity reduction

algorithms are written in Matlab. They are included in the multi-parametric toolbox

(MPT) [KGBM04], which is freely available from http://control.ee.ethz.ch/∼mpt/.
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1.2 Direct Torque Control

Introduction

The rapid development of power semiconductor devices led to the increased use of ad-

justable speed induction motor drives in a variety of applications. In these systems, DC-

AC inverters are used to drive induction motors as variable frequency three-phase voltage

or current sources. One methodology for controlling the torque and speed of induction

motor drives is Direct Torque Control (DTC) [TN86], which features very favorable control

performance and implementation properties.

The basic principle of DTC is to exploit the fast dynamics of the motor’s stator flux

and to directly manipulate the stator flux vector such that the desired torque is produced.

This is achieved by choosing an inverter switch combination that drives the stator flux

vector to the desired position by directly applying the appropriate voltages to the motor

windings. This choice is made usually with a sampling time Ts = 25µs using a pre-designed

switching table that is derived in a heuristic way and, depending on the particularities

of the application, addresses a number of different control objectives. These primarily

concern the induction motor – more specifically, the stator flux and the electromagnetic

torque need to be kept within pre-specified bounds around their references. In high power

applications, where three-level inverters with Gate Turn-Off (GTO) thyristors are used,

the control objectives are extended to the inverter and also include the minimization of

the average switching frequency and the balancing of the inverter’s neutral point potential

around zero. Due to the discrete switch positions of the inverter, the DTC problem is

a hybrid control problem, which is complicated by the nonlinear behavior of the torque,

length of stator flux and the neutral point potential.

Contributions

We aim at deriving MPC schemes that are conceptually and computationally simple yet

yield a significant performance improvement with respect to the state of the art. More

specifically, the term conceptually simple refers to controllers allowing for straightforward

tuning of the controller parameters or even a lack of such parameters, and easy adaptation

to different physical setups and drives, whereas computationally simple implies that the

control scheme does not require excessive computational power to allow the implemen-

tation on DTC hardware that is currently available or at least will be so within a few

years.

To achieve this, we exploit in Chapter 6 a number of physical properties of DTC drives

to derive discrete-time models of DTC drives with two- or three-level inverters tailored to

our needs, more specifically, models that are of low complexity yet of sufficient accuracy
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to serve as prediction models for our model-based control schemes. These properties are

the (compared with the stator flux) slow rotor flux and speed dynamics, the symmetry of

the voltage vectors, and the invariance of the motor outputs under flux rotation. The low-

complexity models are derived by assuming constant speed within the prediction horizon,

mapping the states (the fluxes) into a 60 degree sector, and aligning the rotor flux vector

with the d-axis of a reference frame rotating with the rotational speed of the rotor. The

benefits of doing this are a reduction of the number of states from five to three, and

a highly reduced domain on which the nonlinear functions need to be approximated by

PWA functions.

Based on the hybrid models of the DTC drive, we propose in Chapter 7 three novel

control approaches to tackle the DTC problem, which are inspired by the principles of

MPC and tailored to the peculiarities of DTC. The first scheme uses soft constraints to

model the hysteresis bounds on the torque, stator flux and neutral point potential, and

approximates the average switching frequency (over an infinite horizon) by the number of

switch transitions over a short horizon. To make this approximation meaningful and to

avoid excessive switching, the Late Switching Strategy has to be added, which favors the

postponement of switch transitions. Three penalty levels with corresponding penalties of

different orders of magnitude provide clear controller priorities and make the fine-tuning of

the objective function obsolete, and the Multiple Prediction Model Approach allows us to

extend the prediction interval without increasing the computational burden. This control

scheme not only leads to short commissioning times for DTC drives, but it also leads to a

performance improvement in terms of a reduction of the switching frequency in the range

of 20 % with respect to the industrial state of the art, while simultaneously reducing the

torque and flux ripples. Yet the complexity of the control law is rather excessive.

The second scheme exploits the fact that the control objectives only weakly relate to

optimality but rather to feasibility, in the sense that the main objective is to find a control

input that keeps the controlled variables within their bounds, i.e. a control input that is

feasible. The second, weaker objective is to select among the set of feasible control inputs

the one that minimizes the average switching frequency, which is again approximated by

the number of switch transitions over the (short) horizon. We therefore propose an MPC

scheme based on feasibility in combination with a move blocking strategy, where we allow

for switching only at the current time-step. For each input sequence, we determine the

number of steps the controlled variables are kept within their bounds, i.e. remain feasible.

The switching frequency is emulated by the cost function, which is defined as the number

of switch transitions divided by the number of predicted time-steps an input remains

feasible, and the control input is chosen so that it minimizes this cost function. The

simplicity of the control methodology translates into a state-feedback control law with a

complexity that is of an order of magnitude lower than the one of the first scheme, while
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the performance is improved.

The third scheme can be considered as a combination of the two preceding concepts.

Specifically, we use a rather short horizon and compute for the input sequences over the

horizon the evolution of the controlled variables using the prediction model. To emulate

a long horizon, the ”promising” trajectories are extrapolated and the number of steps

is determined when the first controlled variable hits a bound. The cost of each input

sequence is then determined by dividing the total number of switch transitions in the

sequence by the length of the extrapolated trajectory. Minimizing this cost yields the

optimal input sequence and the next control input to be applied. The major benefits of

this scheme are its superior performance in terms of switching frequency, which is reduced

over the whole range of operating points by up to 50 %, with an average reduction of 25 %.

Furthermore, the controller needs no tuning parameters. As the computation of an explicit

solution is avoided, all quantities may be time-varying including model parameters, set

points and bounds. Those can be adapted on-line, making the concept applicable to the

whole range of operating points. As all computations are performed on-line, the prediction

model is not restricted to be PWA, allowing us to use the nonlinear (and more accurate)

discrete-time model.

Summing up, all control schemes are based on minimizing an approximate of the average

switching frequency, they use an internal model of the DTC drive to predict the output

response to input sequences, and they are tailored to the specific DTC problem set-up.

Starting from the first scheme, the complexity of the controllers in terms of computation

times and the memory requirement is steadily reduced by several orders of magnitude,

while the performance is steadily improved. In particular the last control scheme is

expected to be implementable on the currently available DTC hardware.

Publications

Chapters 5, 6 and 7 are based on a re-arrangement and slight extension of

[PGM04c] Papafotiou, G., T. Geyer and M. Morari: Optimal Direct Torque

Control of Three-Phase Symmetric Induction Motors, 2004. submitted to

journal.

[GP05] Geyer, T. and G. Papafotiou: Direct Torque Control for Induction

Motor Drives: A Model Predictive Control Approach based on Feasibility.

In Morari, M. and L. Thiele (editors): Hybrid Systems: Computation

and Control, volume 3414 of Lecture Notes in Computer Science, pages 274–

290. Springer-Verlag, 2005.
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[GPM04a] Geyer, T., G. Papafotiou and M. Morari: Model Predictive Direct

Torque Control Minimizing Switching Frequency, 2004, unpublished.

Preliminary results of the modelling and the first control scheme have appeared in

[PGM04b] Papafotiou, G., T. Geyer and M. Morari: Optimal Direct Torque

Control of Three-Phase Symmetric Induction Motors. In Proceedings of

the 43th IEEE Conference on Decision and Control, Atlantis, Bahamas,

December 2004.

Some concepts, in particular the third control scheme, have been protected by the following

patent.

[GPM04c] Geyer, T., G. Papafotiou and M. Morari: Verfahren zum Betrieb

einer rotierenden elektrischen Maschine, European Patent application pend-

ing, EP 04 405 767.7, 2004.

1.3 DC-DC Converters

Introduction

Switch-mode DC-DC converters are power electronic circuits that are used in a large va-

riety of applications. The scope is to achieve output voltage regulation in the presence

of input voltage and output load variations. The difficulties in controlling DC-DC con-

verters arise from their hybrid nature. In general, these converters feature two or three

different modes of operation, where each mode has an associated linear continuous-time

dynamic. Furthermore, constraints are present. These result from the converter topology

including the manipulated variable (duty cycle) which is bounded in between of zero and

one, and from constraints on states like the discontinuous current mode where the induc-

tor current is constrained to be non-negative. Additionally, constraints are imposed as

safety measures, such as current limiting or soft-starting, where the latter constitutes a

constraint on the maximal derivative of the current during start-up. The control problem

is further complicated by gross operating point changes with input voltage and output

load variations and model uncertainties.

Contributions

Motivated by the hybrid nature of DC-DC converters, we propose in Chapter 8 a novel

approach to the modelling and controller design problem for fixed-frequency DC-DC con-

verters, using a synchronous step-down DC-DC converter as an illustrative example. In

particular, the notion of the ν-resolution model is introduced to capture the hybrid nature
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of the converter, which is modelled as a hybrid system using the MLD framework. This

leads to a model that is valid for the whole operating regime and captures the evolution of

the state variables within the switching period. Based on the MLD model, we formulate

and solve a constrained finite time optimal control problem. This allows for a systematic

controller design that achieves the objective of regulating the output voltage to the ref-

erence despite input voltage and output load variations while satisfying the constraints.

In particular, the control performance does not degrade for changing operating points.

Furthermore, we derive the explicit PWA state-feedback control law, which can be easily

stored in a look-up table and used for the practical implementation of the proposed control

scheme. An a posteriori analysis step shows that the considered state space is a control

invariant set. Most importantly, a Piecewise Quadratic (PWQ) Lyapunov function can be

computed that proves exponential stability of the closed-loop system for the whole range

of operating points.

Publications

Chapter 8 is based on

[GPM05] Geyer, T., G. Papafotiou and M. Morari: Global Optimal Control of

Switch-Mode DC-DC Converters, 2005. submitted to journal.

The modelling framework and on-line control scheme was first proposed in

[GPM04b] Geyer, T., G. Papafotiou and M. Morari: On the Optimal Control of

Switch-Mode DC-DC Converters. In Alur, R. and G. Pappas (editors):

Hybrid Systems: Computation and Control, volume 2993 of Lecture Notes

in Computer Science, pages 342–356. Springer-Verlag, 2004.

The extension to the explicit control law can be found in

[PGM04a] Papafotiou, G., T. Geyer and M. Morari: Hybrid Modelling and

Optimal Control of Switch-mode DC-DC Converters. In IEEE Workshop on

Computers in Power Electronics (COMPEL), Champaing, IL, USA, 2004.

1.4 Power Systems

Introduction

An electrical power system consists of numerous components connected together to form

a large, complex system generating, transmitting and distributing electrical power. Elec-

tric power systems and additional preventive control schemes are designed in such a way,



10 1 Introduction

that the system should be able to withstand any single contingency, that is, outage of

any single component without loss of stability and with all system variables kept within

predefined ranges [Kun94]. Not all possible disturbances, however, can be foreseen at

the planning stage, and these may result (in particular when multiple contingencies occur

within short time) in instability leading eventually to a collapse or islanding of the system.

Furthermore, because of environmental constraints on the extension of the transmission

capacity, increased electricity consumption and new economic constraints imposed by the

liberalized power market, power systems are operated closer and closer to their stability

limits. In the past, a number of severe voltage instability incidents have occurred around

the globe [Tay94,vV98], most notably the recent blackouts in northeastern US and south-

ern Canada in August 2003, in southern Sweden and eastern Denmark in September 2003,

followed only within a few days by the major blackout in Italy that has affected most of

the country’s 58 million people.

The design of emergency voltage control schemes is complicated by the fact that power

systems are hybrid systems including local controllers based on logic rules and finite state

machines. Furthermore, most control moves are inherently discrete-valued, like capacitor

banks and tap changers, which must be switched using fixed step sizes, and load-shedding,

which must be carried out by disconnecting whole feeders. Recent advances in compu-

tation, communication and power system instrumentation technology, more specifically

Phasor Measurement Units and Wide-Area Measurement Systems [Reh01], have made

coordinated and model based approaches tractable. They are highly attractive since the

use of a model in combination with on-line optimization allows for optimal coordina-

tion of different control moves and automatic adaption to changing operating conditions.

Thanks to this, they are less conservative than non-adaptive local schemes – even if the

local schemes have been optimally tuned – and thus avoid unnecessary operation of the

protection schemes in order to minimize load shedding.

Contributions

In Chapter 9 we present a novel emergency control scheme capable of predicting and

preventing a voltage collapse in a power system, that is modelled as a hybrid system

incorporating nonlinear dynamics, discrete events and discrete manipulated variables. We

decompose the system into a discrete event system, and a continuous-valued dynamical

system governed by nonlinear differential algebraic equations. To cast the model into

MLD form, the nonlinearities are replaced by PWA approximations.

The control objectives are to maintain the load voltage close to its reference, while

fulfilling the soft constraints on the bus voltages and while switching the manipulated

variables as little as possible. We classify the control move into nominal and emergency

control actions. During nominal control, the soft constraints on the bus voltages can be
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fulfilled by using only “cheap” control moves, i.e. capacitor bank switching and changing

the tap changer voltage reference. If the soft constraints cannot be met by only applying

cheap control moves, the controller uses emergency control and the full range of available

control moves including load-shedding.

MPC in connection with the MLD framework is used to successfully stabilize the voltage

of a four bus example system, defined within the Control and Computation (CC) branch

of the IST Research Project IST-2001-33520 as a case study. The tuning of the controller

is straightforward and systematic allowing us to easily distinguish between nominal and

emergency control moves. In comparison with previous work, the MLD framework allows

for modelling the hybrid behavior of the power system and thus provides better accuracy

since effectively multiple linearizations are used during the prediction interval. To the

best of our knowledge this is the first time a general-purpose constrained optimal control

framework for hybrid systems is applied successfully to the emergency voltage control

problem.

Publications

Preliminary versions of Chapter 9 have appeared in
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Background

In this chapter, we provide basic concepts and methodologies needed throughout the the-

sis. We start by recalling polyhedra and related concepts in Section 2.1, and summarize

discrete-time hybrid modelling in Section 2.2, in particular Discrete Hybrid Automata

(DHA), Mixed Logical Dynamical (MLD) systems and Piecewise Affine (PWA) systems.

Moreover, we point out related modelling methodologies and briefly mention the mod-

elling language HYSDEL. After defining Linear Programs (LP) and Mixed-Integer Linear

Programs (MILP) in Section 2.3, we present constrained optimal control in Section 2.4.

Here, we distinguish between on-line computation to derive for one given state the optimal

control input, and off-line computation to pre-solve the control problem and to derive for

all (feasible) states the control law.

2.1 Polyhedra

In this section, we recall the notion of convex sets and functions, and state some basic

definitions related to hyperplanes and polyhedra.

Definition 2.1 (Convex Set, [BV04]) A set X is convex if the line segment between

any two points in X lies in X , i.e., if for any x1, x2 ∈ X and any θ with 0 ≤ θ ≤ 1, we

have

θx1 + (1− θ)x2 ∈ X . (2.1)

Definition 2.2 (Convex Function, [Flo95]) Let X be a convex subset of Rd, and

f(x) be a real valued function defined on X . The function f(x) is said to be convex if for

any x1, x2 ∈ X , and 0 ≤ θ ≤ 1, we have

f((1− θ)x1 + θx2) ≤ (1− θ)f(x1) + θf(x2) . (2.2)

A function is strictly convex, if the strict inequality in (2.2) holds whenever x1 6= x2

and 0 < θ < 1.

15
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Definition 2.3 (Hyperplane) The i-th hyperplane in the d-dimensional Euclidian spaceRd is given by the linear equality Hi = {x ∈ Rd | aT
i x = bi} with the normal vector ai ∈ Rd

and bi ∈ R.

Definition 2.4 (Halfspace) The hyperplane Hi induces the two (closed) halfspaces

{x ∈ Rd | aT
i x ≤ bi} and {x ∈ Rd | aT

i x ≥ bi}.

Definition 2.5 (Polyhedron) A convex set P ⊆ Rd given by P = {x ∈ Rd | aTx ≤ b}

is called a polyhedron with a ∈ Rd×n and b ∈ Rn, and the operator ≤ denoting an

element-wise comparison of two vectors.

Equivalently, the polyhedron P can be considered as the intersection of a finite number

of half spaces (here n) defined by the hyperplanes Hi. In particular, a and b hold the n

hyperplanes, i.e. a = [a1, . . . , an] and b = [b1, . . . , bn]T .

Definition 2.6 (Facet) If P ∩Hi is (d− 1)-dimensional then P ∩Hi is called a facet

of the polyhedron P.

Definition 2.7 (Redundancy) The i-th inequality aT
i x ≤ bi is redundant for P if its

removal preserves the polyhedron, i.e. P = {x ∈ Rd | aTx ≤ b} = {x ∈ Rd | aT
j x ≤

bj ∀j 6= i}.

Definition 2.8 (NMR) The polyhedron P = {x ∈ Rd | aTx ≤ b, aT
i ai = 1 ∀i} without

redundant inequalities is called a normalized minimal representation (NMR) polyhedron.

Definition 2.9 (Polyhedral Partition) A collection of polyhedra Pi ⊆ R, i ∈ I ⊂ N,

is a polyhedral partition of the polyhedron R, iff

(i)
⋃

i∈I
Pi = R , (2.3a)

(ii) Pi ∩ Pj is lower dimensional ∀i, j ∈ I, i 6= j (2.3b)

2.2 Discrete-Time Hybrid Modelling

Hybrid systems are heterogenous systems incorporating both continuous-valued compo-

nents, which are governed by differential or difference equations, and discrete-valued com-

ponents, such as finite state machines, if-then-else rules, on/off switches, digital circuits

and software code. In particular, besides continuous-valued states and inputs, such sys-

tems have discrete-valued states and/or discrete-valued inputs. In general, hybrid systems

switch between different operating modes, where each mode is governed by a dynamical

law. Mode transitions are triggered by variables crossing specific thresholds, by the elapse

of certain time periods, or by external inputs.
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Hybrid systems are predominant in applications. In this thesis, we will focus on ap-

plications in the fields of power electronics and power systems, which are intrinsically

hybrid. In power electronics, semiconductor switches constitute the (binary) manipulated

variables. Specifically, in DC-DC converters, switches are used to regulate the converter’s

output voltage despite changes in the input voltage and the load, and in DC-AC con-

verters driving an induction machine, the switch positions are manipulated such that,

among others, the desired torque and/or speed is achieved. In power systems, many ma-

nipulated variables (like load shedding and capacitor switching) are discrete-valued, too,

and secondary controllers (like under load tap changers) incorporate thresholds, logic and

finite state machines. Moreover, saturations are present, which are enforced for example

by Automatic Voltage Regulators to protect generators from overheating. Apart from

these hybrid features, most power electronics and power systems are nonlinear. Other

examples for hybrid systems include digital controllers that regulate a plant featuring

only continuous-valued states and inputs [BBB+00], circuits integrating relays or diodes,

biomolecular networks [ABI+01], TCP/IP networks [HBOL01], and closed-loop linear

system with constraints on the manipulated variable.

In this thesis, we restrict ourselves to the discrete-time domain, and we confine our

models to (piecewise) affine dynamics rather than allowing general nonlinear dynamics.

This not only avoids a number of mathematical problems (like Zeno behavior), but allows

us to derive models for which we can pose analysis and optimal control problems that are

computationally tractable. To model such discrete-time linear hybrid systems, we present

in the following three frameworks, which will be used throughout the thesis: Discrete

Hybrid Automata (DHA), Mixed Logical Dynamical (MLD) systems and Piecewise Affine

(PWA) systems.

2.2.1 Discrete Hybrid Automata

As shown in Fig. 2.1, Discrete Hybrid Automata (DHA) [TB04] result from the intercon-

nection of a Finite State Machine (FSM), which provides the discrete part of the hybrid

system, with a Switched Affine System (SAS) providing the continuous part of the sys-

tem. The interaction between the two is based on two connecting elements: The Event

Generator (EG) and the Mode Selector (MS). The EG extracts binary signals from the

continuous part. Those binary events and other exogenous binary inputs trigger switches

of the FSM states. The MS combines all binary variables (states, inputs, and events) to

choose the mode and thus the corresponding continuous dynamic of the SAS. Next, we

define each of the four components.

Switched Affine System (SAS). A Switched Affine System is a collection of affine
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Figure 2.1: A Discrete Hybrid Automaton (DHA) is the connection of a Finite State

Machine (FSM) and a Switched Affine System (SAS) through a Mode Selector

(MS) and an Event Generator (EG). The output signals are omitted for clarity

systems

xr(k + 1) = Ai(k)xr(k) +Bi(k)ur(k) + fi(k) (2.4a)

yr(k) = Ci(k)xr(k) +Di(k)ur(k) + gi(k) , (2.4b)

where k ∈ N0 is the discrete time-instant, xr ∈ Xr ⊆ Rnr is the real state, ur ∈ Ur ⊆ Rmr

is the exogenous real input, yr ∈ Yr ⊆ Rpr is the real output, {Ai, Bi, fi, Ci, Di, gi}i∈I is

a collection of matrices of appropriate dimensions, and the mode i ∈ I ⊂ N is an input

signal selecting the affine state-update and output function.

Event Generator (EG). An Event Generator generates the binary event signal δe ac-

cording to the fulfillment of affine constraints or thresholds

δe(k) = fH(xr(k), ur(k)) , (2.5)

where fH : Rnr × Rmr → D ⊆ {0, 1}ne is a vector of descriptive functions of a set

of affine constraints. In particular, threshold events are modelled as [δi
e(k) = 1] ↔

[f i
H(xr(k), ur(k)) ≤ 0], and time events are modelled by adding a clock variable t in

the switched affine system with dynamic t(k + 1) = t(k) + Ts and setting [δi
e(k) = 1] ↔

[t(k) ≥ t0], where the superscript i denotes the i-th component of a vector and Ts is the

sampling interval.
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Finite State Machine (FSM). A Finite State Machine (or automaton) is a discrete

dynamic process that evolves according to a binary state-update function [PB97]

xb(k + 1) = fB(xb(k), ub(k), δe(k)) (2.6a)

yb(k) = gB(xb(k), ub(k), δe(k)) , (2.6b)

where xb ∈ Xb ⊆ {0, 1}
nb is the binary state, ub ∈ Ub ⊆ {0, 1}

mb the exogenous binary

input, yb ∈ Yb ⊆ {0, 1}
pb the binary output, δe the event, and fB : Xb × Ub × D → Xb,

gB : Xb × Ub ×D → Yb are deterministic binary functions.

Mode Selector (MS). The binary state xb, the binary input ub and the event δe select

the mode i of the SAS through a deterministic binary function fM : Xb × Ub × D → I,

which is therefore called Mode Selector. The output of this function

i(k) = fM(xb(k), ub(k), δe(k)) (2.7)

is called active mode. We say that a mode switch occurs at time-instant k if i(k−1) 6= i(k).

Note that one may associate with a state xb of the FSM more than one mode i according

to the event δe.

To shorten the notation, we will use the definitions x , [ xr
xb

], u , [ ur
ub

], y , [ yr
yb ],

X , Xr ×Xb, U , Ur × Ub and Y , Yr × Yb throughout the thesis.

Definition 2.10 A DHA is well-posed on X , U , Y, if for all initial conditions x(0) ∈ X

and for all inputs u(k) ∈ U the state trajectory x(k) ∈ X and the output trajectory

y(k) ∈ Y are uniquely defined for all k ∈ N0.

2.2.2 Mixed Logical Dynamical Systems

The general MLD form of a hybrid system introduced in [BM99a] is

x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k) (2.8a)

y(k) = Cx(k) +D1u(k) +D2δ(k) +D3z(k) (2.8b)

E2δ(k) + E3z(k) ≤ E4x(k) + E1u(k) + E5 , (2.8c)

where k ∈ N0 is the discrete time-instant, and x ∈ X denotes the states, u ∈ U the inputs

and y ∈ Y the outputs, with both real and binary components as defined in the previous

section. Furthermore, δ ∈ {0, 1}nδ and z ∈ Rnz represent binary and auxiliary continuous

variables, respectively. These variables are introduced when translating propositional logic

or PWA functions into linear inequalities.

All constraints on states, inputs, outputs and auxiliary variables are summarized in

the mixed-integer linear inequality constraint (2.8c). Note that (2.8a) and (2.8b) are

linear; the nonlinearity is hidden in the integrality constraints on the binary variables. A
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combination of a binary state xb, binary input ub and binary variable δ is called mode. If

for a given triple xb, ub and δ there exists a triple xr ∈ Xr, ur ∈ Ur and z ∈ Rnz such that

the inequality (2.8c) holds, the mode is called feasible; else it is infeasible.

Well-posedness of MLD models is defined according to Definition 2.10. The following

lemma follows directly.

Lemma 2.1 If for every given pair x(k) ∈ X and u(k) ∈ U , the values of δ(k) and z(k)

are uniquely defined by the inequality (2.8c), the MLD model is well-posed.

Hereafter, we consider only MLD models that are well-posed. This assumption is not

restrictive and is always satisfied when real plants are described in the MLD form [BM99a].

Note that the MLD framework allows for describing automata, propositional logic, if . . .

then . . . else statements and PWA functions. General nonlinear functions, however,

cannot be directly incorporated, and have to be approximated by PWA functions.

2.2.3 Piecewise Affine Systems

Polyhedral piecewise affine (PWA) systems [Son81,HSB01] are defined by partitioning the

state-space into polyhedra and associating with each polyhedron an affine state-update

and output function

x(k + 1) = Aj(k)x(k) +Bj(k)u(k) + fj(k) (2.9a)

y(k) = Cj(k)x(k) +Dj(k)u(k) + gj(k) (2.9b)

with j(k) such that
[

x(k)
u(k)

]

∈ Pj(k), (2.9c)

where x ∈ X , u ∈ U , y ∈ Y denote at time-instant k ∈ N0 the real and binary states,

inputs and outputs, respectively, the polyhedra Pj(k) define a set of polyhedra {Pj}j∈J

on X × U , and the real matrices Aj(k), Bj(k), Cj(k), Dj(k) and real vectors fj(k), gj(k) with

j(k) ∈ J , J finite, are constant and have suitable dimensions. We refer to j(k) as the

mode of the system and to #J as the number of modes.

Instead of (2.9), we often use the equivalent simplified notation

x(k + 1) = fPWA(x(k), u(k)) (2.10a)

y(k) = gPWA(x(k), u(k)) . (2.10b)

For PWA models, we define well-posedness as in Definition 2.10. The following lemma

follows directly.

Lemma 2.2 Let ΣPWA be a PWA model as in (2.9). If {Pj}j∈J is a polyhedral partition

of X × U , then ΣPWA is well-posed.

Note however, that the converse statement does not hold in general as a well-posed

PWA system may be defined on an overlapping set of polyhedra.
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2.2.4 HYSDEL

Modelling complex hybrid systems directly for example in MLD or PWA form is, in

general, a tedious and non-trivial task. To facilitate the modelling, the HYbrid Systems

DEscription Language (Hysdel) [TB04] has been developed, which allows the designer

to describe a hybrid system on a textual basis. For a detailed description of the Hysdel

modelling language and its capabilities, we defer to [TB04]. Note that a hybrid system

described in Hysdel can be regarded as a composition of DHAs [TB04]. We will exploit

this fact in the next chapter when proposing the Mode Enumeration Algorithm. In this

thesis, all case studies and applications have been modelled in Hysdel, the code of which

can be found in Appendix A.

2.2.5 Summary

Before proceeding, we sum up the main features of the above introduced hybrid modelling

frameworks. Even though we have avoided to introduce general nonlinear hybrid models,

binary states and binary inputs can be directly included, the state-update mapping of the

hybrid system may be discontinuous, events that trigger mode transitions may be both

external (set by switching in a binary input), or internal (induced by a state variable

hitting a threshold). Moreover, PWA constraints can be imposed on states and inputs.

In particular, these models can approximate nonlinear systems arbitrarily accurate.

Moreover, these hybrid models feature thresholds or guardlines defined on states, inputs

and internal variables. Binary signals are associated with them that are either true or

false according to the fulfillment of these thresholds. Additionally, as mentioned above,

these models may encompass binary states that are part of a finite state machine or

an automaton. A (feasible) combination of binary signals and binary states is called a

mode. Since we have restricted the thresholds to be linear, the set of states and inputs

corresponding to the same mode form a (convex) polyhedron whose facets are a subset of

the thresholds. For each mode, the hybrid model features an associated dynamic. Here,

we have restricted ourselves to discrete-time and PWA dynamics. Furthermore, as the

modes are defined such that the binary signals are constant for a given mode, these signals

can be directly included in the affine expressions of the PWA dynamics.

Indeed, the aforementioned modelling frameworks are equivalent as shown in [Bem02],

and several tools are available to transform them into each other. More specifically, DHA

models can be considered as building blocks of HYSDEL code, which can be compiled

to MLD models or transformed into PWA form using the Mode Enumeration Algorithm

presented in Chapter 3. Alternatively, MLD models can be translated into PWA form

using an approach based on multi-parametric programming and Mixed-Integer Linear

Programming [Bem02]. Describing PWA models as DHAs or MLD models is trivial.
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Yet, these modelling frameworks carry different benefits. DHAs can be easily described

in Hysdel, MLD models are very suitable for (on-line) optimal control, whereas PWA

models are the starting point to derive off-line the optimal control law as a state-feedback

control law [Bor03], to design moving horizon observers for hybrid systems [FMM02], or

to perform analysis tasks.

Besides DHAs, MLD and PWA models, Linear Complementarity (LC) systems [SS98],

Extended Linear Complementarity (ELC) systems [HSB01], and Max-Min-Plus-Scaling

(MMPS) systems [Dv01,HSB01] have been proposed. However, as shown first in [Son96]

for PWA and a class of hybrid systems, and then, with different arguments, in [HSB01,

TB04] all those modelling frameworks are equivalent, and it is possible to represent the

same system using any of these frameworks.

Beyond the above, a number of additional modelling frameworks exists, in particular for

the continuous-time domain. We refer to the in-depth report [Kam01] and its references

for an overview of related frameworks to model hybrid systems both in the continuous

and the discrete-time domain. This report also provides a comparison of such schemes

including the MLD framework.

2.3 Optimization Problems

Before introducing constrained optimal control, we briefly recall basic terminology for

mathematical programming in general, and introduce Linear Programming (LP) and

Mixed-Integer Linear Programming (MILP) in particular. For details, the reader is re-

ferred to one of the numerous textbooks (e.g. [BV04,Flo95]).

We start by introducing basic terminology for optimization problems according to

[BV04]. Consider

min
ζ

f0(ζ)

subj. to fi(ζ) ≤ 0, i = 1, . . . , nf

(2.11)

with the optimization variable ζ ,
[

ζr

ζb

]
that we introduce here in a general way containing

both a real-valued part ζr ∈ Rdr and a binary part ζb ∈ {0, 1}
db with d = dr + db.

The problem amounts to finding an ζ that minimizes the objective (or cost) function

f0 : Rd → R such that the inequality constraints fi(ζ) ≤ 0, i = 1, . . . , nf hold, where the

corresponding function fi : Rd → R is called the inequality constraint function.

A point ζ is said to be feasible if it satisfies all constraints fi(ζ). The problem (2.11) is

feasible if there exists at least one feasible point, else it is infeasible. The set of all feasible

points is called the feasible set. The optimal value J∗ of the problem (2.11) is defined as

J∗ = inf{f0(ζ) | fi(ζ) ≤ 0, i = 1, . . . , nf}, . (2.12)
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If the problem is infeasible, we set J∗ = ∞, and if the problem is unbounded below, we

have J∗ = −∞. The solution ζ∗ to the minimization problem (2.11) is referred to as the

optimizer, if ζ∗ is feasible and f0(ζ
∗) = J∗.

We say a feasible point ζ is locally optimal if it minimizes f0 (only) in a subset of the

feasible set, whereas ζ is globally optimal if it minimizes f0 for the whole feasible set.

A very important class of optimization problems (2.11) are convex optimization prob-

lems, where the objective function and the inequality constraint functions are convex, and

no binary variables are present in the optimization variable (db = 0). This implies that

the feasible set is convex, and, most importantly, any locally optimal point is also globally

optimal.

Throughout this thesis, we will use another class of optimization problems, namely the

class of Mixed-Integer Linear Programs (MILP)

min
ζ

cT ζ

subj. to Gζ ≤ g

ζb ∈ {0, 1}
db ,

(2.13)

whereG is a matrix of appropriate dimension and c and g are row vectors. Even though the

formulation (2.13) has a linear objective function and linear constraint functions in ζ, the

optimization problem is not convex, due to the binary variables ζb present in the MILP.

This implies that locally optimal points are not necessarily globally optimal. In fact,

MILPs are in general NP -hard, meaning that using the algorithms available, the solution

time grows in the worst case exponentially with the number of binary variables [RG91].

Yet, several algorithms have been proposed and applied successfully to applications of

large size. These include branch and bound, cutting plane, decomposition and logic-based

methods. Details about and references of these algorithms are beyond the scope of the

thesis, but may be found for example in [Flo95].

If, however, the optimization vector ζ contains only real components (db = 0), problem

(2.13) reduces to a Linear Program (LP), which is convex and can be solved in polynomial

time.

2.4 Constrained Optimal Control

In the following, we briefly introduce Model Predictive Control (MPC) for discrete-time

linear hybrid systems and summarize its basic features. In MPC, the current control in-

put is obtained by solving at each sampling instant a constrained optimal control problem

using the predictions provided by an internal model of the controlled process. The opti-

mal control problem is formulated over a finite or infinite horizon using the current state
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of the plant as initial state. The underlying optimization procedure yields an optimal

control sequence that minimizes a given objective function. A receding horizon policy

is employed, which refers to only applying the first control input of this sequence, and

to recomputing the control sequence at the next sampling instant over a shifted horizon,

thus providing feedback and closing the control loop. Hence, MPC combines (open-loop)

constrained optimal control with a receding horizon policy. The significant advantages of

MPC, including its ability to systematically cope with hard constraints on manipulated

variables, states and outputs, and to easily address systems with multiple inputs and

outputs, have led to its success and widespread use, which started in the process industry

more than two decades ago. Most importantly, the MLD framework can be straightfor-

wardly embedded in MPC allowing one to use hybrid models given in the MLD form

as prediction models for MPC. For details on MPC, the reader is referred to the survey

papers [GPM89,BM99b,MRRS00,Raw00,May01,QB03] and the monograph [Mac02]. De-

tails about the setup of the MPC formulation in connection with MLD models can be

found in [BM99a] and [BBM00].

In the following two sections, we give an overview of the classic on-line computation of

the control input, and the novel off-line computation of the corresponding state-feedback

control law. The sequel is merely intended to provide a rough introduction; details and

technicalities are omitted. These can be found in the relevant literature, which will be

pointed out.

2.4.1 On-Line Computation of Control Input

Consider the objective function

J(x(k), U(k)) =
N−1∑

ℓ=0

‖Q1(x(k + ℓ|k)− xref )‖{1,∞}

+ ‖Q2(u(k + ℓ|k)− uref )‖{1,∞} + ‖Q3(y(k + ℓ|k)− yref )‖{1,∞} ,

(2.14)

which penalizes the predicted evolution of the state, control input and output, respectively,

over the finite horizon N using a linear norm, namely the 1- or the ∞-norm. We assume

that Q1, Q2 and Q3 are full column rank matrices.

Next, we instantiate the MLD model (2.8) at every time-step within the prediction

horizon thus repeating it N times. Moreover, we build an optimization vector that holds

the sequence of states, inputs, outputs, binary δ variables and real auxiliary z variables, in

particular it contains the sequence of control inputs U(k) = [(u(k))T , . . . , (u(k+N−1))T ]T .

For details on the formulation, see [BBM00]. This leads to the constrained finite time
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optimal control problem (CFTOC)

U∗(k) = arg min
U(k)

J(x(k), U(k))

subj. to MLD model (2.8) at ℓ = k, . . . , k +N − 1 .
(2.15)

The control input at time-instant k is obtained by solving the CFTOC (2.15), i.e. by

minimizing the objective function (2.14) subject to the evolution of the MLD model (2.8)

and its mixed-integer linear inequality constraints. Furthermore, additional integrality

constraints are present on the binary δ variables and on binary inputs1. This yields the

sequence of optimal control inputs U∗(k) = [(u∗(k))T , . . . , (u∗(k +N − 1))T ]T . As we are

using a linear norm in all cost expressions, the CFTOC problem amounts to solving a

Mixed-Integer Linear Program (MILP) for which efficient solvers exist, like [ILO02].

2.4.2 Off-Line Computation of State-Feedback Control Law

Often, the computation times needed for solving the optimal control problem on-line are

well beyond the sampling interval, and the controller cannot be directly implemented. In

order to overcome this obstacle, the calculation of the explicit state-feedback control law

is necessary by pre-computing off-line the solution to the optimal control problem for the

whole state-space using multi-parametric programming, where the state vector is treated

as a parameter. The resulting control law is a PWA state-feedback control law defined

over a polyhedral partition of the state-space which can be stored in a look-up table.

Computing the optimal control law on-line is thus reduced to a simple evaluation of a

look-up table. For hybrid systems, such a method has been recently introduced, which is

based on a PWA description of the controlled system.

In the sequel, we outline multi-parametric programming, summarize two algorithms

for pre-computing off-line the optimal control problem, characterize the solution to the

optimal control problem, and discuss issues concerning the practical implementation. For

this, we partly follow the line of thought of the summary paper [MBB03].

Multi-Parametric Programming

Reconsider problem (2.11) that now additionally depends on a parameter appearing in

the cost function and the constraints

J∗(x) = min
ζ

f0(ζ, x)

subj. to fi(ζ, x) ≤ 0, i = 1, . . . , nf ,
(2.16)

1It is not necessary to impose integrality constraints on binary states, since the state-update dynamics

preserve integrality of the states for all future steps.
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with the optimization variable ζ ∈ Rdr×{0, 1}db as before, the parameter x ∈ Rnr , the cost

function f0 : Rd ×Rnr → R, and the inequality constraint functions fi : Rd ×Rnr → R,

i = 1, . . . , nf . Deriving the optimizer ζ∗(x) as a function of the parameter x is referred to

as multi-parametric programming. The real-valued function J∗(x), which expresses the

dependence of the minimum value of the objective function in terms of x, is called the

(optimal) value function.

In the following, we define two special classes of multi-parametric programming that

will be used in this thesis.

Definition 2.11 (mp-LP) If f0(·, ·) and fi(·, ·) are linear, ζ ∈ Rdr (with db = 0) and

x ∈ Rnr the problem (2.16) is called a multi-parametric Linear Program (mp-LP).

Definition 2.12 (mp-MILP) If f0(·, ·) and fi(·, ·) are linear, ζ ∈ Rdr × {0, 1}db and

x ∈ Rnr the problem (2.16) is called a multi-parametric Mixed-Integer Linear Program

(mp-MILP).

Moreover, multi-parametric Quadratic Programming (mp-QP) is well-established, too,

where f0(·, ·) is a quadratic function. Multi-parametric Mixed-Integer Quadratic Program-

ming (mp-MIQP), however, leads to a number of complications such as non-polyhedral

sets [BBBM05].

Algorithms

As shown next, the optimal control problem (2.14)–(2.15) can be reformulated as the

multi-parametric program (2.16), where ζ is the input sequence to be optimized and the

parameter x is the current state of the plant. For MILPs, two approaches exist to solve

the mp-MILP: mp-LP with MILP, and mp-LP with Dynamic Programming (DP).

The mp-LP with MILP scheme directly tackles the problem formulation (2.14)–(2.15)

with the MLD model, by decomposing the mp-MILP problem into an mp-LP and an MILP

subproblem and iterating between them. Specifically, in a first step, a solution to the MILP

is obtained by treating the state as a free parameter. This yields a feasible integer vector

that is fixed in the mp-MILP, and reduces the mp-MILP to an mp-LP. Then, for the

fixed integer vector, the mp-LP is solved and the PWA value function is derived on the

corresponding polyhedra, the so called critical regions. For each critical region, solving an

new MILP subproblem provides a new integer vector, using the current value function as

an upper bound. The parametric solutions corresponding to two different integer solutions

are then compared and inferior parts are removed. The algorithm terminates in a critical

region if the MILP subproblem is infeasible, which implies that the current upper bound

is the final optimal solution. For details, the reader is referred to [DP00].

As proposed in [Bor03, BBBM05], an alternative approach is to construct the state-

feedback control law by combining mp-LP with DP, i.e. by moving backwards in time
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using mp-LP. For this scheme, the CFTOC needs to be reformulated. By replacing the

MLD model by the equivalent PWA model, we obtain the reformulated CFTOC

U∗(k) = arg min
U(k)

J(x(k), U(k))

subj. to PWA model (2.9) at ℓ = k, . . . , k +N − 1 .
(2.17)

A comparison of the two approaches can be found in [BCM03b]. It is clear, that the

mp-LP with MILP approach is more general, since it directly tackles MILPs, which in

our case are obtained by setting up the CFTOC with the MLD model. The mp-LP with

DP approach, however, is based on PWA models, which contain structural information

that is in general hidden in its MLD counterpart. In particular, the PWA model contains

only feasible modes, while most of the integer combinations in an MLD model refer to

infeasible modes. This leads to computational advantages of the DP approach with respect

to its MILP counterpart. In particular, the computation times are in general smaller,

unnecessary slicing of the state-space is handled in a better way thus leading to less

polyhedra in the control law, and the DP approach is numerically more reliable. Moreover,

it is possible to detect if the solution for a specific prediction horizon is identical to the

infinite horizon solution [BCM03b]. Yet, the DP approach suffers from the enumeration

of all feasible transitions between polyhedra (at one time-step) and the enumeration of

all binary state-input combinations. Nevertheless, in this thesis, we will adopt the DP

approach included in the multi-parametric toolbox (MPT) [KGBM04], which is freely

available from http://control.ee.ethz.ch/∼mpt/.

More details about multi-parametric programming can be found in [BBM03] for LPs,

in [BMDP02,TJB01] for QPs, in [DP00] for MILPs, and in [Bor03,DBP02] for MIQPs.

Furthermore, [BBBM05] provides an in depth analysis and description of multi-parametric

programming for MILPs and MIQPs.

Properties

Next, we restate the main result about the solution to the CFTOC problem proven

in [Bor03].

Theorem 2.1 The solution to the CFTOC (2.14) and (2.17) is a state-feedback control

law u∗(k) that is a PWA function of the state x(k) defined on a polyhedral partition of the

feasible state-space.

More specifically, the feasible state-space is partitioned into polyhedral sets, and for

each of these sets the optimal control law is given as an affine function of the state.

Moreover, the value function J∗(x(k)) = J(x(k), U∗(k)) is also PWA in the state.
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Implementation

As a result, such a state-feedback controller can be implemented on-line, since computing

the control input amounts to the following two steps. First, the polyhedron needs to be

determined in which the measured state lies. The brute force approach is to go through

(in the worst case) the whole set of polyhedra and to check the corresponding inequalities

of the polyhedra. An alternative approach is to build a binary search tree [TJB03] that

reduces the on-line computational burden but increases the memory requirements. In a

last step, once the proper polyhedron has been found, one only needs to identify and

evaluate the corresponding affine control law.

In many cases, polyhedra with the same control law form a convex union and can thus

be merged and replaced by their union. This leads to an equivalent PWA control law with

fewer polyhedra and thus reduced complexity. Such a representation is highly preferable

as it allows one to relax the memory requirements and to reduce the computational burden

for the controller hardware. Indeed, it is possible to derive an equivalent PWA control

law that is minimal in the number of polyhedra by merging polyhedra associated with

the same control law in an optimal way (see Chapter 4).

2.4.3 Receding Horizon Control

The CFTOC problem presented above yields at time-step k an open-loop optimal sequence

U∗(k) of control inputs. To provide feedback, only the first input u∗(k) from the sequence

is applied to the plant. At the next sampling interval, k is set to k + 1, a new state

measurement (or estimate) is obtained, and the CFTOC problem is solved again over the

shifted horizon. This policy is referred to as Receding Horizon Control2, which has become

standard practise in modern control applications. For details, see for example [MRRS00,

QB03,Mac02].

2As shown above, the CFTOC problem might be pre-solved off-line and replaced by the corresponding

state-feedback controller. This does not affect the concept of Receding Horizon Control.
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3

Mode Enumeration of Compositional

Hybrid Systems

3.1 Introduction

Hybrid systems can be composed to form compositional hybrid systems [AH97, Joh00,

LSV01,RL99]. In general, the resulting system is very complex, as the number of different

operational modes depends exponentially on the number of component systems. The

explosion of the size of the logic state leads to computational difficulties as the time and

space complexity of many algorithms depends on the number of operational modes.

In some cases, the composition induces a structure that can be exploited, like in hierar-

chical hybrid systems [ADE+01]. This allows one to break the problem down into pieces

and to apply the assume-guarantee approach [AH97,HMP01]. Recognizing that a system

can be modelled as a hierarchical hybrid system is part of the “art” of model building.

In many cases it may not be possible at all, because the cross interactions among the

components are too tight. On the other hand, tight interactions often render many modes

infeasible and the complexity of the system can be reduced by explicitly computing and

taking into account only the feasible modes. This chapter presents an efficient technique

to enumerate the feasible modes of a compositional hybrid system.

We will focus on compositions of discrete hybrid automata (DHA) [TB04]. DHAs, which

are formulated in the discrete-time domain, are as mentioned in the previous chapter a

mathematical abstraction of the features provided by other computation oriented and do-

main specific hybrid system frameworks. Thus DHAs generalize many discrete-time mod-

elling frameworks for hybrid systems and represent a universal starting point for solving

complex analysis and synthesis problems. In particular, the enumeration of feasible modes

is easily solvable for DHA systems by using algorithms that compute the cells of a hyper-

plane arrangement [FFL01]. This is a classical problem in computational geometry [Buc43]

and admits optimal [Ede87] and efficient [AF96,FF02,FFL01] algorithms.

31
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The impact of those techniques on applications is threefold. First, at the modelling

stage, the enumeration of modes allows the designer to understand the real complexity of

the compound model.

Second, after the modelling stage, the model can be efficiently translated into a PWA

representation. This operation is trivial once all modes have been enumerated. In this

respect, this chapter solves a problem similar to [Bem02], where the author computes the

PWA model equivalent to an MLD model. The main difference is that the approach in

[Bem02] is based on multi-parametric programming and mixed integer linear programming

and deals directly with the MLD model, while the approach presented here relies on the

computation of the cells of the hyperplane arrangement and is applicable to DHAs. Note

that, as shown in [TB04], DHAs can be automatically translated into MLD models using

the tool Hysdel and most of the MLD models that have been presented in the literature

were derived from DHA descriptions using Hysdel [BGKH02, BBFH01, ED02]. Most

importantly, using the structural information only available in the Hysdel code (and not

in the corresponding MLD model) allowed us to design a conversion tool that is by at least

an order of magnitude faster compared with its counterpart [Bem02]. Furthermore, the

PWA representation of the compound DHA model allows one to determine if the model is

well-posed. This option becomes notably interesting if loops are present in the compound

model, as a composition of well-posed DHAs is not necessarily well-posed as a whole.

Third, during the computational stage (i.e. analysis and control), the explicit computa-

tion of the set of feasible modes of the compound system allows one to prune unnecessary

modes from the resulting system and to reduce the combinatorial explosion of related

algorithms. This is of particular importance for model predictive control (MPC) of hy-

brid models [BM99a], where the aim is to compute the next N inputs to the system

that optimize a performance index defined on the variables of a hybrid prediction model.

The prediction model is the series connection of N identical single-step prediction models

where each model uses the state predicted by the previous model. The mode enumeration

allows one to introduce cuts on the modes of the complete prediction model.

This chapter is organized as follows: Section 3.2 presents the problem of cell enumera-

tion in hyperplane arrangements. In Section 3.3, we show the equivalence of DHAs and

PWA systems. Based on this, Section 3.4 details how these results can be applied in

the hybrid domain. In particular, we present an algorithm that enumerates the modes of

a composition of DHAs and transforms it into an equivalent PWA representation. Sec-

tion 3.5 contains simulation results, where we enumerate the modes of a hybrid model

built using the Hysdel [TB04] modelling language. The information collected during this

mode enumeration allows one to either build efficiently an equivalent PWA model or to

speed up the computation of the hybrid MPC feedback law by automatically adding cuts

to the underlying optimization problem as shown in Section 3.6. Section 3.7 summarizes
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Figure 3.1: Arrangement of four hyperplanes (lines) in R = R2 with markings m ∈M(R)

the chapter.

The presented algorithm is implemented in Matlab and assumes that the composition

of DHAs is given as Hysdel code. The latest version of the algorithm can be downloaded

from http://control.ethz.ch/∼hybrid/hysdel.

3.2 Cell Enumeration in Hyperplane Arrangements

Let A be a collection of n distinct hyperplanes {Hi}i=1,...,n in the d-dimensional Euclidian

space Rd, where each hyperplane is given by a linear equality Hi = {x ∈ Rd | aT
i x = bi}.

We say that the hyperplanes of A are in general position, if there exists no pair of parallel

hyperplanes, and if any point of Rd belongs at most to d hyperplanes. Let SV : Rd →

{−,+}n be the simplified sign vector1 defined as

SVi(x) =

{

− if aT
i x ≤ bi,

+ if aT
i x > bi

for i ∈ {1, 2, . . . , n} . (3.1)

Consider the set Pm = {x ∈ Rd | SV(x) = m} for a given sign vector m. This set is called

a cell of the arrangement and is according to Definition 2.5 a polyhedron as it is defined

by linear inequalities. We will refer to m as the marking of the polyhedron (or cell) Pm

1Note that in general, the sign vector is defined such that its image is {−, 0,+}, where the ’0’ element

corresponds to aix = bi. Cells with ’0’ markings are lower-dimensional and not meaningful in the

context of PWA systems.
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in the hyperplane arrangement A (see Fig. 3.1). Let M(R) be the image of the function

SV(x) for x ∈ R ⊆ Rd, namely the collection of all the possible markings of all the points

in R.

Let the ’∗’ element extend the sign vector in the sense that it denotes the union of

cells, where the associated hyperplane is not a facet of the associated polyhedron Pm. As

an example, consider in Fig. 3.1 the two polyhedra with the markings m1 = −−−− and

m2 = +−−−. Then, m = ∗−−− is equivalent to {m1,m2} and refers to Pm1 ∪ Pm2 .

The cell enumeration problem in a hyperplane arrangement amounts to enumerate all

the elements of the set M(R). Let #M(R) be the number of cells identified by M(R).

Buck’s formula [Buc43] defines the upper bound

#M ≤
d∑

i=0

( n
i ) = O(nd), (3.2)

with the equality satisfied if the hyperplanes are in general position and R = Rd.

The cell enumeration problem admits an optimal solution with time and space com-

plexity O(nd) [Ede87]. An alternative approach based on reverse search was presented

in [AF96], improved in [FFL01] and implemented in [FF02]. Reverse search is an ex-

haustive search technique that can be considered as a special graph search. This search

technique has been used to design efficient algorithms for various enumeration problems

such as enumeration of all spanning trees and cells in hyperplane arrangements.

Proposition 3.1 [FFL01, Theorem 4.1] There exists a reverse search algorithm for

enumerating hyperplane arrangements that runs in O(n lp(n, d) #M) time and O(n, d)

space, where lp(n, d) denotes the complexity of solving a Linear Program (LP) with n

constraints and d variables.

Note that in many cases of interest, the hyperplanes are not in general position and

#M is considerably smaller than the theoretical upper bound. Moreover, reverse search is

a standard search algorithm for which efficient parallel implementations exist [BMFN99].

The following proposition follows directly from the definition of Pm and (3.1).

Proposition 3.2 The collection of polyhedral sets {Pm}m∈M(R) satisfies:

(i)
⋃

m∈M(R) Pm = R, (ii) Pi ∩ Pj = ∅, ∀i, j ∈M(R), i 6= j

A collection of polyhedral sets that satisfies points (i) and (ii) in Proposition 3.2 is a

polyhedral partition of the polyhedral set R.
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3.3 Equivalence of DHAs and PWA Systems

This section states that any well-posed DHA can be transformed into an equivalent PWA

representation. For the definition of DHAs and PWA models, the reader is deferred to

Sections 2.2.1 and 2.2.3, respectively. The constructive proof serves as a basis for the

mode enumeration algorithm proposed in the next section.

Definition 3.1 Let Σ1, Σ2 be well-posed hybrid models with states x1, x2 ∈ X , inputs

u1, u2 ∈ U and outputs y1, y2 ∈ Y. The hybrid models Σ1 and Σ2 are equivalent on X ,

U , Y, if for all initial conditions x1(0) = x2(0) ∈ X and for all u1(k) = u2(k) ∈ U the

state and output trajectories coincide, i.e. x1(k) = x2(k) and y1(k) = y2(k) for all steps

k ∈ N0.

Lemma 3.1 [TB04, Lemma 1] Let ΣPWA be a well-posed PWA model with states x ∈ X ,

inputs u ∈ U and outputs y ∈ Y. Then there exists a well-posed DHA ΣDHA equivalent to

ΣPWA on X , U , Y.

The equivalence of the previous lemma allows one to refer to the set J as the modes

of the PWA system (2.9).

Lemma 3.2 Let ΣDHA be a well-posed DHA with states x ∈ X , inputs u ∈ U and outputs

y ∈ Y. Then there exists a well-posed PWA model ΣPWA equivalent to ΣDHA on X , U , Y.

Proof. Consider the affine thresholds of the event generator (2.5) that define a hyperplane

arrangement, which forms by Proposition 3.2 a polyhedral partition. Let Qm be a polyhe-

dron of this partition. By construction, δ̄e(m) = fH(xr, ur) for any point [xT
r , u

T
r ]T ∈ Qm,

namely all points in Qm trigger the same event δ̄e(m). Given a marking m, the associ-

ated event δ̄e(m), a binary state x̄b ∈ Xb and a binary input ūb ∈ Ub, the mode selector

determines the mode ı̄ = fM(x̄b, ūb, δ̄e(m)) using the logic function (2.7). The ı̄-th dy-

namic in the switched affine system given by (2.4a) and (2.4b) is the corresponding affine

dynamic. The finite state machine yields the binary state-update as well as the binary

output according to (2.6a) and (2.6b). Therefore, for each m ∈ M , x̄b ∈ Xb and ūb ∈ Ub,

the system

xr(k + 1) = Aı̄xr(k) +Bı̄ur(k) + fı̄, (3.3a)

xb(k + 1) = fB(x̄b, ūb, δ̄e(m)), (3.3b)

yr(k) = Cı̄xr(k) +Dı̄ur(k) + gı̄, (3.3c)

yb(k) = gB(x̄b, ūb, δ̄e(m)), (3.3d)

if [xT
r (k),uT

r (k)]T ∈ Qm, xb(k) = x̄b, ub(k) = ūb, (3.3e)
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defines a PWA system. In fact, by collecting x(k) =
[

xr(k)
xb(k)

]

, u(k) =
[

ur(k)
ub(k)

]

and y(k) =
[

yr(k)
yb(k)

]

, by performing the substitutions Aj(k) = [ Aı̄ 0
0 0 ], Bj(k) = [ Bı̄ 0

0 0 ], fj(k) =
[

fı̄

fB(·)

]

and

similarly for Cj(k), Dj(k) and gj(k), and by defining Pj(k) , Qm× x̄b× ūb ∈ X ×U , (3.3a)–

(3.3d) are formally equivalent to (2.9a)–(2.9b) and (3.3e) is formally equivalent to (2.9c).

The well-posedness of the PWA model follows from Proposition 3.2 and Lemma 2.2.

3.4 Mode Enumeration Algorithm

Based on the cell enumeration in hyperplane arrangements summarized in Section 3.2

and the equivalence of DHAs and PWA models shown in Section 3.3, we present in this

section an algorithm that enumerates efficiently the feasible modes of a composition of

DHAs and derives an equivalent PWA model.

3.4.1 Single DHA

Consider the DHA Σ as in Section 2.2.1 and let X × U denote the state-input space

of the DHA, for which we want to solve the following problem. Given a binary state

xb(k) ∈ Xb and a binary input ub(k) ∈ Ub find the set of feasible modes J ⊆ I2,

the set of polyhedra {Pj}j∈J and the corresponding PWA dynamics {Sj}j∈J , where

Sj = {Aj, Bj, fj, Cj, Dj, gj}. As this is the same problem as in Lemma 3.2, we derive

an algorithm from the constructive proof of the lemma. Note that I is the image of

the Mode Selector and can be computed once the set M(Xr × Ur) has been enumerated.

Algorithm 3.1

function [ {Pj}j∈J , {Sj}j∈J ] = SingleDHA ( Σ, R, xb(k), ub(k) )

j = 0, J = ∅

for m ∈M(R)

j = j + 1, J = J ∪ {j}

Pj = Pm = {x ∈ R : SV(x) = m}

get δe(k) based on m

i(k) = fM(xb(k), ub(k), δe(k))

Sj =
{ [

Ai(k) 0

0 0

]
,
[

Bi(k) 0

0 0

]
,
[

fi(k)

fB(xb(k),ub(k),δe(k))

]

,
[

Ci(k) 0

0 0

]
,
[

Di(k) 0

0 0

]
,
[

gi(k)

gB(xb(k),ub(k),δe(k))

] }

return [ {Pj}j∈J , {Sj}j∈J ]

Algorithm 3.1 enumerates the feasible modes for a given xb(k) ∈ Xb and ub(k) ∈ Ub. Re-

2J = I holds, if all modes I of the Switched Affine System are feasible.
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peated calls of Algorithm 3.1 lead to a set of PWA models defined on Xr×Ur, where each

model is associated with a feasible combination of binary states and inputs xb(k) ∈ Xb,

ub(k) ∈ Ub. This representation is advantageous if determining the state-update and the

outputs for a given state and input is the main purpose, as choosing the respective PWA

model can be done by binary search. However, the model can be transformed easily into

a PWA model defined on X × U as shown in the proof of Lemma 3.2.

Remark 3.1 If the DHA Σ is well-posed, the resulting PWA model is well-posed, too,

as shown in Lemma 3.2. Furthermore, by Proposition 3.2, the set of polyhedra {Pj}j∈J

forms a polyhedral partition.

3.4.2 Composition of DHAs

The algorithm proposed above can be extended in a natural way to deal with a composition

of DHAs. Consider s DHAs denoted as Σi, i ∈ {1, 2, . . . , s} with states xi ∈ Xi, inputs

ui ∈ Ui and outputs yi ∈ Yi
3. Let Ii be the set of feasible modes of the DHA Σi.

The composition has the exogenous input u ∈ U and the exogenous output y ∈ Y . We

define the real and binary state spaces of the composition Xr , X 1
r × . . . × X s

r and

Xb , X 1
b × . . . × X s

b and let the compound vectors xr , [(x1
r)

T , . . . , (xs
r)

T ]T ∈ Xr and

xb , [(x1
b)

T , . . . , (xs
b)

T ]T ∈ Xb be the sorted aggregation of the real and binary states of

the s DHAs, respectively. Summing up, the compound system has the compound state

vector x = [ xr
xb

] ∈ Xr × Xb and the exogenous input u and output y. The time indices k

have been omitted for the sake of readability.

Before describing the algorithm, we recall some definitions and results from graph

theory [Deo74] to describe the topology of the composition.

A directed graph or digraph G = (V ,E ) consists of a set of vertices V , a set of edges E ,

and a mapping that maps every edge onto some ordered pair of vertices. A directed closed

walk is an alternating sequence of vertices and edges, beginning and ending with the same

vertex, such that each edge is oriented from the vertex preceding it to the vertex following

it. If additionally, no vertices except the initial and terminal one appear more than once,

the directed closed walk is called a directed circuit. If a digraph has no directed circuits,

it is called acyclic, otherwise it is cyclic.

The definitions above can be applied directly to the composition of DHAs by defining

the DHAs as vertices and the connections from outputs to inputs as directed edges. In

general one edge can represent several connections between two DHAs.

Note that directed circuits in G correspond to feedback loops in the composition. Con-

versely, an acyclic directed graph implies the lack of loops. Besides that, the state-updates

3As in the last section xi, ui and yi encompass both real and binary components. Furthermore, Xi ,

X i
r ×X

i
b and accordingly for Ui and Yi.
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Σ2

Σ1

Σ4

Σ3

Figure 3.2: Composition of DHAs of Example 3.1 after reordering

x(k + 1) can be considered as outputs of the composition similarly to the outputs y(k).

In particular, state-update functions cannot be part of loops and they have no influence

on the set of polyhedra of the resulting PWA model.

We define the topology of the connections among the DHAs by an adjacency matrix,

which can be easily determined based on the connections.

Definition 3.2 Let G be a digraph with s vertices containing at most one edge per pair

of vertices. Then the adjacency matrix W = [wij] of the digraph G is a s× s (0, 1)-matrix

with wij = 1 if there is an edge directed from the i-th vertex to the j-th vertex and wij = 0

otherwise. The sequence of indices of W is given by {1, 2, . . . , s}.

Theorem 3.1 [Deo74, Theorem 9.17] The digraph G is acyclic if and only if det(I −

W ) 6= 0, where I is the identity matrix.

Theorem 3.2 [Deo74, Theorem 9.16] If the digraph G is acyclic, then its vertices can

be ordered such that the adjacency matrix of the reordered graph is an upper (or lower)

triangular matrix.

As defined in [GTM03a], the sequence of indices of the reordered adjacency matrix

implies a computational order along which the algorithm will proceed.

Example 3.1 Figure 3.2 depicts four DHAs and the connections among them after

reordering the corresponding graph. DHA 1 has an exogenous input, DHA 3 and 4 have

exogenous outputs. The computational order is given by {1, 2, 3, 4}.

Compositions Without Loops

In a first step, we assume that the connections do not form loops. This can be easily

determined by Theorem 3.1. From Theorem 3.2 follows, that the adjacency matrix can

be transformed into an upper triangular matrix employing for example topological sort-

ing [Deo74] or matrix permutation. Furthermore, we assume that the indices of the DHAs

are such that the adjacency matrix is upper triangular. This implies that the computa-

tional order is given by {1, 2, . . . , s}. Consequently, Σi depends only on exogenous inputs

and on outputs of Σj, j < i with i, j ∈ {1, . . . , s}.
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As in the single DHA case, our aim is to determine for the composition of DHAs

{Σi}i=1,...,s defined on X × U the set of feasible modes J ⊆ I1 × . . . × Is, the set of

polyhedra {Pj}j∈J and the corresponding PWA dynamics {Sj}j∈J . Note that X × U

is now generalized to the compound state exogenous input space. For a given binary

compound state xb(k) ∈ Xb and a given exogenous binary input ub(k) ∈ Ub, Algorithm 3.2

partitions the real state-input space Xr × Ur recursively as described in the following.

Consider the first DHA Σl, l = 1. As mentioned before, the input of this DHA is a

subset of the exogenous input and thus given. Therefore, Algorithm 3.1 can be used to

determine the modes Jl, the polyhedra {Pj}j∈Jl
and the corresponding PWA dynamics

{Sj}j∈Jl
of Σl.

Each mode j ∈ Jl with its PWA dynamic Sj defines together with the connections

inputs of DHAs with higher computational order given by Σi, i ∈ {l + 1, . . . , s}. Before

proceeding, we have to replace their inputs by Xr, Ur, xb(k) and ub(k) using the func-

tion Subst(). Given the set of DHAs {Σi}i=l+1,...,s, the PWA dynamic Sj corresponding to

mode j ∈ Jl, the function Subst() cycles through all DHAs of the given set. If the adja-

cency matrix indicates a connection from an output of Σl to an input of one of the DHAs of

the set {l+1, . . . , s}, the respective input is replaced by Cj

[
xr(k)
xb(k)

]

+Dj

[
ur(k)
ub(k)

]

+gj, where

Cj, Dj, gj are elements of Sj and xr(k) ∈ Xr, ur(k) ∈ Ur, and xb(k), ub(k) are given. This

operation assures, that after the replacement Σl+1 solely depends on compound states and

exogenous inputs.

Next, for a given mode j ∈ Jl, l is increased by one and the algorithm is called again

to partition the polyhedron Pj into a set of polyhedra using the hyperplanes of the DHAs

with computational order greater than l. This is repeated for all the remaining j ∈ Jl. If

l reaches its maximum s, the current branch terminates and the set of polyhedra of Σs,

which are part of the overall set of polyhedra {Pj}j∈J of the compound DHA system, are

added to it. Stepping sequentially through the composition of DHAs according to their

computational order leads to the set of polyhedra {Pj}j∈J and the corresponding PWA

dynamic {Sj}j∈J .

Remark 3.2 In every step of the algorithm, the set of polyhedra is always defined

on the complete real state-input space – or more precisely, on the real compound state

exogenous input space – Xr × Ur. As the algorithm proceeds, additional hyperplanes are

added cutting the existing polyhedra into smaller ones.

Remark 3.3 As described above, the algorithm is currently implemented as a depth-

first algorithm. Alternatively, it could be easily restructured to work breadth-first. In

any case, the chosen strategy has no influence on the complexity.

Recapitulating the above and given xb(k) ∈ Xb and ub(k) ∈ Ub, the Algorithm 3.2 is
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Σ1 Σ2u1(k)
u2(k)y1(k)

y2(k)

Figure 3.3: Composition of DHAs of Example 3.2

summarized as follows:

Algorithm 3.2

reorder {Σi}i=1,...,s such that W is upper triangular

[ {Pj}j∈J , {Sj}j∈J ] = Comp( {Σi}i=1,...,s, Xr × Ur, xb(k), ub(k), 1 )

function [ {Pj}j∈J , {Sj}j∈J ] = Comp ( {Σi}i=1,...,s, R, xb(k), ub(k), l )

[ {Pj}j∈Jl
, {Sj}j∈Jl

] = SingleDHA ( Σl, R, xb(k), ub(k) )

if l < s then

P = ∅, S = ∅

for j ∈ Jl

[ Pnew, Snew ] = Comp ( Subst ( {Σi}i=l+1,...,s, Sj, l ), Pj, xb(k), ub(k), l + 1 )

P = { P, Pnew }, S = { S, Snew }

return [ P , S ]

else

return [ {Pj}j∈Jl
, {Sj}j∈Jl

]

function {Σi}i=l+1,...,s = Subst ( {Σi}i=l+1,...,s, Sj, l )

for i ∈ {l + 1, . . . , s}

if there is a connection yl = ui then

substitute ui in Σi by Cjx(k) +Dju(k) + gj

return {Σi}i=l+1,...,s

As for the single DHA case, the algorithm yields a PWA model defined on Xr × Ur for

every feasible binary state-input combination. The following corollary extends Remark 3.1.

It follows in a constructive way from Algorithm 3.2, Proposition 3.2 and Lemma 3.2.

Corollary 3.1 Given a composition of DHAs {Σi}i=1,...,s without loops, where each Σi

is well-posed, the resulting PWA model is well-posed, too, and its set of polyhedra forms

a polyhedral partition.

Example 3.2 Consider now the composition of DHAs shown in Fig. 3.3 with the state

x1(k) ∈ X = [0, 10], the exogenous input u1(k) ∈ U = [0, 7], the exogenous output
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y2(k) ∈ R, and the connection u2(k) = y1(k). The DHA Σ1 is given by4

EG1 :

{

δ1(k) = [x1(k) ≥ 4],

δ2(k) = [x1(k) ≥ 8]

MS1 : i1(k) =







1 if δ̄1(k) ∧ δ̄2(k),

2 if δ1(k) ∧ δ̄2(k),

3 if δ1(k) ∧ δ2(k)

SAS1 : y1(k) =







2u1(k)− 6 if i1(k) = 1,

x1(k) + u1(k)− 7 if i1(k) = 2,

u1(k) + 1 if i1(k) = 3

and Σ2 yields as output the 1-norm of its input which amounts to

EG2 : δ3(k) = [u2(k) ≥ 0]

MS2 : i2(k) =

{

1 if δ̄3(k),

2 if δ3(k)

SAS2 : y2(k) =

{

−u2(k) if i2(k) = 1,

u2(k) if i2(k) = 2

Clearly, the state-input space is given by X × U , the corresponding digraph is acyclic

and the indices of the DHAs are already ordered such that the adjacency matrix is upper

triangular.

In a first step, the algorithm determines the hyperplane arrangement of Σ1 which con-

tains the hyperplanes of the EG1, namely {[ x1
u1 ] ∈ X ×U |x1 = 4} and {[ x1

u1 ] ∈ X ×U |x1 =

8}. This leads to the markings and the polyhedral partition {Pj}j∈J1 , J1 = {1, 2, 3}, as

shown in Fig. 3.4(a). The corresponding PWA output functions are depicted in Fig. 3.4(b).

In a second step, {Pj}j∈J1 is further partitioned by the hyperplane defined in the EG2.

Starting with mode j = 1 ∈ J1 this is done in the following way. The function Subst()

replaces the expressions for u2(k) in the EG2 and in the SAS2 by 2u1(k) − 6. Thus, for

this particular mode, the hyperplane arrangement of Σ2 is defined within the polyhedron

{[ x1
u1 ] ∈ X × U | 0 ≤ x1 ≤ 4} and holds the single hyperplane {[ x1

u1 ] ∈ X × U |u1 =

3}. The corresponding markings are shown in Fig. 3.4(c). As both modes of the EG2

are feasible, J2 contains two modes and the polyhedron {[ x1
u1 ] ∈ X × U | 0 ≤ x1 ≤ 4}

is partitioned into two. Accordingly, the mode j = 2 ∈ J1 leads to the hyperplane

4As mentioned before, the state-update functions have no influence on the set of polyhedra and are thus

omitted for brevity.
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(d) PWA output functions given in {Sj}j∈J2

Figure 3.4: Polyhedral partitions and PWA output functions of the composition of DHAs

of Example 3.2

arrangement {[ x1
u1 ] ∈ X ×U |x1 +u1 = 7} and also to two modes, whereas the hyperplane

arrangement corresponding to j = 3 ∈ J1 is empty and thus no additional mode is added.

The final polyhedral partition {Pj}j∈J = {Pj}j∈J2 and the PWA dynamics {Sj}j∈J =

{Sj}j∈J2 are shown in Fig. 3.4(c) and 3.4(d), respectively.

Compositions With Loops

The algorithm is now generalized to compositions of DHAs containing loops. Having

determined the adjacency matrix W and verified that the digraph is cyclic, we have to

identify the connections whose removal breaks all loops and renders the corresponding

digraph acyclic. These connections correspond to the feedback arc set.
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Definition 3.3 Let G = (V ,E ) be a digraph. A set F ⊆ E is a feedback arc set (FAS)

for G , if G ′ = (V ,E −F ) is acyclic. The set F is a minimum FAS if the number of

edges in F is minimum.

Finding the minimum FAS is NP-hard. However, our algorithm does not require the

FAS to be minimal, and for a given digraph G = (V ,E ) fast and effective heuristics

exist [ELS93] with time complexity O(#E ) which yield an FAS F with upper bounded

cardinality #F ≤ #E /2−#V /6.

Removing the loops in the composition of DHAs is equivalent to replacing the con-

nections corresponding to feedback arcs by newly created auxiliary inputs. In general,

a feedback arc f corresponds to more than one connection between two DHAs and en-

compasses therefore real as well as binary variables. Thus, we add a real auxiliary input

for every connection from a real output to a real input and accordingly a binary auxil-

iary input for every connection corresponding to binary variables. Repeating this for all

f ∈ F yields a composition of DHAs without loops defined on the augmented exogenous

input space Ur × Vr × Ub × Vb, where Vr and Vb denote the auxiliary real and binary

input spaces, respectively. We denote the vector of auxiliary real and binary inputs by

vr(k) ∈ Vr and vb(k) ∈ Vb, respectively. As connections between DHAs are equivalent

to equality constraints of the respective inputs and outputs, the removed connections are

kept as equality constraints C.

Now assume again, that the indices of the DHAs are ordered such that the adjacency

matrix is upper triangular. Given a binary state xb(k) ∈ Xb and an augmented binary

input
[

ub(k)
vb(k)

]

∈ Ub × Vb, this assumption allows us to use Algorithm 3.2 to derive the set

of feasible modes J ′, the set of polyhedra {P ′
j}j∈J ′ and the corresponding PWA dynamics

{S ′
j}j∈J ′ defined on the augmented real state-input space Xr ×Ur ×Vr. As the algorithm

proceeds, the outputs of the DHAs are replaced step by step by affine combinations

of states and exogenous inputs. Therefore, the expressions for the constraints C must be

updated at the same time replacing outputs by affine combinations of states and exogenous

inputs according to the respective PWA output function. This yields the set of constraints

{C′j}j∈J ′ , where C′j denotes the updated constraints corresponding to the mode j ∈ J ′.

In a last step, we cycle through all modes J ′ and impose the updated constraints in

order to remove the auxiliary inputs. This yields the set of modes J of the original

composition containing loops and the set of polyhedra {Pj}j∈J with the corresponding

PWA dynamics {Sj}j∈J defined on the original space Xr × Ur. In general, some of the

modes in the set J ′ will prove to be infeasible and thus J ⊆ J ′. Consider now the mode

j ∈ J ′ with the associated polyhedron P ′
j and the constraint C′j, which is of the form

Hxxr(k) + [Hu Hv]
[

ur(k)
vr(k)

]

= K, where Hx, Hu and Hv are matrices with #F rows and

an appropriate number of columns, and K is a column vector with #F components. The

following three cases may occur:
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Σ1 Σ2

vr(k) y1(k) u2(k)
y2(k)

Figure 3.5: Composition of DHAs of Example 3.3 containing a feedback loop

(i) If det(Hv) 6= 0, we express the auxiliary input as a function of the real state and the

real exogenous input, and we substitute vr(k) in P ′
j. This is the same as intersecting

P ′
j with the constraint C′j and projecting the result on the original state-input space

Xr ×Ur. The associated PWA dynamic Sj is derived by substituting vr(k) in S ′
j. If

the polyhedron Pj is non-empty, the auxiliary input has been removed successfully

and Pj is now solely defined on Xr × Ur. Therefore, we add the mode j to J , the

polyhedron Pj to {Pj}j∈J and the PWA dynamic Sj to {Sj}j∈J . If Pj is empty,

the corresponding mode j is infeasible and thus discarded.

(ii) However, if det(Hv) = 0, there are either zero or an infinite number of solutions for

vr(k). The corresponding mode and polyhedron are infeasible and are removed.

(iii) The third case results from the fact, that the constraints {C ′j}j∈J ′ are defined only

on real states, real inputs and auxiliary real inputs. As we have seen, however,

replacing the feedback arcs may lead to auxiliary binary inputs vb(k), too. These

inputs are given together with the binary states and binary inputs when calling

the algorithm. In general, some of these combinations will prove infeasible and the

algorithm will discard the associated modes and polyhedra.

The first two cases, in which loops have either zero, one or an infinite number of solutions

are well-known from linear systems theory with the only difference, that det(Hv) is in our

case a local property that holds only for a given polyhedron and not for the whole state-

input space. However, when dealing with loops in hybrid systems, additional difficulties

may arise. As the next example will show, even if for all modes det(Hv) 6= 0, the resulting

polyhedra do not necessarily form a polyhedral partition of Xr ×Ur and the composition

of DHAs is thus not well-posed in general.

Example 3.3 Reconsider the composition of DHAs in Example 3.2 to which we add

now a feedback loop as shown in Fig. 3.5. Thus, the input u1(k) is removed and the state-

input space is reduced to X = [0, 10]. The corresponding digraph is cyclic and contains

the feedback arc f = (Σ2,Σ1). Introducing the auxiliary real variable vr(k) ∈ V = R and

adding vr(k) = y2(k) to the constraint C allows us to break the loop. The composition is

now defined on the augmented state-input space X ×V . Algorithm 3.2 leads to the set of
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(d) PWA output functions given in {Sj}j∈J and

defined on the original state-input space X

Figure 3.6: Set of polyhedra and PWA output functions of the composition of DHAs of

Example 3.3

polyhedra {P ′
j}j∈J ′ and the PWA dynamics {S ′

j}j∈J ′ shown in Fig. 3.6(a) and Fig. 3.6(b),

respectively5.

Consider the mode j = 1 ∈ J ′ with the polyhedron P ′
1 = {[ x1

vr ] ∈ X × V | [ 1 0
0 −1 ] [ x1

vr ] ≤

[ 4
−3 ]}, the output function y2(k) = 2vr(k)− 6 and the updated constraint vr(k) = 6. The

fact, that det(Hv) is different from zero allows us to derive P1 = {x1 ∈ X |x1 ≤ 4}. As

P1 is not empty, the mode j = 1 is feasible. The corresponding output function is given

by y2(k) = 6. The modes j = 2 and j = 4 are handled in a similar way. For the modes

j = 3 and j = 5, the updated constraints are x1(k) = 7 and 0 = 1, respectively. In both

cases, det(Hv) is zero. For j = 3, this leads to an infinity number of solutions and a lower

5Note that the vr-axis has been artificially restricted to −2 ≤ vr(k) ≤ 7 in order to facilitate the plotting.
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dimensional polyhedron containing only the single point x1(k) = 7, whereas for j = 5

no solution exists. Both modes together with the associated polyhedra and dynamics are

therefore removed.

The resulting set of polyhedra {Pj}j∈J , J = {1, 2, 4}, and the PWA output functions

{Sj}j∈J , which are both defined on the one-dimensional state-input space X , are shown

in Fig. 3.6(c) and 3.6(d), respectively. Note that P1 = P2, but that two different out-

put functions are associated to them. Because of that and as a part of the state-input

space, namely {x1 ∈ X |x1 ≥ 7}, is not covered, {Pj}j∈J does not form a polyhedral

partition. Therefore, the resulting PWA system and consequently also the corresponding

composition of DHAs is not well-posed.

The example demonstrates that if loops are present in a composition of DHAs the

resulting polyhedra do not necessarily form a polyhedral partition. The reason for this is

twofold. First, modes might be infeasible either because the intersection of the associated

polyhedron with the updated constraint is empty or because det(Hv) of the constraint

is zero. In general, infeasible modes result in gaps in the state-input space. Second,

polyhedra may overlap.

Summing up, using well-posed DHAs to form a composition of DHAs does not guar-

anty well-posedness of the overall composition in the presence of loops. However, as

well-posedness of the composition of DHAs relates directly to well-posedness of the cor-

responding PWA model, we can conclude, that the composition of DHAs is well-posed if

and only if the corresponding PWA system is well-posed. Based on the polyhedra and the

dynamics, we can easily evaluate well-posedness of the PWA model. If the set of poly-

hedra {Pj}j∈J of the PWA model forms a polyhedral partition, well-posedness is assured

by Lemma 2.2. On the other hand, if the union of {Pj}j∈J covers the state-input space

completely, and if all pairs of overlapping polyhedra are associated to the same PWA

dynamic, the PWA model is well-posed, too.

3.5 Examples and Applications

This final section presents two examples showing how the mode enumeration algorithm

can be used to efficiently derive the PWA representation of a given hybrid system.

3.5.1 Car Example

In [TB01], the authors proposed a hybrid model of a car with a robotized gear shift.

This example was adopted in [Bem02] where the author computes the MLD model using

Hysdel and the PWA system equivalent to the MLD model using multi-parametric and

mixed integer linear programming. As the model is given in Hysdel, the algorithm in



3.5 Examples and Applications 47

Fb(k)

F (k)

d1(k), d2(k)

d1(k), d2(k) n(k)

x(k)

x(k), v(k)

Σ1: Topology

Σ2: Status of Mail

Σ3: Dynamics

Figure 3.7: Paperboy example consisting of three DHAs with the respective states

Section 3.4 starts from this description to translate the car example into a PWA model.

The resulting PWA model encompasses 30 polyhedra and six modes and is computed in

1.9 s using Matlab 5.3 on a Pentium III 650 MHz machine. This is 40 times faster than

the algorithm reported in [Bem02] on a similar machine.

The reason for this is twofold. First, the algorithm presented here exploits the structure

of the DHA models, while the algorithm presented in [Bem02] deals with MLD models

concealing that structural information. Second, the approach in [Bem02] needs to remove

redundant inequalities at each iteration of the exploration algorithm. This operation may

dominate the total computation time in [Bem02].

Apart from this, [Bem02] lacks the compositional capability and can only handle the

transformation from a single MLD to a single PWA model. In particular, models with

loops cannot be tackled.

3.5.2 Paperboy Example

A paperboy delivers by bike two heavy and bulky mail items to two different houses within

a neighborhood consisting of four properties and one road. The properties and the road

have different slopes and different friction coefficients.

The input of the system at time-instant k is given by the force Fb(k) ∈ U ⊂ R2, U =

[−Fmax, Fmax]
2, Fmax = 162 N that the paperboy applies to his bike in order to accelerate

and brake. Driven by Fb, the paperboy cycles in the two-dimensional neighborhood X1 =

[−sn, sn]2 with sn = 1000 m. His position is given by x(k) = [x1(k), x2(k)]
T ∈ X1 ⊂ R2

and his speed v(k) ∈ X2 ⊂ R2 is limited by X2 = [−vmax, vmax]
2, where vmax = 15 m/s.

Two binary states d1(k), d2(k) ∈ {0, 1} denote the status of the mail delivery. The outputs

of the model are the position x(k) and the number of delivered mail items n(k) ∈ {0, 1, 2}.

As depicted in Fig. 3.7, the paperboy problem can be decomposed into three DHAs.

Each DHA is described in the following.
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δy(k)

δh1

δh2

Figure 3.8: Topology of the neighborhood in the paperboy example with the thresholds

and modes

Topology of Neighborhood. A road of width wr = 4 m divides the neighborhood

into two parts, which are further partitioned into two properties yielding a total of four

properties and one road (see Fig. 3.8). These five regions are each characterized by different

slopes and friction coefficients. Given the force Fb(k) ∈ U ⊂ R2 that the paperboy applies,

the effective force acting on the bike

F (k) = Fb(k)− µi(k) − νi(k)v(k) ∈ R2

depends on the partition i(k) ∈ {1, . . . , 5}, the grade resistance µi(k) corresponding to the

slope, and the friction coefficient νi(k). The parameters are given by µ1 = [ 2
0 ], µ2 = [ 1.5

0 ],

µ3 = [ −0.5
0 ], µ4 = [ −1

0 ], µ5 = [ 0
0 ] and ν1 = [ 2 0

0 2 ], ν2 = [ 0.5 0
0 0.5 ], ν3 = [ 1 0

0 1 ], ν4 = [ 1.5 0
0 1.5 ],

ν5 = [ 0.05 0
0 0.05 ].

Therefore, the first DHA is static and has the real inputs x(k), v(k) and Fb(k). The

real output is F (k).

EG1:







δx1(k) = [x1(k) ≤ −0.5wr],

δx2(k) = [x1(k) ≥ 0.5wr],

δy(k) = [x2(k) ≥ 0]
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MS1: i(k) =







1 if δx1(k) ∧ δy(k),

2 if δx2(k) ∧ δy(k),

3 if δx1(k) ∧ δ̄y(k),

4 if δx2(k) ∧ δ̄y(k),

5 if δ̄x1(k) ∧ δ̄x2(k)

SAS1: F (k) = Fb(k)− µi(k) − νi(k)v(k), i(k) = 1, . . . , 5

Status of Mail Delivery. The houses are squares of size sh = 10 m centered at xh1 =

[−ph,−ph] and xh2 = [ph, ph], ph = 40 m as depicted in Fig. 3.8. The four walls of a house

can be modelled by four hyperplanes with corresponding binary variables equal to 1, if

the paperboy is “within” the respective wall. The respective flag δhi(k), i = 1, 2 denoting

that the paperboy has reached House i and delivered the mail, is the logic and of these

four binary variables. Finally, a FSM stores the mail delivery status using the binary

states d1(k), d2(k).

This leads to the following DHA with the real input x(k), the binary states d1(k) and

d2(k), which are also outputs, and a third output n(k) = d1(k) + d2(k) denoting the

number of delivered mail items.

EG2:

{

δh1(k) = ||x(k)− xh1||∞ ≤ 0.5sh,

δh2(k) = ||x(k)− xh2||∞ ≤ 0.5sh

FSM2:

{

d1(k + 1) = d1(k) ∨ δh1(k),

d2(k + 1) = d2(k) ∨ δh2(k)

Dynamics of Paperboy. The total weight m(k) is the weight of the paperboy and

his bike (Mb = 90 kg) plus the weight of the undelivered mail items (each mail item

weighs Mm = 10 kg). Therefore, the total weight is time-dependent and decreasing as

the paperboy delivers the mail. By Newton’s law, the effective force F (k) divided by the

total weight is the acceleration and by integrating this, the velocity and the position of

the paperboy are obtained. The integral is approximated by two discrete-time dynamical

systems with sampling time Ts = 1 s.

The third DHA has the real input F (k) ∈ R2, the two binary inputs d1(k), d2(k)

denoting the status of the mail delivery and the real states x(k) and v(k) characterizing

the position and the velocity, respectively. The outputs are the position x(k) and the

velocity v(k).

MS3: i(k) =







1 if d̄1(k) ∧ d̄2(k),

2 if (d1(k) ∧ d̄2(k)) ∨ (d̄1(k) ∧ d2(k)),

3 if d1(k) ∧ d2(k)



50 3 Mode Enumeration of Compositional Hybrid Systems

SAS3:

[

v(k + 1)

x(k + 1)

]

=

[

v(k)

x(k)

]

+

[

F (k)/m(k)

v(k)

]

Ts,

where

m(k) =







Mb + 2Mm if i(k) = 1,

Mb +Mm if i(k) = 2,

Mb if i(k) = 3

Summing up, the paperboy example is defined on the eight-dimensional state-input

space X1 × X2 × {0, 1}
2 × U . Furthermore, it contains no loops. Algorithm 3.2 yields

the equivalent PWA model within 6.5 s on a 2.8 GHz Pentium IV PC. It encompasses 168

feasible modes and polyhedra, what is by far below the upper bound of 7099 given by

Buck’s formula (3.2).

The paperboy starts the mail delivery at a random position x(0) with speed v(0) = 0.

His objective is to first deliver one mail item to House 1 centered around xh1 and then to

move on to House 2 at position xh2 to deliver the second mail item. Using the force that

the paperboy applies as manipulated variable, namely u(k) = Fb(k), this control objective

can be expressed by the cost function

J(x(k), v(k), U(k)) =
N−1∑

ℓ=0

‖x(k + ℓ|k)− xref (k + ℓ|k)‖1 + ǫ‖u(k + ℓ|k)‖1 , (3.4)

which penalizes the predicted deviation of the position from its reference over the horizon

N using the 1-norm for the sequence of manipulated variables U(k) = [(u(k))T , . . . , (u(k+

N − 1))T ]T . The reference xref is switched from xh1 to xh2 when the paperboy reaches

House 1. Additionally, a very small penalty term ǫ = 10−6 is imposed on the manipulated

variable.

In the next section, we will use the paperboy example to evaluate the potential of the

mode enumeration algorithm to reduce the computation time of MPC. The MPC control

problem amounts to minimizing the cost function (3.4) subject to the evolution of the

paperboy model over the prediction horizon and subject to constraints on Fb, x and v as

given above. The solution of this optimization problem, which is a Mixed-Integer Linear

Program (MILP), yields the force Fb.

3.6 Cuts for Model Predictive Control

MPC of hybrid systems [BM99a] uses an internal hybrid model, which is usually in MLD

form (2.8). In the great majority of cases, the MLD model is derived starting from a

composition of DHAs described textually in Hysdel. When translating a composition

of DHAs into an MLD model, information about the structure of the hybrid model is

lost. However, the explicit computation of the set of feasible modes of the composition
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x(k) x(k + 1) x(k +N − 1) x(k +N)

u(k) u(k + 1) u(k +N − 1)

Σ Σ Σ

Figure 3.9: Conceptual scheme of the N -step prediction model

of DHAs allows one to add this structural information to the MLD model in the form

of cuts. These cuts are inequality constraints on the binary inputs, binary states and

binary variables δ in (2.8), allowing one to prune infeasible combinations of these binary

variables, or equivalently modes, from the MLD model.

Given the current state and the input, the internal (MLD) model computes the state

at the next time-instant and the output. One might refer to such a model as a single-step

prediction model defined on the state-input space X ×U . When building the optimization

problem for MPC with horizon N , this model is repeated N times. More specifically, the

series connection of N identical single-step models is built as shown in Fig. 3.9, where each

model uses the state predicted by the previous one as initial state. We might consider these

N models as one single model defined on the state-input space X ×UN . Given the initial

state x(k) ∈ X and the sequence of inputs U(k) = [(u(k))T , . . . , (u(k +N − 1))T ]T ∈ UN ,

this models provides the state evolution over N . We thus refer to it as the N -step

prediction model. The mode enumeration allows us to introduce cuts not only on the

modes of the single-step, but also on the N -step prediction model. As a result, additional

cuts on the X × UN space can be added taking into account the interaction between the

single-step models.

Cuts can be formulated in terms of additional logic constraints. According to [Mig02],

two methods can be used to transform logic constraints into mixed integer inequalities

which can be added to the MLD model. The Symbolical Method converts the constraints

into a canonical normal form, which is then translated into integer inequalities, whereas

the Geometrical Method computes the convex hull of the integer points for which the

constraints are fulfilled. In general, the second method is superior to the first one because

the convex hull is the smallest set containing all the integer feasible points, and because

it introduces less additional inequalities.

Example 3.4 As an example of adding cuts to the single-step prediction model, re-

consider the paperboy example of the previous section. We used the compiler Hysdel

to transform the paperboy composition of DHAs into an MLD model. The mode enu-

meration algorithm in Section 3.4 computed the set of feasible modes, which were added
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Figure 3.10: Normalized average computation time versus prediction horizon N ,

N = 8, . . . , 26, when using single-step prediction models with cuts gen-

erated by either the symbolical method (dash-dotted line) or the geometrical

method (solid line)

as additional constraints to the MLD model using the symbolical method as well as the

geometrical method. We solved MPC with the cost function (3.4) and various prediction

horizons. Using Cplex [ILO02] as MILP solver, Fig. 3.10 reports the average computa-

tion times for MPC on the two improved models normalized to the plain model produced

by the Hysdel compiler.

Note that both methods add non-trivial cuts to the model reducing the computation

time of Cplex up to a factor of two. This improvement is more evident when using

less advanced solvers like [BM00], where for a prediction horizon of three for example, the

additional information reduces the computation time by a factor of 210. Figure 3.10 shows

clearly, that the cuts introduced by the geometrical method are more effective than the

ones of the symbolical method. This is mainly due to the fact that the symbolical method

needs much more constraints and consequently memory space to define the feasible modes

thus delaying the calling of Cplex. For the paperboy example, the symbolical method

introduces 239 additional constraints, whereas the geometrical method only adds 42. The

third conclusion is, that both methods become more effective as the prediction horizon is

increased, as the benefit of additional cuts grows with the number of binary variables.

Adding cuts to the N -step prediction model has not been investigated numerically. In
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general, we expect that additional cuts can be generated that remove combinations of

modes of the different single-step models. Obviously, the reduction of computation time

when solving the optimization problem will be problem specific and hard to generalize.

Nevertheless, in particular for long prediction horizons, an additional improvement is to

be expected for most examples.

Alternatively, one might first transform the Hysdel model into PWA form, and describe

the PWA model in MLD form by introducing for each mode of the PWA model a binary

variable that is one if the mode is active. An exclusive or (XOR) constraint assures that

exactly one binary variable is one. For many MILP solvers like Cplex, the structural

information of the XOR constraint can be passed directly to the solver in the form of a

special ordered set (SOS) thus leading to a performance improvement that is expected to

be significant.

3.7 Conclusions and Future Research

We have presented an effective method to enumerate the set of feasible modes for a

given composition of DHAs. The same procedure transforms the compound model into a

PWA model. The algorithm is capable of handling feedback loops in such a composition

– in contrast to Hysdel that is not able to transform compositions containing loops

into equivalent MLD models. As a byproduct the algorithm can also determine whether

a composition is well-posed or not. Improving the data handling and storing already

computed hyperplane arrangements led to an reduction of the computation time by a

factor of up to 30 compared with the original code presented in [GTM03a].

In general, some neighboring polyhedra will have the same PWA dynamics and should

be joined in order to reduce the model complexity. This topic is treated in the next

chapter, where we propose optimal complexity reduction algorithms to derive – based on

the hyperplane arrangement – an equivalent PWA model that is minimal in the number

of polyhedra.

With respect to optimal control, the mode enumeration can be exploited to reduce the

computation time of MPC by adding cuts. Here, we have added cuts only to the single-

step prediction model. Extending this idea to the N -step prediction model should further

increase the benefits in terms of reduction of the on-line computation time. Another

promising alternative is to transform the N -step prediction model into an equivalent

PWA model, to derive a minimal representation using the optimal complexity reduction

of Chapter 4, and to translate it then into a very compact MLD model to be used for

MPC.
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4

Optimal Complexity Reduction of

Piecewise Affine Systems

4.1 Introduction

In the preceding chapter, we have formulated an algorithm that efficiently enumerates the

feasible modes of a composition of DHAs and transforms the compound model into an

equivalent PWA model. As every mode relates to a polyhedron with an associated affine

dynamic, the PWA model is given by a set of polyhedra with associated affine dynamics.

Often, different modes correspond to the same dynamic. If some or all of the associated

polyhedra form a convex union, those polyhedra should be merged in order to reduce the

complexity of the model.

The motivation for deriving a PWA model minimal in the number of polyhedra is

twofold. When pre-computing the optimal control law off-line to derive the state-feedback

controller as shown in Section 2.4.2, an internal PWA model is required. Due to the

combinatorial nature of the problem, both the computation time and controller complexity

are in the worst case exponential in the number of polyhedra of the PWA model [Bor03].

Hence it is of upmost importance to derive a model with as few polyhedra as possible.

On the other hand, once the PWA state-feedback control law has been derived, the mem-

ory requirement and the on-line computation time are linear in the number of polyhedra

of the feedback law when using standard brute force search. When using a binary search

tree as proposed in [TJB03], the computational burden can be reduced on the expense

of enlarging the memory requirement. More precisely, the computation time becomes

sublinear in the number of polyhedra, while the memory requirement gets superlinear.

Therefore, this chapter focuses on the problem of finding a minimal representation of

piecewise affine (PWA) systems, or more specifically, for a given PWA system, we solve

the problem of deriving a PWA system, that is both equivalent to the former and minimal

in the number of regions.

55
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If the number of polyhedra with the same affine dynamic is large, the number of possible

polyhedral combinations for merging explodes. As most of these unions are not convex or

even not connected and thus cannot be merged, trying all combinations using standard

techniques based on linear programming (LP) [BFT01] is prohibitive. Furthermore, our

objective here is not only to reduce the number of polyhedra but rather to find the minimal

and thus optimal number of disjoint polyhedra. This problem is known to be NP-hard,

and to the best of our knowledge, it is still an open problem.

The mode enumeration algorithm not only derives the polyhedral partition, but also the

corresponding set of markings of the associated hyperplane arrangement. Using the mark-

ings enables us to determine a priori – i.e. without solving any LP – if a given combination

of polyhedra is convex. Exploiting this fact, we propose in this chapter two algorithms

that yield the minimal number of polyhedra without solving any LP. The first algorithm

executes a branch and bound on the markings yielding a set of non-overlapping (disjoint)

merged polyhedra, using additional heuristics on the branching strategy to reduce the

computation time. The second approach relies on the fact that the optimal complex-

ity reduction problem can be reformulated as logic minimization problem by replacing

the markings by Boolean variables and minterms. Logic minimization is a fundamental

problem in digital circuit, and efficient tools have been developed to successfully tackle

these problems, which often encounter hundreds or thousands of variables. The resulting

polyhedra, however are in general not disjoint and thus overlapping. For most algorithms

subsequently used, this has no negative effects.

As both algorithms refrain from solving additional LPs, they are not only optimal but

also computational feasible. The applicability of the algorithms can be extended to general

PWA systems lacking the hyperplane arrangement (like PWA state-feedback control laws)

by first computing the hyperplane arrangement. Examples illustrate the algorithms and

show their computational effectiveness.

This chapter is organized as follows. Section 4.2 recalls the PWA systems we are

considering, namely PWA models and PWA state-feedback control laws, states formally

the (disjoint and non-disjoint) optimal complexity reduction problems, and derives a key

lemma to evaluate convexity of polyhedra using only their markings. Algorithms for

optimal complexity reduction based on branch and bound, and logic minimization, are

proposed in Sections 4.3 and 4.4, respectively. Section 4.5 extends the applicability of the

algorithms by deriving the (global) hyperplane arrangement and elaborates on the notion

of optimality. In Section 4.6, we propose two techniques to reduce the computational

complexity of large problems, specifically the simplification of the hyperplane arrangement

and Divide and Conquer strategies. The effectiveness of the approaches is demonstrated

in Section 4.7 through three examples. Section 4.8 summarizes this chapter and proposes

an efficient technique to implement PWA control laws as future research topic.
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The optimal complexity reduction algorithms have been implemented in Matlab and

are included in the multi-parametric toolbox (MPT) [KGBM04], which is freely available

from http://control.ee.ethz.ch/∼mpt/.

Throughout the rest of the chapter, we will often abbreviate optimal complexity reduc-

tion with OCR.

4.2 Problem Statement and Properties

4.2.1 Target Systems

For the OCR, we consider two forms of polyhedral PWA systems, namely PWA models

and PWA state-feedback control laws. Both are assumed to be polyhedral PWA systems

and well-posed according to Section 2.2.3. Yet, the polyhedra are not required to form a

polyhedral partition.

PWA Models

PWA models are of the form (2.9), which we repeat here for completeness:

x(k + 1) = Aj(k)x(k) +Bj(k)u(k) + fj(k) (4.1a)

y(k) = Cj(k)x(k) +Dj(k)u(k) + gj(k) (4.1b)

with j(k) such that
[

x(k)
u(k)

]

∈ Pj(k) , (4.1c)

where x ∈ X , u ∈ U , y ∈ Y denote at time k the (real and binary) states, inputs and

outputs, respectively, and the polyhedra Pj(k) define a set of polyhedra {Pj}j∈J on the

state-input space X × U .

In most cases, PWA models have been modelled in Hysdel as a composition of DHAs,

and the mode enumeration algorithm has been used to transform the composition into

PWA form. The algorithm also yields the hyperplane arrangement and the set of markings

M(R), which are both defined on R, with R ⊆ X × U . These markings form the basis

for the OCR in this chapter. Next, we define global and local hyperplane arrangements.

If all the thresholds of the DHAs are defined only on states and inputs, the hyperplane

arrangement and the markings are defined obviously on the state-input space, too, and

consequently R = X × U . We refer to such a hyperplane arrangement as a global (or

globally valid) hyperplane arrangement. Furthermore, because of the equivalence of DHAs

and PWA models stated in Section 3.3, the modes j ∈ J are formally equivalent to the

markings m ∈M(R).

If, however, some of the thresholds also depend on auxiliary variables that on their

part depend on other thresholds, the mode enumeration algorithm yields a collection
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of hyperplane arrangements that are sequentially defined within each other. Hence, R

is not the whole state-input space but rather a polytopic subset of it. We say that

the hyperplane arrangement is local (or locally valid). This is generally the case for

compositions of DHAs that sequentially depend on each other, where each DHA defines

a hyperplane arrangement within a cell of the hyperplane arrangement of the preceding

DHA. Consequently, the (global) modes of the PWA model do not correspond to the

markings of the (local) hyperplane arrangements.

PWA State-feedback Control Laws

PWA state-feedback control laws are of the form

u(k) = Fj(k)x(k) + gj(k) (4.2a)

with j(k) such that x(k) ∈ Pj(k), (4.2b)

where x ∈ X and u ∈ U denote at time k the (real and binary) states and inputs,

respectively, and the polyhedra Pj(k) define a set of polyhedra {Pj}j∈J on the state-space

X .

In our context, PWA state-feedback control laws are obtained by pre-solving an optimal

control law off-line including the computation of the feedback law of MPC controllers for

linear or hybrid systems. Apart from the case of hybrid systems with quadratic perfor-

mance indices in the cost function, the resulting feedback laws are again PWA expressions

defined on polyhedral partitions as recalled in Section 2.4.2. Yet, the polyhedra are not

defined in an hyperplane arrangement and markings are not available. Given a set of

polyhedra, we will present in Section 4.5 an algorithm that derives a hyperplane arrange-

ment and the corresponding markings, thus allowing us to extend the OCR algorithms to

PWA state-feedback control laws. For completeness, we set R = X .

4.2.2 Problem Statement

In the following, we assume that besides the PWA representation a corresponding global

hyperplane arrangement A is available together with the markings M(R). Specifically,

we assume the following1.

Assumption 4.1 The polyhedra of the given PWA system are cells in a (global) hyper-

plane arrangement, of which the markings are available.

For a given PWA representation the aim of the OCR algorithms is to derive an equivalent

representation that is minimal in the number of polyhedra by replacing polyhedra with the

1In Section 4.3, we will relax this assumption and extend the OCR algorithms to general PWA system

not defined in hyperplane arrangements.
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same affine dynamics (or feedback law) by new sets of polyhedra of minimal cardinality.

For clarity of exposition, we associate with each affine dynamic (or feedback law) a different

color, and we collect the polyhedra with the same color. Then, for a given color, we pose

the following three problems, where we distinguish between results formed by disjoint and

non-disjoint polyhedra.

Problem 4.1 (Disjoint Optimal Complexity Reduction (DOCR)) Given an ini-

tial set of polyhedra {Pi}i=1,...,p with the same color satisfying Assumption 4.1, the dis-

joint optimal complexity reduction problem amounts to derive a new set of polyhedra

{Qi}i=1,...,q with the following properties: (i) the union of the new polyhedra is equal to

the union of the original ones, i.e. (
⋃q

i=1Qi) = (
⋃p

i=1Pi), (ii) q is minimal, i.e. there

exists no set {Qi}i=1,...,q with a smaller number of polyhedra, (iii) the new polyhedra are

mutually disjoint, i.e. Qi 6= Qj for all i, j ∈ {1, . . . , q}, i 6= j, and (iv) the new polyhedra

are formed as unions of the old ones, i.e. for each Qj, j ∈ {1, . . . , q}, there exists an index

set I ⊆ {1, . . . , p}, such that Qj =
⋃

i∈I Pi.

This problem is equivalent to an optimal merging problem. Next, we remove the Re-

quirements (iii) and (iv) thus allowing for overlaps in the resulting polyhedra.

Problem 4.2 (Non-Disjoint Optimal Complexity Reduction (NOCR)) Given

an initial set of polyhedra {Pi}i=1,...,p with the same color satisfying Assumption 4.1,

the non-disjoint optimal complexity reduction problem amounts to derive a new set of

polyhedra {Qi}i=1,...,q with the Properties (i) and (ii) as in Problem 4.1.

Strictly speaking, the second problem is not a merging problem, but a more general

optimal set covering problem, which is as shown later equivalent to logic minimization

frequently used in digital circuit design. Nevertheless, we will sometimes use the term

merging instead of complexity reduction.

Next, we drop the assumption that the original polyhedra are cells of an hyperplane

arrangement and that markings are available, but require additionally that each polyhe-

dron is represented with a minimal number of facets. This problem can be considered

as the general non-disjoint optimal complexity reduction problem for (polyhedral) PWA

systems.

Problem 4.3 (General Non-Disjoint Optimal Complexity Reduction (GNOCR))

Given an initial set of polyhedra {Pi}i=1,...,p with the same color, where Assumption 4.1

is not required to hold, the general non-disjoint optimal complexity reduction problem

amounts to derive a new set of polyhedra {Qi}i=1,...,q with the Properties (i) and (ii) as

in Problem 4.1, and (iii) the number of facets for each Qi being minimal.

All three tasks are non-trivial, as the union of polyhedra with the same color is in

general non-convex, and because we are aiming at deriving the optimal solution, more
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specifically, the set of polyhedra with the minimal cardinality. Indeed, the problems are

NP-hard (see [Cha84] and references therein). As a direct consequence, fast algorithms

are unlikely to exist leaving us either with rather long computation times or suboptimal

solutions. Thus, the challenge is to design algorithms that are applicable to problems of

meaningful size and nevertheless yield the global optimum.

4.2.3 Convexity of Unions of Polyhedra

Definition 4.1 (Separating Hyperplane) Suppose P1 and P2 are two (convex) poly-

hedra that do not intersect, i.e. P1 ∩P2 = ∅. A hyperplane {x | cTx = d} with c 6= 0 and

d, such that cTx ≤ d for all x ∈ P1 and cTx ≥ d for all x ∈ P2 is called a separating

hyperplane for the polyhedra P1 and P2.

The proof of the following lemma follows directly from the definition of the markings.

Lemma 4.1 (Separating Hyperplane) Given the hyperplane arrangement {Hi}i=1,...,n

consisting of n distinct hyperplanes, the set of markings M(R), and the two polyhedra P1

and P2 with the corresponding markings m1,m2 ∈M(R) that differ in the j-th component,

Hj is a separating hyperplane for P1 and P2.

Definition 4.2 (Envelope, [BFT01] p. 144) Given two polyhedra P1 and P2, the

envelope env(P1,P2) of the two polyhedra is defined as the intersection of half spaces that

contain both polyhedra, where the half spaces are given by the facets of the two polyhedra.

Lemma 4.2 (Envelope) Given the hyperplane arrangement {Hi}i=1,...,n consisting of

n distinct hyperplanes, the set of markings M(R), and the two polyhedra P1 and P2

with the corresponding markings m1,m2 ∈ M(R), where m1(i) = m2(i) for i ∈ I and

m1(i) 6= m2(i) for i ∈ I ′ with I ′ = {1, . . . , n} \ I, we construct the marking m as follows:

m(i) = m1(i) for i ∈ I and m(i) =’∗’ for i ∈ I ′. Then the envelope env(P1,P2) of the

two polyhedra is given by the marking m.

Proof. Recall that a ’∗’ in a marking means that the corresponding hyperplane does not

define the polyhedron. As all the facets of P1 and P2 are subsets of the hyperplanes in the

arrangement, and as the hyperplanes with indices I ′ are separating hyperplanes for P1

and P2 according to Lemma 4.1, the proof follows from the definition of the envelope.

The proof can be easily generalized to envelopes of more than two polyhedra.

Theorem 4.1 (Convexity, [BFT01] Theorem 3) Given the two polyhedra P1 and

P2, their union P1 ∪ P2 is convex if and only if P1 ∪ P2 = env(P1,P2).

The following lemma allows us to determine the convexity of two polyhedra by only

evaluating their corresponding markings. This lemma constitutes the basis for the two

OCR algorithms.
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Lemma 4.3 (Convexity) Given the collection of markings M(R), the union of the two

polyhedra P1 and P2 with the markings m1,m2 ∈M(R), m1 6= m2, is convex, if and only

if the markings differ in exactly one component.

Proof. As we have Theorem 4.1 at our disposal, we only need to prove that P1 ∪ P2 =

env(P1,P2) if and only if m1 and m2 differ in exactly one component. The ”⇐”part

follows directly from Lemma 4.2. The ”⇒”part follows by contradiction. Recall, that

P1 ∪ P2 ⊆ env(P1,P2), and assume that P1 ∪ P2 6= env(P1,P2), i.e. there are points

x ∈ env(P1,P2) \ (P1 ∪ P2). Then there exists at least one hyperplane that is separating

x from P1 or x from P2 besides the one that is separating P1 from P2. Thus m1 and m2

differ in at least two components.

The concept of markings in a hyperplane arrangement allows us to evaluate the convexity

of polyhedra by applying Lemma 4.3 to their associated set of markings. The algorithms

refrain from solving LPs – in fact, they extract the information from the markings that

in turn summarize the result of the LPs solved to compute the cells of the hyperplane

arrangement. Even though we will design algorithms assuring optimality, the computation

times to solve the OCR problems are rather small making the algorithms applicable to

problems of meaningful size.

4.2.4 Connectivity of Polyhedra

Definition 4.3 (Connectivity) Two polyhedra are called neighboring polyhedra if they

share a common facet. A set of polyhedra {Pi}i∈I is connected if for each Pi, i ∈ I, there

exists a Pj, i 6= j, j ∈ I such that Pi and Pj are neighboring polyhedra.

Obviously, a necessary condition for the convexity of a union of a set of polyhedra is

that the set of polyhedra is connected. The connectivity can be easily determined using

the markings. Given the set of markings M(R) and the set of polyhedra with markings

mi ∈ M(R), the polyhedra are connected if and only if for each polyhedron Pmi
with

marking mi ∈M(R), there exists a polyhedron Pmj
with marking mj ∈M(R), such that

mi and mj differ in exactly one component. In order to reduce the computation time,

we exploit this fact by further partitioning the set of polyhedra with the same color into

connected subsets.

4.3 Disjoint Optimal Complexity Reduction

Let the set Mw denote the markings of a connected subset with the same color. We

refer to the corresponding polyhedra as white polyhedra. As the color of the remaining

polyhedra is not relevant at this stage, we assume that the remaining markings M ′
b =
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M(R)\Mw correspond to black polyhedra. The basic concept of the algorithm is to derive

a minimal representation of the white polyhedra by dividing their envelope sequentially

into polyhedra using the hyperplanes of the hyperplane arrangement.

Algorithm based on Branch and Bound

Let the envelope of the white polyhedra with markings Mw be denoted by Pm. It is given

by the marking m, which is constructed as in Lemma 4.2. Slightly abusing the notation

we will write m = env(Mw). As all the white polyhedra are contained in their envelope,

we can formulate an equivalent problem with reduced complexity that considers only the

black polyhedra contained in this envelope, i.e. Mb = {mb ∈M
′
b | Pmb

⊆ Pm}, where Pmb

denotes the polyhedron with marking mb.

Let I denote the index set of hyperplanes in A that are separating hyperplanes for

polyhedra in the envelope Pm. According to Lemma 4.1, I is simply the collection of

indices i with m(i) =’∗’. Then, we can choose any hyperplane Hi, i ∈ I, to divide Pm

into two polyhedra. Hi also divides the sets of white and black markings respectively

into two subsets. We denote the subset of Mw that holds those markings whose i-th

element is a ’−’ with Mw|m(i)=−, i.e. Mw|m(i)=− = {m ∈ Mw | m(i) =’−’}. Mw|m(i)=+

and the partition of Mb are defined accordingly. Clearly, the unions of each pair of subset

equal the original sets Mw and Mb, respectively. Next, the algorithm branches on the

i-th hyperplane by calling itself twice – first with the arguments Mw and Mb restricted to

possessing a ’−’ as i-th element, and then correspondingly with the arguments restricted

to a ’+’. Both function calls return sets of markings Mm corresponding to merged white

polyhedra. This is repeated for all the remaining hyperplanes with indices i ∈ I.

A branch terminates if one of the following two cases occurs. First, if the set of markings

corresponding to black polyhedra is empty, i.e. Mb = ∅. This implies, that at this point

the envelope contains only white polyhedra. Hence, the envelope represents the union of

the set of white polyhedra with markings in Mw, and it is convex by construction. We

will refer to this convex set as a merged white polyhedron. Second, if the set of markings

corresponding to white polyhedra is empty, i.e. Mw = ∅, as this implies that no more

white polyhedra are available.

The algorithm uses standard bound techniques to cut off suboptimal branches by using

the two variables z and z̄. z denotes the current number of merged white polyhedra and

z̄ is the local upper bound on z, where initially z = 0 and z̄ = ∞. Branching is only

performed if z < z̄, as branches with z > z̄ are either equivalent to or worse than the

current optimum.

The above described branch and bound algorithm is summarized in the following, where

#M denotes the number of elements in the set M .
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Figure 4.1: Example with four hyperplanes in R = R2 and the corresponding markings.

The polyhedra corresponding to Mw are white and the polyhedra correspond-

ing to M ′
b are grey shaded, respectively

Algorithm 4.1

function Mm = Merge( Mw, M ′
b, z, z̄ )

m = env(Mw)

Mb = {mb ∈M
′
b | Pmb

⊆ Pm}

if Mw = ∅ then Mm = ∅

elseif Mb = ∅ then Mm = m

else

I = {i | m(i) = ’∗’}

Mm = ∅

for i ∈ I

if z < z̄ then

Mm1 = Merge ( Mw|m(i)=− , Mb|m(i)=− , z, z̄ )

Mm2 = Merge ( Mw|m(i)=+ , Mb|m(i)=+ , z + #Mm1 , z̄ )

if Mm = ∅ or #Mm1 + #Mm2 < #Mm then

Mm = Mm1 ∪Mm2

z̄ = min(z̄, z + #Mm)

return Mm

Example 4.1 As an example with four hyperplanes in a two-dimensional space consider

Fig. 4.1. The envelope of the white polyhedra is given by the positive half space of

H4 and the marking m = ∗∗∗+. Thus, only the black polyhedra with markings Mb =

{+−−+,++−+} are considered, and branching is only performed on the hyperplanes in
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I = {1, 2, 3}. Branching on H1 leads in one step to the two merged (white) polyhedra

with Mm = {−∗∗+,++++}. This is already the optimal solution. Nevertheless, the

algorithm also branches on the two remaining hyperplanes in I and finds two additional

solutions that are equivalent to the first one in terms of the number of polyhedra.

Lemma 4.4 Algorithm 4.1 solves the Disjoint Optimal Complexity Reduction Prob-

lem 4.1.

Proof. The proof follows in a constructive way from the algorithm. When branching on

the i-th hyperplane Hi, the set of white markings is divided into the two sets Mw|m(i)=−

and Mw|m(i)=+ according to the two half spaces defined by Hi. This operation assures

that the merged polyhedra are mutually disjoint. In particular, as no white polyhedra

are discarded during the operation and since Mw = (Mw|m(i)=−) ∪ (Mw|m(i)=+), the union

of the merged polyhedra equals the union of the white polyhedra. The minimality of the

number of merged polyhedra is ensured by branching on all hyperplanes unless bound

techniques come into effect cutting off suboptimal branches.

We conclude that the proposed algorithm is efficient as the convexity recognition is

performed only by comparing the markings rather than by solving LPs, it is optimal as

the branch and bound algorithm guarantees that the global minimum is found, and it is

a top down approach based on the notion of the envelope with counterexamples.

Branching Heuristics

Apart from bound techniques, additional heuristics can be used to greatly reduce the

computation time. These heuristics provide the hyperplanes with branching priorities

according to their expected benefit in the OCR process and allow for deciding on which

hyperplane to branch first. The heuristics are intended to quickly find a solution equal or

close to the optimal one thus allowing for effective pruning of suboptimal branches.

Specifically, we associate to the hyperplanes the following branching order:

1. Hyperplanes that separate two non-connected groups of white polyhedra thus allow-

ing us to divide the problem into two equivalent subproblems. Connectivity can be

easily determined as described in Section 4.2.4. Since in the subproblems only the

black polyhedra within the envelope of white polyhedra are considered, any hyper-

plane separating the two groups of white polyhedra yields the same subproblems.

Thus, we are only interested in the first hyperplane found with this property.

2. Hyperplanes, such that one half space contains only white polyhedra2. If so, we

choose the hyperplane yielding the maximal number of white polyhedra.

2Note that the existence of hyperplanes having in one half space only black polyhedra would contradict

the fact that only black polyhedra within the envelope of white polyhedra are taken into account.
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4.4 Non-Disjoint Optimal Complexity Reduction

Boolean Calculus

We start by rather informally recalling basic terminology for Boolean calculus, which can

be found in any digital circuit design textbook (see e.g. [Kat94]).

A Boolean variable is a {0, 1}, {false, true} or binary variable. A Boolean expression

is an algebraic statement containing Boolean variables and operators. To improve the

readability, we consider the three binary operators ’·’ (AND), ’+’ (OR) and ’̄ ’ (NOT),

rather than ’∧’, ’∨’ and ’!’. Each appearance of a Boolean variable (or its complement) in

an expression is called a literal. A product term is an ANDed string of literals containing

a subset of the given Boolean variables (or their complements), while a minterm is a

particular product term, in which all variables appear exactly once (complemented or

not).

A Boolean function uniquely maps some number of Boolean inputs into a Boolean vari-

able using a Boolean expression. A Boolean function can be represented in two canonical

forms: sum of products and product of sums. Here, we focus on sum of products, which

are also known as disjunctive normal form or minterm expansion. A Boolean expression

is in disjunctive normal form, if it is a disjunction (sequence of ORs) consisting of one or

more disjuncts, each of which is a conjunction (AND) of one or more literals.

Logic Minimization

In this section, we reformulate the complexity reduction problem as a logic minimization

problem. Thus, instead of the marking with {−,+} elements, we will use a Boolean vector

with {0, 1} components. Logic minimization is commonly used in digital circuit design,

where a given Boolean function is to be minimized in terms of the number of literals and

product terms. The number of literals is equivalent to the number of gates in a circuit and

is also proportional to the amount of wiring necessary to implement the Boolean function.

The number of product terms, on the other hand, relates to the number of gates and is

thus a measure of the circuit area needed.

Logic minimization started in the 1950s with the work of Veitch [Vei52] and Kar-

naugh [Kar53]. They introduced the K-map to manually minimize simple two-level3

Boolean functions with up to six variables. A few years later, Quine [Qui55] and Mc-

Cluskey [McC56] developed more sophisticated and systematic minimization techniques

to obtain a two-level implementation of a given Boolean function with the minimum

3The term two-level relates to the implementation of such a function using digital gates. If the function

is in disjunctive normal form, for example, NOT gates constitute the zero level, AND gates the first

level, and OR gates the second level.
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number of gates. As finding a global minimum is known to belong to the class of NP-

complete problems, the Quine-McCluskey algorithm often becomes computationally in-

tractable even for medium sized problems with some 20 variables. To extend the appli-

cability of logic minimization to larger problems, a number of heuristic approaches were

introduced in the tools MINI [HCO74] and PRESTO [Bro81].

Inspired by MINI and PRESTO, ESPRESSO-II [BHMS84] was designed in the begin-

ning of the 1980s. The aim was to build a logic minimization tool that is able to solve

most of the posed problems without the usage of excessive computational power, such that

the solution is close or equal to the global minimum. A number of improved heuristics

are included in the tool leading to small computation times and solutions that are at least

for medium sized problems globally optimal. A great flexibility is achieved by numerous

options allowing one to also enforce global optimality for large problems, thus guarantee-

ing the minimum number of product terms while heuristically minimizing the number of

literals. The tool is readily available from the University of California, Berkeley [DoE82],

and it has been employed for the examples presented in the remainder of this chapter.

Problem Formulation with Boolean Logic

For a hyperplane arrangement with n hyperplanes Hi = {x ∈ Rd | aT
i x = bi}, i ∈

{1, . . . , n}, in the d-dimensional Euclidian space Rd we had defined in Section 3.2 in (3.1)

the simplified sign vector SV : Rd → {−,+}n, and for a given marking m a polyhedral

cell of the arrangement was Pm = {x ∈ Rd | SV(x) = m}.

Alternatively, we redefine the sign vector as the function SV′ : Rd → {0, 1}n that maps

x into a vector of Boolean variables

SV′
i(x) =

{

0 if aT
i x ≤ bi,

1 if aT
i x > bi

for i ∈ {1, 2, . . . , n} , (4.3)

using the dash to distinguish it from the original sign vector (3.1). Accordingly, a poly-

hedral cell is defined as Pδ = {x ∈ Rd | SV′(x) = δ} for a given Boolean vector δ, which

replaces the marking m. Let ∆(R) be the image of SV′(x) for x ∈ R ⊆ Rd, namely the

collection of all the possible Boolean vectors of all the points in R.

The ’∗’ element, which extends the sign vector by denoting hyperplanes that are not a

facet of the associated polyhedron Pm, is translated into Boolean variables that are re-

moved from the Boolean vector δ. Thus δ has in general a variable number of components.

Obviously, the definitions and lemmas of Section 4.2.3 can be directly used for Boolean

variables with SV′(x) and δ, too.
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Algorithm based on Logic Minimization

We start by introducing the Boolean function fW that given the Boolean vector δ evaluates

whether the color of the polyhedron is white, black or undecided. The color is undecided

if the corresponding polyhedron is not a cell in the hyperplane arrangement, i.e. the

corresponding δ is not contained in ∆(R) and the polyhedron features an empty interior.

Specifically, fW yields for δ corresponding to white polyhedra a ’1’, for black ones a ’0’

and for empty ones (with an empty interior) an ’X’, which is usually referred to as a don’t

care in digital circuit design.

We write fW in disjunctive normal form. Each minterm in fW represents a white

polyhedron, each literal refers to a facet of such a polyhedron and fW represents the

union of all white polyhedra. Logic minimization can be used to reduce the number

of terms in fW, which is equivalent to reducing the number of white polyhedra, and

additionally to reduce the number of literals of each term. The latter refers to reducing

the number of facets per polyhedron. These objectives lead in general to overlapping

polyhedra. Overlaps not only allow for reducing the overall number of product terms and

literals as will be shown in Section 4.5, but in particular in digital circuit design, this is a

highly desired feature as the occurrence of so-called hazards resulting from different gate

propagation times can be reduced or even avoided.

Alternatively, one may represent fW in form of a truth table4. Such a truth table is the

preferred input of ESPRESSO-II, which we use to perform the logic minimization. With

respect to a Boolean function, a truth table carries the main advantage that it allows

one to provide the logic minimization tool with additional structural information, namely

empty polyhedra can be specified with an ’X’5. During the minimization process, the tool

assigns to the polyhedra with don’t cares a color such that the overall number of product

terms and literals becomes minimal.

The result of the logic minimization is either a simplified truth table or a reduced

disjunctive normal form. Both representations directly translate into the (overlapping)

set of merged polyhedra {Qi}i=1,...,q.

We refer to the logic minimization as Algorithm 4.2. Summing up, for a given color,

the truth table with the Boolean function fW is built, a logic minimization tool (here

4A truth table is a two-dimensional array with n + 1 columns, where the first n columns correspond to

the possible values of n (Boolean) inputs, and the last column to the Boolean function. The rows list

all possible combinations of inputs together with the corresponding outputs.
5The number of rows in the truth table is exponential in n (the length of the Boolean vector δ and the

number of hyperplanes in the arrangement). Yet according to Buck’s formula (3.2), the great majority

of these rows refers to don’t cares. In ESPRESSO-II, the truth table can be passed to the solver by

only specifying the rows with fW = 0 and fW = 1, where ESPRESSO-II complements the rows with

fW = X internally. This technique allows for greatly reducing the memory requirement when passing

the OCR problem to ESPRESSO-II.
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(a) Four hyperplanes in R = R2 and the corresponding Boolean

vectors δ

δ1 δ2 δ3 δ4 fW

0 0 0 0 0

0 0 0 1 1

0 0 1 0 X

0 0 1 1 1

0 1 0 0 X

0 1 0 1 X

0 1 1 0 X

0 1 1 1 1

1 0 0 0 0
...

...
...

...
...

1 1 1 1 1

(b) Truth table for white

polyhedra

Figure 4.2: Revisited Example 4.1 with the hyperplane arrangement, the corresponding

Boolean variables and the truth table

ESPRESSO-II) is used to derive a simplified truth table minimal in the number of rows

(which refer to product terms and polyhedra) and, with second priority, minimal in the

number of entries per row (which refer to literals and facets).

Example 4.2 Reconsider Example 4.1 with the hyperplanes and markings as in Fig. 4.1,

where we aim at minimizing the number of white polyhedra. Here, we associate with each

hyperplane a Boolean variable δi, which we collect in the Boolean vector δ, and restate

the problem in terms of δ as shown in Fig. 4.2(a). The Boolean function for the white

polyhedra follows immediately to

fW = δ̄1δ̄2δ̄3δ4 + δ̄1δ̄2δ3δ4 + δ̄1δ2δ3δ4 + δ1δ2δ3δ4 . (4.4)

Thus, a given x ∈ R determines δ via (4.3), and fW answers the question, whether

x belongs to a white or black polyhedron. Simplifying this functions leads to fW =

δ̄1δ̄2δ4 + δ2δ3δ4.

Alternatively, we may translate Fig. 4.2(a) into the truth table for white polyhe-

dra shown in Table 4.2(b). Here, the empty polyhedra are listed with an ’X’. Us-

ing ESPRESSO-II, this additional information allows one to obtain the representa-

tion fW = δ̄1δ4 + δ3δ4 that is minimal in the number of product terms (polyhedra)

and the number of literals (facets). In terms of markings, this result corresponds to

Mm = {−∗∗+, ∗∗++}. Compared to Example 4.1, where the disjoint OCR Algorithm

based on the markings yielded Mm = {−∗∗+,++++}, the solution here is reduced by
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two facets. As we will see in Section 4.5, allowing for non-disjoint polyhedra often leads

to solutions with less polyhedra and less facets with respect to the case where we restrict

ourself to disjoint polyhedra.

Lemma 4.5 Algorithm 4.2 solves the Non-Disjoint Optimal Complexity Reduction Prob-

lem 4.2.

Proof. Assume that the set of resulting white polyhedra {Qi}i=1,...,q is an optimal solution

to Problem 4.2. Then, the proof contains two steps. Firstly, we need to prove that the

introduction of additional hyperplanes to the arrangement does not improve the solution

by reducing q. This follows directly from the fact that only facets separating black and

white polyhedra are needed as facets for Qi, and that all these facets are subsets of

the hyperplanes contained in the arrangement. Secondly, recall the equivalence between

polyhedra and product terms, facets and literals, respectively. As the logic minimization

tool yields the minimal number of product terms (assuming that empty polyhedra are

included in the minimization process as don’t cares), q is minimal, too. Furthermore, the

equivalence ensures that the union of the resulting polyhedra Qi equals the union of the

original white polyhedra.

Multiple-Valued Logic Minimization

Let a PWA system have #C different dynamics or feedback-laws, namely the colors

C = {0, . . . ,#C−1}. With each color we associate a Boolean function and derive a truth

table with #C Boolean outputs. So far, we have considered only OCR problems with

two colors (white and black) using Boolean logic minimization. Multiple-color problems

were handled by selecting one color c ∈ C as white color and collecting the remaining

colors C\c as black color. The polyhedra were merged for each color separately, namely

by solving #C independent OCR problems.

Alternatively, associate with the colors the integers c ∈ C, derive one multiple-valued

Boolean function (with image C), and set up a truth table with one integer output.

Subsequently, consider one OCR for all colors at the same time by running one multiple-

valued logic minimization, which is offered for example by ESPRESSO-II. The result is

the same as before, but the computation time is in general reduced.

4.5 Local and Global Optimality

4.5.1 Derivation of Global Hyperplane Arrangement

The Algorithms 4.1 and 4.2 in the proposed form are only applicable to problems with a

globally valid hyperplane arrangement. In this section, we remove Assumption 4.1 and



70 4 Optimal Complexity Reduction of Piecewise Affine Systems

propose two extensions that will allow us to also employ the algorithms for problems with

local hyperplane arrangements, or even more general, for problems that altogether lack a

hyperplane arrangement.

As mentioned before, PWA models resulting from the Mode Enumeration Algorithm

often contain a collection of local hyperplane arrangements, where each one is defined in

a polyhedron R, which is a subset of the state-input space, namely R ⊆ X × U . For

a given R, the hyperplane arrangement is readily available together with the markings.

Thus, OCR can be performed for each subset R, and the overall solution is the union of

the local solutions. Even though the results are locally optimal, the overall solution is in

general suboptimal. As an example, consider two local hyperplane arrangements that each

encompass one white polyhedron and a number of black polyhedra, and assume that the

union of these two white polyhedra is convex. Using Algorithm 4.1 or 4.2 twice (for each

local hyperplane arrangement) fails to merge the two white polyhedra, and is thus clearly

suboptimal. Nevertheless, if we are interested only in reducing the number of polyhedra

but not necessarily in finding the minimal number, and have rather limited time and

computational power at our disposal, this approach is meaningful.

If the aim is to derive the optimal solution, we need to compute the global hyperplane

arrangement by extending the facets of the polyhedra. Here, we give only a brief outline

of such an algorithm, which consists of three major steps. First, we collect the facets

of all polyhedra. By removing duplicates, we obtain the hyperplane arrangement. Next,

we determine the relative position of each polyhedron with respect to each hyperplane.

This yields a preliminary set of markings, where we use an additional symbol to denote

polyhedra whose interior intersects with a hyperplane. The algorithm resolves these mark-

ings in a last step by dividing the corresponding polyhedra into two. As this operation

involves solving LPs and increases the number of polyhedra significantly, such an algo-

rithm is computational tractable only for problems with a limited complexity. However, a

number of enhancements, namely the exploitation of parallel hyperplanes and the removal

of redundant hyperplanes reduces the computation time remarkably. We refer to this

approach as Algorithm 4.3.

Example 4.3 Consider the sets of white and black polyhedra in Fig. 4.3(a). The

above proposed algorithm identifies 13 different facets. Since the ones constraining the

convex hull of the polyhedra are not considered, the hyperplane arrangement encompasses

nine hyperplanes shown as dashed lines in Fig. 4.3(b). As a result, the number of white

polyhedra is blown up from 6 to 16. OCR restricted to disjoint polyhedra (Algorithm 4.1)

yields three white polyhedra depicted in Fig. 4.3(c), whereas Algorithm 4.2 yields only

two white polyhedra that are overlapping as indicated by the dashed lines in Fig. 4.3(d).

It is particularly interesting to observe that merging the original white polyhedra in

Fig. 4.3(a) in a optimal way without using a global hyperplane arrangement would lead
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(a) Original white and black polyhedra (b) Modified polyhedra in a (global) hyper-

plane arrangement

(c) Polyhedra resulting from disjoint OCR (d) Polyhedra resulting from non-disjoint

OCR

Figure 4.3: Derivation of cells defined in a global hyperplane arrangement and OCR in

Example 4.3

to four white polyhedra. Such an approach would require to determine the convexity of

each union (each pair, triple, etc.) of white polyhedra by using the algorithms in [BFT01],

which resort to solving LPs, and to choose among the convex unions a combination that

yields the minimal number of unions and covers all white polyhedra. Despite the fact that

such an approach is computationally intractable even for very small problems, it is also

in general inferior to the OCR algorithms in terms of the number of resulting polyhedra

as the example demonstrates.

Thus deriving the global hyperplane arrangement first and reducing the complexity
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(a) Polyhedra resulting from disjoint OCR (b) Polyhedra resulting from non-disjoint

OCR

Figure 4.4: OCR in Example 4.4 visualizing the consequence of restricting the hyperplane

arrangement to hyperplanes given by facets of the original white polyhedra

subsequently in an optimal way yields in general a lower number of polyhedra compared

to the case, where the original polyhedra are merged optimally without the notion of

a global hyperplane arrangement. This may serve as a motivation to extend the facets

and to derive the hyperplane arrangement, although doing so significantly blows up the

number of polyhedra to be considered.

4.5.2 Optimality of Algorithms

In the following, we compare the two OCR algorithms with each other. Both are optimal

in the sense that they yield the minimum number of polyhedra for the specific problem

they solve (Problems 4.1 and 4.2). Yet, as the problems differ regarding whether the

resulting polyhedra are required to be disjoint or not, the complexity of the solution in

terms of the number of polyhedra and facets differs in general, too.

In Problem 4.1, the resulting polyhedra are required to be disjoint and unions of the

original polyhedra. Thus, Problem 4.1 is an optimal merging problem, which can be also

considered as a specific optimal set partitioning problem. The problem is specific, since

the hyperplanes along which the set can be partitioned are restricted to the hyperplanes

given by the facets of the original polyhedra to be merged. This issue is rather subtle, yet

we would like to clarify it with the following example.

Example 4.4 For given sets of white and black polyhedra, assume we have derived the

(global) hyperplane arrangement, split the polyhedra into cells defined in this arrange-

ment, and run subsequently Algorithm 4.1 that yields the three white polyhedra shown
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in Fig. 4.4(a). This solution is optimal with respect to Problem 4.1. Yet, adding to the

hyperplane arrangement an additional vertical hyperplane that cuts through the center

of the figure would reduce the solution to only two white polyhedra. On the other hand,

Algorithm 4.2 leads to the two white polyhedra depicted in Fig. 4.4(b), where the dashed

lines indicate the overlaps. Adding additional hyperplanes to the arrangement before

running Algorithm 4.2 would not improve on the solution. This holds in general thanks

to Lemma 4.6 presented at the end of this section.

We conclude that even though Algorithm 4.1 derives a solution that is minimal in the

number of merged polyhedra, by introducing additional facets the number of polyhedra

might be further reduced. Thus, in general, the merged polyhedra constitute only a

suboptimal solution to the (more general) optimal set partitioning problem, which is not

addressed here. Nevertheless, even though such a case has been constructed here, they

are very rare and have so far been not encountered in applications.

In Problem 4.2, the restriction requiring the resulting polyhedra to be disjoint and

unions of the original polyhedra is dropped. Hence strictly speaking, the second problem

is not a merging problem but a more general optimal set covering problem. As Problem 4.2

is less restrictive than Problem 4.1, we expect Algorithm 4.2 to yield in general a lower

number of polyhedra and facets than Algorithm 4.1. This is confirmed by the Examples 4.3

and 4.4. In particular, as already mentioned above, adding additional hyperplanes does

not improve on the solution. This leads to the following key lemma.

Lemma 4.6 Algorithm 4.3 followed by Algorithm 4.2 solves the General Non-Disjoint

Optimal Complexity Reduction Problem 4.3.

Proof. The proof follows directly from Problem 4.2, Lemma 4.5 and the fact that Algo-

rithm 4.2 minimizes (with second priority) the number of facets.

4.6 Extensions

In this section, we briefly present two techniques to extend the applicability of the algo-

rithms to problems of larger size, namely to problems with polyhedra defined in higher

dimension or to problems with several hundred or even thousands of polyhedra. As the

complexity of the proposed algorithms depends exponentially on the number of hyper-

planes in the arrangement, both techniques presented in the following aim at reducing

the number of hyperplanes. The first technique simplifies the hyperplane arrangement,

whereas the second approach divides the problem into easier to solve subproblems with a

reduced number of hyperplanes, solves them, and recombines them in a final step, which

is commonly known as Divide and Conquer technique.
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4.6.1 Simplified Hyperplane Arrangement

In many cases, the hyperplane arrangement contains numerous hyperplanes that are al-

most identical, at least very similar. Given two hyperplanes Hi = {x ∈ Rd | aT
i x = bi}

and Hj = {x ∈ Rd | aT
j x = bj}, we use as a measure for similarity the norm

µ = ||[aT
i bi]

T − [aT
j bj]

T ||1, and say that the hyperplanes Hi and Hj are similar, if µ is

below a given threshold. Here, we assume that all hyperplanes are normed, i.e. aT
i ai = 1.

Here, we suggest an algorithm that simplifies the hyperplane arrangement by replacing

clusters of similar hyperplanes by their weighted average. In general, the result will have

(small) color errors. We define the color errors as follows: The radius of the largest

Chebycheff ball that can be inscribed in the intersection of two polyhedra P and Q,

where P is in the set of original polyhedra, Q is in the set of resulting polyhedra, and

both polyhedra are associated with different colors. Often, small errors in the color of the

resulting polyhedra can be tolerated, particularly in the presence of model uncertainties

(in case of PWA models) or noise on the state (in case of PWA state-feedback control

laws).

Next, we outline the algorithm for deriving a simplified hyperplane arrangement based

on the set of initial polyhedra {Pi}i=1,...,p.

1. Hyperplane Arrangement: Collect the facets of all polyhedra and remove duplicates.

This yields the hyperplane arrangement to be simplified, where I denotes the index

set of hyperplanes.

2. Clusters: For a given µ, identify clusters of similar hyperplanes by initially choosing

a random hyperplane and iteratively adding hyperplanes to the cluster that are

similar to the weighted average of the cluster. Remove all these hyperplanes from

I. If no more hyperplanes in I can be added to the cluster, initiate a new cluster

by picking a hyperplane in I and proceed as above until I is empty. Consequently,

similar hyperplanes are clustered. Replace the clusters by one hyperplane given

by the weighted average of the cluster thus leading to the simplified hyperplane

arrangement.

3. Markings and Colors: Compute the markings of the simplified hyperplane arrange-

ment. Identify the color of each marking by building the corresponding cell and

intersecting it with all given initial polyhedra Pi. If all non-empty intersections are

with Pi of the same color, assign this color to the cell. Otherwise, either use the

color of the largest intersection, or assign a don’t care to the cell.

4. Optimal Complexity Reduction: Run Algorithm 4.1 or 4.2 to obtain {Qi}i=1,...,q,

which denotes the minimal representation of {Pi}i=1,...,p.
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5. Error: A posteriori, intersect each Qi with all Pi to determine the distribution of

the color error as defined above. If the maximal color error is in the range of the

level of uncertainty or noise, the result should be generally acceptable; else repeat

the above procedure with a smaller µ.

Example 4.5 Consider in the three-dimensional space the sets of yellow (front part of

figure) and red (back part) polyhedra in Fig. 4.5(a), where we aim at minimizing both

the 15 yellow and the 28 red polyhedra. Thus, after running Algorithm 4.3 to obtain the

(global) hyperplane arrangement, we execute Algorithm 4.2 twice. When refraining from

simplifying the hyperplane arrangement, the one yellow and six red polyhedra result as

shown in Fig. 4.5(b). Alternatively, simplifying the hyperplane arrangement with µ = 0.04

leads to one yellow and five red polyhedra and a color error below 0.004. Increasing µ

to 0.1 and 0.35 reduces the red polyhedra to four and three, and increases the maximal

color error to 0.01 and 0.037, respectively. As the polyhedra are scaled to [0, 1], even the

absolute error of 0.037 corresponds to an inaccuracy of only 3.7 percent.

Summing up this example, the non-disjoint OCR algorithm with µ = 0 reduced the

number of polyhedra by 84 percent. Setting µ = 0.35 additionally reduced the complexity

by 43 percent while introducing a color error of 3.7 percent.

4.6.2 Divide and Conquer

Another approach to tackle complex problems is to divide the original large problem

sequentially into pairs of smaller subproblems, which can be solved efficiently, and to

subsequently recombine the solutions of the subproblems. Although each subproblem

is solved to optimality, the overall solution would be in general suboptimal. To obtain

optimality, we subsequently run the OCR algorithm on the unions of the solutions of the

subproblems. In many cases, this is computationally feasible as the subproblems have

been greatly simplified in the first step. Such a scheme is commonly known as Divide and

Conquer. It is particularly useful in our context here, since the computational burden and

memory requirement is basically exponential in the number of hyperplanes.

Various variations are possible. For example, the subproblems can be recombined pair-

wise and iteratively. Yet, more important is the way, a problem with the hyperplane ar-

rangement {Hi}i=1,...,n is split into two subproblems. As the computational burden mostly

depends on n, it is beneficial to divide the problem such that the number of hyperplanes

in the subproblems n1 and n2 are both (close to being) minimal and balanced (n1 ≈ n2).
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(b) Polyhedra resulting from non-disjoint OCR, where the hyperplane ar-

rangement has not been simplified (µ = 0)
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(c) Polyhedra resulting from non-disjoint OCR, where the hyperplane ar-

rangement has been simplified (µ = 0.1)

Figure 4.5: OCR and simplification of the hyperplane arrangement in Example 4.5
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Figure 4.6: Polyhedral partitions of the PWA model of the paperboy problem plotted on

the real state-space for a given binary state combination, where each color

relates to a different pair of state-update and output functions

4.7 Examples

In this final section we present three examples showing how the OCR algorithms can

be applied to PWA models as well as to PWA state-feedback control laws in order to

efficiently derive an equivalent minimal representation.

4.7.1 Paperboy Problem

In Section 3.5.2, we have described the model of a paperboy delivering by bike mail items

to households within a neighborhood consisting of four properties and one road, where

the properties and the road have different slopes and different friction coefficients. The

paperboy problem encompasses two real inputs, four real states and two binary states.

The mode enumeration algorithm described in the previous chapter yields the equivalent

PWA model together with the corresponding hyperplane arrangement encompassing 11

hyperplanes and the set of markings. The PWA model encompasses 168 polyhedra, what

is by far below the upper bound 7099 defined by Buck’s formula (3.2). Although the

paperboy example is given by a composition of three DHAs, all hyperplanes are defined

solely on the state-space and not sequentially on outputs of DHAs, as can be seen from

the two event generators of the paperboy model. Thus, the hyperplane arrangement is

globally valid. Even though hyperplane arrangement and the PWA model are defined on
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the eight-dimensional state-input space, the hyperplanes only depend on two real and the

two binary states. This allows us to visualize the polyhedral partition for a given binary

state combination as shown in Fig. 4.6(a), where each color relates to a different pair of

state-update and output functions.

The disjoint OCR Algorithm 4.1 yields the polyhedra depicted in Fig. 4.6(b). Repeating

this for all four binary state combinations allows us to reduce the number of polyhedra

from 168 down to 36 within 0.22 s running Matlab 6.5 on a Pentium IV 2.8 GHz machine.

This is a reduction of the complexity by roughly 80 percent. In particular, both PWA

models are equivalent, meaning that for every given state and input they yield the same

state-updates and outputs.

This example clearly shows that even though merging polyhedra with the same dynamic

in an optimal way is NP-hard the concept of the markings in a hyperplane arrangement

makes the algorithms applicable to problems of meaningful size, as those markings contain

all the information needed to decide on the convexity of a set of polyhedra.

4.7.2 Constrained Infinite Time Optimal Control Law

Next, we perform OCR to a PWA state-feedback control law. As an example, consider

the following simple PWA model from [BM99a]

x(k + 1) = 0.8

[

cosα(k) −sinα(k)

sinα(k) cosα(k)

]

x(k) +

[

0

1

]

u(k), (4.5a)

α(k) =

{
π
3

if [1 0]x(k) ≥ 0,

−π
3

if [1 0]x(k) < 0,
(4.5b)

x(k) ∈ [−10, 10]× [−10, 10], u(k) ∈ [−1, 1] , (4.5c)

which features two real states and two modes. For this model, the authors in [BCM03a]

have formulated and solved a constrained infinite time optimal control problem of the

form

J∗(x(k)) = min
U∞(k)

∞∑

ℓ=0

‖x(k + ℓ|k)‖∞ + ‖u(k + ℓ)‖∞,

subj. to the PWA model (4.5) ,

(4.6)

where U∞(k) = [(u(k))T , (u(k + 1))T , . . .]T is the sequence of manipulated variables u.

The resulting polyhedral partition of the state-space is shown in Fig. 4.7(a), where each

color relates to a different affine control law. Note that there exist 19 different control

laws and 252 polyhedra.

For this example, we compare three algorithms with each other. Namely the disjoint

and non-disjoint OCR Algorithms 4.1 and 4.2 preceded by Algorithm 4.3, which derives
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(d) Set of polyhedra resulting from Algorithms 4.3

and 4.2

Figure 4.7: Polyhedral partitions of the PWA state-feedback control law, where each color

relates to a different affine feedback law, using different complexity reduction

schemes

the hyperplane arrangement, and a third algorithm, to which we refer as greedy merging.

To speed up the computations, the greedy merging algorithm builds in a first step a sparse

matrix indicating whether two polyhedra are neighbors according to Definition 4.3. Based

on this list, it determines by solving LPs if a pair of neighboring polyhedra forms a convex
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union. If so, the pair is replaced by its union. Here, the merging procedure is done in a

greedy way.

Greedy merging fails to adequately reduce the complexity of the problem. It leads to the

result shown in Fig. 4.7(b) with 189 polyhedra. As will be shown in the next paragraph,

this is five times worse than the result obtained by the two OCR algorithms. Furthermore,

the computation time is with 17 s comparatively large.

Algorithm 4.3 derives a hyperplane arrangement with 135 hyperplanes containing 5200

polyhedra within 34 s on the same machine as above. The disjoint OCR Approach 4.1 leads

to 39 polyhedra, which are shown in Fig. 4.7(c). Compared to the initial 252 polyhedra,

this is a reduction of 84 percent. The computation time amounts to 3 min summing up

to a total of 3.5 min. The non-disjoint OCR Algorithm 4.2 also leads to 39 polyhedra.

These are overlapping and differ from the previous solution as shown in Fig. 4.7(d). Yet

the computation time is with 5 s very small yielding the total computation time of 39 s.

Based on our experience, we conclude the following. The disjoint OCR algorithm based

on branch and bound is rather slow limiting its applicability mostly to problems with a few

thousands of polyhedra defined in a two- or three-dimensional space. On the other hand,

the non-disjoint OCR algorithm based on logic minimization is generally not only by two

orders of magnitude faster, it also scales better as the problem size increases. Problems

with hyperplane arrangements comprising hundreds of hyperplanes with some 100′000 cells

have been tackled successfully within a few minutes. For larger problems, the memory

requirement for storing the truth table becomes an issue. The bottleneck, however, is the

computation of the cells in the hyperplane arrangement, namely Algorithm 4.3. The main

problem is the major increase in the number of polyhedra when deriving the hyperplane

arrangement (in the above example from 252 to 5200 polyhedra). This can be overcome

by applying the techniques presented in Section 4.6, namely simplifying the hyperplane

arrangement or using a divide and conquer approach as will be shown in the next example.

4.7.3 Optimal Direct Torque Control Law

So far, we have considered only examples with polyhedra defined in two dimensions. In

the last example, we apply the non-disjoint OCR algorithm to a real application, namely

to the field of power electronics. Specifically, we consider a three-phase two-level DC-AC

inverter driving an induction motor as shown in Fig. 5.2(a).

For this setup, we formulate an optimal direct torque control problem in Section 7.2,

which we solve off-line in Section 7.2.5 according to the procedure outlined in Section 7.2.4.

The eight different combinations of switch positions of the inverter constitute the

manipulated variable u. As we use a δu formulation in the cost function, where

δu(k) = u(k) − u(k − 1), we obtain for each u(k − 1) one PWA state-feedback con-
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u(k − 1) norg nred reduction [%] tred [h]

[−1 − 1 − 1]T 5246 709 86.5 9.1

[−1 − 1 + 1]T 5325 753 87.6 10.3

[−1 + 1 − 1]T 4737 486 89.7 10.9

[−1 + 1 + 1]T 5292 625 88.2 9.8

[+1 − 1 − 1]T 7019 930 86.8 8.9

[+1 − 1 + 1]T 8512 880 90.0 13.3

[+1 + 1 − 1]T 5425 631 88.4 8.7

[+1 + 1 + 1]T 6295 617 90.2 7.3

Table 4.1: Overview of the PWA state-feedback control law for the DTC drive with a two-

level inverter, to which we apply the non-disjoint OCR. For each last control

input u(k − 1), norg is the number of polyhedra of the original controller, nred

is the number of polyhedra of the equivalent controller of reduced complexity,

and tred is the computation time for the complexity reduction in hours run on

a 2.8 GHz Pentium IV with Linux and Matlab 6.5.

trol law defined on the real three-dimensional state-space. The result is summarized in

Table 4.1, which is basically a replicate of Table 7.4. The control law is overly complex

and comprises for a given u(k − 1) up to 8500 polyhedra.

Hence, we apply OCR to each of the eight control laws. To make our schemes applica-

ble, we employ the Divide and Conquer strategy outlined in Section 4.6. If the number

of hyperplanes exceeds 100, we divide the problem into two subproblems, such that both

subproblems have roughly the same number of hyperplanes and as few as possible. We

continue doing so until a subproblem has less than 100 hyperplanes. For each subproblem,

we first translate the control law into a problem with cells defined in a hyperplane arrange-

ment using Algorithm 4.3. Subsequently, we apply the non-disjoint OCR Algorithm 4.2.

The solutions to each subproblem pair are combined and if the number of hyperplanes is

below 130, Algorithms 4.3 and 4.2 are applied to it.

The result is shown in Table 4.1. The complexity of the control laws is reduced by

roughly 90 percent. Strictly speaking this result is not optimal, since some of the recom-

bined problems have more than 130 hyperplanes. The computation times are definitely

large and sum up to several hours. Yet we want to recall that the complexity reduction

needs to be performed only once off-line. For the particular application the reduction

of the number of polyhedra by an order of magnitude may be decisive for a successful

hardware implementation, since the sampling interval is as short as 25µs.
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4.8 Conclusions and Future Research

Conclusions

Exploiting the markings of the hyperplane arrangement allowed us to build an equivalent

PWA system minimal in the number of polyhedra by using either branch and bound tech-

niques to derive a disjoint set of polyhedra, or logic minimization to obtain polyhedra that

are in general overlapping. If the markings and the hyperplane arrangement were already

given (e.g. from a preceding run of the mode enumeration algorithm), it was not neces-

sary to solve additional LPs. This guaranteed that the algorithm is not only optimal but

also computationally tractable. By computing the (global) hyperplane arrangement, the

applicability of the algorithm could be extended to derive minimal PWA representations

of general PWA models and control laws lacking a hyperplane arrangement. To reduce

the computational complexity of large problems, two techniques were proposed, namely

the simplification of the hyperplane arrangement and a Divide and Conquer strategy. The

effectiveness of the OCR approaches was demonstrated through various examples.

Future Research

When implementing the feedback law for on-line use, one faces the problem of finding

the control law for the given state. The standard solution is to determine the polyhedron

the state lies in by cycling through (in the worst case) all polyhedra and checking if

the corresponding inequalities hold. Even though these operations only involve matrix

multiplications, for small sampling times and/or large numbers of polyhedra this may

become a challenge, as we need to guarantee that the computation time is always below

the sampling interval.

The OCR algorithms not only allow for deriving a representation of the control law

that is minimal in the number of polyhedra, but also provide a simple and efficient way

to implement it. After the OCR step, we propose to compute again the hyperplane

arrangement and the markings for the reduced problem. Based on the markings, the

controller can be implemented either as a collection of Boolean functions or as a binary

search tree.

Boolean Functions. Each marking or Boolean vector is associated with a certain color,

where each color represents a feedback law. Similar to Section 4.2, we build for each

color a Boolean function with the Boolean vector as argument. This yields a collection

of Boolean functions. Thus on-line, for a given state, one only needs to determine the

Boolean vector based on the modified sign vector, evaluate which Boolean function is true,

which directly relates to the feedback law. Hence, only the sign vector together with the

Boolean functions needs to be implemented. In particular, polyhedra do not need to be



4.8 Conclusions and Future Research 83

stored and evaluated thus reducing the memory requirement and the on-line computation

time. Such an approach is particular suitable for a hardware implementation, since the

Boolean functions can be easily implemented as two-level disjunctive normal form using

AND, OR and NOT gates.

Binary Search Tree. Alternatively, we can build a binary search tree similar to

[TJB03], which allows one to determine for a given state the polyhedron and the as-

sociate control law efficiently. Given a state, such a tree is evaluated by traversing from

the root node to the leafs. Each node is associated to a hyperplane, and depending in

which half space of the hyperplane the state lies, one branches accordingly. Each leaf is

associated with a control law (and a polyhedron).

A non-trivial task is to build a search tree that is of minimal depth. The depth directly

corresponds to the maximal number of hyperplanes that need to be on-line evaluated and

thus to the worst-case computational burden. The authors in [TJB03] use heuristics to

derive a tree of little depth. Using the markings, however, enables us to solve the problem

to global optimality by setting up a branch and bound algorithm similar to Algorithm 4.1

that derives a binary search tree of minimal depth.
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Part III

Direct Torque Control
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5

Problem Description

5.1 Introduction

During the last decades, the rapid development of power semiconductor devices has led to

the increased use of adjustable speed induction motor drives in a variety of applications. In

these systems, DC-AC inverters are used to drive induction motors as variable frequency

three-phase voltage or current sources. One of the various methods that are used for

controlling the induction motor’s torque and speed in such systems is Direct Torque

Control (DTC), which was first introduced in 1985 by Takahashi and Noguchi [TN86] and

is nowadays a well established industrial standard for induction motor drives [PTL94,

TO89].

The basic principle of DTC is to exploit the motor’s fast stator flux dynamics and to

directly manipulate the stator flux vector such that the desired torque is produced. This

is achieved by choosing an inverter switch combination that drives the stator flux vector

to the desired position by directly applying the appropriate voltages to the motor wind-

ings. This choice is made usually with a sampling time Ts = 25µs using a pre-designed

switching table that is derived in a heuristic way and, depending on the particularities

of the application, addresses a number of different control objectives. These primarily

concern the behavior of the induction motor - more specifically, the stator flux and the

electromagnetic torque need to be kept within pre-specified bounds around their refer-

ences. In high power applications, where three-level inverters with Gate Turn-Off (GTO)

thyristors are used, the control objectives are extended to the inverter. In such a case,

they also include the minimization of the average switching frequency and the balancing

of the inverter’s neutral point potential around zero.

DTC features a number of benefits with respect to performance and implementation.

The achieved dynamic torque responses are rapid and accurate throughout the whole

operating range of the machine. Additionally, the integrated approach to the control

problem of both the inverter and the motor, and the absence of a modulation unit lead to

87
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a simple controller implementation. On the other hand, DTC carries some considerable

disadvantages, such as the presence of a high current and torque ripple, the fact that the

average switching frequency is not directly controllable, and the difficulty of controlling

torque and flux at low frequencies [CPST02]. Different approaches have been reported in

the literature [CST00,PA01] that cope with these drawbacks by mainly aiming at improv-

ing the design of the switching table. Given the trade-off between the switching frequency

and the torque and flux ripple, which generally exists in DTC, such an improvement can

be translated either into a reduction of the average inverter switching frequency for the

same torque and flux ripple, or vice-versa into a reduction of the ripple for the same

switching frequency.

Although the above mentioned methods for improving the switching table are well

suited for two-level inverters, their extension to more complex problems featuring a higher

degree of freedom for the manipulated variables remains a challenging task [MRMC02].

The main difficulty arising during the controller design is, in general, the fact that a DTC

drive constitutes a hybrid system, i.e. a system incorporating both continuous and discrete

dynamics - in particular discrete-valued manipulated variables. Additionally, constraints

on states, inputs and outputs are present imposing further complications on the controller

design, since the underlying mathematical problems are intrinsically complex and hard to

solve.

Motivated by the lack of a systematic design procedure for the switching table, novel

modelling and control approaches to the DTC problem of three-phase induction motors

are presented in Chapter 6 and Chapter 7, respectively, aiming at making the design

process independent of the drive’s characteristics and specifications. To do so, Chapter 5

serves as a starting point. Specifically, using the concept of the dq0 reference frame

summarized in Section 5.2, Section 5.3 presents the nonlinear continuous-time models of

two- and three-level inverters and induction machines. Subsequently, the direct torque

control problem is stated in Section 5.4, and Section 5.5 presents the traditional control

approach for DTC that is commonly used in industry nowadays. Sections 5.6 and 5.7,

respectively, summarize the state of research and the contribution of this thesis concerning

DTC. Summing up, this chapter is a summary of the state of the art, whereas the following

two chapters present new contributions for modelling and controlling DTC drives.

Throughout the following three chapters, we use the normalized time scale t with one

time unit corresponding to 1/ωb seconds, where ωb is the base angular velocity used to

calculate the inductive reactances of the motor. Additionally, we use x(t), t ∈ R, to denote

continuous-time variables, and x(k), k ∈ N0, to denote discrete-time variables with the

sampling time Ts = 25µs. Furthermore, the state estimation of the motor is considered

to be ideal.
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Figure 5.1: Rotating dq0 reference frame

5.2 The dq0 Reference Frame

To simplify the modelling of the DTC drive, it is common practice to transform all variables

from the three-phase system (abc) to an orthogonal dq0 reference frame with a direct (d),

a quadrature (q) and a zero (0) axis, that can be either stationary or rotating. Details

regarding reference frame theory can be found in the relevant literature [Kra86]. For the

needs of this paper, the transformation of a vector ξabc = [ξa ξb ξc]
T from the three-phase

system to the vector ξdq0 = [ξd ξq ξ0]
T in the dq0 frame is carried out through

ξdq0 = P (ϕ)ξabc , (5.1)

where ϕ is the angle between the a-axis of the three-phase system and the d-axis of the

reference frame, and1

P (ϕ) =
2

3






cosϕ cos(ϕ− 2π
3

) cos(ϕ+ 2π
3

)

− sinϕ − sin(ϕ− 2π
3

) − sin(ϕ+ 2π
3

)
1
2

1
2

1
2




 . (5.2)

If the frame is rotating with the angular speed ωfr as shown in Fig. 5.1, then ϕ = ωfrt+ϕ0,

otherwise, if the frame is stationary, ϕ is time-invariant. In particular, for ϕ = 0 when

the reference frame is fixed and the d-axis is aligned with the a-axis, the transformation

1Note that the transformation matrix is not orthonormal, i.e. P (ϕ)PT (ϕ) 6= I. This definition is in con-

trast to [PGM04b] but in accordance with [PGM04c,GP05,GPM04b] to ensure a unified presentation

and the same scaling of the machine variables.
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
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results.

Often, when transforming ξabc vectors using P (ϕ), we are only interested in the d

and q component, but not in the zero component of ξdq0. For this, we introduce the

transformation matrix P̃ (ϕ) that features only the upper two rows of P (ϕ) and yields

ξdq = [ξd ξq]
T = P̃ (ϕ)ξabc . (5.4)

P̃ is defined accordingly.

5.3 Nonlinear Continuous-Time Modelling

5.3.1 Two-Level Inverter

An equivalent representation of a three-phase two-level inverter driving an induction motor

is shown in Fig. 5.2(a). At each phase, the inverter can produce two different voltages

−Vdc

2
, Vdc

2
, where Vdc denotes the voltage of the dc-link. The switch positions of the inverter

can therefore be fully described using the three integer variables ua, ub, uc ∈ {−1, 1}, where

each variable corresponds to one phase of the inverter, and the values −1, 1 correspond

to the phase potentials −Vdc

2
, Vdc

2
, respectively.

There are 23 = 8 different vectors of the form uabc = [ua ub uc]
T . Using (5.1) these vectors

can be transformed into the dq0 frame resulting in vectors of the form udq0 = [ud uq u0]
T .

The latter are shown in Fig. 5.2(b), where they are mapped into the (two-dimensional) dq

plane. Even though they are commonly referred to as voltage vectors, this term describes

the switch positions rather than the actual voltages applied to the machine terminals.

These voltages are calculated from

vdq0 = [vd vq v0]
T =

Vdc

2
udq0. (5.5)

The voltage vectors can be divided in two groups: six long vectors forming the outer

hexagon and two zero vectors. The zero vectors correspond to the switch combinations

(+1,+1,+1) and (−1,−1,−1), and short-circuit the machine terminals.

5.3.2 Three-Level Inverter

The equivalent representation of a three-phase three-level inverter driving an induction

motor is shown in Fig. 5.3(a). The additional feature of the three-level inverter is that
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Figure 5.2: Three-phase two-level inverter driving an induction motor

it can also produce a zero phase voltage resulting in a total of three different possible

voltages −Vdc

2
, 0, Vdc

2
at each phase. The switch positions of the three-level inverter are

now described using the integer variables ua, ub, uc ∈ {−1, 0, 1}. As with the two-level

inverter, each variable corresponds to one phase of the inverter, and the values −1, 0, 1

correspond to the phase potentials −Vdc

2
, 0, Vdc

2
, respectively.

Similarly, there exist 33 = 27 different vectors of the form uabc = [ua ub uc]
T , that can

be transformed accordingly into the dq0 frame using (5.1) resulting in vectors of the form

udq0 = [ud uq u0]
T as shown in Fig. 5.3(b), where they are mapped into the dq plane. The

voltage vectors of the three-level inverter can be divided in four groups: six long vectors

forming the outer hexagon, six vectors of medium length, twelve short vectors spanning
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Figure 5.3: Three-phase three-level inverter driving an induction motor

the inner hexagon and three zero vectors. The twelve short vectors form six pairs on

the dq plane, where each pair comprises vectors with the same d- and q- but opposite

0-components. The zero vectors correspond to the switch combinations (+1,+1,+1),
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(0, 0, 0) and (−1,−1,−1), and short-circuit the machine terminals.

When operating a three-level inverter, the potential υn of the neutral point (see

Fig. 5.3(a)) and the smooth distribution of the switching effort between the upper and

the lower half of the inverter deserve particular attention. As can be seen in Fig. 5.3(a),

the neutral point potential depends on the state of charge of the two dc-link capacitors

and is only affected when current is drawn directly from it, i.e. if one of the voltage vector

components is zero. Introducing υn as a real state, the neutral point potential is described

in continuous-time by

dυn

dt
= −

1

2xc

[(1− |ua|)ia + (1− |ub|)ib + (1− |uc|)ic] , (5.6)

with ia, ib, ic being the phase stator currents and xc one of the two symmetric capacitors

of the dc-link. Taking into account that

ia + ib + ic = 0, (5.7)

it is straightforward to derive

dυn

dt
=

1

2xc

|uabc|
T iabc , (5.8)

where |uabc| = [|ua| |ub| |uc|]
T is the componentwise absolute value of the inverter switch

positions. For more details about the nature of the neutral point potential and meth-

ods employed to tackle the related balancing problem the reader is referred to [dTM02]

and [CB00].

Distributing the switching losses evenly between the semiconductor devices is essential

for the inverter’s operation, since it helps to prevent that some devices are overloaded while

others remain under-utilized. Such phenomena are especially likely at low frequencies

(below 50 % of the nominal), and can have obvious negative effects on the inverter’s life

time. Here, we approximate the problem by considering the distribution of the switching

effort between the upper and the lower half of the inverter using the integer state λ. In

discrete-time, the distribution of the switching effort is given by

λ(k + 1) = λ(k) + ua(k) + ub(k) + uc(k) . (5.9)

It is straightforward to see that if λ becomes too positive (negative), the upper (lower)

inverter half is used excessively.

In practise, additional complications arise due to the design of the inverter. Often,

only one snubber circuit per stack is used (instead of three) to minimize the construction

cost and size of the inverter. In this case, restrictions on the possible inverter switch

transitions need to be imposed as safety constraints to avoid the inverter’s destruction.

Fig. 5.4 depicts the allowed switch transitions when imposing these restrictions.
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Figure 5.4: Voltage vectors on the the dq plane, the corresponding values of the integer

variables (switch positions), an arbitrary numbering from 0 to 26 and the

feasible switch transitions (courtesy of ABB ATDD, Switzerland)

5.3.3 Induction Motor

The dynamics of the squirrel-cage rotor induction motor are modelled in the dq0 reference

frame that is rotating with the angular speed ωfr. The d- and q-components of the stator

and rotor flux linkages per second ψds , ψqs , ψdr and ψqr, respectively, and the rotor’s

rotational speed ωr are used as state variables. The 0-axis components are neglected,

since they do not contribute to the electromagnetic torque and are decoupled from the

dynamics in the d- and q-axis. The input voltages vd and vq are the transformation of

the voltages applied to the stator into the dq0 frame. The model parameters are the

base angular velocity ωb, the stator and rotor resistances rs and rr, the stator, rotor and

mutual inductive reactances xls, xlr and xm, respectively, the inertia constant H expressed

in seconds, and the mechanical load torque Tℓ. Note that throughout the chapters on DTC,
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if not otherwise stated, we are using normalized quantities, and the rotor quantities are

referred to the stator circuit. The state equations are [Kra86]

dψds

dt
= −rs

xrr

D
ψds + ωfrψqs + rs

xm

D
ψdr + vd (5.10a)

dψqs

dt
= −ωfrψds − rs

xrr

D
ψqs + rs

xm

D
ψqr + vq (5.10b)

dψdr

dt
= rr

xm

D
ψds − rr

xss

D
ψdr + (ωfr − ωr)ψqr (5.10c)

dψqr

dt
= rr

xm

D
ψqs − (ωfr − ωr)ψdr − rr

xss

D
ψqr (5.10d)

dωr

dt
=

1

2Hωb

(xm

D
(ψqsψdr − ψqrψds)− Tℓ

)
, (5.10e)

where

xss = xls + xm (5.11a)

xrr = xlr + xm (5.11b)

D = xssxrr − x
2
m . (5.11c)

Let ψs and ψr denote the stator and rotor flux vectors, respectively, i.e.

ψs =
[

ψds ψqs

]T

, (5.12a)

ψr =
[

ψdr ψqr

]T

. (5.12b)

The electromagnetic torque

Te =
xm

D
ψs × ψr =

xm

D
(ψqsψdr − ψqrψds) (5.13)

and the length of the stator flux vector

Ψs =
√

ψ2
ds + ψ2

qs (5.14)

are nonlinear functions of the stator and rotor flux vectors.

The equations (5.10)–(5.14) represent the standard dynamical model of the induction

motor, where the saturation of the machine’s magnetic material, the changes of the rotor

resistance due to the skin effect, and the temperature changes of the stator resistance are

ignored. The induction motor dynamics can be classified into three groups with regard

to their time constants. Depending on the load conditions, the mechanical part of the

motor, in particular the rotational speed, features time constants in the range of seconds.

The rotor fluxes have a typical rotor time constant of 100–200 ms. Finally, the stator flux

presents the fastest dynamics, which can be manipulated by the applied stator voltage

within a few µs.
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5.4 Control Problem

In the following, we state the control objectives in DTC. Recalling that one of the main

features of DTC is to address the control problems of the motor and of the inverter in

a combined approach, the control objectives naturally include objectives regarding both

the motor and the inverter.

The most significant control objective concerning the induction motor is to keep the

electromechanical torque close to its reference, which is set either directly by the user or

by an external speed control loop. In order to avoid the saturation or demagnetization of

the motor, the amplitude of the stator flux has to be kept between certain pre-specified

bounds around the reference, which are in general time-invariant. The main control

objective concerning the inverter is to minimize the average switching frequency

lim
N→∞

1

NTs

N∑

ℓ=0

||u(ℓ)− u(ℓ− 1)|| , (5.15)

where || · || denotes the 1-norm and Ts the sampling interval. In the case of the three-level

inverter, the control objectives are extended to keeping the neutral point potential of the

inverter within certain limits around zero, and to evenly distributing the switching effort

between the upper and the lower half of the inverter.

The physical setup, i.e. the inverter driving the induction motor with discrete voltage

vectors, makes it impossible to regulate and keep the torque and the stator flux arbitrarily

close to their references with a finite switching frequency. Even at steady state, a ripple

on the torque and the stator flux is unavoidable, and the inverter will constantly switch.

Reducing the torque ripple can only be achieved by increasing the switching frequency

and vice versa. This results in a fundamental trade-off between the amplitude of the

torque ripple and the switching frequency. As the switch transitions lead to heat losses in

the inverter, the maximal switching frequency is limited by the technology of the inverter

and the cooling system being used. Thus, instead of trying to regulate the torque to

its reference, this control objective is relaxed in DTC, and the controller rather aims at

keeping the torque and the stator flux within certain bounds around their references.

Summing up, the manipulated variables are the switch positions of the inverter u, and

the controlled variables are for a two-level inverter the electromechanical torque Te and the

length of the stator flux Ψs, while a three-level inverter adds the neutral point potential

υn and the distribution of the switching effort λ to the vector of controlled variables.

The control objectives are to keep the torque Te, the length of the stator flux Ψs and

the neutral point potential υn within their respective upper and lower bounds Te,max and

Te,min, Ψs,max and Ψs,min, and υn,max and υn,min, to keep the distribution of the switching

effort close the zero, and to minimize the average switching frequency (5.15).
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Figure 5.5: The basic scheme of classic DTC

5.5 Classic DTC

The basic configuration of classic DTC is depicted in Fig. 5.5. The only measurements

acquired are the stator currents and the inverter voltages. In particular, there is no

measurement at the rotor shaft of the motor. From these measurements using a model of

the motor, an estimator provides the stator flux and the electromagnetic torque which are

compared every 25µs with their respective reference. The core of the DTC drive is the

hysteresis control unit and the look-up table that contains the following switching logic. If

the estimated torque and/or flux are outside the hysteresis bounds, a new voltage vector is

selected that rapidly drives the stator flux vector to a position such that the torque and the

stator flux both respect the corresponding hysteresis bounds (see Fig. 5.6). In high-power

applications, where three-level GTO inverters operating at low switching frequencies (in

the range of 250 Hz) are used, an extra hysteresis control unit is added in order to also

keep the potential υn of the inverter’s neutral point within pre-specified bounds around

zero.

As the look-up table directly sets the switch positions of the semiconductor devices in

the inverter, a Pulse Width or a Space Vector Modulator is obsolete. This simplifies the

control circuit, but also leads to the problem of a variable switching frequency, which

is directly connected with the width of the hysteresis zones being used: Tighter bounds

correspond to higher switching frequencies and vice versa. Given the assumption that
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Figure 5.6: The principle of DTC. A voltage vector is chosen that positions the stator

flux vector in the target window. The center of the target window is given

by the torque and flux references, where the torque reference determines the

angle between the stator and the rotor flux vector. The width of the window

corresponds to the hysteresis bounds, where the angular width corresponds to

the torque bounds and the radial width to the stator flux bounds

the average switching frequency represents a rough measure of the switching losses of the

inverter, the basic trade-off between the torque and stator flux ripple and the switching

frequency emerges. To avoid on the one hand overheating of the inverter due to a too high

switching frequency, and on the other hand unnecessary high ripples on torque and flux

due to a too low switching frequency, an outer control loop is often needed that keeps the

switching frequency constant over the whole range of operation by setting the hysteresis

bounds accordingly.

5.6 Review of Academic State of the Art

Applying model-based and predictive control strategies to the control problem of motor

drives is not an unknown notion in the power electronics research community. As shown

in [KL00], a number of already existing strategies might be – loosely speaking – classified by

their nature as predictive control strategies, the most prominent among them being DTC

itself, where the voltage vectors are classified into vectors that increase, decrease or keep

the torque or flux (approximately) constant. However, DTC lacks a model for prediction

and the notion of a cost function. Such elements are present in more recent approaches,
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which, to the best of our knowledge, are limited to the ones presented in [KLL01], [RPS+04]

and [RLSLM04]. These schemes differ in several significant aspects from the MPC schemes

proposed in this thesis.

• The prediction horizon is set to one2. There is no mentioning of a possible use of a

larger (control) horizon combined with a receding horizon policy.

• The DTC problem is formulated as a reference tracking problem, namely the for-

mulated control problem tries to minimize the deviation of the controlled variables

from their reference. There are no hysteresis bounds on the controlled variables.

• The cost function does not emulate the switching frequency of the inverter. In

combination with reference tracking and the limited number of voltage vectors, an

extremely high switching frequency is to be expected, which is only upper bounded

by the inverse of the sampling interval3. For a high power application, which we are

considering in this thesis, this is not acceptable.

• Only two-level inverters are considered.

• Linear (or locally linearized) models are used as prediction models. In particular

for three level inverters including the nonlinearities of the neutral point potential,

linear models are rather inaccurate.

Moreover, the work presented in [KLL01] focuses not on DTC, but on field oriented

control, which is a different control method for induction motors. In the latter, the ma-

nipulated variables of the control problem are continuous and not discrete valued. This

simplifies the underlying optimization problem but necessitates the use of a Pulse Width

or a Space Vector Modulator for the implementation of the method. The employed Gen-

eralized Predictive Control (GPC) [CMT87] framework seems to us to be of little appeal

as the scheme focuses on unconstrained linear systems in an input output representa-

tion, making it – in contrast to MPC – hard to extend it to PWA or nonlinear models,

to incorporate constraints and to straightforwardly tackle systems with multiple in- and

outputs.

The authors of [RLSLM04] suggest a geometric control approach that selects the voltage

vector closest to the direction into which the stator flux is required to be driven. Further-

more, the fraction of time the chosen voltage vector is to be applied for is determined a

priori leading to an open-loop rather than a receding horizon concept. To limit the impact

of the nonlinearities on the predictions, this fraction of time is upper bounded. Apart

2In [KLL01], the control horizon is not explicitly provided. Yet, the paper indicates that it is equal to

one, while the prediction horizon is larger than one.
3Strictly speaking by 2

Ts

.
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from that, a synchronous machine is considered, and the DC-DC converter manipulating

the field voltage is included in the control problem thus allowing for an additional degree

of freedom.

The approach proposed in [RPS+04] is rather formal and apart from the aforementioned

issues closest to our MPC schemes.

5.7 Summary of Research Contributions

The goals of our research project on DTC are threefold.

• Replace the classic design procedure of the switching table by a systematic con-

troller design that is easily applicable to drives with different inverter topologies

(i.e. with different number of levels) and arbitrary machine ratings thus reducing

the commissioning time of drives and making time-consuming tuning of parameters

obsolete.

• Improve the performance of DTC drives, namely reduce the switching frequency

while keeping the ripples on the controlled variables constant, or vice versa. A re-

duction in the switching frequency translates into a reduction of the losses, and in

particular for high power applications, into energy (and money) savings. On the

other hand, smaller ripples are obviously beneficial for a large number of applica-

tions. Furthermore, they also lead to a reduction of the total harmonic distortion

of the stator current of the machine hence reducing the losses of the machine.

• Derive control schemes that feature a computational complexity that allows for an

implementation today or within the near future.

To achieve these goals, we propose controllers that are based on the principles of MPC.

Here, the current control input is obtained by solving at each sampling instant an open-

loop optimal control problem over a finite horizon using the current state of the plant

as the initial state. The underlying optimization procedure yields an optimal control

sequence that minimizes a given objective function. By only applying the first control

input in this sequence and by recomputing the control sequence at the next sampling

instant, a receding horizon policy is achieved. A major advantage of MPC is its ability to

cope with hard constraints on manipulated variables, states and outputs. Furthermore,

as introduced in [BM99a], the MLD framework can be straightforwardly embedded in

MPC allowing one to use hybrid models given in the MLD form as prediction models for

MPC. Moreover, there is a rich theory to pre-solve the optimization problem off-line by

computing the (explicit) state-feedback control law using multi-parametric and dynamic

programming [Bor03].
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These MPC schemes share the following features that distinguishes them from the

control approaches summarized in the previous section.

• A model-based predictive control problem is set up and solved over a prediction

horizon larger than one.

• A receding horizon strategy is used.

• The classic DTC objectives are considered, namely to keep the controlled variables

within given hysteresis bounds while minimizing the average switching frequency.

• A cost function emulating the switching frequency is used.

• All controlled variables are considered when deciding on the next control input.

Specifically, the control input is evaluated not only in terms of the controlled variable

that necessitated the switching (as currently done in classic DTC), but by taking

into account the predicted behavior of all controlled variables simultaneously.

• Drives with three-level inverters are tackled. In particular, we consider the balancing

of the neutral point potential.

• The DTC drive is modelled as a hybrid system. Specifically, we use integer variables

to represent the inverter switch positions, and derive PWA or even general nonlinear

models, rather than models linearized around an operating point.

• The control methods are directly extendable to other inverter topologies and addi-

tional control objectives.

Chapter 7 aims at deriving MPC schemes that are conceptually and computationally

simple yet yield a significant performance improvement with respect to the state of the

art. More specifically, the term conceptually simple refers to controllers allowing for

straightforward tuning of the controller parameters or even a lack of such parameters,

and easy adaptation to different physical setups and drives, whereas computationally

simple implies that the control scheme does not require excessive computational power

to allow the implementation on DTC hardware that is currently available or at least

will be so within a few years. Nevertheless, as the control schemes are model-based, the

computations are expected to be significantly more demanding than the simple evaluation

of the currently used look-up table.

To make our MPC schemes applicable, several techniques and methods had to be de-

veloped aiming at tailoring the principles of MPC to the DTC problem in order to derive

conceptually and computationally simple control algorithms. These techniques include:

• Priority levels in the cost function.
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• Time-varying penalties (leading to the so called Late Switching Strategy).

• Models with different sampling intervals within the prediction horizon (Multiple-

Rate Prediction Model Approach).

• Restrictions on the degrees of freedom for switching.

• Open-loop computation of the number of steps a voltage vector keeps the controlled

variables within their bounds.

• An expression in the cost function approximating the average switching frequency

by dividing the number of switch transitions within the horizon by either the length

of the prediction horizon or the number of steps a voltage vector keeps the controlled

variables within their bounds.

• Linear and quadratic extrapolation of the trajectories of the controlled variables to

allow for very long prediction horizons while keeping the computational burden low.

• The notion of the feasible switching path in the presence of constraints on the

allowed switch transitions.

As for any model-based control scheme, modelling is a fundamental task before solving

the control problem. This is done in Chapter 6, where we exploit a number of physical

properties of DTC drives to derive discrete-time models of DTC drives with two- or three-

level inverters tailored to our needs, more specifically, models that are of low complexity

yet of sufficient accuracy to serve as prediction model for the model-based control schemes.

These properties are the slow rotor flux and speed dynamics, the symmetry of the voltage

vectors, and the invariance of the motor outputs under flux rotation. The low-complexity

models are derived by assuming constant speed within the prediction horizon, mapping

the states (the fluxes) into a 60 degree sector, and aligning the rotor flux vector with the

d-axis of a reference frame rotating with the rotational speed of the rotor. The benefits of

doing this are a reduction of the number of states from five to three, and a highly reduced

domain on which the nonlinear functions need to be approximated by PWA functions. The

resulting model can be easily described in Hysdel. Subsequently, the Hysdel compiler

derives the MLD model and the mode enumeration algorithm (see Section 3) yields an

equivalent PWA model of the DTC drive.
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Discrete-Time Modelling of DTC

Drives

The purpose of this chapter is to derive discrete-time hybrid models of the DTC drive that

are suitable to serve as prediction models for the MPC schemes presented in Chapter 7.

In particular, these models need to predict the evolution of the electromagnetic torque,

the stator flux, and – in the case of a three-level inverter – also of the inverter neutral

point potential and the distribution of the switching losses over several control cycles

in an open-loop fashion with sufficient accuracy. However, the models should be of low

complexity to reduce the computational burden of the underlying optimization problems.

6.1 Physical Properties of DTC Drives

DTC drives feature the following three important properties that will allow us in a sub-

sequent step to obtain low-complexity models of the drives.

Slow Rotor Flux and Speed Dynamics As mentioned in Section 5.3.3, a basic

characteristic of induction machines is that the stator flux dynamics are significantly

faster than the dynamics of the rotor flux and the rotational speed. Thus, the application

of a certain voltage vector to the machine terminals has an immediate effect only on the

stator flux, turning it rapidly to the position required by the torque demand, while the

rotor speed ωr and the length of the rotor flux vector remain constant during several

control cycles.

Symmetry of Voltage Vectors The voltage vectors that can be produced by both a

two- and a three-level inverter exhibit strong symmetrical properties in the dq plane1. As

1Inverters with more than three levels have similar symmetrical properties making the hereafter shown

modelling approach extendable to such inverters.
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Figure 6.1: Symmetrical properties of the voltage vectors produced by a two- and a three-

level inverter

shown in Fig. 6.1, a certain pattern is repeated with an angle spread of π
3
. Defining such

a pattern as a sector leads to the formation of six sectors. In the dq plane, rotating any

sector by π
3

yields the voltage vectors of the neighboring sector, while the zero components

of vectors of neighboring sectors have opposite sign. More formally, the voltage vectors

of the µ sector can be used to produce the vectors of the ν sector through

u
(ν)
dq0 = Πµ−ν u

(µ)
dq0 ∀µ, ν ∈ N0 (6.1)

using the matrix

Π =






cos π
3

sin π
3

0

− sin π
3

cos π
3

0

0 0 −1




 . (6.2)

This relationship can be also applied to the switch positions uabc given in the three-phase

system (abc) by transforming the quantities to the dq0 reference frame, rotating them

there from the µ to the ν sector, and transforming them subsequently back.

u
(ν)
abc = P−1(ϕ) Πµ−ν P (ϕ) u

(µ)
abc ∀ϕ ∈ R (6.3)

For the componentwise absolute voltage vectors, however, the relationship is slightly

more complicated and non-trivial. It can be shown that a rotation of a voltage vector by

an even number of sectors preserves its componentwise absolute values, while a rotation

by an odd number, alternates the sign. Taking this into account, the following relation

results

|u(ν)
abc| = (−1)µ−ν P−1(ϕ) Πµ−ν P (ϕ) |u(µ)

abc| ∀ϕ ∈ R . (6.4)
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Invariance of Motor Outputs under Flux Rotation The third characteristic is that

the electromagnetic torque depends only on the relative (and not the absolute) position

of the stator and rotor flux vectors, as the torque is the external product of these two

vectors. Trivially, the same also holds for the length of the stator flux. Hence, the output

variables of the motor, namely the electromagnetic torque and the length of the stator

flux vector are invariant under flux rotations.

6.2 Nonlinear Model of DTC Drive with Three-Level

Inverter

In this section, we derive a discrete-time nonlinear model of the DTC drive with a three-

level inverter that will be used as prediction model for the MPC scheme based on extrap-

olation presented in Section 7.4. In particular, this model needs to predict the evolution

of the electromagnetic torque, stator flux and inverter neutral point potential over several

sampling intervals in an open-loop fashion, while the distribution of the switching effort

is not considered.

Exploiting the fact that the time-constant of the rotational speed dynamic exceeds the

length of the prediction interval by several orders of magnitude, the speed dynamic can

be neglected and the speed is assumed to remain constant within the prediction horizon.

This allows us to treat the speed as a model parameter rather than as a state thus

removing (5.10e) from the motor model. Using a stationary dq0 reference frame with

ωfr = 0 and the transformation matrix (5.3) leads to the following motor model

dψds

dt
= −rs

xrr

D
ψds + rs

xm

D
ψdr + vd (6.5a)

dψqs

dt
= −rs

xrr

D
ψqs + rs

xm

D
ψqr + vq (6.5b)

dψdr

dt
= rr

xm

D
ψds − rr

xss

D
ψdr − ωrψqr (6.5c)

dψqr

dt
= rr

xm

D
ψqs + ωrψdr − rr

xss

D
ψqr (6.5d)

The model of the inverter has one state, namely the neutral point potential whose

dynamic is described by (5.8) as a function of |uabc| and idq0. The d- and q-components of

the stator current idq0 are linear combinations of the d- and q-components of the stator

and rotor flux vectors (see e.g. [Kra86] for details), and the 0-component is always zero2.

idq0 =
[

xrr

D
ψT

s −
xm

D
ψT

r 0
]T

. (6.6)

2This follows from (5.3), taking into account that ia + ib + ic = 0.
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Next, we define the overall state vector of the DTC drive as

x =
[

ψds ψqs ψdr ψqr υn

]T

, (6.7)

the integer variables ua, ub and uc as the input vector

u =
[

ua ub uc

]T

∈ {−1, 0, 1}3 , (6.8)

and the electromagnetic torque (5.13), the length of the stator flux (5.14) and the neutral

point potential as the output vector

y =
[

Te Ψs υn

]T

. (6.9)

Combining the motor model (6.5), (5.13) and (5.14) with the model of the inverter (5.8)

and (6.6), and setting u = uabc, the continuous-time model of the DTC drive is

dx(t)

dt
=

[

A 0

0 0

]

x(t) +

[

B1

0

]

u(t) +

[

0

B2(x(t))

]

|u(t)| (6.10a)

y(t) = g(x(t)) , (6.10b)

with

A =








−rs
xrr

D
0 rs

xm

D
0

0 −rs
xrr

D
0 rs

xm

D

rr
xm

D
0 −rr

xss

D
−ωr

0 rr
xm

D
ωr −rr

xss

D







, (6.11)

B1 =
Vdc

2








1 0 0

0 1 0

0 0 0

0 0 0







P , B2(x(t)) = xT (t)

1

2xc











xrr

D
0 0

0 xrr

D
0

−xm

D
0 0

0 −xm

D
0

0 0 0











P−T , (6.12)

and

g(x(t)) =






xm

D
(x2(t)x3(t)− x4(t)x1(t))

√

x2
1(t) + x2

2(t)

x5(t)




 , (6.13)

where xi denotes the i-th component of the vector x. Note that the model has no feed-

through, i.e. y(t) is independent of u(t), the zeros in (6.10a) are vectors and matrices of

appropriate dimension, and the nonlinear expression B2(x(t))|u(t)| captures the dynamic

of the neutral point potential.
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In a last step, the continuous-time model (6.10) is replaced by its discrete-time rep-

resentation using forward Euler with a sampling time of Ts = 25µs. For the sake of

completeness, this leads to

x(k + 1) = (I +

[

A 0

0 0

]

Ts)x(k) +

[

B1

0

]

Tsu(k) +

[

0

B2(x(k))

]

Ts|u(k)| (6.14a)

y(k) = g(x(k)) . (6.14b)

This model is very accurate, in particular, piecewise affine (PWA) approximations of

nonlinearities are avoided. Furthermore, the model parameters can be easily adapted and

updated on-line. However, both the state-update and the output function are nonlinear.

6.3 Low Complexity Modelling

In this section, we derive discrete-time nonlinear models of the induction motor and the

three-level inverter which are of low complexity and will serve as key modules to derive

the MLD and PWA models in the following sections. For this, we will take advantage of

all physical properties of the DTC drive summarized in Section 6.1.

6.3.1 Stator Flux Dynamics

As the low-complexity model of the induction motor focuses on the fast stator flux dy-

namics we will refer to it as the Stator Flux Dynamics Model.

Rotation and State Reduction

Exploiting the symmetrical properties of the voltage vectors and the invariance of the

motor outputs under flux rotation, allows us to map the fluxes into the zero sector,

to solve the control problem in this sector, and to subsequently rotate the result back

into the original sector yielding the voltage vector to be actually applied to the motor

terminals. By restricting the fluxes to the zero sector one reduces the domain on which

the nonlinear functions (like the stator flux or the neutral point potential) are defined.

Later, when approximating these nonlinearities by piecewise affine (PWA) functions, a

reduced domain allows for less complex approximations with less polyhedra.

Furthermore, by using an additional rotation that aligns the rotor flux with the d-axis

of a rotating reference frame and by exploiting the slow dynamics of the rotor flux, the

number of states can be reduced. To maintain the alignment for several sampling intervals,

we choose a reference frame that is rotating synchronously with the rotor flux. Strictly

speaking, such a reference frame would be rotating with the speed of the magnetic field
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Figure 6.2: Rotation of the fluxes

ωe. Another possible choice would be the speed of the rotor ωr, where ωe > ωr in motor

operation. The normalized difference of the two speeds is referred to as the slip given by

(ωe − ωr)/ωe. Here, any of the two speeds can be chosen without leading to noticeable

differences. This is due to the following. Firstly, due to the short prediction horizon, we

require the model to be accurate only for a small number of sampling intervals, say two

or three. During this short time, the difference between the two speeds leads only to a

negligible difference in the angles of the two frames. Furthermore, as we are considering in

this thesis mainly the case of large power induction machines, the slip amounts only to a

few per cent. We conclude that depending on the available measurements or estimates, one

can choose any of the two speeds without introducing hardly any error. In the following,

we will use ωr.

The mapping and the subsequent alignment are shown in Fig. 6.2 as a procedure carried

out in two stages. The first stage maps the problem into the zero sector by rotating the

flux vectors clockwise by an integer multiple of π
3
, whereas the second stage is an anti-

clockwise rotation of the reference frame by an angle ϕ0 ∈ [0, π
3
], that aligns the rotor flux

vector with the d-axis of the reference frame. Assume that the rotor flux initially lies in

the ν sector. Rotating the fluxes by the angle

ϑ =
νπ

3
+ ϕ0 (6.15)

using the rotation matrix

R(ϑ) =

[

cosϑ sinϑ

− sinϑ cosϑ

]

(6.16)
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yields the rotated flux vectors

ψϑ
s = R(ϑ)ψs, (6.17a)

ψϑ
r = R(ϑ)ψr, (6.17b)

which are defined according to (5.12)

ψϑ
s =

[

ψϑ
ds ψϑ

qs

]T

, (6.18a)

ψϑ
r =

[

ψϑ
dr ψϑ

qr

]T

. (6.18b)

Since the rotational speed dynamic is several orders of magnitude slower than the stator

flux dynamics, we remove the speed dynamic from the motor model, assume that ωr is

constant within several sampling intervals and consider ωr as a parameter. Next, we align

the rotor flux with the d-axis of the rotating reference frame, which rotates with the speed

ωr as discussed above. Recalling the slow dynamic of the rotor flux vector, we may then

assume that ψϑ
dr remains approximately constant and ψϑ

qr is equal to zero during several

sampling intervals.

State-Space Representation

This allows us to model the fast stator flux dynamics using only the first two state

equations of the induction motor model, namely (5.10a) and (5.10b), and to regard ψϑ
dr

and ωr as parameters. These two equations are repeated here for ease of readability

dψϑ
ds

dt
= −rs

xrr

D
ψϑ

ds + ωrψ
ϑ
qs + rs

xm

D
ψϑ

dr + v
(0)
d (6.19a)

dψϑ
qs

dt
= −ωrψ

ϑ
ds − rs

xrr

D
ψϑ

qs + rs

xm

D
ψϑ

qr + v(0)
q , (6.19b)

where the superscript (0) on the d- and q-components of the voltage vector denotes the

fact that it refers to the zero sector, as the problem has been mapped from the ν to the

zero sector.

Defining the matrices

Fm =

[

−rs
xrr

D
0

0 −rs
xrr

D

]

, (6.20a)

Fr =

[

0 ωr

−ωr 0

]

, (6.20b)

and recalling (5.4), the set of affine state equations (6.19) is described in vector form as

dψϑ
s (t)

dt
= (Fm + Fr)ψ

ϑ
s (t) + rs

xm

D
ψϑ

r +
Vdc

2
P̃ (ϕ(t))u

(0)
abc(t) . (6.21)
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Note that the matrix P̃ (ϕ(t)) performing the transformation of the inverter voltages

into the rotating dq0 frame is time-varying. In particular, it depends on the angle ϕ(t)

that captures the evolution of the rotating reference frame with

dϕ(t)

dt
= ωrTs (6.22)

starting from the initial value

ϕ(0) = ϕ0 (6.23)

given by the second stage of the rotation.

The discrete-time linear model of the induction machine’s stator flux dynamics is ob-

tained by integrating (6.21) from t = kTs to t = (k + 1)Ts

ψϑ
s ((k + 1)Ts) = e(Fm+Fr)Ts ψϑ

s (kTs) + rs

xm

D

∫ Ts

0

e(Fm+Fr)(Ts−τ) dτ ψϑ
r

+
Vdc

2

∫ Ts

0

e(Fm+Fr)(Ts−τ) P̃ (ϕ(kTs + τ))u
(0)
abc(kTs + τ) dτ .

(6.24)

In the following, we focus on the third expression on the right-hand side of (6.24), which

can be simplified using the following three relations. Firstly, as the componentwise product

between Fm and Fr is zero, we have

e(Fm+Fr)(Ts−τ) = eFm(Ts−τ)eFr(Ts−τ) . (6.25)

Secondly, since ϕ(kTs + τ) = ϕ(k) + ωrτ , the relation

e−Frτ P̃ (ϕ(kTs + τ)) = P̃ (ϕ(kTs)) (6.26)

can be shown to hold. Moreover, it is straightforward to derive

eFrTs P̃ (ϕ(kTs)) = P̃ (ϕ(kTs) + ωrTs) . (6.27)

Using (6.25), (6.26) and (6.27), and recalling that the voltage vector applied to the motor

terminals remains constant within one sampling interval we can rewrite the third ex-

pression in (6.24) and obtain the simplified discrete-time linear model of the stator flux

dynamics

ψϑ
s (k + 1) = e(Fm+Fr)Ts ψϑ

s (k) + rs

xm

D

∫ Ts

0

e(Fm+Fr)(Ts−τ) dτ ψϑ
r

+
Vdc

2

∫ Ts

0

eFm(Ts−τ) dτ P̃ (ϕ(k) + ωrTs)u
(0)
abc(k) ,

(6.28)

where we have used k rather than kTs to denote the sampling instants. Last, the discrete-

time representation of (6.22) is simply given by

ϕ(k + 1) = ϕ(k) + ωrTs (6.29)
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with the initial value as in (6.23)3.

Rather than introducing ϕ(k) as a state, we choose cos(ϕ(k)) as a third state, as this

proves to be beneficial in terms of the model complexity as detailed at the end of this

section. Rewriting (6.29), the corresponding state equation is

α(k + 1) = cos(ωrTs)α(k)− sin(ωrTs) β(k) , (6.30)

where

α(k) = cos(ϕ(k)), (6.31a)

β(k) = sin(ϕ(k)) . (6.31b)

Hence, the three-dimensional state vector of the induction motor amounts to

xm(k) =
[

ψϑ
ds(k) ψϑ

qs(k) α(k)
]T

. (6.32)

The two outputs of the model are the electromagnetic torque

Te(k) =
xm

D
ψϑ

dr xm2(k) , (6.33)

which is a linear expression of the second state, and the length of the stator flux vector

Ψs(k) =
√

x2
m1(k) + x2

m2(k) , (6.34)

which is nonlinear in the first two states.

Summing up, the following steps have been performed to reduce the complexity of the

motor model and to derive the Stator Flux Dynamics Model.

• Regarding the rotor speed as a parameter reduced the number of states in the motor

model from five to four.

• Mapping the fluxes into the zero sector reduced the domain on which the nonlinear

functions (like the stator flux or the neutral point potential) are defined. Later, when

approximating these nonlinearities by PWA functions, a reduced domain allows for

less complex approximations (with less polyhedra) while maintaining the accuracy

of the approximation.

• Aligning the rotor flux vector with the d-axis of the rotating reference frame and

regarding the length of the rotor flux as a parameter allowed us to remove the

two states of the rotor flux dynamics. Yet, one additional state was needed to

account for the rotation of the reference frame. Hence in total, one state was spared.

Furthermore, this turned the nonlinear torque expression into a linear one.

3In then actual implementation of the model, we replace P̃ (ϕ(k) + ωrTs) in (6.28) by P̃ (ϕ(k)) and

ϕ(0) = ϕ0 in (6.23) by ϕ(0) = ϕ0 + ωrTs.
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6.3.2 Three-Level Inverter

In contrast to the two-level inverter that lacks the neutral point potential and the issue

of properly distributing the switching losses, those aspects must be addressed by the con-

troller when using a three-level inverter and thus they need to be modelled appropriately.

In particular, the rotation of the fluxes has to be taken into account.

Neutral Point Potential

In the first part of this section, our aim is to derive a discrete-time representation of

the neutral point potential’s dynamic that is a function solely of the variables in the zero

sector, like the (componentwise absolute values of the) inverter switch positions in the zero

sector and the rotated fluxes. For ease of readability, the continuous-time state equation

of the neutral point potential (5.8) is repeated here, which holds for the original ν sector.

dυn(t)

dt
=

1

2xc

|u(ν)
abc(t)|

T i
(ν)
abc(t) (6.35)

Firstly, expanding this expression with P−1(ϑ(t))P (ϑ(t)) and introducing iϑdq0(t) as the

rotated stator current, the above equation is rewritten as

dυn(t)

dt
=

1

2xc

|u(ν)
abc(t)|

T P−1(ϑ(t)) iϑdq0(t) , (6.36)

where we have used iϑdq0(t) = P (ϑ(t)) i
(ν)
abc(t), which holds by definition. Secondly, setting

µ = 0 in (6.4) and employing (Π−ν)T = Πν yields the relation

|u(ν)
abc(t)|

T = (−1)ν |u(0)
abc(t)|

T P T (ϕ(t)) Πν (P−1(ϕ(t)))T . (6.37)

Thirdly, using trigonometric operations, one can show that

P T (ϕ(t)) Πν (P−1(ϕ(t)))T P−1(ϑ(t)) = P−1(ϕ(t)) , (6.38)

where we have used ϑ(t) = νπ
3

+ϕ(t), which generalizes (6.15). Finally, combining (6.36),

(6.37) and (6.38) leads to the simple expression

dυn(t)

dt
= (−1)ν 1

2xc

|u(0)
abc(t)|

T P−1(ϕ(t)) iϑdq0(t) . (6.39)

Now, it is straightforward to obtain the following discrete-time representation of the

neutral point potential

υn(k + 1) = υn(k) + (−1)ν Ts

2xc

|u(0)
abc(k)|

T P−1(ϕ(k)) iϑdq0(k) . (6.40)
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Recall that the stator currents in the dq0 frame are linear functions of the d- and q-

components of the flux vectors. Rewriting (6.6) using the rotated flux vectors, we obtain

iϑdq0(k) =
[

xrr

D
(ψϑ

s (k))T − xm

D
(ψϑ

r (k))T 0
]T

. (6.41)

As a result, the neutral point potential only depends on the rotated flux vectors and the

componentwise absolute values of the inverter switch positions in the zero sector, in which

the control problem will be solved.

Distribution of Switching Losses

In the second part of this section, we derive a discrete-time representation of the distri-

bution of the switching losses that is – similarly to the neutral point potential – only

a function of the inverter switch positions in the zero sector. We start by recalling the

discrete-time state equation of the switching losses (5.9) given in the ν sector

λ(k + 1) = λ(k) + 1Tu
(ν)
abc(k) , (6.42)

where 1 denotes a column vector of ones of appropriate length. Setting µ = 0 in (6.3),

basic trigonometric manipulations can be used to show that the relation1Tu
(ν)
abc = (−1)ν1Tu

(0)
abc (6.43)

holds that directly leads to the rewritten dynamic of the switching losses

λ(k + 1) = λ(k) + (−1)ν1Tu
(0)
abc . (6.44)

6.4 PWA Approximation of Nonlinearities

6.4.1 Bounds on State Space

The Stator Flux Dynamics Model (and the three-level inverter) contain a number of

nonlinearities, which must be approximated in a subsequent step by PWA functions to

enable us to cast the model into the MLD framework. As all these nonlinearities are only

functions of the motor state vector xm (and not of the input vector), it is sufficient to

derive the set of states X 0 ∈ R3 that includes all motor states during the whole range of

operation, while it is tight (not conservative).

The set X 0 can be easily determined by translating the output hysteresis bounds im-

posed by the control objectives into constraints on the motor state-space. Recalling that

the torque is a linear expression of the second motor state, the lower and upper bounds on
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Figure 6.3: Output constraints on the torque and flux reformulated as state constraints

in the xm1xm2 plane for the parameters as in Case Study I (see Table 7.13)

and ψϑ
dr = 0.89

the electromagnetic torque Te,min and Te,max can be directly translated into linear bounds

on xm2(k)
D

xmψϑ
dr

Te,min ≤ xm2(k) ≤
D

xmψϑ
dr

Te,max . (6.45)

Similarly for the stator flux, its lower and upper bounds Ψs,min and Ψs,max turn into the

quadratic state constraint

Ψ2
s,min ≤ x2

m1(k) + x2
m2(k) ≤ Ψ2

s,max. (6.46)

The bounds on the third motor state are derived from the angle ϕ(k). To ensure that the

model remains feasible for at least N time-steps when starting with a ϕ(k) close to π
3

(i.e.

the upper limit of the zero sector), the bounds on ϕ(k) are modified to

0 ≤ ϕ(k) ≤
π

3
+NωrTs , (6.47)

which translates into the following bounds on xm3(k)

cos(
π

3
+NωrTs) ≤ xm3(k) ≤ 1 . (6.48)

Hence, the constraints (6.45), (6.46) and (6.48) define the set of states X 0. To account for

measurement noise and small disturbances causing the torque or the stator flux to slightly

violate the imposed bounds, we relax (6.45) and (6.46) by 20 % of the corresponding bound

width.

Setting the lower and upper flux bounds to the typical values Ψ2
s,min = 0.82 p.u. and

Ψ2
s,max = 1.04 p.u., Fig. 6.3 shows the resulting quadratic constraints on the xm1xm2 plane

which are approximated here by PWA constraints. The torque bounds would add two

horizontal constraints on the shaded set of states. Here, we have only conservatively

imposed 0 ≤ Te ≤ 1.2 p.u.. Note that X 0 is a very small subset of the zero sector.
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Nonlinear Argument Domain Number 1-norm ∞-norm

function of regions of error of error

x2
m1 xm1 [0.8, 1.05] 2 0.001 0.003

x2
m2 xm2 [0, 0.4] 3 0.001 0.002

β xm3 [0.4, 1] 4 0.001 0.006

Table 6.1: PWA approximations of the nonlinearities in the Stator Flux Dynamics Model

Therefore, translating the torque and flux constraints into constraints on x1m and x2m

allowed us to derive a set X 0 that is tight and significantly less conservative than a set

resulting from the bounds of the zero sector would be.

6.4.2 Stator Flux Dynamics

The nonlinearities of the Stator Flux Dynamics Model are the length of the stator flux

vector (6.34) and the matrix P̃ (ϕ) (5.2) with the components sin(ϕ) and cos(ϕ) that result

from trigonometric expansion and are nonlinear in ϕ. As the MLD framework does not

allow for modelling general nonlinear functions, they need to be approximated by PWA

functions. As u
(0)
abc only takes integers, the multiplication between P̃ (ϕ) and u

(0)
abc in (6.28)

can be handled using if . . . then . . . else statements.

To account for the evolution of the rotating reference frame, it would be straightforward

to introduce ϕ as a state and to use (6.29) to describe its evolution. This, however, would

necessitate the approximation of sin(ϕ) and cos(ϕ) as a function of ϕ. Instead, we have

chosen above α = cos(ϕ) as a state. Therefore, we need to only approximate β as a

function of α thus avoiding the approximation of one nonlinearity.

Additionally, from now on, we use the squared length of the stator flux vector rather than

its length, thus turning the nonlinearity (6.34) with two arguments into two nonlinearities

where each one has only one argument. This greatly simplifies the approximation task

reducing the approximation error and the complexity. Table 6.1 summarizes the PWA

approximations together with the function domains and the number of regions used.

The domains slightly over-approximate the set of states X 0, while the number of regions

results from a trade-off between the required model accuracy and the increase in the

model complexity. For the problem considered here, the maximum approximation error

was chosen to be smaller than 0.5 %, as this is in the range of the accuracy of the estimation

scheme used in Chapter 7. The resulting 1-norm of the error is with 0.001 p.u. very small.
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Nonlinear Arguments Domain Number 1-norm ∞-norm

function of regions of error of error

α iϑd α, iϑd [0.4, 1]× [0, 0.6] 8 0.005 0.015

α iϑq α, iϑq [0.4, 1]× [0, 1.2] 8 0.007 0.022

β iϑd β, iϑd [0, 0.91]× [0, 0.6] 8 0.010 0.029

β iϑq β, iϑq [0, 0.91]× [0, 1.2] 8 0.014 0.044

Table 6.2: PWA approximations of the nonlinearities in the three-level inverter model

6.4.3 Three-Level Inverter

The PWA approximation of the dynamic of the neutral point potential is slightly more

involved. Similarly to above, the multiplication with |u(0)
abc| in (6.40) can be handled using

if . . . then . . . else statements leaving only the term P−1(ϕ) iϑdq0 to be approximated. As

the inverse of the transformation matrix is given by

P−1(ϕ) =






cosϕ − sinϕ 1

cos(ϕ− 2π
3

) − sin(ϕ− 2π
3

) 1

cos(ϕ+ 2π
3

) − sin(ϕ+ 2π
3

) 1




 , (6.49)

and recalling (6.31), the four terms α iϑd , α i
ϑ
q , β i

ϑ
d and β iϑq need to be approximated,

where we have used iϑdq0 = [iϑd i
ϑ
q i

ϑ
0 ]

T .

Again, the function domains are chosen such that the whole range of operation is

covered. As the neutral point potential does not need to be controlled with a high precision,

a relatively large approximation error is tolerable. Nevertheless, the approximation errors

as shown in Table 6.2 are very small. In particular for the multiplications involving α,

approximations with four regions might be sufficient, too.

6.5 MLD Model

Having derived the low-complexity models of the induction motor and the two- and three-

level inverters, and having approximated the contained nonlinearities by PWA functions,

we are now ready to cast the model of the DTC drive in MLD form. As MLD forms

have been recapitulated, we do not repeat the general MLD representation here, but refer

the reader to Section 2.2.2. In the following, we only summarize the MLD models of a

DTC drive with a two- and a three-level inverter. Indeed, the derivation of the MLD

models is performed by the compiler Hysdel generating the matrices of the MLD system

starting from a high-level description of the system. The corresponding Hysdel codes
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can be found in Appendices A.2 and A.3, respectively. Note that the MLD models use

the rotational speed and the length of the rotor flux as parameters.

6.5.1 DTC Drive with Two-Level Inverter

The overall MLD model of the DTC drive includes the two submodels of the induction

motor (the Stator Flux Dynamics Model) and the two-level inverter. As the latter lacks

states, the overall state vector is given by the motor state vector

x(k) = xm(k) =
[

ψϑ
ds(k) ψϑ

qs(k) α(k)
]T

. (6.50)

The model outputs are the electromagnetic torque Te and the squared length of the stator

flux vector Ψ2
s yielding the output vector

y(k) =
[

Te(k) Ψ2
s(k)

]T

. (6.51)

The model inputs are the integer variables ua, ub and uc

u(k) = u
(0)
abc(k) =

[

u
(0)
a (k) u

(0)
b (k) u

(0)
c (k)

]T

∈ {−1, 1}3 . (6.52)

Note that because of the mapping operation, the models are defined in the zero sector.

Yet in the following, we will drop the superscript (0) from the manipulated variables to

simplify the notation.

Restricting the state-space to X 0 derived in Section 6.4.1 and using the PWA approx-

imations proposed in Section 6.4.2, an MLD model with three real states, three binary

inputs, two outputs, 49 z-variables, 9 δ-variables and 165 inequality constraints results,

where those figures include the soft constraints and the slack variables of the cost function.

6.5.2 DTC Drive with Three-Level Inverter

In the case of a DTC drive with a three-level inverter, the overall MLD model is augmented

by the states describing the inverter’s neutral point potential and the distribution of the

switching effort between the upper and the lower half of the inverter. Therefore, the

three-level inverter adds the two state equations (6.40) and (6.44) leading to the overall

state vector

x(k) =
[

ψϑ
ds(k) ψϑ

qs(k) α(k) υn(k) λ(k)
]T

. (6.53)

The motor outputs are augmented by the neutral point potential and the distribution of

the switching effort resulting in

y(k) =
[

Te(k) Ψ2
s(k) υn(k) λ(k)

]T

, (6.54)
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and the model inputs are the integer variables ua, ub and uc

u(k) = u
(0)
abc(k) =

[

u
(0)
a (k) u

(0)
b (k) u

(0)
c (k)

]T

∈ {−1, 0, 1}3 . (6.55)

As with the two-level inverter, we restrict the state-space to X 0, use the PWA approx-

imations proposed in Section 6.4.2 for the Stator Flux Dynamics model, and the PWA

approximations of Section 6.4.3 for the three-level inverter to derive an MLD model with

five real states, six binary inputs, two outputs, 100 z-variables, 68 δ-variables and 527

inequality constraints, including the soft constraints and the slack variables of the cost

function.

6.6 PWA Model

In Sections 7.2.4 and 7.3.2, when computing state-feedback control laws, a PWA model

of the DTC drive needs to be available. As shown in Section 3.4, the mode enumeration

algorithm can be directly used to efficiently translate the Hysdel code, which is used to

describe the model on a textual basis, into an equivalent PWA form. Equivalence implies,

that for all feasible initial states and for all feasible input trajectories, both models yield

the same state and output trajectories. Concerning the notation, we will use the same

as in (2.10) to denote PWA systems. As in this thesis we are computing state-feedback

control laws only for drives with two-level inverters, we focus in the next section only on

this case.

6.6.1 DTC Drive with Two-Level Inverter

As the MLD model features the rotational speed and the length of the rotor flux as

parameters, we need to set these first to fixed values. Then, it is straightforward to derive

the equivalent PWA form, where we restrict the state-space to X 0 to remove unnecessary

regions from the model.

Example 6.1 As an example, consider the MLD model in Section 6.5.1 with the motor

and inverter parameters shown in Table 7.13, the rotational speed ωr = 0.8 p.u. and the

length of the rotor flux vector ψϑ
dr = 0.89 p.u.. We restrict the state-space to X 0 given

by the following three constraints: 0 ≤ Te ≤ 1.2, 0.776 ≤ Ψ2
s ≤ 1.084 and 0.4 ≤ α ≤ 1.

Within 6.5 s on a 2.8 GHz Pentium PC, the mode enumeration algorithm derives the

equivalent PWA model defined on the six-dimensional state-input space. However, as the

state-input-space is only partitioned into polyhedra due to the PWA approximations of

nonlinear functions whose arguments are only states (and not inputs), we conclude that

the polyhedra are obviously independent from the input vector. Hence, the polyhedral
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Figure 6.4: The polyhedral partition of the three-dimensional state-space for the equiva-

lent PWA model of the DTC drive with a two-level inverter

partition is only defined on the state-space as shown in Fig. 6.4. One can observe the

facets introduced by the approximation of the stator flux components and β as a function

of α. Additionally, when restricting the torque around its operating point, it is easy to

see that the 24 polyhedra can be easily reduced by one or two thirds.
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7

Model Predictive Direct Torque

Control

7.1 Introduction

Based on the hybrid models of the DTC drive derived in the preceding chapter, we

propose in this chapter three novel control approaches to tackle the DTC problem, namely

MPC based on Priority Levels (MPC-PL), MPC based on Feasibility and Move Blocking

(MPC-FMB) and MPC based on Extrapolation (MPC-E). All control schemes share the

following common features: (i) An internal discrete-time model of the drive to predict

the future evolution of the controlled output variables for a sequence of control inputs

over a prediction horizon, (ii) a cost function which is minimized to obtain the optimal

control input sequence, and (iii) a receding horizon policy, meaning that only the first

control input of the sequence is implemented, the horizon is shifted by one time-step

and the above procedure is repeated. The main differences of the control approaches are

summarized in Tables 7.1 and 7.2 for the two-level and three-level inverter, respectively,

where the performance improvement refers to the reduction of the average switching

frequency while keeping the same bounds. Note that the indicated on-line computation

times and the memory requirements are rough estimates, merely intended to hint to the

reader that the computation times and the memory requirement starting from MPC-PL

over MPC-FMB to MPC-E steadily decrease. In particular the last control scheme, MPC-

E, is expected to be implementable on the currently available DTC hardware. At the same

time, the performance is steadily improved.

In the following three sections, if not otherwise stated, the control schemes are described

for the case of a three-level inverter as this naturally comprehends also the two-level

inverter, meaning that if the case of a three-level inverter can be tackled successfully, the

scheme can be directly simplified to also handle the two-level inverter.

At the end of each section, we compare the performance of the proposed MPC scheme

with the industrial state of the art via simulations. The comparisons are done in terms

121
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MPC-PL MPC-FMB MPC-E

Solution obtained off-line off-line on-line

Computation scheme Dynamic Progr. forward in time MINLP

Prediction model PWA PWA nonlinear

Operating point fixed fixed any

On-line computation time medium short short

Memory requirement medium low low

Performance improvement no reference 5 % not investigated

Table 7.1: Summary of the differences between the three proposed MPC schemes for the

DTC problem with a two-level inverter, where the performance improvement

of MPC-FMB is achieved with respect to MPC-PL

MPC-PL MPC-FMB MPC-E

Solution obtained on-line on-line on-line

Computation scheme MILP MILP MINLP

Prediction model MLD PWA nonlinear

Operating point any any any

On-line computation time very long medium short

Memory requirement high medium medium

Performance improvement 20 % not investigated up to 50 %

Table 7.2: Summary of the differences between the three proposed MPC schemes for the

DTC problem with a three-level inverter, where the performance improvement

is achieved with respect to ABB’s ACS6000

of the average switching frequency and the mean squared violation1 of the torque and

stator flux violation of the imposed bounds. These simulations were carried out using

ABB’s Matlab/Simulink model of the ACS6000 drive [ABB], where a look-up table stores

ABB’s DTC strategy. For the MPC schemes the same simulation environment was used

except for the look-up table, which was replaced by a function solving at each time-step

the model-based control problem. The bounds for the torque and the stator flux depend

on the operating point and are imposed by an outer control loop in the Matlab/Simulink

1We are using the mean squared error rather than the root mean squared (rms) error.
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Case study Rated machine power Rated machine voltage

I 1.6 MW 3.3 kV

II 6.6 MW 3.1 kV

III 15 kW 400 V

Table 7.3: Overview of the machine ratings of the three case studies

model, whereas the bounds on the neutral point potential, which do not explicitly exist in

ABB’s ACS6000 scheme, are time-invariant. For both control schemes, the same bounds

were used for the torque and flux. For the neutral point potential they were chosen

to reflect the behavior of ABB’s control scheme, thus ensuring that the comparison is

meaningful.

Note that as the ACS6000 drive has been designed for three-level inverters, we only

have an industrial reference for DTC drives with three-level inverters to compare our

control schemes with. For two-level inverters, however, we are left with comparing the

model-based control schemes only with each other, but not to an industrial reference.

Nevertheless, the focus in this thesis lies on DTC drives with three-level inverters as they

are significantly more challenging to control with respect to drives with two-level inverters.

For the comparisons, three case studies were considered with DTC drives of medium

and low power. Table 7.3 provides a rough overview of the case studies, whereas the

respective ratings and parameters are detailed in Tables 7.13, 7.14 and 7.15 at the end of

this chapter.

7.2 MPC based on Priority Levels

The first of the three proposed MPC schemes is rather conventional, in the sense that

the particular problem structure of DTC is not exploited to speed up the computation

of the control input or to derive a low-complexity controller. Here, we formulate and

solve a standard CFTOC problem, where integer variables are introduced for the inverter

switch positions, which represent the manipulated variables, and the motor and inverter

control objectives are reformulated such that they can be incorporated into an objective

function. In particular, soft constraints are used to model the hysteresis bounds on

the torque, stator flux and neutral point potential, and the average switching frequency

(over an infinite horizon) is approximated by the number of switch transitions over a

short horizon. To make this approximation meaningful and to avoid excessive switching,

the Late Switching Strategy has to be added, which favors the postponement of switch

transitions as explained later on.
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The proposed approach is applied to DTC drives featuring a two- and a three-level

inverter. In both cases, the design procedure remains essentially the same, and the exten-

sion to other inverter topologies with more degrees of freedom (like the 5-level inverter)

is straightforward. Concerning the potential performance improvement, we focus on the

case of the three-level inverter considering ABB’s ACS6000 DTC drive [ABB] containing

a squirrel-cage rotor induction motor with a rated apparent power of 2 MVA and a 4.3 kV

three-level dc-link inverter. The performance of the control scheme is evaluated through

simulations and compared with ABB’s well-established DTC strategy showing a perfor-

mance improvement in terms of a reduction of the switching frequency in the range of 20 %

while simultaneously reducing the torque and flux ripples. Unfortunately, it seems that

the complexity of the control law is prohibitive thus not allowing for an implementation

using standard control hardware.

In a first step, we formulate the CFTOC problem using the MLD model and solve the

corresponding MILP on-line to obtain the control input. This can be done easily for the

two- and the three-level inverter. In a second step, we use an equivalent PWA model of

the drive and solve the MILP off-line using multi-parametric programming and Dynamic

Programming to obtain a state-feedback control law. At the time of writing, the latter

is meaningful to be tried out, with the computational power at our disposal, only for a

two-level inverter.

7.2.1 Priority Levels

The controller objectives can be classified in three priority levels. The main objective is to

keep the torque and the length of the stator flux within the pre-specified bounds, and to

also retain the neutral point potential within bounds that are typically symmetric around

zero. As these bounds shall not be (significantly) violated, we assign to them the highest

priority, and express them in the objective function using soft constraints.

The control objective with secondary priority is to minimize the average switching

frequency over an infinite horizon. This is approximated by minimizing the number of

switch transitions within a finite prediction interval. Due to the limited length of the

prediction interval, one needs to enforce that switch transitions are only performed if

absolutely necessary, i.e. when refraining from switching would lead to a violation of the

bounds on the controlled variables within one time-step. This leads to what we call the

Late Switching Strategy, where the controller postpones any scheduled switch transition

until absolutely necessary. This strategy is implemented by imposing a time-decaying

penalty on the switch transitions, where switch transitions within the first time-step of

the prediction interval result in larger penalties then those that are far in the future.

In particular for short prediction intervals, for a given state, two or more control inputs
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may have the same associated costs according to the two penalty levels introduced above2.

In the presence of such ambiguities, the control input that moves some of the controlled

variables closest to their references is preferable, in particular the stator flux and the

neutral point potential. We account for that by adding a third, low priority penalty level

on the deviation of the stator flux and the neutral point potential from their respective

references. For the torque, however, it is preferable to take full advantage of the window

width. Thus we refrain from adding such a penalty term to the torque. Another objective

of low priority is to distribute the switching effort evenly between the upper and lower

half of the inverter. We account for that by adding a small penalty on the distribution of

the switching effort.

Summing up, we introduce three priority levels in the objective function. Starting with

the highest priority, these are the following. (i) keep the torque, flux and neutral point

potential within their bounds, (ii) minimize the number of switch transitions, and (iii)

regulate the controlled variables except the torque to their references and evenly distribute

the switching effort.

7.2.2 Objective Function

Based on the controller objectives, we establish next the mathematical expression of

the objective function, which is composed of a number of cost expressions. The soft

constraints on the upper and lower torque bounds Te,max and Te,min, respectively, lead for

the electromagnetic torque to the cost expression

εT (k) =







qT (Te(k)− Te,max) if Te(k) ≥ Te,max

qT (Te,min − Te(k)) if Te(k) ≤ Te,min

0 else ,

(7.1)

where qT ≫ 0 is the weight on the soft constraints. The cost expression for the length of

the stator flux vector is defined similarly using the upper and lower flux bounds Ψs,max and

Ψs,min, respectively, with an additional term penalizing the deviation from the reference

Ψs,ref

εΨ(k) =







qF (Ψs(k)−Ψs,max) if Ψs(k) ≥ Ψs,max

qF (Ψs,min −Ψs(k)) if Ψs(k) ≤ Ψs,min

qf |Ψs(k)−Ψs,ref | else ,

(7.2)

with the weights qF and qf , qF ≫ qf > 0, on the soft constraints and on the deviation

from the reference, respectively. The switch transitions are penalized using a time-varying

2As an example consider the voltage vectors of medium length which are always given as pairs. For a

given pair, both voltage vectors lead to the same torque and flux response, yet they have an opposite

impact on the neutral point potential.
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weight qu(k) > 0 and the 1-norm

εu(k) = qu(k)‖u(k)− u(k − 1)‖1 . (7.3)

The above stated cost expressions are the same for the two- and the three-level inverter.

For the three-level inverter, the following two additional cost expressions need to be

defined.

For the neutral point potential, the cost ευ(k) is defined according to (7.2) with the

respective bounds υn,max and υn,min, the reference 0, and the weights qN and qn. The

distribution of the switching effort has the simple cost

ελ(k) = qλ|λ(k)− 0| (7.4)

with qλ > 0.

Finally, we define

ε1 = εu ε2 =
[

εT εΨ

]T

(7.5)

for the case of the two-level inverter and

ε1 =
[

ελ εu

]T

ε2 =
[

εT εΨ ευ

]T

(7.6)

for the three-level inverter, and consider the objective function

J(x(k), u(k − 1), U(k)) =
N−1∑

ℓ=0

‖ε1(k + ℓ|k)‖1 +
N∑

ℓ=1

‖ε2(k + ℓ|k)‖1 , (7.7)

which penalizes the predicted evolutions of ε1 and ε2 over the finite horizon N using

the 1-norm, while taking into account that the model has no direct feed-through, ε1 is a

function of the input vector and ε2 only depends on the state vector.

7.2.3 On-Line Computation of Control Input

The control input at time-instant k is then obtained by minimizing the objective func-

tion (7.7) over the finite sequence of control inputs U(k) = [(u(k))T , . . . , (u(k+N−1))T ]T

subject to the evolution of the MLD model and its mixed-integer linear inequality con-

straints, the integrality constraints on U(k) and the cost expressions (7.1)–(7.4). This

amounts to the constrained finite time optimal control problem (CFTOC)

U∗(k) = arg min
U(k)

J(x(k), u(k − 1), U(k))

subj. to MLD model, (6.8), (7.1)–(7.4)
(7.8)

yielding the sequence of optimal control inputs U∗(k) = [(u∗(k))T , . . . , (u∗(k+N−1))T ]T ,

of which only the first input u∗(k) is applied to the inverter. At the next sampling interval,
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k is set to k + 1, a new state measurement (or estimate) is obtained, and the CFTOC

problem is solved again over the shifted horizon according to the receding horizon policy.

As we are using the 1-norm in all cost expressions, the CFTOC problem amounts to solving

an Mixed-Integer Linear Program (MILP) for which efficient solvers exist, like [ILO02].

The optimal control problem posed above is intended to capture the average switching

frequency. Therefore, a long prediction interval is beneficial. However, the computational

complexity explodes. To account for that, we propose to use a rather long prediction

interval, but a short prediction horizon N . This is achieved by finely sampling the predic-

tion model with 25µs only for the first steps, but more coarsely with a multiple of 25µs

for steps far in the future. Although this approach is similar to utilizing the technique

of blocking control moves [QB03], using a coarsely sampled model instead proves to be

advantageous in the hybrid domain reducing the complexity and thus the computation

times. We call this approach the Multiple-Rate Prediction Model Approach that leads

to a time-varying prediction model with two different sampling rates. As the simulation

results will show, this allows us to greatly increase the length of the prediction interval

thus enhancing the performance of MPC while keeping the computation times low.

Recapitulating this section, the MPC objective function is based on the following main

ideas. Three penalty levels with corresponding penalties of different orders of magni-

tude provide clear controller priorities and make the fine-tuning of the objective func-

tion obsolete. The Late Switching Strategy assures that unnecessary switch transitions

are avoided, and the Multiple-Rate Prediction Model Approach allows us to extend the

prediction interval without increasing the computational burden.

7.2.4 Off-Line Computation of State-Feedback Control Law

As the computation times needed for solving the optimal control problem on-line are

well beyond the 25µs sampling time of DTC, the proposed controller cannot be directly

implemented. In order to overcome this obstacle, the calculation of the explicit state-

feedback control law is necessary by pre-computing off-line the solution to the optimal

control problem for the whole state-space. For hybrid systems, such a method has been

recently introduced, which is based on a PWA description of the controlled system. Hence,

we rewrite the CFTOC (7.8) by replacing the MLD model by the equivalent PWA model

U∗(k) = arg min
U(k)

J(x(k), u(k − 1), U(k))

subj. to PWA model, (6.8), (7.1)–(7.4) .
(7.9)

Note that the CFTOC problem is not only a function of the state vector x(k), but also of

the last control input u(k−1), as we are penalizing the switch transitions in the objective

function.
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Then, as proposed in [BCM03b, BBBM05], Dynamic Programming and multi-

parametric programming, where the state vector is treated as a parameter, can be

used to derive the PWA state-feedback control law. The resulting control law is a PWA

state-feedback control law defined over a polyhedral partition of the state-space, which

can be stored in a look-up table. Computing the optimal control law on-line is thus

reduced to a simple evaluation of a look-up table. For a summary of multi-parametric

programming, the algorithms currently available, the properties of the resulting control

law and issues concerning the implementation of the controller, the reader is referred to

Section 2.4.2.

7.2.5 Performance Evaluation

The simulation results presented in this section illustrate the performance of the MPC-

PL scheme for the two- and the three-level inverter, respectively. This parallelism is used

to demonstrate that the tuning of the objective function is done in a straightforward

and systematic way, regardless of the problem complexity. Using Case Study I for the

performance evaluation, the parameter values used are given in Table 7.13 at the end of

this chapter. In all graphs, the units are normalized and the time scaling is in ms.

DTC Drive with Two-Level Inverter

For a DTC drive featuring a two-level inverter, the optimal control problem was solved

for the objective function (7.7) using a prediction horizon of N = 2. Employing a single

model approach, all steps are set equal to the usual DTC sampling time of 25µs. The

penalties on the soft constraints are chosen to be qT = 3000 for the torque and qF = 4500

for the stator flux. The switch transitions are penalized with qu(0) = 14, exponentially

decaying within the prediction horizon. The deviation of the stator flux from its reference

is penalized with qf = 0.01.

On-Line Computation of Control Input Initially, the motor is running with a speed

of ωr = 0.8 p.u. under a load torque of Tℓ = 0.1 p.u., when a step in the torque reference

Te,ref is applied from 0.1 p.u. to 0.8 p.u.. As the simulation results in Fig. 7.1 show,

the torque response under MPC-PL is rapid, while the length of the stator flux remains

within the specified bounds. Note that for the benefit of visualization, two different time

scales are used, showing the step response between 35 ms and 45 ms in greater detail. The

average switching frequency of the inverter was 515 Hz. The computation times required

for the solution of the optimal control problem on-line at each time-step are in the range

of 50 ms running CPLEX [ILO02] on a 2.8 GHz Pentium PC.
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Figure 7.1: Closed-loop simulation of the MPC-FMB scheme during a step change in the

torque reference for a DTC drive with a two-level inverter

Off-Line Computation of State-Feedback Control Law To simplify the derivation

of the explicit state-feedback control law, we only consider the case where the drive is

operating at steady state at a fixed operating point. For this, we choose the operating

point shown in Fig. 7.1 from 40 ms on, which is given by the speed ωr = 0.8 p.u., the

length of the rotor flux ψϑ
dr = 0.89 p.u., the load torque Tℓ = 0.8 p.u., and the torque

bounds Te,min = 0.72 p.u. and Te,max = 0.88 p.u.. The reference of the stator flux is

Ψs,ref = 0.970 p.u. and the corresponding bounds are Ψs,min = 0.905 p.u. and Ψs,max =

1.020 p.u., or equivalently, Ψ2
s,min = 0.82 p.u. and Ψ2

s,max = 1.04 p.u., respectively. The

control problem formulation is the same as for the on-line optimization set-up.

Using the PWA model of the DTC drive with a two-level inverter in Example 6.1,

which is defined on a polyhedral partition with 24 polyhedra in the three-dimensional

state-space, the procedure described in Section 7.2.4 yields for each of the eight last



130 7 Model Predictive Direct Torque Control

u(k − 1) norg nred Reduction [%] texpl [h] tred [h]

[−1 − 1 − 1]T 5246 709 86.5 8.6 9.1

[−1 − 1 + 1]T 5325 753 87.6 8.9 10.3

[−1 + 1 − 1]T 4737 486 89.7 11.1 10.9

[−1 + 1 + 1]T 5292 625 88.2 8.5 9.8

[+1 − 1 − 1]T 7019 930 86.8 11.2 8.9

[+1 − 1 + 1]T 8512 880 90.0 11.2 13.3

[+1 + 1 − 1]T 5425 631 88.4 11.2 8.7

[+1 + 1 + 1]T 6295 617 90.2 6.1 7.3

Table 7.4: Overview of the state-feedback control law for the DTC drive with a two-level

inverter

control inputs (discrete states) a PWA state-feedback control law defined on the three-

dimensional real state-space. Running subsequently the non-disjoint optimal complexity

reduction algorithm (see Chapter 4) reduces the complexity of the control law by a factor

of nine, as the overview in Table 7.4 shows. For each of the last control inputs u(k − 1),

this table depicts the number of polyhedra of the original controller norg, the number of

polyhedra of the equivalent controller of reduced complexity nred, the percentage reduction

in the number of polyhedra, the computation time for the derivation of the explicit control

law texpl in hours, and the computation time for the complexity reduction tred in hours.

All computations were run on a 2.8 GHz Pentium with Linux using Matlab 6.5. More

details about the complexity reduction applied to the DTC state-feedback control law can

be found in Section 4.7.3.

Fig. 7.2 shows a two-dimensional cut through the polyhedral partition of the control

law. Recalling that the states x1 and x2 refer to the d- and q-components of the stator flux

vector, and noting that the voltage vectors in Fig. 5.2(b) directly manipulate the stator

flux, the control law can be easily interpreted and justified. The yellow polyhedra in the

center refer to the control policy, where switching is avoided by applying the last voltage

vector again, i.e. u(k) = u(k−1) = [+1 −1 −1]T . This is obviously the best choice, as the

torque and flux lie well inside their bounds. The fact that this control policy is also used

for stator fluxes with small d-components and/or large q-components is reasonable, too,

as the selected voltage vector increases the d-component, while leaving the q-component

unchanged. Note that, as the reference frame is rotating counter-clockwise, stator fluxes

with large q-components are quickly ’caught’ by the rotating frame. Particularly inter-

esting are the partitions for large d- and small q-components. Here, for the magenta, red
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Figure 7.2: The explicit state-feedback control law for the DTC drive with a two-level

inverter for u(k − 1) = [+1 − 1 − 1]T intersected with x3(k) = 0.95, where

the colors correspond to the control inputs u(k) ordered as in Table 7.4: red,

black, green, cyan, yellow, blue, magenta and red

and blue polyhedra neighboring the yellow center polyhedra, where the torque and flux

are close to their bounds, it is optimal with respect to the defined cost function to perform

only in one stack a switch transition, i.e. ||u(k) − u(k − 1)||1 = 2, where u ∈ {−1, 1}3.

Yet voltage vectors that slowly adjust the stator flux are chosen in these polyhedra. Al-

ternatively, they can be interpreted as intermediate steps between the voltage vector in

the center and the voltage vectors applied in polyhedra with very large d- and/or very

small q-components. In the latter polyhedra, namely the green, cyan and black polyhedra,

voltage vectors are chosen that drive the stator flux rapidly back into the center accepting

switch transitions in two or three stacks simultaneously, i.e. ||u(k)− u(k − 1)||1 ∈ {4, 6}.

For completeness, we mention that choosing the same initial state at time 40 ms, both

the on-line computation and the evaluation of the state-feedback control law yield the

same closed-loop simulation results.
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DTC Drive with Three-Level Inverter

For a DTC drive featuring a three-level inverter, the simulations were carried out using

ABB’s Matlab/Simulink model of the ACS6000 drive [ABB], where the look-up table with

ABB’s DTC strategy was replaced by a function solving at each time-step the optimal

control problem on-line. For both control schemes, the same bounds were used for the

torque, flux and neutral point potential, thus ensuring that the comparison is meaningful.

In particular, the bounds on the torque depend on the operating point and are thus time-

varying. Apart from that, the considered inverter has restrictions on the allowed switch

transitions that stem from technicalities regarding the construction of the inverter as ex-

plained in Section 5.3.2. By introducing additional constraints on the integer manipulated

variables, these restrictions are easily taken into account in the MPC-PL scheme.

The optimal control problem is solved for the objective function (7.7) using a prediction

horizon of N = 3. Employing the Multiple-Rate Prediction Model Approach, the first

two steps are set equal to the sampling time of 25µs and the remaining step is equal

to 100µs. The models are time-discretized accordingly. To allow for a comparison of

ABB’s DTC with the proposed MPC-PL scheme, the penalties on the soft constraints are

chosen such that the resulting ripples for the torque, flux and neutral point potential are

roughly the same. This leads to qT = 800 for the torque, qF = 1000 for the stator flux

and qN = 4500 for the neutral point potential. The switch transitions are penalized with

qu(0) = 16, exponentially decaying within the prediction horizon. The deviations from

the references are penalized with qf = qn = 0.04 for the stator flux and the neutral point

potential, respectively. The distribution of the switching effort is enforced with qλ = 0.2.

The computation times required for the solution of the optimal control problem at each

time-step are in the range of 100 ms running CPLEX [ILO02] on a 2.8 GHz Pentium PC.

Initially, the motor is running with a speed of ωr = 0.4 p.u. under a load torque of

Tℓ = 0.1 p.u., when a step in the torque reference Te,ref is applied from 0.1 p.u. to 0.8 p.u..

Fig. 7.4 depicts the closed-loop behavior of the torque, the stator flux and the neutral

point potential under MPC-PL, whereas Fig. 7.3 shows as a comparison the corresponding

trajectories resulting from ABB’s DTC strategy. As can be seen, the MPC-PL scheme

preserves the rapid dynamic responses achieved by the classic DTC approach, while the

bounds imposed on the torque, stator flux and neutral point potential are slightly better

respected. This degree of the violation of the bounds is a design parameter adjustable by

the penalties on the soft constraints. Most important, the average switching frequency

for MPC-PL is only 196 Hz compared with ABB’s 256 Hz. This improvement amounts

to a reduction of the average switching frequency in the range of 20 %, which translates

into an equivalent reduction of the switching losses. Alternatively, the ripples on the

controlled variables can be reduced by tightening the corresponding bounds until the

switching frequency is brought back to 256 Hz.
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Figure 7.3: Closed-loop simulation of the classic DTC scheme of ABB during a step change

in the torque reference for a DTC drive with a three-level inverter
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Figure 7.4: Closed-loop simulation of the MPC-PL scheme during a step change in the

torque reference for a DTC drive with a three-level inverter
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7.3 MPC based on Feasibility and Move Blocking

Even though the MPC approach presented in the last section is conceptually rather sim-

ple, systematic and thus appealing, it contains a number of tuning parameters such as the

weights on the soft constraints and the late switching penalty. More unfortunate, however,

is the enormous complexity of the state-feedback controller that basically prohibits the

implementation on the currently employed controller hardware in industry – aside from

the issue of the on-line control input computation, which is computationally by order of

magnitudes more demanding than the simple evaluation of the nowadays used look-up

table. On the other hand, two observations suggest the existence of a low complexity

controller resulting from a systematic design procedure. Firstly, albeit their very simple

controller structure, the existing DTC schemes have proven to yield a satisfactory con-

trol performance. Secondly, the post analysis of the derived state-feedback control law

reveals a simple and robust pattern in the solution to the optimal control problem (see

Section 7.2.5).

These observations motivate the control scheme presented in the sequel, which is based

on the following fundamental property of DTC. The control objectives only weakly relate

to optimality but rather to feasibility, in the sense that the main objective is to find

a control input that keeps the controlled variables within their bounds, i.e. a control

input that is feasible. The second, weaker objective is to select among the set of feasible

control inputs the one that minimizes the average switching frequency. The latter can be

approximated by the number of switch transitions over the (short) horizon.

We therefore propose an MPC scheme based on feasibility with a prediction horizon N

and an internal model of the DTC drive for the predictions. We propose to switch only at

the current time-step and to disregard switching within the prediction horizon, which is

equivalent to a move blocking strategy. This greatly reduces the total number of control

input sequences from 8N to 8 and allows us to evaluate a small number of input sequences

by moving forward in time. For each input sequence, we determine the number of steps

the controlled variables are kept within their bounds, i.e. remain feasible. Next we define

the number of switch transitions divided by the number of predicted time-steps an input

remains feasible as a cost function emulating the switching frequency. In a last step, the

control input that minimizes the cost function is chosen. We refer to this concept as Model

Predictive Control based on Feasibility and Move Blocking (MPC-FMB). The simplicity

of the control methodology translates into a state-feedback control law with a complexity

that is of an order of magnitude lower than the one of its counterpart obtained through

solving the optimal control problem of MPC-PL in the previous section. Moreover, the

MPC-FMB scheme has only one design parameter, namely the length of the horizon N .

To simplify the expositions, we focus in this section on a DTC drive with a two-level
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Figure 7.5: Core and ring for u(k − 1) = [1 − 1 − 1]T

inverter. Based on the low-complexity PWA model of the drive, we solve the control

problem on-line in Section 7.3.1 and derive off-line the corresponding state-feedback control

law in Section 7.3.2. Simulation results are shown in Section 7.3.3, while Section 7.3.4

discusses the extendability of the control approach to DTC drives featuring a three-level

inverter.

7.3.1 On-Line Computation of Control Input

Assume a PWA model of the DTC drive is available, which is defined on the set of states

X 0. For the model, we use the notation (2.10), namely fPWA for the state-update and

gPWA for the output function. For details concerning the derivation of the PWA model,

the reader is referred to Section 6.6.

Let u(k − 1) denote the last voltage vector. If u(k − 1) is also feasible at time-instant

k, i.e. all controlled variables are predicted to lie within their bounds at time-instant

k + 1, a reasonable choice is to apply it again, i.e. u(k) = u(k − 1). If not, however, the

controller must choose another voltage vector. For each of the remaining seven voltage

vectors, one can easily compute through open-loop predictions the number of time-steps

this voltage vector would keep the controlled variables within their bounds. This step

reduces the optimal control problem to a feasibility problem. The voltage vector is chosen

that minimizes the average switching frequency over the prediction interval, i.e. the number

of switch transitions over the number of time-steps, thus re-introducing the notion of

optimality. This control concept is summarized in Algorithm 7.1. An output vector y(k)

is said to be feasible, if the corresponding bounds are met, and U = {−1, 1}3 denotes the

set of available voltage vectors.
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Algorithm 7.1

function u(k) = MPC-FMB online ( x(k), u(k − 1) )

x(k + 1) = fPWA(x(k), u(k − 1))

if y(k + 1) = gPWA(x(k + 1)) feasible

u(k) = u(k − 1)

else

for all u(k) ∈ U \ u(k − 1)

nu = −1

repeat

nu = nu + 1

x(k + nu + 1) = fPWA(x(k + nu), u(k))

until
(
y(k + nu + 1) = gPWA(x(k + nu + 1)) infeasible

)
or

(
nu = N

)

endfor

u(k) = arg minu(k)
||u(k)−u(k−1)||

nu

endif

Compared to MPC-PL, this control policy is by definition significantly simpler, as only

eight control sequences (or control strategies) need to be compared with each other. Unlike

MPC-PL, switch transitions within the prediction interval are not considered and can only

be performed at the current time-instant k. Furthermore, the length of the prediction

horizon is time-varying, ranging from one step to ten or even twenty steps. As the next

section will show, an explicit form of the proposed controller can be computed easily. Even

more important, the explicit form has a low complexity but maintains or even improves

the control performance with respect to MPC-PL.

7.3.2 Off-Line Computation of State-Feedback Control Law

After fixing the operating point, setting the bounds and deriving the PWA model as

above, we restrict the computation of the explicit state-feedback control law to the set of

states X 0. Rewriting (6.45) and (6.46), let C denote the set of states whose corresponding

outputs are feasible

C = {x ∈ X 0 |

[

Te,min

Ψ2
s,min

]

≤ gPWA(x) ≤

[

Te,max

Ψ2
s,max

]

, (7.10)

where we have replaced the quadratic expression in (6.46) by the PWA approximation for

the stator flux using the output function of the PWA model.

Before presenting the computation of the state-feedback control law in three stages,

we introduce the following notation. Let n denote the time-step within the prediction
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horizon N , X n
feas the set of states at time-step k + n corresponding to feasible outputs

y(k + ℓ) for all ℓ ∈ {1, . . . , n}, X n
infs the set of states at time-step k + n with feasible

outputs y(k + ℓ) for all ℓ ∈ {1, . . . , n − 1}, but infeasible outputs y(k + n), and Qn
u the

set of states at time-step k that keep the outputs for n time-steps feasible when applying

the voltage vector u. Note that the feasibility of the outputs at the current time-step k is

not considered.

Stage I First, we determine the set of states x(k) ∈ X 0 for which the controlled variables

are feasible at time-step k+1 when applying u(k) = u(k−1). We denote this set of states

as the core

Qc
u = {x ∈ X 0 | fPWA(x, u) ∈ C} , (7.11)

and its complement in X 0 as the ring

Qr
u = X 0 \ Qc

u . (7.12)

Example 7.1 To visualize the algorithm, consider as an example a two-level inverter

driving an induction machine with the rated voltage 3.3 kV and the rated real power

1.587 MW (as in Example 6.1). The remaining parameters can be found in Table 7.13.

The operating point is given by the rotor speed ωr = 0.8 p.u., the length of the rotor

flux ψϑ
dr = 0.89 p.u. and the load torque Tℓ = 0.8 p.u.. The lower and upper bounds

on the torque and flux, respectively, are set to Te,min = 0.72 p.u., Te,max = 0.88 p.u.,

Ψ2
s,min = 0.82 p.u. and Ψ2

s,max = 1.04 p.u.. After deriving the PWA model on X 0 (enlarged

by 20 % as in Section 6.4.1), and determining the set C, the core and the ring can be easily

computed as shown in Fig. 7.5 for the voltage vector u(k − 1) = [1 − 1 − 1]T . On a

Pentium IV with 2.8 GHz, this operation takes roughly 1 s.

Stage II For each new voltage vector u(k) ∈ U \ u(k − 1), the following procedure is

performed for the initial set3 X 0. Initially, we set n = 0. Next, we map the polyhedra X n

from time-step k + n to k + n + 1 yielding X n+1. The states corresponding to infeasible

outputs form the set X n+1
infs . Consequently, we map X n+1

infs back to the time-step k and

associate with them the number of time-steps n. We denote these polyhedra by Qn
u,

where u corresponds to the chosen voltage vector u(k), and n denotes the number of time-

steps this voltage vector u(k) can be applied to the set of states before any of the outputs

3Conceptually, this stage of the algorithm should be initialized with the ring Qr
u rather than X 0. Let us

note though that since the facets of the initial set are mapped forward and backward in time, in the

worst case, the complexity of the algorithm both in terms of the computation time and the number

of resulting polyhedra is exponential in the number of facets of the initial set. Therefore, as X 0 is

by definition a very simple polytopic set with only a few facets, whereas the ring is a non-convex set

with possibly many facets, we initialize Algorithm 7.2 with X 0 rather than the ring.
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violates a bound. If there remain any feasible states, we move one time-step forward in

the future by increasing n by one and repeat the above procedure.

This yields for each new voltage vector a polyhedral partition of the ring {Qn
u}

N
n=0, where

each polyhedron is associated with a unique number indicating for how many time-steps

the respective voltage vector can be applied before any of the controlled variables violates

a bound.

Next, the algorithm is summarized, where the two subfunctions mapForw and mapBack

are affine transformations of polyhedra using the PWA model (2.9) for a fixed voltage

vector u(k). Specifically, mapForw yields X n+1 = {f(x, u) | x ∈ X n, u = u(k)}, and

mapBack yields Qn
u = {x | (fu ◦ . . . ◦ fu)(x) ∈ X

n+1
infs }, where we have set fu(x) = f(x, u)

and concatenated fu n times. Note that mapForw maps a set of states by one time-step

forward in time, whereas mapBack maps a set of states by n time-steps backwards. The

subscript feas (infs) refers to sets of states corresponding to feasible (infeasible) outputs.

Algorithm 7.2

function {Qn
u}

N
n=0 = MPC-FMB explicit ( C, X 0, u, N )

n = 0

while X n 6= ∅ and n < N

X n+1 = mapForw ( X n, u )

X n+1
feas = X n+1 ∩ C

X n+1
infs = X n+1 \ X n+1

feas

Qn
u = mapBack ( X n+1

infs , u )

X n+1 = X n+1
feas

n = n+ 1

endwhile

Qn
u = mapBack ( X n, u )

Example 7.2 Setting N = 4, we proceed with Example 7.1. Fig. 7.6 visualizes the first

step (n = 0) of Algorithm 7.2 in the x1x2 plane, where the same scaling is used for all

three figures. Starting with the initial set of states X 0 in Fig. 7.6(a), the voltage vector

u(k) = [1 −1 −1]T maps X 0 from time-step k to k+1 as shown in Fig. 7.6(b). The set X 1

comprises two parts. X 1
feas (X 1

infs) contains the states corresponding to feasible (infeasible)

outputs. This set X 1
infs is consequently mapped back from time-step k + 1 to k resulting

in Q0
u and indicating that this set is zero-step feasible for the chosen u(k). Furthermore,

we set X 1 = X 1
feas.

The second step (n = 1) is shown in Fig. 7.7 starting from the set X 1 at time-step k+1

in Fig. 7.7(a). Applying u(k) = [1 − 1 − 1]T to this set maps it from time-step k + 1

to k + 2 as shown in Fig. 7.7(b). Again, X 2
feas (X 2

infs) contains the states corresponding



140 7 Model Predictive Direct Torque Control

x1(k)

x
2
(k

)

X 0

(a) Initial set X 0 at time-step k

x1(k)

x
2
(k

)

X 1
infs

X 1
feas

(b) Set X 1 at time-step k + 1

x1(k)

x
2
(k

)

Q0
u

(c) Set Q0
u at time-step k that

yields infeasible outputs at k +1

Figure 7.6: First step of Algorithm 7.2 in the x1x2 plane for u(k) = [1 − 1 − 1]T

x1(k)

x
2
(k

)

X 1

(a) Set X 1 at time-step k + 1

x1(k)

x
2
(k

)

X 2
infs

X 2
feas

(b) Set X 2 at time-step k + 2

x1(k)

x
2
(k

)

Q1
u

(c) Set Q1
u at time-step k that

yields feasible outputs at time-

step k+1, but infeasible outputs

at k + 2

Figure 7.7: Second step of Algorithm 7.2 in the x1x2 plane for u(k) = [1 − 1 − 1]T

to feasible (infeasible) outputs. The states in X 2
infs are mapped back for two steps from

k+2 to k yielding Q1
u which is shown in Fig. 7.7(c) and refers to states which are one-step

feasible for u(k).

Repeating the above procedure for n = 2, 3, 4 and collecting the sets Qn
u yields the

polyhedral partition {Qn
u}

4
n=0 shown in Fig. 7.8. The outer polyhedra correspond to

outputs that are feasible for zero time-steps when applying u(k) = [1 −1 −1]T , while the

inner polyhedra are feasible for one, two, three and four time-steps as x2(k) is increasing.

Note that {Qn
u}

4
n=0 is by construction a polyhedral partition of the set X 0.

The computation time for the second stage for the given example is approximately

2 min on a Pentium IV 2.8 GHz machine.

Summing up, Stages I and II yield a control law that is evaluated according to Al-

gorithm 7.1, with the main difference that the number of steps nu is not calculated by

mapping operations but rather by set membership tests evaluating if the given state lies in

the respective polyhedron. Specifically, if for the given u(k− 1), the state x(k) lies in the
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Figure 7.8: The resulting polyhedral partition {Qn
u}

N
n=0 of Algorithm 7.2 for u(k) = [1 −

1 − 1]T and N = 4, where colors correspond to the number of steps n
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core, re-apply the last voltage vector again. Else determine for each new voltage vector

the polyhedron in {Qn
u}

N
n=0 containing x(k), evaluate the associated number of time-steps

nu, and find the voltage vector u(k) with the lowest cost as defined in Algorithm 7.1. This

is formalized in Algorithm 7.3.

Algorithm 7.3

function u(k) = MPC-FMB evaluateLaw ( x(k), u(k − 1) )

if x(k) ∈ Qc
u

u(k) = u(k − 1)

else

for all u(k) ∈ U \ u(k − 1)

determine nu such that x(k) ∈ Qnu
u

endfor

u(k) = arg minu(k)
||u(k)−u(k−1)||

nu

endif

Note that the computation of the control input not only involves set membership tests,

but also a minimization of a cost function. Therefore, we refer to this state-feedback

controller as a semi-explicit control law.

Regarding the computational burden for the on-line computation of the control input,

in the worst case, one core and the seven polyhedral partitions of U \ u(k − 1), which

feature in general a low number of polyhedra, need to be evaluated.

Stage III In the third stage we pre-compute Algorithm 7.3 and derive the (fully) explicit

control law as a function of the last voltage vector u(k−1) and the current state x(k). For

u(k − 1) ∈ U , we evaluate for each polyhedron in {Qn
u}

N
n=0 the cost and associate with it

the voltage vector u(k). Next, the core Qc
u is added with zero cost and the voltage vector

u(k) = u(k − 1). Finally, we compare the cost expressions and iteratively remove (parts

of) polyhedra with inferior costs4. A detailed exposition and analysis of this algorithm

can be found in [BT03]. This yields one polyhedral partition, where each polyhedron

refers to a voltage vector u(k) (and not to a number of time-steps). This procedure is

4As the cost expressions used in Algorithms 7.1 and 7.3 are rational, where the nominator (in the case

of a two-level inverter) is restricted to the integers two, four and six, and the denominator to 0, . . . , N ,

the costs take only a few different values. This increases the possibility that at a given time two or

more voltage vectors have the same associated cost leading to ambiguities in the choice of the next

voltage vector. In such cases, we suggest to remove the ambiguity by imposing an additional heuristic

selection criterion. Examples for such rules are to select the vector that keeps the controlled variables

feasible for the maximal number of steps, or to favor zero vectors. Obviously, these ambiguities occur

less frequently when the maximal horizon N is increased.
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Figure 7.9: Polyhedral partitions of the state-feedback control law resulting from Stage III

for u(k− 1) = [1 − 1 − 1]T , where the colors correspond to the control inputs

u(k) ordered as in Table 7.4: red, black, green, cyan, yellow, blue, magenta

and red
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repeated for all the eight former voltage vectors u(k − 1) yielding eight different (fully)

explicit state-feedback control laws. As a result, the computational burden of evaluating

the control law is reduced, as u(k − 1) directly defines the one polyhedral partition that

needs to be searched through in order to obtain u(k). However, the memory requirements

are higher since the polyhedral partitions of the fully explicit control law are in general

more complex than the one of the semi-explicit control law.

Example 7.3 Applying Stage III to Example 7.2 yields for u(k − 1) = [1 − 1 − 1]T

the explicit control law shown in Fig. 7.9. Each color corresponds to a voltage vector

u(k) ∈ U . In particular, the large polyhedron in the center of the three-dimensional state

space refers to u(k) = u(k−1). The explicit control law comprises a total of eight control

laws similar to Fig. 7.9, where each one corresponds to a formerly applied voltage vector

u(k − 1) ∈ U . The computation was performed using the function mpt removeOverlaps

of the Multi-Parametric Toolbox [KGBM04]. The computation time was 15 min on the

same machine as before.

Using the same set-up, we have computed in Section 7.2.5 the explicit control for MPC-

PL depicted in Fig. 7.2. As Figs. 7.2 and 7.9 show for the same drive, operating point

and discrete state (last voltage vector) the polyhedral partitions of the two control laws

for MPC-PL and MPC-FMB, respectively, both controllers can be directly compared

to each other. We observe three main points. Firstly, the two control laws are very

similar, in the sense that the large center polyhedron refers to the repetition of the last

voltage vector, the neighboring polyhedra refer to voltage vectors that involve a switch

transition in one inverter stack, and the outer polyhedra refer to voltage vectors with

multiple switchings. Yet, secondly, the polyhedral partition of the MPC-FMB control

law is significantly simpler and contains by far less polyhedra. As mentioned in the

introduction of this section, this reduced complexity is the prime motivation for MPC-

FMB, which results from the simple control approach. Thirdly, the polyhedra partition

of MPC-FMB is a subset of the partition of MPC-PL. This results from the fact that

the polyhedral partition of MPC-FMB contains only states referring to outputs that are

either feasible at the current time-step or will become feasible at the next time-step. In

MPC-PL, however, the strict feasibility of the output variables is relaxed by the use of

soft constraints. Therefore, the polyhedral partition of MPC-PL includes states whose

outputs potentially may violate the bounds for more than one time-step.

7.3.3 Performance Evaluation

The simulation results presented in this section were derived for a DTC drive featuring a

two-level inverter. The parameters of the drive are given in Table 7.13 and the operating

point we consider is as in Example 7.1. As the parameters, the operating point and
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N Switching Total number of polyhedra Total number of polyhedra

frequency [Hz] in semi-explicit control law in fully explicit control law

2 632 292 1192

3 606 440 1891

4 572 625 2226

5 540 860 2907

6 510 1051 3362

7 495 1256 3737

8 547 1467 4443

9 574 1694 4758

Table 7.5: Performance and complexity of the state-feedback control law for MPC-FMB

the bounds imposed on torque and flux are the same as for MPC-PL in the previous

section, we can employ MPC-PL as a benchmark to which we compare the performance

of the proposed MPC-FMB scheme in terms of the average inverter switching frequency.

Recall that the corresponding state-feedback controller of MPC-PL, which was derived

for a prediction horizon of two and features a total of 47’000 polyhedra, yields for the

above setup an average switching frequency of 525 Hz. Note that in the MPC-PL scheme,

switching is allowed at every time-step within the prediction horizon.

As mentioned before, the only design parameter which influences the calculation of the

state-feedback controller and consequently the performance of the drive, is the maximal

horizon N over which the feasibility of each voltage vector is considered. The results

obtained with the MPC-FMB approach are summarized in Table 7.5 for eight different

values of the maximal horizon N . For the horizon used in MPC-PL, i.e. N = 2, the

switching frequency is significantly increased with respect to the benchmark. This is to

be expected, since the move blocking strategy (no switching of the control input within

the horizon) reduces the degrees of freedom of the control algorithm. However, setting

the maximal horizon to N = 5 yields a switching frequency that is comparable to the one

obtained with the MPC-PL approach, and the choices of N = 6 and N = 7 reduce the

switching frequency. Most important, this performance improvement is achieved despite

the complexity reduction of the state-feedback controller by an order of magnitude with

respect to its MPC-PL counterpart.

Focusing on the case of N = 7, the relative switching frequency improvement with

respect to the benchmark amounts to 5.7 %. Furthermore, we should point out that using

MPC-FMB the bounds on the torque and the stator flux are very strictly respected. The
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MPC-PL scheme, however, allows for small violations of the bounds; the degree of the

violations can be adjusted using the penalties on the soft constraints as design parameters,

which affect the switching frequency. As tightening the bounds increases the switching

frequency, the performance improvement is even more pronounced.

For completeness, one should note that the switching frequency does not monotonically

decrease with N . This phenomenon has also been observed with the MPC-PL scheme

and is currently under investigation. In particular, a further increase of the horizon to

N = 8 or N = 9 leads to a performance deterioration with respect to N = 7.

7.3.4 Extensions

The controller presented in this section could be extended in the following two ways.

Firstly, by considering changes in the operating point. This necessitates the parametriza-

tion of the drive’s PWA model over the rotational speed ωr and the torque and flux bounds.

Concerning the bounds, only one parameter is needed for the median of the torque bounds.

The flux bounds and the width of the torque bounds can be assumed to be in general

time-invariant. Obviously, the complexity of the resulting controller would be increased.

Yet it is to be expected that the low complexity with respect to an accordingly extended

MPC-PL scheme is maintained.

Secondly, this approach can be extended by applying the presented method to a DTC

drive with a three-level inverter. As a result, two additional control objectives, namely

the regulation of the inverter’s neutral point potential and the even distribution of the

switching effort between the upper and the lower half of the inverter, arise. A straightfor-

ward approach would be to accurately model the nonlinear dynamics of the neutral point

potential. To avoid such a substantially more complex PWA model, a favorable approach

is to refrain from deriving the fully explicit controller and to rather use the semi-explicit

realization in combination with time-varying weights on the voltage vectors. An outer

loop should monitor the neutral point potential and set the weights accordingly to favor

the selection of voltage vectors that keep the potential within given bounds around zero.

The same approach can be also used for the even distribution of the switching effort. Since

these control objectives are roughly and heuristically defined, they do not require to be

strictly met thus rendering the above approach a sufficient approximation.

7.4 MPC based on Extrapolation

In this section, we present a third MPC scheme for the DTC problem that can be consid-

ered as a combination of the two preceding MPC-PL and MPC-FMBconcepts. Specifically,

we use a rather short horizon N and compute for the input sequences over the horizon
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the evolution of the controlled variables using the prediction model. To emulate a long

horizon, the ”promising” trajectories are extrapolated and the number of time-steps is

determined for which the controlled variables are kept within their bounds, thus yielding

the length of the extrapolated trajectory5. The cost of each input sequence is then com-

puted by dividing the total number of switch transitions in the sequence by the length

of the trajectory. Minimizing this cost yields the optimal input sequence and the next

control input to be applied. Hence, we refer to this scheme as Model Predictive Control

based on Extrapolation (MPC-E).

The major benefit of this approach is its superior performance in terms of switching

frequency, which is reduced with respect to ABB’s scheme [ABB] over the whole range

of operating points by up to 50 %, with an average reduction of 25 %. Furthermore, the

controller needs no tuning parameters. As the computation of an explicit solution is

avoided, all quantities may be time-varying including model parameters, set points and

bounds. Those can be adapted on-line, making the concept applicable to the whole range

of operating points. As all computations are performed on-line, the prediction model is

not restricted to be PWA, allowing us to use the nonlinear discrete-time model, which

is formulated in the stationary dq0 reference frame. This nonlinear model, which was

introduced in Section 6.2, uses only one modelling simplification, namely the assumption

that the rotational speed is constant within the prediction horizon6.

The MPC-E scheme is available in two forms with N > 1 and N = 1, differing mostly in

the degree of freedom for the input sequences and the handling of the switching constraints

and thus in the computational burden and the performance. The control algorithm and

the related computations are investigated in detail, allowing one to conclude that this

control approach is basically implementable in its present form on currently available

control hardware for DTC drives. Furthermore, the scheme is conceptually very simple

and flexible.

Here, we consider a three-phase three-level inverter driving a squirrel-cage induction

motor, but the approach can be also applied to drives with inverters of arbitrary levels

(e.g. two- or five-level inverters).

7.4.1 Horizon N > 1

For MPC-E with a horizon larger than one, we consider only input sequences of length N

that meet the switching constraints imposed by the physics of the inverter (see Fig. 5.4).

5We will later define in detail the notion of ”promising” trajectories, to which we will refer as ”candidate”

trajectories.
6The distribution of the switching effort (which roughly resembles the switching losses) is not included

in the model as closed-loop simulations with the MPC-E scheme indicate that the switching effort is

evenly distributed even without enforcing this objective.
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Figure 7.10: Example output trajectories for N = 2. The feasible region above the lower

bound is hatched

Control Concept and Algorithm

Given the current state x(k), the last control input u(k−1), the bounds on the controlled

variables, and using the discrete-time nonlinear prediction model (6.14) of the DTC drive,

the controller computes at time-instant k the next control input u(k) in the following way.

1. Given the last control input u(k− 1) and taking into account the constraints on the

switch transitions induced by the inverter topology, determine all input sequences

U i(k) = [ui(k), . . . , ui(k +N − 1)] over the horizon N , where i ∈ I.

2. For these input sequences, compute the system response, i.e. compute all open-loop

torque, stator flux and neutral point potential trajectories starting from x(k) over

the horizon N given by Y i(k) = [yi(k), . . . , yi(k + N)]. As the DTC drive has no

feedthrough, the current output y(k) depends only on the measured state x(k) and

is included solely for completeness.

3. Determine those input sequences that have output trajectories that are either fea-

sible at the end of the horizon or pointing in the proper direction for all time-steps

within the horizon. Feasibility means that the controlled variable lies within its

corresponding bounds at time-step k + N ; pointing in the proper direction stands

for the situation in which a controlled variable is not necessarily feasible, but the

degree of the violation is decreasing for all time-steps within the prediction horizon.

Fig. 7.10 shows for N = 2 example trajectories that visualize these properties. The

above condition needs to hold componentwise, i.e. for all three controlled variables7.

We refer to those input sequences as candidate sequences U i(k) with i ∈ Ic ⊆ I.

4. For the candidate sequences, extrapolate the output trajectories from time-instant

7As an example, consider the following situation. The torque is feasible, the stator flux points in the

proper direction, and the neutral point potential is feasible.



7.4 MPC based on Extrapolation 149

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

k k + 2 k + 5 k + 10

1

2

3

(a) Torque trajectories

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

k k + 2 k + 5 k + 10

1
2

3

(b) Stator flux trajectories

Figure 7.11: Torque and stator flux trajectories of Example 7.4 starting at time-instant

k. The trajectories within the prediction horizon N = 2 are solid, their

extrapolations are dashed lines. The numbers refer to the indices of the

input sequences. The feasible region between the upper and lower bound is

hatched

k +N on linearly8 using the samples at k +N − 1 and k +N . Derive the number

of time-steps when the first of the three output variables leaves the feasible region

in between of the corresponding upper and lower bound9. This yields the number

of time-steps before the next predicted switching ni, i ∈ Ic.

5. Compute for each candidate sequence i ∈ Ic the cost

ci =
si

ni

, (7.13)

where

si =
k+N−1∑

ℓ=k

||ui(ℓ)− ui(ℓ− 1)||1 (7.14)

is the total number of switch transitions of the input sequence U i(k). This cost

approximates the average switching frequency by the number of switch transitions

over the number of time-steps the i-th candidate sequence can be applied before

switching again. The number of time-steps can be interpreted as a time-varying

horizon. Next, choose the sequence U i(k) with the minimum cost.

6. Apply the first control input ui(k) of the sequence.

8In particular for high speed operation, it is advantageous to extrapolate the stator flux quadratically

using also the flux sample at k + N + 1. The latter is computed by applying the control input

u(k + N) = u(k + N − 1).
9Note that we determine when the first output variable leaves the feasible region rather than when it

hits a bound. This is done to account for situations in which an output variable lies outside its bounds

but steers towards one of them.
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Index i Steps ni Switching transitions si Cost ci

1 4 1 1
4

2 10 2 1
5

3 – – –

Table 7.6: Characteristics of the three input sequences in Example 7.4

Example 7.4 To visualize the control concept, consider the example shown in Fig. 7.11.

Assume there exist only three input sequences U i(k), i ∈ I = {1, 2, 3} over the horizon

N = 2. According to the definition, U1(k) and U2(k) are candidate sequences, whereas

U3(k) is not. Extrapolating the torque and the stator flux trajectories and determining

when they leave the feasible region leads to the results summarized in Table 7.6. Mini-

mizing the cost yields the sequence U2(k). Note that without extrapolation, the corre-

sponding cost expressions would have been 1
2

and 1 for U1(k) and U2(k), respectively,

and the controller would have selected U1(k). In the long run, this choice would have

been inferior compared with U2(k) thus motivating the use of the extrapolation. In this

example, we have neglected the neutral point potential for the sake of simplicity. It is

treated in precisely the same way as the torque and the stator flux.

The computation of the next control input is drastically sped up by first evaluating

whether switching can be avoided altogether, i.e. whether the controlled variables are at

time-step k+N within their respective bounds when reapplying the last control input forN

steps. Only if this simple test fails, the above proposed computations need to be performed.

Furthermore, bound techniques can be added to prune suboptimal branches thus avoiding

the computation of the whole tree over N steps. In any case, the necessary computations

are simple as only a few multiplications and comparisons need to be performed. The

pseudo code of the control algorithm and a detailed analysis of the computational effort

will follow at the end of this section.

Features

As the control input is computed on-line using the state-space model for the machine and

the neutral point potential of the inverter, great flexibility is achieved. In particular, the

following changes can be performed on-line. (i) Adaptation of the model parameters (like

the stator resistance), (ii) changes in the operating point (e.g. in the rotational speed),

and (iii) changes in the bounds on the torque, stator flux or neutral point potential.

This flexibility is achieved by refraining from pre-solving the control problem off-line and

determining the control input by evaluating the resulting look-up table. Furthermore,

using the original nonlinear model and avoiding PWA approximations avoids artificial
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restrictions and limitations and keeps the control scheme versatile.

The notion of the candidate sequences with output trajectories, which are elementwise

either feasible at the end of the horizon or pointing towards the bounds, leads to the

following favorable properties. Firstly, in cases where the bounds are abruptly shifted

such that some or all of the controlled variables lie suddenly outside their bounds, an

input sequence that moves these controlled variables back inside the bounds within N

steps does not always exist. This problem is pronounced in the case of large steps on

the torque reference. Considering also sequences that move the controlled variables only

towards rather than inside the bounds avoids the problem of infeasibility of the control

scheme. Secondly, excessive switching is avoided when the bounds are slightly shifted or

when measurement noise or model uncertainties affect the predictions in an adverse way.

Note that the bounds on the controlled variables are in general not strictly imposed by

the MPC-E scheme, as output trajectories of candidate sequences may violate the bounds.

For examples, see Figs. 7.10(a) and 7.11. As a result, one or more outputs might slightly

violate their bounds before a new voltage vector is selected.

As was the case for the MPC-PL approach, the proposed MPC-E scheme is intended to

capture and minimize the average switching frequency, too. Therefore, a long prediction

interval is beneficial. To avoid an explosion of the related computational complexity,

we use a short prediction horizon N (usually two or three steps), but a long prediction

interval (up to 80 steps). This is achieved by extrapolating the output trajectories starting

at the end of the horizon until the first controlled variable hits one of its bounds. Linear

extrapolation is very easy to implement and computationally very cheap. Note that this

approach is closely related to blocking control moves and the Multiple-Rate Prediction

Model Approach that we have introduced for MPC-PL. As the simulation results will show,

this allows us to greatly increase the length of the prediction interval thus enhancing the

performance of MPC-E while keeping the computation times short.

Nevertheless, as constraints on the allowed switch transitions are present, short predic-

tion horizons N restrict the set of voltage vectors that can be reached within the horizon.

More specifically, up to four consecutive steps are necessary to switch from one voltage

vector to another (e.g. from [−1 − 1 − 1]T to [1 1 1]T and vice versa, see Fig. 5.4). Thus,

a horizon N = 2 is too short to ensure that any arbitrary voltage vector can be reached

within the prediction horizon. This issue becomes apparent for N = 2 only very rarely

(every few seconds), because those unreachable voltage vectors involve multiple switch

transitions and are thus very expensive in terms of the cost expression. By far more

frequent are infeasibilities due to the discrete nature of the voltage vectors and bounds

on the controlled variables that are overly tight. Section 7.5 analyzes and visualizes this

issue.

Most important, the proposed control scheme can be easily adapted to different drives
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stateUpdate output candidate extrapolate switches

16 + 1 + 8 + 3 10 33 19 3

Table 7.7: Number of operations in the subfunctions of the pseudo code for MPC-E with

horizon N = 2

with different motors and inverter topologies, as only the motor and inverter models

need to be updated, and because tuning parameters are missing. Furthermore, possible

constraints on the allowed switch transitions for the inverter can be easily taken into

account by using a look-up table.

Pseudo Code and Analysis of Computational Effort

In this section, we present the control algorithm for MPC-E withN > 1 as pseudo code and

analyze the related computational burden in detail. To simplify the exposition, the horizon

is fixed to N = 2. As with modern Digital Signal Processors (DSP) all basic operations

such as additions, multiplications, divisions and comparisons require one cycle, we only

count the number of basic operations and do not distinguish between them. Furthermore,

we assume that each voltage vector is associated with a unique integer number (e.g.

between 0 and 26), and that evaluating a look-up table requires one operation. Possible

operations for the loading or storing of variables and the execution of loops are neglected.

The pseudo code uses five subfunctions, which are detailed and analyzed in Section 7.4.3,

and whose number of operations are summarized in Table 7.7. The code differs slightly

from the control scheme presented in the beginning of this section allowing for a more

efficient implementation. To facilitate the readability, the code is divided into the four

blocks I to IV.

Block I Let F (k) denote the set of voltage vectors to which the inverter can switch

from u(k − 1). For all voltage vectors u(k) ∈ F (k), compute the corresponding output

trajectories from k to k + 1. Store the s1 results in the data structure auxPolicy.

F(k) = set of feasible voltage vectors at time-instant k given u(k-1);

s1 = 0; auxPolicy = [];

for u(k) in F(k)

x(k+1) = stateUpdate(x(k), u(k));

y(k+1) = output(x(k+1));

s1 = s1+1;

store x(k+1), y(k+1) and u(k) in auxPolicy{s1};

end
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Number of operations: Because the derivation of the set F (k) can be pre-computed and

stored in a look-up table, the first line of the code requires only one operation. As x(k) is

constant throughout Block I, the Term A in the function stateUpdate (see Section 7.4.3)

needs to be computed only once yielding 16+(1+8+3)s1 operations as shown in Table 7.7.

The function output leads to 10s1 operations.

Block II Branch on the s-th input sequence in auxPolicy by adding all feasible voltage

vectors at k + 1 to the input sequence and extend the corresponding output trajectories.

Store the s2 results in the data structure Policy.

s2 = 0; Policy = [];

for s = 1 to s1

F(k+1) = set of feasible voltage vectors at time-instant k+1 given

auxPolicy{s}.u(k);

for u(k+1) in F(k+1)

x(k+2) = stateUpdate(auxPolicy{s}.x(k+1), u(k+1));

y(k+2) = output(x(k+2));

s2 = s2+1;

store auxPolicy{s}, x(k+2), y(k+2) and u(k+1) in Policy{s2};

end

end

Number of operations: Similar to Block I, x(k + 1) is constant for fixed s leading to

16s1 + (1 + 8 + 3)s2 operations for the function stateUpdate and 10s2 operations for the

function output. The look-up table for F (k + 1) is evaluated s1 times.

Block III Determine the candidate trajectories, extrapolate them and compute the cost

expressions.

for s = 1 to s2

Y(k) = [Policy{s}.y(k) Policy{s}.y(k+1) Policy{s}.y(k+2)];

if candidate(Y(k))

U(k) = [Policy{s}.u(k) Policy{s}.u(k+1)];

cost{s} = switches(u(k-1), U(k)) / extrapolate(Y(k));

else

cost{s} = inf;

end

end

Number of operations: Assuming the worst case, namely that all s2 input sequences are

candidate sequences, leads to (33+3+19+1)s2 = 56s2 operations according to Table 7.7.
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Block I II III IV

Operations 17 + 22s1 17s1 + 22s2 56s2 s2 − 1

Table 7.8: Number of operations per block for the MPC-E scheme with N = 2

Block IV Minimize the cost and get the next voltage vector (control input).

s = arg min(cost);

u(k) = Policy{s}.u(k);

Number of operations: Minimizing over the s2-dimensional cost vector requires s2 − 1

operations.

Table 7.8 summarizes the number of operations per block. The total number of op-

erations amounts to 16 + 39s1 + 79s2. For the three-level inverter with the particular

constraints on the allowed switch transitions, s1 is upper bounded by 13 and s2 is up-

per bounded by 121. Therefore, the upper bound on the total number of operations at

time-step k is given by 10’082. Note that the computationally most expensive parts of

the code, namely Block III and IV, which require 70 % of the total computation power,

can be easily parallelized.

7.4.2 Horizon N = 1

The control concept proposed in the last section with a horizon larger than one is concep-

tually very simple. Nevertheless, the computational burden might still exceed the capa-

bilities of some of the existing DTC control hardware. Furthermore, given the constraints

on the switch transitions, short prediction horizons may impose restrictions on the set of

reachable voltage vectors. To eliminate this issue and to further reduce the computation

time, we propose in this section a modified scheme that uses a horizon of N = 1 and

ignores the switching constraints in a first step. The switching constraints are imposed in

a last step by building a feasible input sequence whose first element constitutes the next

voltage vector to be applied. As a result, the upper bound on the computational effort is

reduced by a factor of five with respect to MPC-E with N = 2.

Given two voltage vectors µ and ν, µ, ν ∈ {−1, 0, 1}3, a feasible switching sequence is a

sequence of voltage vectors that transforms µ to ν via intermediate voltage vectors while

taking into account the restrictions on the allowed switch transitions. From the fact that

switching in one component of a voltage vector (one stack of the inverter) by one switch

transition at a time-step is always possible, and because the components of the voltage

vectors are independent from each other, it follows directly that there always exists a

feasible switching sequence with ||µ − ν||1 switch transitions. Therefore, the constraints
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on the allowed switch transitions make it in general impossible to switch within one time-

step from µ to ν, yet they do not introduce additional switchings.

The feasible switching sequence is stored in a look-up table, which features only the first

voltage vector of the sequence. As the switching sequence is in general not unique, we use

the following rules to narrow the choices. (i) Follow the shortest path (in terms of time-

steps); (ii) choose the voltage vector that yields the least number of switch transitions in

the first step; (iii) choose the voltage vector that gives the most alternatives at time-step

k + 1. This leads to a look-up table of dimension 27× 27.

Additionally, one may exploit the 2π
3

symmetry of the voltage vectors in the dq0 plane

where three sectors are defined. In a first step, we need to determine the sector i, i ∈

{0, 1, 2}, where µ lies in. This can be done either using on-line computations, or by storing

the associated sector number for each vector in a look-up table with 27× 1 entries. Next,

the vectors µ and ν are mapped into the zero sector by shifting their components upwards

i times. In the zero sector, we evaluate a look-up table holding the first voltage vector of

the feasible switching sequence. As the zero sector comprises three zero, four short and

four long voltage vectors, the look-up table has dimension 11×27. In a last step, map the

derived voltage vector from the zero sector into the i-sector by shifting its components

downwards i times. Summing up, exploiting the 2π
3

symmetry reduces the size of the

look-up table and thus the memory requirements, but adds a few (simple) computations.

Control Concept and Algorithm

Setting the horizon toN = 1, the control algorithm is the same as described in Section 7.4.1

with the following differences, where the numbering corresponds to Section 7.4.1.

1. Given the last control input u(k − 1) and ignoring the constraints on the switch

transitions induced by the inverter topology, 27 input sequences of length one result.

For consistency, set U(k) = u(k).

6. Read out from the look-up table the first control input of the feasible switching

sequence from u(k − 1) to u(k), and apply it.

Features

The features of MPC-E with N = 1 are the same as for MPC-E with N > 1 described

in Section 7.4.1 except of the following difference. Relaxing the constraints on the switch

transitions and using the notion of the feasible switching sequence avoids the restriction

on the set of voltage vectors that can be reached within N steps. More precisely, any

voltage vector can be chosen, yet only the first voltage vector of the corresponding feasible
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stateUpdate output candidate extrapolate switches feasiblePath

16 + 1 + 8 + 3 10 24 19 1 8

Table 7.9: Number of operations in the subfunctions of the pseudo code for MPC-E with

horizon N = 1

switching sequence is implemented. This is done in accordance with the receding horizon

policy.

Apart from that, bounds on the controlled variables are handled in a different way. In

cases where the chosen voltage vector does not conflict with the switching constraints, i.e.

the desired voltage vector can be directly used and the feasible switching sequence is of

length one, the bounds are strictly respected. However, if the feasible switching sequence

comprises more than one element, the bounds are not guaranteed to be strictly respected.

Pseudo Code and Analysis of Computational Effort

In this section, we present the corresponding control algorithm as pseudo code and analyze

the related computational burden. As the analysis will show, the upper bound on the

computational burden is reduced by a factor of five with respect to MPC-E with N = 2.

The pseudo code uses the same five subfunctions as with N > 1 and additionally the

subfunction feasiblePath that determines the first voltage vector of a feasible switching

path as shown and analyzed in Section 7.4.3. The code is divided into the three blocks I

to III.

Block I Let F denote the set of all 27 voltage vectors. For all voltage vectors u(k) ∈ F ,

compute the corresponding output trajectories from k to k+1. Store the s1 results in the

data structure Policy.

F = set of all voltage vectors;

s1 = 0; Policy=[];

for u(k) in F

x(k+1) = stateUpdate(x(k), u(k));

y(k+1) = output(x(k+1));

s1 = s1+1;

store x(k+1), y(k+1) and u(k) in Policy{s1};

end

Number of operations: As for the algorithm with N > 1, the state vector x(k) is constant

throughout Block I making it possible to compute the Term A in the function stateUpdate
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Block I II III

Operations 610 1215 34

Table 7.10: Number of operations per block for the MPC-E scheme with N = 1

only once. According to Table 7.9, this yields 16 + (1 + 8 + 3) · 27 = 340 operations. The

function output requires 10 · 27 = 270 operations.

Block II Determine the candidate trajectories, extrapolate them and compute the cost

expressions.

for s = 1 to 27

Y(k) = [Policy{s}.y(k) Policy{s}.y(k+1)];

if candidate(Y(k))

U(k) = [Policy{s}.u(k)];

cost{s} = switches(u(k-1), U(k)) / extrapolate(Y(k));

else

cost{s} = inf;

end

end

Number of operations: Assuming the worst case, namely that all 27 input sequences are

candidate sequences, leads to (24 + 1 + 19 + 1) · 27 = 1215 operations.

Block III Minimize the cost and get the preferred (relaxed) next voltage vector. Taking

into account the constraints on the switch transitions, determine a feasible next voltage

vector (control input) that lies on the feasible switching path.

s = arg min(cost);

ur(k) = Policy{s}.u(k);

u(k) = feasiblePath(u(k-1), ur(k));

Number of operations: Minimizing over the 27-dimensional cost vector requires 26 oper-

ations, and determining the actual voltage vector u(k) using the notion of the feasible

switching path requires at most eight operations as shown in Table 7.9.

Table 7.10 summarizes the number of operations per block. The total number of oper-

ations is upper bounded by 1859.
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7.4.3 Subfunctions of Pseudo Codes

In this section, we present the functions stateUpdate, output, candidate, extrapolate,

switches and feasiblePath, which are subfunctions of the two pseudo codes, and analyze

the related computational effort.

Subfunction stateUpdate Given the state x(k) and the control input u(k), the state-

update function computes the successive state x(k + 1) using the discrete-time nonlinear

model of the drive (6.14a) which is repeated here for the ease of readability.

x(k + 1) = (I +

[

A 0

0 0

]

Ts)x(k)

︸ ︷︷ ︸

Term A

+

[

B1

0

]

Tsu(k)

︸ ︷︷ ︸

Term B

+

[

0

B2(x(k))

]

Ts|u(k)|

︸ ︷︷ ︸

Term C

(7.15)

In the sequel, we derive for each of the three terms in (7.15) the number of operations.

In a last step, the three terms are summed up.

• Term A: Recalling (6.11) and considering

I +

[

A 0

0 0

]

Ts (7.16)

as a 5 × 5 parameters matrix that is multiplied with the five-dimensional state

vector, ten non-trivial multiplications and six additions result yielding a total of

sixteen operations.

• Term B: Using (6.12), the computation of the term

B1Tsu(k) =
Vdc

2








2
3
−1

3
−1

3

0
√

3
3
−

√
3

3

0 0 0

0 0 0







Tsu(k) , (7.17)

requires eight operations. These can be avoided by exploiting the fact that the

voltage vectors belong to a discrete finite set and that the reference frame is fixed

(not rotating). This allows us to pre-compute and store Term B in a look-up table.

Encoding the 27 voltage vectors with integers and taking into account that Term B

has only two non-trivial rows yields a look-up table of dimension 27× 2.

• Term C: Rewriting (6.12) yields

B2(x(k))Ts|u(k)| = xT (k)
1

2xc











xrr

D
−1

2
xrr

D
−1

2
xrr

D

0
√

3
2

xrr

D
−

√
3

2
xrr

D

−xm

D
1
2

xm

D
1
2

xm

D

0 −
√

3
2

xm

D

√
3

2
xm

D

0 0 0











Ts|u(k)| . (7.18)
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Term A Term B Term C Summation

16 1 8 3

Table 7.11: Number of operations for the subfunction stateUpdate

Similar to above, most of the computations can be pre-computed, namely the com-

putation of the componentwise absolute input vector |u(k)| and its multiplication

with the 5 × 3 matrix. As the results is a 5 × 1 vector, whose fifth component is

always zero, it can be stored in a 27× 4 look-up table. Only the scalar product be-

tween x(k) and the vector stored in the look-up table needs to be computed on-line

summing up to seven operations and one evaluation of a look-up table.

• Summation: In a last step, Terms A, B and C are summed up. To simplify the

analysis, we rewrite (7.15) as

x(k + 1) =











∗

∗

∗

∗

∗











+











∗

∗

0

0

0











+











0

0

0

0

∗











, (7.19)

where the three vectors correspond to Terms A, B and C, and the non-zero elements

are depicted as stars. Thus, only three additions are needed.

Considering an evaluation of a look-up table as one operation, the number of operations

for each term is summarized in Table 7.11.

When adapting model parameters on-line like the stator resistance rs or the rotational

speed ωr, the expression (7.16) needs to be updated. When the dc-link voltage Vdc changes,

the look-up table storing Term B needs to be recomputed. All those operations are not

time critical as the parameters are changing slowly with respect to the sampling time

Ts = 25µs and can be thus performed by an additional outer loop.

Subfunction output For the state x(k), this function yields the corresponding output

y(k) using the nonlinear output function of the drive (6.14b)

y(k) =






xm

D
(x2(k)x3(k)− x4(k)x1(k))

√

x2
1(k) + x2

2(k)

x5(k)




 . (7.20)

The total number of operations10 sums up to ten.

10Note that one can avoid the computation of the square root by using the squared length of the stator

flux as an output rather than its length thus reducing the number of operations to nine. Obviously,
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Subfunction candidate To simplify the exposition, assume for now a horizon N = 2.

Then, this function checks whether the input sequence U(k) = [u(k) u(k + 1)] with the

corresponding vector valued output trajectory Y (k) = [y(k) y(k+1) y(k+2)] is a candidate

sequence. This corresponds to Point 3 in Section 7.4.1. Let Yj(k) = [yj(k) yj(k+1) yj(k+

2)] denote the j-th row of the vector valued trajectory, j ∈ {1, 2, 3}, which corresponds

to the evolution of one of the three output variables.

For the j-th trajectory, the following operations need to be performed.

• Feasibility at the end of the horizon N = 2. Determining whether yj(k + 2) lies in

between of its bounds requires three operations.

• Pointing in the proper direction for all time-steps within the horizon. Compute

for yj(k), yj(k + 1) and yj(k + 2) their corresponding distances dj(k), dj(k + 1)

and dj(k + 2) to the reference which lies between the bounds. Evaluate whether

dj(k + 1) ≤ dj(k) and dj(k + 2) ≤ dj(k + 1). This sums up to six operations.

• Checking if at least one of the two conditions holds is equivalent to one operation.

The above computations need to be done for j = 1, 2, 3 and then combined with an and

operation. This leads to 3(3 + 6 + 1) + 3 = 33 operations. In the case of MPC-E with

N = 1, the number of operations reduces to 3(3 + 3 + 1) + 3 = 24.

Subfunction extrapolate The extrapolation function is used to extrapolate either

linearly or quadratically the vector valued output trajectory Y (k) = [y(k) . . . y(k+N)],

and to determine the number of time-steps at which the first output variable leaves the

feasible region between the bounds. This corresponds to Point 4 in Section 7.4.1. Let

Yj(k) = [yj(k) . . . yj(k + N)] denote the j-th row of the vector valued trajectory, with

j ∈ {1, 2, 3}.

For the j-th trajectory, linear extrapolation involves the following operations. Let

λj = yj(k + N) − yj(k + N − 1) denote the j-th slope from k + N − 1 to k + N , and

yj,min and yj,max the corresponding lower and upper bound, respectively. The number of

time-steps at which the extrapolated trajectory starting at k+N leaves the feasible region

is given by

nj =
max

(
yj,max − y(k +N) , yj,min − y(k +N)

)

λj

. (7.21)

This procedure requires five operations and needs to be performed for j = 1, 2, 3. Taking

the minimum and adding the length of the horizon yields the number of time-steps n =

min(n1, n2, n3) + N at which the first output variable leaves the feasible region. A total

of 3 · 5 + 4 = 19 operations is necessary for that. Here, we have presented only the linear

extrapolation. Quadratic extrapolation requires roughly twice as many operations.

the bounds on the stator flux need to be adapted accordingly.
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Subfunction switches This function computes for an input sequence U(k) = [u(k) . . .

u(k+N−1)] starting from u(k−1) the total number of switch transitions given by (7.14).

The computation of ||u(ℓ)− u(ℓ− 1)||1 would require eight operations. Alternatively, we

suggest to use a (large) look-up table with 27× 27 elements leading to 2N − 1 operations.

Subfunction feasiblePath This function determines the first component of the fea-

sible switching path from the previously used voltage vector u(k − 1) to the one selected

by the control algorithm ur(k) where the switching constraints had been relaxed. As

described in Section 7.4.2, the following operations are needed. One look-up evaluation

to determine the sector number u(k − 1) lies in, at most four operations for mapping the

u(k − 1) and ur(k) into the zero sector, another look-up table evaluation to derive u(k)

in the zero sector, and at most two shifting operations to map the voltage vector into the

initial sector. Summing up, eight operations result in the worst case.

7.4.4 Performance Evaluation

This section compares the performance of the proposed MPC-E scheme with ABB’s

ACS6000 drive [ABB] via simulations over the whole range of operating points. The

comparison is done in terms of the average switching frequency and the mean squared

violation11 of the torque and stator flux violation of the imposed bounds. For both con-

trol schemes, the same bounds were used for the torque and flux. For the neutral point

potential they were chosen to reflect the behavior of ABB’s control scheme, thus ensuring

that the comparison is meaningful.

Three case studies were considered with DTC drives of medium and low power. The

respective ratings and parameters are summarized in Tables 7.13, 7.14 and 7.15 at the

end of this chapter, whereas Table 7.3 provides a rough overview of the case studies. The

evaluation was done for the whole range of operating points by gridding the speed ωr and

the load torque Tℓ at 0.1, 0.2, . . . 1.0 p.u.. The case of very high speed (0.9 and 1.0 p.u.)

was left out for Case Studies I and II as the dc-link voltage is too low to allow for a

reasonable operation at high speed. For each operating point, the simulations were run

for 2 s.

Horizon N > 1

Starting with MPC-E with a horizon larger than one as proposed in Section 7.4.1, we set

the horizon to N = 2 and restrict the number of input sequences by imposing an upper

bound of three on the total number of switch transitions over the horizon. This bound

11We are using the mean squared error rather than the root mean squared (rms) error.
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Figure 7.12: Case Study I: Comparison of switching frequency f of ABB’s DTC with

respect to MPC-E with N = 2 over the grid of operating points

20 40 60 80
20

40
60

80
100

0

10

20

30

40

ωr (%)
Tℓ (%)

re
d
u
ct

io
n

of
f

(%
)

(a) Relative reduction of switching frequency

(in per cent)

0 20 40 60 80

0
20

40
60

80
100

0

20

40

60

80

100

120

ωr (%)

Tℓ (%)

re
d
u
ct

io
n

of
f

(H
z)

(b) Absolute reduction of switching frequency

(in Hz)

Figure 7.13: Case Study I: Reduction of the switching frequency f of MPC-E with N = 2

relative to ABB’s DTC over the grid of operating points

removes a priori input sequences with very high costs and poses in general no limitation

on the performance.

For the first case study, Fig. 7.12 shows two comparisons of the switching frequencies

over the above defined grid of operating points in two different ways, while Fig. 7.13 shows

the relative and the absolute reduction of the switching frequency. Averaging the data
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Figure 7.14: Case Study I: Mean squared violation of torque and stator flux for ABB’s

DTC (upper surface) compared with MPC-E with N = 2 (lower surface)

over the grid of operating points

Case study Average reduction Maximal reduction

I 25 % or 60 Hz 42 % or 120 Hz

II 23 % or 66 Hz 42 % or 132 Hz

III 23 % or 91 Hz 49 % or 195 Hz

Table 7.12: Reduction of the switching frequency of MPC-E with N = 2 relative to ABB’s

DTC for the three case studies

in Fig. 7.13 over all grid points yields an average reduction of the switching frequency by

25 % (or 60 Hz), while the maximum improvement amounts to 42 % (or 120 Hz). Over

the whole range of operating points, the bounds on the torque, stator flux and neutral

point potential are at least as well respected as by ABB’s DTC scheme as shown in

Fig. 7.14. Nevertheless, as described in Section 7.4.1, also the MPC-E scheme allows for

slight violations of the bounds.

The figures for the Case Studies II and III are very similar and thus omitted here. As

shown in Table 7.12, the average and the maximal reduction for all three case studies

are very similar indicating that the proposed control scheme works equally well for DTC

drives with very different characteristics and ratings.

Horizon N = 1

For the case of MPC-E with a horizon N = 1 as introduced in Section 7.4.2, we have

considered only Case Study I. For Case Studies II and III, the performance is expected
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Figure 7.15: Case Study I: Comparison of switching frequency f of ABB’s DTC with

respect to MPC-E with N = 1 over the grid of operating points
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Figure 7.16: Case Study I: Reduction of the switching frequency f of MPC-E with N = 1

relative to ABB’s DTC over the grid of operating points

to be very similar, as it is the case for MPC-E with N > 1. Fig. 7.15 shows two compar-

isons of the switching frequencies over the grid of operating points in two different ways,

while Fig. 7.16 depicts the relative and the absolute reduction of the switching frequency.

Averaging the data in Fig. 7.16 over all grid points yields an average reduction of the

switching frequency by 16 % (or 40 Hz), while the maximum improvement amounts to
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Figure 7.17: Case Study I: Mean squared violation of torque and stator flux for ABB’s

DTC (upper surface) compared with MPC-E with N = 1 (lower surface)

over the grid of operating points

38 % (or 91 Hz). As shown in Fig. 7.17, the bounds on the torque, stator flux and neu-

tral point potential are practically perfectly respected over the whole range of operating

points.

Compared to the previous section showing the performance results for MPC-E with

N = 2, the performance improvement in terms of an average reduction of the switching

frequency is reduced by one third. However, at least in the absence of noise, MPC-E with

N = 1 keeps the controlled variables practically strictly within their bounds, whereas

MPC-E with N > 1 allows for small violations of the bounds. These differences make

it hard to directly compare the switching frequencies and put the loss in performance

improvement into perspective.

7.5 Infeasibilities

An inherent problem in DTC are infeasibilities, more precisely, situations in which the

control problem cannot be solved and a new voltage vector is not found. In the proposed

MPC schemes, infeasibilities manifest themselves when no sequence of manipulated vari-

ables exists that meets the constraints on the controlled variables. For MPC-E, this is

equivalent to cases in which no candidate trajectory exists. In general, the overall reason

for infeasibilities is the lack of enough degrees of freedom.

Factors limiting the degrees of freedom are. (i) The constraints induced by the upper

and lower constraints on the three controlled variables are too tight or even conflicting,

and (ii) the set of voltage vectors is discrete-valued and finite (eight for the two-level
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inverter, 27 for the three-level inverter). For three-level inverters with only one snubber

circuit per stack, two additional limitations arise. (iii) Constraints that are present on the

allowed switch transitions limit the set of reachable voltage vectors within one time-step,

while (iv) short prediction horizons N limit the set of reachable voltage vectors within

N time-steps. Points (i)–(iii) are a result of the control objectives and the physics of the

inverter, point (iv) is induced by the controller.

In the sequel, we provide a geometric insight in the nature of the problem focusing on

a three-level inverter. The result of this analysis is that even when considering only two

controlled variables and ignoring the switching constraints, the combination of points (i)

and (ii) can lead to an infeasibility.

Geometric Analysis

This section aims at determining the set of voltage vectors that keep the torque and the

length of the stator flux constant for a given state. To simplify the exposition, consider

the voltage vectors in the dq frame12 and neglect their discrete nature, i.e. assume that the

inverter can produce at each phase any voltage between −Vdc

2
and Vdc

2
, where Vdc denotes

the dc-link voltage. As a result, the 27 discrete voltage vectors shown in Fig. 5.3(b) are

relaxed to the set of vectors enclosed by a circle around the origin shown in Fig. 7.18(a).

Neglecting the zero component and using (5.5) and the first two rows of (5.3), the radius

of the circle is given by

max
uabc∈{−1,0,1}3

||
Vdc

2

2

3

[

1 −1
2
−1

2

0
√

3
2
−

√
3

2

]

uabc||2 =
2

3
Vdc , (7.22)

where || · ||2 denotes the length of a vector. We denote the relaxed voltage vectors in the

dq plane by ṽdq = [ṽd ṽq]
T , where

||ṽdq|| ≤
2

3
Vdc (7.23)

according to (7.22).

Using (5.13) and (5.10), the time derivative of the torque as a function of the stator

and rotor fluxes ψs = [ψds ψqs]
T and ψr = [ψdr ψqr]

T , respectively, the torque Te (which

is a function of the fluxes), the rotational speed ωr and the relaxed voltage vector with

components ṽd and ṽq is given by

dTe

dt
= −

rsxrr + rrxss

D
Te −

xm

D
ψT

s ψrωr +
xm

D

(
ψdrṽq − ψqrṽd

)
. (7.24)

Neglecting the first expression which is very small compared with the other two (in the

range of 5 to 10 %) and setting the derivative to zero, the expression simplifies to

ψdrṽq − ψqrṽd = ψT
s ψrωr . (7.25)

12We do not consider the zero component as the torque and the stator flux are independent from it.
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Regarding the components of the relaxed voltage vector as free variables, the latter is the

equation of a line on the dq plane that is parallel to the rotor flux vector. Assuming that

the torque and the length of the stator flux are kept within tight bounds keeps the inner

product of the fluxes nearly constant and renders a shifting of this line (with regard to

the rotor flux vector) proportional to the speed. Therefore, the set of voltage vectors that

produce a constant torque is affine in the dq plane. Voltage vectors between this line and

the origin decrease, vectors beyond the line increase the torque. Note that increasing the

speed shifts this line away from the origin thus reducing the number of available voltage

vectors.

The derivative of the length of the stator flux with respect to time is derived from (5.14)

and (5.10). It is a function of the fluxes, the length of the stator flux Ψs (which is a function

of the fluxes) and the relaxed voltage vector with components ṽd and ṽq

dΨs

dt
= rs

xm

D

ψT
s ψr

Ψs

−
rsxrr

D
Ψs +

ψdsṽd + ψqsṽq

Ψs

. (7.26)

Similar to the torque, we can neglect the first two expressions as they are very small with

respect to the third one (in the range of 5 %). Setting the derivative to zero yields

0 = ψdsṽd + ψqsṽq . (7.27)

The set of relaxed voltage vectors fulfilling (7.27) is a line, which is perpendicular to the

stator flux vector and contains the origin. This is an obvious result, as keeping the length

of the stator flux constant can only be achieved by vectors normal to the stator flux.

Vectors with an obtuse angle with respect to the stator flux increase, vectors with an

acute angle decrease the length of the stator flux.

Because of the linearity, one can easily describe the set of voltage vectors for which

the torque and the stator flux are increasing or decreasing in terms of an (unbounded)

polyhedron. Often, we also add the (quadratic) constraint on the length of the relaxed

voltage vectors (7.23) to the set.

Geometric Interpretation

Example 7.5 To visualize the above analysis, consider the following situation as an

example. The stator and rotor fluxes are given by ψs(k) = [−0.0622 1.0131]T and ψr(k) =

[0.0321 0.9268]T , respectively, yielding the torque Te(k) = 0.3381 and the length of the

stator flux Ψs(k) = 1.0150. The lower and upper bounds on the torque and stator flux

are given by Te,min = 0.3373, Te,max = 0.4788, Ψs,min = 0.9670 and Ψs,max = 1.0150.

The neutral point potential is υn(k) = 0.0398. As it is well between its lower and upper

bounds υn,min = −0.07 and υn,min = 0.07, respectively, it is neglected here. The former

control input is uabc(k − 1) = [−1 0 0]T . The motor and inverter parameters are given in
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(a) Reducing the speed moves the constant torque

line to the right (vertical dashed line)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

(b) Increasing the dc-link voltage increases the

length of the voltage vectors (stars bounded by

dashed circle)

Figure 7.18: Set of relaxed voltage vectors in the dq plane (hatched and cross hatched)

for Example 7.5 that increase the torque and reduce the length of the stator

flux for the given stator and rotor flux vectors

Table 7.13. Summing up, the torque is at its lower constraint, the stator flux at its upper

constraint, and the neutral point potential is well within its bounds. Thus, a voltage

vector needs to be found that increases the torque and reduces the length of the stator

flux regardless of the neutral point potential. This task seems to be trivial.

In the following, we visualize the example in the dq plane. In Fig. 7.18, the stator and

rotor flux vectors are pointing roughly along the positive q-axis. As the rotational speed

is counter clockwise, the shorter vector to the right refers to the rotor flux. Furthermore,

Fig. 7.18 shows for the speed ωr = 0.8 and the dc-link voltage Vdc = 1.5937 the sets

of voltage vectors yielding constant torque (solid vertical line) and constant flux (solid

horizontal line). The voltage vectors for Vdc = 1.5937 are given by small circles bounded

by the outer solid circle, whereas the voltage vectors for Vdc = 2 are stars bounded by

the outer dashed circle. The hatched area depicts the set of desired (relaxed) voltage

vectors that increase the torque and reduce the length of the stator flux. For ωr = 0.8

and Vdc = 1.5937, this set contains no discrete voltage vector, i.e. there exists no discrete

voltage vector that fulfills the constraints on the torque and the stator flux. Thus, the

control problem for the given fluxes cannot be solved and is infeasible.

This is a physical problem stemming from the fact that the number of discrete voltage

vectors is finite. In the following, we demonstrate the impact of the speed and the dc-link
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voltage on the size of the hatched set.

• Operating at lower speed. This reduces the rotational speed of the rotor flux vector

and allows one to apply shorter voltage vectors to produce sufficient torque. This

situation is shown in Fig. 7.18(a), where the speed is reduced from ωr = 0.8 to 0.6

moving the line corresponding to constant torque to the right (dashed line). Thus,

the selection process of the voltage vector is in general easier at lower speeds13.

• Operating with higher dc-link voltage. As depicted in Fig. 7.18(b) for Vdc = 2, this

would increase the length of the voltage vectors linearly. The new voltage vectors

are shown as stars bounded by the dashed circle.

In both cases, the original hatched area is augmented by the cross hatched area that

contains the discrete voltage vector [−1 0 1]T rendering the problem feasible.

Apart from that, a five-level inverter would increase the number of discrete voltage

vectors and covers the dq space more densely with discrete voltage vectors thus enlarging

the degrees of freedom and reducing the risk for infeasibilities.

Conclusions

It is important to note that the constraints on the allowed switch transitions in combina-

tion with short prediction horizons (as for MPC-E with N > 1 in Section 7.4.1) are not

the only reason for infeasibilities. Even when relaxing the switching constraints as done

here (and in MPC-E with N = 1 in Section 7.4.2), there may exist no discrete voltage

vector that keeps the controlled variables within the imposed bounds. This dilemma is

particularly emphasized in this example, where we are only considering two of the three

controlled variables (the torque and the stator flux). Adding the neutral point potential

with its bounds further reduces the set of voltage vectors that keep the controlled variables

within their bounds.

To overcome this problem, the only and ultimate solution is to relax some of the bounds

on the controlled variables. A reasonable choice is to start with the neutral point potential

and to additionally relax if necessary also the bounds on the stator flux.

7.6 Case Studies

For the performance evaluation of the proposed MPC schemes, three case studies were

considered with DTC drives of medium and low power. The respective ratings and pa-

rameters are detailed in the Tables 7.13, 7.14 and 7.15.

13Yet, the overall operation of the drive becomes more challenging at low speed due to the difficulties of

the estimation procedure.
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Induction Motor

voltage 3300 V rs 0.0108 p.u.

current 356 A rr 0.0091 p.u.

real power 1.587 MW xls 0.1493 p.u.

apparent power 2 MVA xlr 0.1104 p.u.

frequency 50 Hz xm 2.3489 p.u.

rotational speed 596 rpm

Inverter

dc-link voltage 4294 V Vdc 1.5937 p.u.

current 500 A xc 4.3715 p.u.

Table 7.13: Case Study I: Rated values (left) and parameters (right) of the induction

motor and the inverter

Induction Motor

voltage 3100 V rs 0.0048 p.u.

current 1477.3 A rr 0.0050 p.u.

real power 6.6 MW xls 0.1469 p.u.

apparent power 7.765 MVA xlr 0.0974 p.u.

frequency 65.6 Hz xm 2.8468 p.u.

rotational speed 979.1 rpm

Inverter

dc-link voltage 4294 V Vdc 1.6965 p.u.

current 2865 A xc 3.4955 p.u.

Table 7.14: Case Study II: Rated values (left) and parameters (right) of the induction

motor and the inverter

7.7 Conclusions and Future Research

Conclusions

In this chapter, we have proposed three novel model-based control schemes to tackle the

DTC problem. In the following, we summarize each of them.
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Induction Motor

voltage 400 V rs 0.0323 p.u.

current 31 A rr 0.0314 p.u.

real power 15 kW xls 0.1116 p.u.

apparent power 1.92 kVA xlr 0.1047 p.u.

frequency 50 Hz xm 2.0484 p.u.

rotational speed 970 rpm

Inverter

dc-link voltage 613 V Vdc 1.8769 p.u.

current 38 A xc 0.7021 p.u.

Table 7.15: Case Study III: Rated values (left) and parameters (right) of the induction

motor and the inverter

Based on an MLD model of the DTC drive, we have formulated and solved in Section 7.2

an optimal control problem tailored to the peculiarities of the DTC problem by employing

three different penalty levels, the Late Switching Strategy and the Multiple-Rate Predic-

tion Model Approach. The proposed MPC-PL scheme is based on a systematic design

procedure allowing one to adapt it to other inverter topologies and induction motor char-

acteristics. This is shown by applying the scheme to both the two- and the three-level

inverter. Furthermore, this approach clearly demonstrates the potential for improving the

performance of DTC with respect to state of the art industrial DTC look-up tables, as

the comparison with ABB’s ACS6000 drive emphasizes.

However, when solving the underlying optimization problem on-line to derive the con-

trol input, the corresponding computation times well exceed the sampling time of DTC.

Therefore, the proposed controller cannot be directly implemented and experimentally

verified making it mandatory to compute the (explicit) state-feedback control law, which

can be stored in a look-up table. For a DTC drive with a two-level inverter, this computa-

tion has been carried out using Dynamic Programming. Optimal Complexity Reduction

allowed us to reduce the number of resulting polyhedra by an order of magnitude. For the

case of the three-level inverter, the combinatorial nature of the problem and the higher

complexity of the model make the problem untractable using standard computational

power at hand.

The MPC-PL scheme can be considered as a starting point indicating that there exists a

potential for a significant performance improvement thus motivating further investigations.
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Yet, the complexity of the control scheme is both on-line and off-line prohibitive, and it

contains several tuning parameter in the cost function such as the weights on the soft

constraints.

Exploiting the fact that the DTC objectives rather relate to feasibility than to opti-

mality, we have proposed in Section 7.3 the MPC-FMB scheme, which allows for switch

transitions only at the current time step and employs blocking control moves for the whole

horizon, uses a time-varying prediction horizon, and avoids soft constraints using hard

bounds instead. In particular, MPC-FMB is tailored to the off-line computation of the

state-feedback control law, which features a complexity that is reduced by an order of mag-

nitude with respect to MPC-PL and simultaneously enhances the performance. Moreover,

it features only one tuning parameter, namely the maximal length of the horizon.

However, the state-feedback control law can only be derived for a particular operating

point (speed, torque and bounds), and the extension to DTC drives with three-level

inverters has not been tried due to the expected curse of dimensionality.

The last approach, MPC-E in Section 7.4 combines the advantages of MPC-PL and

MPC-FMB while adding the notion of extrapolation and the feasible switching path and

using a nonlinear motor model. The control scheme is available in two forms with horizons

larger than or equal to one. They mainly differ in the computational burden, namely the

upper bound on the computational burden of MPC-E withN = 1 is five times smaller than

the one with N = 2, but they both significantly improve the performance with respect

to state of the art industrial DTC schemes by reducing the average switching frequency

and the violation of the bounds imposed on the controlled variables. More specifically,

the simulation results for different DTC drives show that MPC-E with N = 2 reduces

the switching frequency over the whole range of operating points by 24 % compared with

ABB’s ACS6000 scheme, and the simplified scheme with N = 1 yields a reduction of the

switching frequency by 16 % while the bounds are at least as well respected as by ABB’s

DTC scheme.

The main advantages of MPC-E are the usage of on-line computations allowing for

time-varying parameters, set points and bounds, the lack of tuning parameters, and the

applicability to induction motors of very different characteristics driven by different in-

verter topologies. Summing up, the proposed control scheme provides superior perfor-

mance combined with simplicity and flexibility. It is our opinion that the computational

burden associated with MPC-E is close to the lowest possible that is achievable for a

model-based approach. Moreover, performing 2000 operations (for the simplified scheme)

within less than the sampling interval is demanding yet computationally feasible using

standard hardware technology. This is emphasized by the fact that our industrial partner

has filed the patent [GPM04d] for us, and is currently in the process of implementing

MPC-E for commercial prototyping.
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Summing up, from MPC-PL via MPC-FMB to MPC-E, the performance is constantly

improving, while the controller complexity and the computational burden is decreasing

by several orders of magnitude. The last scheme, MPC-E, is in terms of performance,

simplicity, flexibility and applicability by far the most promising one.

Future Research

As an outlook, it would be interesting to investigate the following four points. Firstly,

the analysis provided in Section 7.5 could be used to a priori rule out voltage vectors

that move the torque or the stator flux in the undesired direction and to thus reduce the

computation time. Secondly, the prediction model for MPC-E might be formulated in the

rotating reference frame similar to the Stator Flux Dynamics Model in order to reduce

the number of necessary operations. Thirdly, a major difficulty has not been addressed by

any of the MPC approaches here: the choice of the bounds on the controlled variables. In

practice, the bounds are not given a priori but rather must be tuned by the commissioning

engineer so as to keep the switching frequency acceptably low. To do so, one might try

to switch in such a way that the a given desired switching frequency is obtained within

the prediction horizon. As a consequence, the bounds would become obsolete. Last, the

state-feedback control laws for MPC-PL and MPC-FMB could by drastically simplified

by replacing groups of similar hyperplanes by one hyperplane as detailed in Chapter 4.
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8

Switch-Mode DC-DC Converters

8.1 Introduction

8.1.1 Switch-Mode DC-DC Conversion

Switch-mode DC-DC converters are switched circuits that transfer power from a DC

input to a load. They are used in a large variety of applications due to their light weight,

compact size, high efficiency and reliability. Specifically, they constitute the enabling

technology in computer power supplies, battery chargers, variable speed DC motor drives,

and sensitive and demanding aerospace and medical applications. Their analysis and

design – both in the open and the closed loop – have attracted a wide research interest,

and the quest for efficient control techniques is of interest for both the research and the

industrial community. Because the DC voltage at the input is unregulated (consider for

example the result of a coarse AC rectification) and the output power demand changes

significantly over time constituting a time-varying load, the scope is to achieve output

voltage regulation in the presence of input voltage and output load variations.

The difficulties in controlling DC-DC converters arise from their hybrid nature. In

general, these converters feature three different modes of operation, where each mode is

associated with a (different) linear continuous-time dynamic law. Furthermore, constraints

are present resulting from the converter topology. In particular, the manipulated variable

(duty cycle) is bounded between zero and one, and in the discontinuous current mode

a state (inductor current) is constrained to be non-negative. Additional constraints are

imposed as safety measures, such as current limiting or soft-starting, where the latter

constitutes a constraint on the maximal derivative of the current during start-up. The

control problem is further complicated by gross changes in the operating point due to

input voltage and output load variations, and model uncertainties.

Fixed-frequency switch-mode DC-DC converters use semiconductor switches that are

periodically switched on and off, followed by a low-pass filtering stage with an inductor

and a capacitor to produce at the output a DC voltage with a small ripple. Specifically,

177



178 8 Switch-Mode DC-DC Converters

the switching stage comprises a primary semiconductor switch that is always controlled,

and a secondary switch that is operated dually to the primary one. In its simplest form,

the secondary switch is one-directional and not controlled. More sophisticated topologies,

however, use a controlled bi-directional switch to avoid additional complications such as

the so called discontinuous conduction mode. For details the reader is referred to the

standard power electronics literature (e.g. [MUR89]).

The switches are driven by a pulse sequence of constant frequency (period), the switching

frequency fs (switching period Ts), which characterizes the operation of the converter. The

DC component of the output voltage can be regulated through the duty cycle d, which is

defined by d = ton

Ts
, where ton represents the interval within the switching period during

which the primary switch is in conduction.

The main control objective for DC-DC converters is to drive the primary switch with

a duty cycle such that the DC component of the output voltage is equal to its reference.

This regulation needs to be maintained despite variations in the load or the input voltage.

The basic concept that is currently used for the control of DC-DC converters is the Pulse

Width Modulation (PWM): The switch is turned on at the beginning of each switching

period, and it is turned off by the controller when a certain condition is fulfilled. A latch

keeps the switch turned off until the beginning of the next period. With this formulation,

the control problem is to decide at which instant within the switching period the switch

should be turned off.

8.1.2 Review of the State of the Art

The standard approach to model DC-DC converters is the method of state-space aver-

aging [Mv76, EvM82]. In order to bypass the difficulties posed by the hybrid nature of

the system, an averaged continuous-time model is obtained that uses the duty cycle as

an input and describes the system’s slow dynamic. This is done based on the basic as-

sumption that the switching period is by far smaller than the time constant of the low

pass filtering stage. The result of this procedure is still a nonlinear model due to the

presence of multiplicative terms involving the state variables and the duty cycle. Often,

the controller design is carried out using linear control techniques for an averaged model

linearized around a specific operating point. Apart from the limitations of this approx-

imation, the averaging procedure hides all information about the fast dynamics of the

system, and fast-scale instabilities like subharmonic oscillations cannot be captured.

A more rigorous approach is to avoid the classic averaging technique. Here, mostly

models given in the discrete-time domain have been reported, which produce an exact

nonlinear mapping of the state variables from the beginning to the end of the switching

period [KSV91,KMM00]. These methods successfully describe many aspects of the com-
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plex dynamics of DC-DC converters, and they are very suitable for analyzing phenomena

like subharmonic and chaotic oscillations that have been observed when DC-DC convert-

ers operate in closed loop [HDJ92]. Nevertheless, for design purposes they still carry

the difficulty of being nonlinear with respect to the duty cycle, and making a systematic

approach to the controller design problem a challenging task.

Concerning the operation of DC-DC converters in closed-loop, a variety of different

control strategies are used in practice, categorized in voltage and current mode control

schemes [MUR89]. Traditionally, they are all PI-type controllers tuned based on the above

linearized average models. Simple rules, such as selecting a cross-over frequency an order

of magnitude smaller than the switching frequency and a phase margin in the range of

45 to 60 degrees are used. Depending on the converter topology and the control strategy,

these tuning guidelines result in step responses with typical overshoots of up to ten per

cent and settling times in the range of 5 to 30 switching periods.

In the literature, a wide range of different strategies has been proposed for improving

the controller design. In the following, we will classify the controller designs according

to the models used by defining the categories averaged and linearized (with extensions),

averaged and nonlinear and non-averaged models. For each, we will refer only to some

representative contributions.

Controller Design for Averaged & Linearized Models In [LTL91,LTL93], the au-

thors propose a Linear Quadratic Regulator (LQR) based on a locally linearized discrete-

time model of the averaged DC-DC converter using a ∆u formulation. An additional

integrator is included to remove a steady-state error in the output voltage, and an ob-

server is added to provide estimates of the plant states. Even though the LQR approach

introduces the notion of optimality, it carries a number of drawbacks: disturbances are

handled only in an unsatisfactory way, the controller is designed for a locally linearized

model, and constraints cannot be addressed in the controller design.

Controller Design for Averaged & Linearized Models with Extension Based

on a family of transfer functions parameterized in the steady-state duty cycle, the author

of [SR91] derives a family of PI controllers with parameters that depend nonlinearly on the

steady-state duty cycle, where the tuning is done by following the guidelines of Ziegler and

Nichols. Unfortunately, during transients the issue of switching among the different PI

controllers is not addressed (a remedy might be for example a bumpless transfer scheme),

an additional anti-windup scheme is needed to handle the constraints on the duty cycle,

and a low-pass filter is added to the control loop, which leads to a deterioration of the

closed-loop performance. Moreover, it is not clear how to choose the duty cycle used to

define the controller parameters during transients.
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Starting from a nonlinear and non-averaged discrete-time model, a controller with two

components is proposed in [GMSV94]. The first component is an LQR controller that is

designed after linearizing the model around the nominal operating point. This component

is intended to provide good dynamic closed-loop performance. To better reject large

disturbances in the input voltage, a nonlinear feedforward term is added that can be

stored in a look-up table. To obtain variables that cannot be directly measured, an

extended Kalman filter is suggested.

Controller Design for Averaged & Nonlinear Models To improve the controller

performance, often a feedforward compensation term is added from the input voltage to

the PWM controller. In [CPV92], the parameters of this term are derived such that the

output voltage remains unaffected for a constant duty cycle. Unfortunately, this derivation

is done by neglecting the parasitic elements of the converter. In a later stage, a rather ad

hoc offset circuitry is suggested to cope with the effects of the parasitics.

For a continuous-time averaged nonlinear model, the authors of [KS99] propose a non-

linear suboptimal H∞-controller with an additional integrator. What is remarkable about

this approach is the fact that closed-loop stability is shown via a Lyapunov function.

Using a control methodology that extends the concept of Generalized Predictive Con-

trol [CMT87] to nonlinear systems, an unconstrained nonlinear predictive controller is

formulated for a DC-DC converter in [LK04]. The prediction model is a discrete-time

nonlinear averaged model neglecting the parasitics. The control horizon is set to one,

the prediction horizon amounts to a few switching intervals. The nonlinear optimization

problem is solved on-line in an iterative fashion. Assuming that the disturbances can be

measured, this approach has the advantage that the prediction model can be updated

on-line. However, an implementation becomes questionable due to the lack of conver-

gence guarantees and the potentially excessive computation time. As an unconstrained

optimization problem is solved, constraints on the duty cycle and the inductor current

cannot be handled directly.

Controller Design for Non-Averaged Models In [SR03], the advances in sliding

mode control for DC-DC converters are summarized. The key idea is to establish a sliding

surface for the average inductor current that corresponds to the desired output voltage,

and to indirectly regulate the output voltage through keeping the inductor current close to

the sliding surface. This leads not only to slow closed-loop responses, but also to significant

steady-state errors in the output voltage in the presence of unmodelled changes in the

load resistance. The author suggest to cope with the latter problem by integrating the

output voltage error and shifting the sliding surface accordingly. In general, changes in

the input voltage and parasitics are not addressed here.
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In more recent work, the hybrid nature of DC-DC converters is addressed for the mod-

elling and controller design [SEK03, Lin03]. Yet in these approaches, the switching fre-

quency of the converter is not kept constant. It is our belief, that such a problem setup

does not necessarily correspond to the physical reality of the current industrial practice,

since a variable switching frequency complicates the design of both the power stage of

the converter and the Electromagnetic Interference (EMI) filter. However, the constant

switching frequency might be sacrificed to increase efficiency, as is the case with resonant

converters that use zero current or zero voltage switching to minimize the switching losses.

More specifically, the DC-DC control problem is interpreted in [SEK03] as a synthe-

sis problem of a Hybrid Automaton [Hen00] satisfying safety properties and given per-

formance criteria. Specifically, a ball is derived, which is a subset of the set of states

satisfying the constraints, and switching is performed whenever the state vector reaches

the surface of the ball, and no synchronization scheme or latch to keep the switching fre-

quency constant is present. The proposed scheme resembles effectively a hysteresis type

of controller. In an extension, the switch on and off transitions are restricted to fixed

sampling instants, and a second inner ball is derived to account for this restriction. In

this control approach, the notion of a performance index is missing and only a minimal

performance is addressed.

In [Lin03], Relaxed Dynamic Programming, which is summarized in [Lin03], is used to

derive an explicit controller for a power converter with a current sink as load. Starting

from a non-averaged description, the model is expressed in discrete-time, and an objective

function over an infinite horizon with a ’forgetting factor’ is formulated. The complexity of

the resulting controller is rather large, thus making an implementation difficult. Moreover,

the switch on and off transitions are restricted to given sampling instants, and safety

constraints on the current are not addressed. Apart from that, switching the polarity of

the input voltage instead of switching between a positive potential and a ground seems

to be rather uncommon and renders a problem setup that cannot be directly compared

with the state of the art in the power electronics community.

Summary Except of [KS99] none of the above presented control approaches addresses

the issue of closed-loop stability, and with the exception of [SEK03] constraints (e.g. on

the duty cycle and the current) are not tackled in the design procedure. As a concluding

remark, one might state that the common element in the academic state of the art is the use

of simplified models for the description of the dynamic behavior of switch-mode DC-DC

converters. It is obvious that approximations like the use of averaged or locally linearized

models do not allow capturing the complex dynamics that stem from the hybrid nature of

DC-DC converters, and unavoidably narrow the space of the explored phenomena, thus

producing results of limited validity.
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8.1.3 Outlook

Motivated by these difficulties, we present in this chapter a novel approach to the modelling

and controller design problem of DC-DC converters using a synchronous step-down DC-

DC converter as an illustrative example. In Section 8.2, we summarize the nonlinear

continuous-time state-space equations of the converter, introduce the novel ν-resolution

modelling approach that allows us to describe the converter as a hybrid model both in

the MLD framework (Section 2.2.2) and in PWA form (Section 2.2.3). This leads to

a model that is valid for the whole operating regime and captures the evolution of the

state variables within the switching period. Based on the hybrid model, we formulate

and solve a constrained finite time optimal control problem in Section 8.3. This results

in a systematic controller design that achieves the objective of regulating the output

voltage to the reference despite input voltage and output load variations while satisfying

the constraints. In particular, the control performance does not degrade when changing

operating points. Most important, in Section 8.3.3 we pre-solve the control problem off-

line and derive the equivalent state-feedback control law parameterized over the whole

state-space. This controller can be stored in a look-up table, hence allowing for the

practical implementation of the proposed control scheme. A subsequent analysis for the

nominal case in Section 8.4 shows that the considered state space is a control invariant

set, implying that for all initial states within this set, a control input is always found

and all constraints are met for all future time steps. Most importantly, a piecewise

quadratic (PWQ) Lyapunov function is derived proving that the nominal closed-loop

system is globally exponentially stable. Finally, Section 8.5 illustrates various aspects

of the system’s behavior with simulation results including start-up, a comparison with

a current mode PI controller, and gross changes in the input voltage and the output

resistance.

8.2 Modelling the Synchronous Converter

We start by modelling the synchronous step-down converter in continuous-time, and derive

for each mode of operation the state-space equations. The model incorporates the parasitic

elements, in particular the internal resistance of the inductor and the Equivalent Series

Resistance (ESR) of the capacitor.

8.2.1 Continuous-Time Model

The circuit topology of the synchronous step-down converter is shown in Fig. 8.1. Using

normalized quantities, ro denotes the output load, which we assume to be ohmic, rc is

the ESR of the capacitor, rℓ is the internal resistance of the inductor, xℓ and xc represent
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Figure 8.1: Topology of the step-down synchronous converter

the inductance and the capacitance of the low-pass filtering stage, and vs denotes the

input voltage. For every switching period k, a duty cycle d(k), which is bounded between

zero and one, is chosen by the controller. For the time interval kTs 6 t < (k + d(k))Ts,

the switch S1 is on and power is transferred from the input directly to the load. While

S1 is on, the switch S2, which is operated dually with respect to S1, is off. At the

end of this time interval (at time t = (k + d(k))Ts), S1 is turned off and kept off for

(k + d(k))Ts 6 t < (k + 1)Ts. Accordingly, S2 is switched on thus providing a path for

the inductor current iℓ regardless whether the latter is positive or negative. At the end

of the switching period, at time t = (k + 1)Ts, S1 is switched on and S2 is switched off.

Plant Model Next, we present the standard modelling approach to a step-down con-

verter. This model will be used later to simulate the behavior of the plant. Defining

x(t) = [iℓ(t) vc(t)]
T as the state vector, where iℓ(t) is the inductor current and vc(t) the

capacitor voltage, and given the duty cycle d(k) during the k-th period, the system is

described by the following set of affine continuous-time state-space equations. While S1

is conducting, they amount to

dx(t)

dt
= Fx(t) + fvs, kTs 6 t < (k + d(k))Ts , (8.1)

and if S1 is off, the system evolves autonomously, i.e.

dx(t)

dt
= Fx(t), (k + d(k))Ts 6 t < (k + 1)Ts , (8.2)

where the matrices F and f are given by

F =

[

− 1
xℓ

(rℓ + rorc

ro+rc
) − 1

xℓ

ro

ro+rc

1
xc

ro

ro+rc
− 1

xc

1
ro+rc

]

, f =

[
1
xℓ

0

]

. (8.3)

The output voltage vo(t) across the load ro is expressed as a function of the states through

vo(t) = gTx(t) (8.4)
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with

g =
[

rorc

ro+rc

ro

ro+rc

]T

. (8.5)

The output variable, which is of main interest from a control point of view, however, is

the output voltage error that is obtained by integrating the difference between the output

voltage and its reference over the k-th switching period, i.e.

vo,err(k) =

∫ (k+1)Ts

kTs

(vo(t)− vo,ref ) dt , (8.6)

where vo,ref denotes the reference of the output voltage, which is always set to one.

Summing up, the synchronous converter features two operation modes with two different

affine dynamics. The two modes differ only in the affine expression and have the same

output function. At the beginning of the switching period, the first mode with (8.1) is

always active. The duty cycle d(k) determines the time within the k-th switching period

when changing from the first to the second mode. The latter evolves according to (8.2).

At the end of the period, the converter transitions back to the first mode.

It is important to note that in current practice the inductor current iℓ(t) and the output

voltage vo(t) can be directly measured. Variations in the input voltage vs(t) are considered

to be measurable in accordance with common practice [MUR89], too.

The constraints present in the converter model arise from two different sources. By

definition, the duty cycle d(k) is constrained between zero and one. Moreover, the fact

that the semiconductor devices and the load can physically handle only a certain maximal

current, poses an additional upper bound on the inductor current, which is given by

iℓ(t) < iℓ,max. This constraint is known as the current limit and is application specific.

In general, the parameters of a DC-DC converter are time-varying. However, these

variations can be divided into two categories. First, the parameters of the low-pass filtering

stage are only subject to slow deterioration over time or temperature changes. Specifically,

these include the ESR of the capacitor rc, the internal resistance of the inductor rℓ, and

the inductance and capacitance of the low-pass filtering stage xℓ and xc, respectively.

Here, we assume these parameters to be time-invariant. On the other hand, the input

voltage vs and the load resistance ro may vary step-wise and significantly. In particular

the load resistance may vary by several orders of magnitude from a short circuit to open

circuit conditions. Furthermore, in the problem set-up considered here, the output voltage

reference vo,ref and the current limit iℓ,max are not restricted to be time-invariant.

Prediction Model In the following, we reformulate the above presented model to tailor

it to the needs of the optimal control problem formulation.

First, from an implementation point of view, it is preferable that all states are directly

measureable. Thus, we replace in the state vector the capacitor voltage by the output
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voltage1. This leads to the redefined state vector x(t) = [iℓ(t) vo(t)]
T , and the matrices

F , f and g turn into

F =

[

− rℓ

xℓ
− 1

xℓ

1
xc

ro

ro+rc
(1− xcrc

rℓ

xℓ
) − 1

xc

1
ro+rc

(1 + xcrc
ro

xℓ
)

]

,

f =

[
1
xℓ

ro

ro+rc

rc

xℓ

]

, g =
[

0 1
]T

.

(8.7)

Second, we require the input voltage vs to be a parameter of the resulting optimal

control law to handle changes in vs straightforwardly. As will be motivated later, we

thus remove vs from the model equations by using vs to normalize the physical quantities

(states, output voltage reference and current limit) used in the model. Therefore, we

introduce the state x′(t) = x(t)
vs

, which scales (8.1), (8.2), (8.4) and (8.6) over vs. This

yields the reformulated state-space equations

dx′(t)

dt
=

{

Fx′(t) + f if kTs 6 t < (k + d(k))Ts

Fx′(t) if (k + d(k))Ts 6 t < (k + 1)Ts

(8.8a)

v′o(t) =gTx′(t) , (8.8b)

where the matrices F , f and g are as in (8.7), and v′o = vo

vs
is the scaled output voltage.

The relation for the output voltage error is given by

v′o,err(k) =

∫ (k+1)Ts

kTs

(v′o(t)− v
′
o,ref ) dt (8.9)

with the scaled output voltage reference v′o,ref =
vo,ref

vs
, and the scaled output voltage error

v′o,err = vo,err

vs
. Furthermore, we normalize the current limit

i′ℓ,max =
iℓ,max

vs

. (8.10)

Before proceeding, we elaborate on the parameters of the reformulated model for the

optimal control problem. As above, the system matrices F , f and g are assumed to be

time-invariant. Here, we additionally assume that the load resistance ro is constant2.

Through the normalization, the model equations became independent from the time-

varying vs. Hence, the only time-varying parameters of the model are the scaled output

voltage reference v′o,ref and the scaled current limit i′ℓ,max. Summing up, the model (8.7)–

(8.10) uses scaled states and has the two parameters v′o,ref and i′ℓ,max. In the sequel, we

will use the scaled model as prediction model for the constrained optimal control problem.

1In general, such a substitution is not performed, since the output voltage of most DC-DC converters

is not continuous over time. For the step-down converter treated here, however, the output voltage

is a continuous function of time. Furthermore, the MLD framework used for modelling could directly

incorporate such discontinuities.
2Later, we will relax this assumption and introduce a Kalman filter to account for changes in ro by

manipulating the scaled output voltage reference v′
o,ref .
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Figure 8.2: The ν-resolution modelling approach visualized for the k-th period. The evo-

lution of the states of the continuous-time nonlinear model (solid lines) is com-

pared with the sequence of states of the discrete-time hybrid model (dashed

lines) using ν = 10 subperiods, where the saw tooth shaped line represents i′ℓ
and the smooth curve is v′c.

8.2.2 ν-Resolution Discrete-Time Hybrid Model

Using the Prediction Model derived in the previous section as a starting point, the goal of

this section is to derive a model of the synchronous step-down converter that is suitable

to serve as a prediction model for the optimal controller. This model should include the

following properties. First, it is natural to formulate the model and the controller in

the discrete-time domain, as the manipulated variable given by the duty cycle is constant

within the switching period of length Ts and changes only at the time-instants kTs, k ∈ N0.

Second, it would be beneficial to capture the evolution of the states also within one period,

as this would enable us to impose constraints not only on the states at time-instants kTs

but also on intermediate values. This is particularly important for the inductor current,

which can vary drastically within one period and would allow us to keep its peaks below

the current limit. Third, the model needs to yield an approximation of the output voltage

error given by the integral (8.9). Most important, as the converter is intrinsically hybrid

in nature, we aim to retain the structure of the two operation modes and account for the

hybrid character.

Motivated by these considerations, we introduce the ν-resolution modelling approach

that accounts for all the above requested properties by dividing the period of length Ts

into ν subperiods of length τs = Ts/ν with ν ∈ N, ν ≥ 1. This concept is illustrated

in Fig 8.2. Within a period, we use ξ(n) to denote the states sampled with τs, and we
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refer to the discrete time-instants of the subperiods by n, where n ∈ {0, 1, . . . , ν − 1}.

Furthermore, by definition, ξ(0) = x′(k) and x′(k+ 1) = ξ(ν − 1) hold. Note that ξ refers

to the scaled x′.

Next, we introduce ν binary variables

σn = true ⇐⇒ d(k) ≥
n

ν
, n = 0, . . . , ν − 1 , (8.11)

which represent the sampled switch position of S1 at time-instants nτs. Recall that the

switch S2 is dually operated with respect to S1.

For each subperiod, we introduce the two modes discussed above (switch closed and

open, respectively) plus an additional third mode that captures the transition from mode

one to mode two. More specifically, the modes are (1) the switch S1 remains closed for the

whole subperiod, (2) the switch S1 is open for the whole subperiod, and (3) the switch S1 is

opening within the subperiod. Hence, for the n-th subperiod, the state-update equations

amount to

ξ(n+ 1) =







Φ ξ(n) + Ψ if σn ∧ σn+1 (mode 1)

Φ ξ(n) if σ̄n (mode 2)

Φ ξ(n) + Ψ(νd(k)− n) if σn ∧ σ̄n+1 (mode 3) ,

(8.12)

where Φ and Ψ are the discrete-time representations of F and f as defined in (8.7) with

sampling time τs. The third (auxiliary) mode refers to the mode transition where the

switch S1 opens within a subperiod. Note that if we are in the third mode, i.e. σn ∧ σ̄n+1

holds, (νd(k)−n) is bounded by zero and one. Thus, the third mode constitutes a weighted

average of modes one and two. The error introduced by averaging can be made arbitrarily

small by increasing ν.

On the evolution of the states ξ(n), we impose the safety current limit by adding the

constraints3

−i′ℓ,max ≤ [1 0]ξ(n) ≤ i′ℓ,max, n = 0, 1, . . . , ν − 1 . (8.13)

The notion of the ν-resolution modelling approach thus allows us to not only impose the

current limit at the time-instants kTs, but also on the intermediate samples with the finer

resolution Ts

ν
.

Using the sampled output voltage given by

v′o(n) = gT ξ(n) , (8.14)

we approximate the voltage error integral (8.9) for the k-th period in the following way.

v′o,err(k) =
ν−2∑

n=0

v′o(n) + v′o(n+ 1)

2(ν − 1)
− v′o,ref (8.15)

3Here, we constrain the current between its upper and lower bounds. In practise, however, only the

upper constraints are needed, since a negative current implies that power is drawn from the load to

the source what might only occur during short transients.
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Figure 8.3: Accuracy (2-norm error) of the state-update function of the ν-resolution model

with respect to the nonlinear dynamics

In summary, the ν-resolution modelling approach provides a description of the state

evolution within one period. In particular, the discrete-time sequence [ξ(0), ξ(1), . . . , ξ(ν−

1)] is an accurate sampled representation of the continuous-time evolution of x′(t) for

t ∈ [kTs, (k + 1)Ts]. The only approximation that has been introduced appears in the

third mode of (8.12) when the switch S1 is turned off.

In particular, ν is a design parameter that can be chosen depending on the desired

model accuracy. For the set of converter parameters in Table 8.1, which we will use at

the end of the chapter for the simulations, Fig. 8.3 shows the accuracy of the state-update

function (derived by exact time-discretization) of the ν-resolution model with respect to

the nonlinear dynamics, by plotting the 2-norm of the error for various values of ν over

the duty cycle d(k). As the error is independent from the state x′(k), this comparison

holds for the whole state-space. The choice of ν = 1 yields the standard average model,

which is predominately used for the controller design for DC-DC converters. Obviously,

the average model is perfectly accurate for d(k) = 0 and d(k) = 1, and it is at its worst

for d(k) = 0.5. As one can see, setting ν = 2 already significantly improves the accuracy

of the model. We would like to stress once more that these results hold for the whole

state-space making the model globally a valid approximation for all operating points,

rather than locally for a specific operating point, as standard linearization would do.

Before proceeding, we define constraints on the states, the parameters and the input.

For the states, we require x′(k) ∈ X ′ = [i′ℓ, ī
′
ℓ] × [v′o, v̄

′
o], and the model parameters are

restricted to [v′o,ref i
′
ℓ,max] ∈ V

′ = [v′o,ref , v̄
′
o,ref ]× [i′ℓ,max, ī

′
ℓ,max], where the lower and upper
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Figure 8.4: Polyhedral partition of the converter’s PWA model for ν = 3 (for the converter

parameters in Table 8.1, intersected with v′o,ref = 0.556 p.u. and i′ℓ,max =

1.667 p.u.)

bounds are application specific. The input, on the other hand, is physically restricted to

d(k) ∈ U = [0, 1].

8.2.3 ν-Resolution Model in MLD Form

The three operation modes of the ν-resolution model call for appropriate modelling us-

ing hybrid methodologies. For this, we use the Hysdel modelling language [TB04] to

conveniently describe the converter on a high-level textual basis; the code is summarized

in Appendix A.4. The derivation of the MLD model given as in (2.8) is performed by

the Hysdel compiler, which generates the corresponding matrices. For details about the

MLD framework, the reader is referred to Section 2.2.2. For the ν-resolution model, the

above procedure yields an MLD model with two states, two parameters, (7ν) z-variables,

(2(ν − 1) + 1) δ-variables and (24ν + 8) mixed-integer linear inequality constraints.

8.2.4 ν-Resolution Model in PWA Form

For the computation of the explicit state-feedback control law, the converter model is

required to be in PWA form. The mode enumeration algorithm allows for efficiently

transforming Hysdel models into their equivalent PWA representation. For more details

about the algorithm, the reader is referred to Chapter 3.
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The resulting PWA model is defined as a set of affine dynamics on a polyhedral partition

of the five-dimensional space X ′ × V ′ × U given by the states, the parameters and the

input. Since the binary variables σn, n = 0, . . . , ν − 1 define in (8.11) the modes along

the axis of the duty cycle, we expect the X ′ × V ′ × U space to be partitioned along the

duty cycle into ν polyhedra.

Example 8.1 To visualize the PWA model of the converter, consider as an example

the set of converter parameters given in Table 8.1. Furthermore, we set X ′ = [−4, 4] ×

[−0.1, 1] p.u., V ′ = [0.2, 1] × [0.6, 3] p.u. and U = [0, 1]. To visualize the polyhedral

partition, we perform an intersection of X ′ × V ′ × U with v′o,ref = 0.556 p.u. and i′ℓ,max =

1.667 p.u. thus removing the two dimensions corresponding to the parameter space V ′.

Fig. 8.4 shows the resulting polyhedral partition of the state-input space X ′ × U , where

we have additionally restricted the first state i′ℓ to [−i′ℓ,max, i
′
ℓ,max]. Note that small (large)

capacitor voltages and large (small) duty cycles correspond to large (small) inductor

currents. Since we have added the upper and lower safety current constraint in (8.13)

as hard constraints to the model, these state-input combinations are removed from the

X ′ × V ′ × U space.

Fig. 8.4 vividly visualizes the global character of the derived hybrid model. As the

converter dynamics are linear in the states, there is no partitioning in the state-space.

Yet, they are nonlinear in the duty cycle. We have approximated this nonlinearity by

the ν-resolution modelling approach, where we partition the duty cycle in ν segments

and approximate the transition from the first to the second mode by a third (auxiliary)

mode. In particular, the hybrid model is continuous when moving from one polyhedron to

a neighboring one. This follows from the state-update equations (8.12) and is confirmed

by the continuity in Fig. 8.3.

8.3 Constrained Optimal Control

In this section, we first formulate the control objectives in terms of an objective function

that leads in combination with the MLD model to a constrained finite time optimal control

(CFTOC) problem, which can be solved on-line. In a second step, we compute off-line

the state-feedback control law. For an overview of CFTOC, the reader is referred to

Section 2.4. In a last step, we introduce a Kalman filter that adjusts the output voltage

reference to address unmeasured changes in the load resistor.

In the sequel, we assume that the input and output voltages vs and vo, respectively,

and the inductor current iℓ can be measured. The output reference voltage vo,ref and the

current limit iℓ,max are given by the problem setup. Based on those measurements and



8.3 Constrained Optimal Control 191

parameters, the scaled quantities v′o, v
′
o,ref , i

′
ℓ and i′ℓ,max, which will be used as the inputs

to the optimal controller, directly follow.

8.3.1 Objective Function

In general, the control objectives are to regulate the average output voltage to its reference

as fast and with as little overshoot as possible, or equivalently, to (i) minimize the output

voltage error v′o,err (ii) despite changes in the input voltage vs or changes in the load

resistance ro and (iii) to respect the constraint on the inductor current. For now, we

assume that the load resistance ro is known. We will later relax this assumption.

To induce a steady state operation under a constant non-zero duty cycle, we introduce

with

∆d(k) = d(k)− d(k − 1) (8.16)

the difference between two consecutive duty cycles.

Define the penalty matrix Q = diag(q1, q2) with q1, q2 ∈ R+ and the vector4 ε(k) =

[v′o,err(k) ∆d(k)]T , with v′o,err(k) as defined in (8.15), and consider the objective function

J(x′(k), d(k − 1), v′o,ref (k), i
′
ℓ,max(k), D(k)) =

N−1∑

ℓ=0

‖Q ε(k + ℓ|k)‖1 , (8.17)

which penalizes the predicted evolution of ε(k+ℓ|k) from time-instant k on over the finite

horizon N using the 1-norm. The objective function not only depends on the sequence of

control inputs D(k) = [d(k), . . . , d(k +N − 1)]T and the current (measured) state x′(k),

but also on the last control input d(k − 1), the output voltage reference v′o,ref (k) and the

current limit i′ℓ,max(k), which are allowed to be time-varying to account for changes in the

input voltage vs(k).

Summing up, objective (i) is incorporated in the objective function, and objective (ii)

is handled by normalizing the prediction model by vs, feeding the model with v′o,ref , which

is basically the inverse of vs, and assuming for now that ro is known and the Prediction

Model can be updated accordingly. Objective (iii) is accounted for in the Prediction Model

where it is imposed as a hard constraint5 on the parameter i′ℓ,max.

4In [GPM04c] we have used a saturated version of ∆d(k) rather than ∆d(k) to allow for aggressive

control moves when the voltage error is large but to force the controller to act cautiously if the

output voltage is close to the reference and the voltage error is small. Since this introduces additional

polyhedra in the PWA model increasing the complexity of the state-feedback controller, and as the

gain in control performance is limited, we refrain from this concept here.
5In [GPM04c], however, we have imposed the upper bound on the inductor current as a soft constraints,

which either leads to an additional model output and an additional binary variable or requires a

slack variable. Here we refrain from doing so to not potentially induce additional polyhedra in the

state-feedback control law.
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8.3.2 On-Line Computation of Control Input

The control input at time-instant k is then obtained by minimizing the objective func-

tion (8.17) over the sequence of control inputs D(k) subject to the mixed-integer linear

inequality constraints of the MLD model (2.8) described in Section 8.2.3, the physical

constraints on the sequence of duty cycles

0 ≤ d(ℓ) ≤ 1 , ℓ = k, ..., k +N − 1 , (8.18)

and the expression (8.16). This amounts to the CFTOC

D∗(k) = arg min
D(k)

J(x′(k), d(k − 1), v′o,ref (k), i
′
ℓ,max(k), D(k)) (8.19a)

subj. to MLD model, (8.18), (8.16) (8.19b)

leading to the sequence of optimal duty cycles D∗(k), of which only the first duty cycle

d∗(k) is applied to the converter. At the next sampling interval, k is set to k + 1, a new

state measurement is obtained, and the CFTOC problem is solved again over the shifted

horizon according to the receding horizon policy. As we are using the 1-norm in all cost

expressions, the CFTOC problem amounts to solving a Mixed-Integer Linear Program

(MILP) for which efficient solvers exist (like [ILO02]).

8.3.3 Off-Line Computation of State-Feedback Control Law

To allow for an implementation of the proposed controller despite the high switching

frequency, the solution to the CFTOC problem (8.19) needs to be computed off-line.

To do so, we replace in (8.19) the MLD model by the equivalent PWA model (2.9) de-

rived in Section 8.2.4. For the PWA model, we assume the load resistance to be time-

invariant and nominal (ro = 1 p.u.). Then, we can compute the PWA state-feedback

control law employing Dynamic Programming and multi-parametric programming as out-

lined in Section 2.4.2, where the state vector x′(k), the last control input d(k − 1), the

output voltage reference v′o,ref (k) and the current limit i′ℓ,max(k) are treated as param-

eters. In particular, we refrain from parameterizing the control law in terms of the

load, as motivated in the next section. We summarize the parameters in the vector

p′(k) = [(x′(k))T d(k − 1) v′o,ref (k) i
′
ℓ,max(k)]

T with p′(k) ∈ Π = X ′ × U × V ′. The result-

ing control law is a PWA function of p′(k) defined on a polyhedral partition of the five-

dimensional parameter space Π. For more details concerning the algorithm, the properties

of its solution and techniques for implementation, the reader is referred to Section 2.4.2

and [Bor03].

Example 8.2 For the PWA model derived in Example 8.1 with the model and control

problem parameters given in Table 8.1, we compute the PWA state-feedback control law,
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Figure 8.5: Polyhedral partitions of the state-feedback control law for v′o,ref = 0.556 p.u.

and i′ℓ,max = 1.667 p.u., where the colors are arbitrarily associated to the

polyhedra
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Figure 8.6: State-feedback control law d(k) for d(k − 1) = 0.6, v′o,ref = 0.556 p.u. and

i′ℓ,max = 1.667 p.u., where dark blue corresponds to d(k) = 0 and dark red to

d(k) = 1

which is defined on 633 polyhedral regions in the five-dimensional parameter space Π.

Using the optimal complexity reduction algorithm described in Chapter 4, the controller

is simplified to 121 regions.

To visualize the state-feedback control law, we substitute v′o,ref = 0.556 p.u. and i′ℓ,max =

1.667 p.u. into the control law. As a result, the control law, which refers now to the nominal

case, is defined on the three-dimensional space X ′ ×U . Fig. 8.5 shows the corresponding
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polyhedral partition, and Fig. 8.6 depicts the control input d(k) as a PWA function of

x′(k), where we additionally set d(k− 1) = 0.6. Note that the control law is well-defined,

that is for each x′(k) ∈ X ′ and d(k − 1) ∈ U exists a polyhedron and an associated affine

control law such that d(k) can be evaluated as can be seen from Fig. 8.6(b). Yet, the

control law is discontinuous leading to the gaps visible in Fig. 8.6(a).

8.3.4 Load Variations

In addressing load changes, the following considerations arise from restrictions related

to the controller’s implementation. In an idealized simulation environment, one might

assume that the load resistance is known and that sufficient computational power is at

hand to solve the on-line optimization problem with the load resistance being a parameter

that is updated on-line. In reality, however, the load resistance is not known and the

computational power is rather limited. The latter makes it mandatory to refrain from

solving the optimal control problem on-line and to derive the state-feedback control law

as detailed in Section 8.3.3. For this controller, we have assumed that the load is time-

invariant and nominal, since a parametrization of the control law over the load is not

a feasible option, because the load enters the model equations nonlinearly, as can be

seen from (8.7). To account for that, numerous PWA approximations would be necessary

leading to an overly complex PWA model and an extremely complex state-feedback control

law. Therefore, although the load might be theoretically estimated (e.g. by using an

extended Kalman filter), this is not a viable option. What is needed, however, is a way to

cope with load changes without introducing too much of an additional complexity. Hence,

we aim at using the previously derived state-feedback controller with an additional loop.

As can be seen from (8.7), changes in the load resistor affect the converter dynamics and

the DC gain. This is particularly the case, when the load decreases significantly below

the nominal value (by 50 per cent or more). In this case, however, the only objective

of the controller is to respect the safety constraint on the inductor current and to drop

the output voltage accordingly. Predicting accurately the plant’s output voltage over

several switching periods is not needed. We conclude that this case is potentially easy

to be treated. On the other hand, if the load is roughly nominal or increased beyond its

nominal value, then the dynamics and the DC gain are subject only to minor changes.

Yet, due to the accuracy requirement for the output voltage regulation (steady state error

below one per cent), even small mismatches in the dynamics or the DC gain need to be

addressed. We suggest to cope with these issues by adjusting the scaled output voltage

reference fed into the controller such that the error between the output voltage and the

actual reference is made small.

This can be achieved by augmenting the Prediction Model (8.7)–(8.10) by a third state
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v′e that tracks the output voltage error, and by using a Kalman filter [Jaz70] to estimate

the augmented state vector

x′a =
[

i′ℓ v
′
o v

′
e

]T

. (8.20)

The augmented model has the switched stochastic continuous-time state equation

dx′a(t)

dt
=

[

F 0

0 0

]

x′a(t) +

{

f if kTs 6 t < (k + d(k))Ts

0 if (k + d(k))Ts 6 t < (k + 1)Ts

}

+Gω1(t) (8.21)

and the measurement equation
[

i′ℓ(t)

v′o(t)

]

=

[

1 0 0

0 1 1

]

x′a(t) +Hω2(t) , (8.22)

with the matrices G = diag(1, 1, 1) and H = diag(1, 1). The random variables ω1(t) ∈ R
3

and ω2(t) ∈ R
2 represent the process and the measurement noise, respectively. They are

assumed to be independent of each other with white and normal (Gaussian) probability

distributions with E[ω1ω
T
1 ] = W1, E[ω2ω

T
2 ] = W2 and E[ω1ω

T
2 ] = 0, where 0 is a zero

matrix of appropriate dimension. We require GW1G
T � 0 and W2 +HW1H

T ≻ 0. Note

that the augmented model is detectable and uses the nominal value of the load resistor.

The Kalman filter provides an estimate of the augmented state x̂′a(t), such that the

(steady-state) covariance matrix of the error between the state vectors of the augmented

plant and the estimator is minimized. The covariances of the noises are used to reflect

the dominant source of uncertainty. In general, they express the trade off between the

credibility of the obtained measurements with respect to the uncertainties on the dynamics

of the augmented stochastic model (8.21). A further elaboration on the concept of the

Kalman filter is beyond the scope of this thesis and the reader is referred to one of the

numerous control theory textbooks.

To allow for an easy implementation of the Kalman filter, we use a time-invariant filter

with a constant Kalman gain. Furthermore, for each mode of operation, one Kalman

filter is needed, and we switch between them according to the switch transitions in the

converter. Such an approach is possible as the mode transitions, which are imposed by

the duty cycle, are precisely known. The initial state of each mode is set to the last state

of the previous mode.

The vector on the left hand side of (8.22) holds the measurements from the plant with

a generally disturbed load ro 6= 1 p.u.. The states on the right hand side are estimated by

the Kalman filter using a converter model with the nominal load ro = 1 p.u.. Therefore,

the third state v′e primarily6 relates to the output voltage error that is caused by the model

6As mentioned in Section 8.2.1, the converter model may be subject to additional uncertainties apart

from ro and vs. Yet, those are in general minor with respect to the load changes. Furthermore,

changes in vs are addressed by the normalization and adjusting i′ℓ,max.
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mismatch due to the different loads. By setting all noise covariances to small values expect

for the process noise on v′e, the output voltage error is tracked by v′e. In a last step, we

adjust the output voltage reference v′o,ref by the voltage error. Specifically, we replace

v′o,ref in (8.9) by

ṽ′o,ref = v′o,ref − v̂
′
e . (8.23)

8.4 Analysis

In an a posteriori analysis, we aim at showing that the optimal controller leads to expo-

nential closed-loop stability by deriving a piecewise quadratic (PWQ) Lyapunov function.

This is possible since we have an explicit representation of the optimal control law at

our disposal. We describe the plant by the PWA Prediction Model (8.7)–(8.10), and re-

strict ourselves to the nominal case with nominal load and nominal input voltage. Hence, a

Kalman filter adjusting the output voltage reference is obsolete and the output voltage ref-

erence is time-invariant. Using the Prediction Model to close the loop, a closed-loop system

results, which is PWA and autonomous by definition. Let x′c(k) = [i′ℓ(k) v
′
o(k) d(k− 1)]T ,

x′c(k) ∈ X
′ × U denote its state vector, and assume that

x̄′c = lim
k→∞

x′c(k) (8.24)

exists with v̄′o = v′o,ref . Since we aim at showing stability of the equilibrium point x̄′c, we

perform the coordinate transformation

ζ(k) = x′c(k)− x̄
′
c . (8.25)

In the sequel, we consider the autonomous system with state vector ζ(k) ∈ Z, Z =

{ζ | ζ + x̄′c ∈ X
′ × U}. For this system, consider the control invariant subset Z0 ⊆ Z

defined as

Z0 = {ζ(0) ∈ Z | ζ(k) ∈ Z ∀k ≥ 0} . (8.26)

We adopt the PWQ function

L(ζ) = ζTPiζ (8.27)

with i being the index of the polyhedron of the autonomous system that holds ζ. In

particular, Pi is a time-invariant 3× 3 matrix corresponding to the i-th polyhedron. We

impose

L(ζ(k)) ≥ ̺i||ζ(k)||
2
2 ∀ζ(k) ∈ Z0 (8.28)

and

L(ζ(k + 1))− L(ζ(k)) ≤ −ρ||ζ(k)||22 ∀ζ(k) ∈ Z0 , (8.29)
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Figure 8.7: Value of Lyapunov function along closed-loop trajectory during start-up plot-

ted on the X ′ plane

where ̺i > 0 and ρ > 0. Note that (8.28) does not imply that the matrices Pi are

positive definite since the inequalities are required to hold only for the states in the i-th

polyhedron. Furthermore, L(ζ) may be discontinuous across the polyhedral boundaries.

Theorem 8.1 [FCMM02, Theorem 1] The equilibrium ζ = 0 of the above autonomous

system is exponentially stable on Z0 if there exists a PWQ Lyapunov function L(ζ) as in

(8.27)–(8.29).

For details on Lyapunov functions for PWA systems and computation approaches, the

reader is referred to [FCMM02] and [GLPM03], respectively.

Example 8.3 Consider the nominal Prediction Model with ro = 1 p.u., vs = 1.8 p.u.,

vo,ref = 1 p.u. and iℓ,max = 3 p.u., and the corresponding state-feedback control law de-

rived in Example 8.2. An analysis shows that the assumption in (8.24) holds, namely

a steady state solution x̄′c with v̄′o = v′o,ref exists allowing the derivation of the closed-

loop autonomous system with ζ(k) ∈ Z. Evaluating the state-feedback controller shows

that the control invariant subset is equal to X ′ × U , and consequently Z0 = Z. This

implies that for any initial state within X ′ × U , all constraints will be met at all future

time-instants. In particular, a control input will be always found.

Using the Multi-Parametric Toolbox [KGBM04], a PWQ Lyapunov function L(ζ) with

ρ = 3.4 · 10−5 is found within 2.9 min on a 2.8 GHz Pentium IV machine. Consequently,

for the nominal system, the state x̄′c, which corresponds to the output voltage reference

v′o,ref , is exponentially stable for X ′ × U . We would like to stress that the closed-loop

system is indeed globally stable for all x′c(k) ∈ X
′×U , and not only locally around v′o,ref .
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Parameters of the Converter

xc 70 p.u. xℓ 3 p.u. iℓ,max 3 p.u.

rc 0.001 p.u. rℓ 0.05 p.u. ro 1 p.u.

Parameters of the Control Problem

ν 3 N 2

q1 4 q2 0.1

Table 8.1: Model and controller parameters used for the simulation results

For the nominal start-up, the decaying value of the Lyapunov function along the closed-

loop trajectory x′c(k), k ∈ N0, is depicted in Fig. 8.7. In this figure, L(x′c(k)−x̄
′
c) is plotted

over the two-dimensional state-space X ′, where the third dimension corresponding to

d(k − 1) ∈ U has been omitted. Note that for X ′ the same scaling is used as in Figs. 8.5

and 8.6 to allow for a straightforward comparison.

8.5 Simulation Results

In this section, simulation results demonstrating the potential advantages of the proposed

control methodology are presented. Specifically, we examine the closed-loop dynamical

behavior for the start-up, the response to step changes in the input voltage, and the

response to step changes in the load resistance. These three cases are of prime interest

in practical applications and pose performance challenges for any control scheme. The

simulations were carried out using the nonlinear model of the converter as the real plant,

closing the loop with the PWA state-feedback controller. The inductor current of the

converter and the input and output voltages were regarded to be measurable as it is with

the current industrial practise. Furthermore, we neglect measurement noise. All variables

in the following figures are normalized to the per unit system, and one time unit of the

time axis equals one switching period.

The circuit parameters of the plant used in the simulations were chosen to represent

a realistic problem set-up, describing for example a 24 V to 12 V, 150 W step-down DC-

DC converter. Table 8.1 summarizes the converter parameters expressed in the per unit

system. If not otherwise stated, the input voltage is vs = 1.8 p.u. and the output resistance

is given by ro = 1 p.u.. The output voltage reference is vo,ref = 1 p.u..

The Prediction Model uses the same parameters as the plant models, with the dif-

ference that it is scaled with respect to vs and that it always uses the nominal load

ro = 1 p.u.. Even though two subperiods in the ν-resolution modelling approach yield sat-
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isfactory results, we chose ν = 3 subperiods to accurately model the nonlinear dynamics.

In Sections 8.2.3 and 8.2.4, we have derived the corresponding MLD and PWA model,

respectively. The polyhedral partition of the PWA model is visualized in Fig. 8.4.

Regarding the optimal control scheme, the penalty matrix is chosen to be Q =

diag(4, 0.1), putting a rather small weight on the changes of the manipulated variable.

The prediction horizon is in all cases N = 2. As detailed in Section 8.3.3 and Example 8.2,

the state-feedback control law is derived, which is shown in Figs. 8.5 and 8.6.

For the covariance matrices of the Kalman filter, we set

W1 =






0.1 0 0

0 0.1 0

0 0 100




 W2 =

[

1 0

0 1

]

. (8.30)

These are the same both for the on and the off mode (corresponding to S1 being on and

off, respectively).

8.5.1 Nominal Start-Up

Fig. 8.8 shows the step response of the converter in nominal operation during start-up with

the initial state x(0) = [0 0]T and d(−1) = 0. The output voltage reaches its steady state

within ten switching periods with an overshoot that does not exceed three per cent. As

mentioned in the introduction, settling times of up to 30 periods and overshoots of five per

cent are commonly encountered when using PI-type controllers. The current constraint is

basically respected by the inductor current during start-up. The small violations are due

to the coarse resolution chosen for the ν-resolution model, as the current constraint can

be only imposed at ν time-instants within the switching period. The steady state error

present in the output voltage is with 0.5 per cent sufficiently small and can be further

reduced by increasing ν.

Note that the steady state ripple in the converter variables results from the fact that

the converter is a switched circuit. Specifically, the ripple is an open-loop characteristic of

the system that depends on the plant parameters and the operating point. In particular,

it cannot be affected by the controller action. However, the ripple might be reduced by

altering the design of the power stage of the converter, namely by increasing the switching

frequency, or, at the expense of slower settling times, by increasing the capacitor and/or

the inductor.

In Fig. 8.9, we compare the following three control schemes for the nominal start-up:

MPC with a ν = 3 model, MPC with an averaged model (ν = 1) and the industrial

standard. The latter is the so called current mode control, which is the standard control

scheme used to handle current constraints. Since the generic scheme is known to be

unstable for duty cycles above 0.5 [MM01], we have included a slope compensation scheme
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Figure 8.8: Closed-loop response during start-up in nominal operation

to remove this instability. This addition and the tuning of the PI controller is done in

accordance with industrial practice following the design procedure summarized in [MM01].

The MPC scheme using the averaged model with ν = 1 leads to a steady state output

error of 3.5 per cent. Moreover, the current constraint is violated by up to 30 per cent,

thus making a shorter rise time possible. The inaccurate averaged model motivates the

use of a hybrid model with ν > 1. The current mode PI controller, on the other hand,

respects the current constraint and yields the same rise time as MPC with the ν = 3

Prediction Model. Yet it exhibits a large overshoot of almost ten per cent and a large

settling time of approximately 30 switching periods.
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Figure 8.9: Comparison of closed-loop responses during start-up in nominal operation for

MPC with ν = 3 model (straight blue lines), MPC with ν = 1 model (dashed

green lines), and current mode PI controller (dotted red lines)

8.5.2 Step Change in Input Voltage

Initially, the converter is operating at steady state with the nominal input voltage

vs = 1.8 p.u. when step changes in the input voltage are applied. These measured dis-

turbances occur at time-instant k = 4, but are fed to the controller with a delay of one

switching period. We consider two step changes; one up to vs = 3 p.u., and one down

to vs = 1.2 p.u.. The step-up change is shown in Fig. 8.10. The output voltage remains

practically unaffected and the controller finds the new steady-state duty cycle very quickly
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Figure 8.10: Closed-loop response to a step-up change in the input voltage from vs =

1.8 p.u. to vs = 3 p.u. at time-instant k = 4
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Figure 8.11: Closed-loop response to a step-down change in the input voltage from vs =

1.8 p.u. to vs = 1.2 p.u. at time-instant k = 4

within four switching periods. This new duty cycle is also responsible, due to the open-

loop characteristics of the converter, for a larger ripple in the inductor current and the

output voltage. Similarly, when applying the step-down change, the output voltage re-

mains practically unaffected, and the relatively large undershoot results from the physical

limitation of the duty cycle, as can be seen in Fig. 8.11.
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Summing up, disturbances in the input voltage are rejected very effectively by the

controller, and the output voltage is quickly restored to the reference. This is due to the

fact that the state-feedback control law is indirectly parameterized over the input voltage

by scaling the measured states, the output voltage reference and the current limit with

respect to vs. As a result, the performance of the controller is not affected by changes in

vs.

8.5.3 Step Change in Output Resistance

In a last step, we investigate the closed-loop performance in the presence of major step

changes in the output resistance ro. Starting from the nominal load ro = 1 p.u., at time-

instant k = 4, three steps to ro = 4 p.u., ro = 0.5 p.u. and ro = 0.05 p.u. are applied.

The last case corresponds to a short circuit and aims at activating the constraint on the

current limit. In the sequel, we consider the following two control schemes.

• Implementable Scheme: For the explicit state-feedback control law, we assume ro to

be unknown. More specifically, the Prediction Model and the state-feedback control

law are designed assuming nominal load conditions, and the Kalman filter is used

to adjust the output voltage reference v′o,ref . This corresponds to an implementable

control scheme.

• Idealized Scheme: For comparison, we also consider a simulation set-up where we

solve the CFTOC on-line. For this, we assume ro to be known and update the

Prediction Model, which is given in MLD form, accordingly. As for the other sim-

ulations above, we assume a time delay of one switching period. Obviously, the

Kalman filter is obsolete for this setup and v′o,ref is thus time-invariant.

The three experiments are shown in Figs. 8.12, 8.13 and 8.14. The straight lines cor-

respond to the implementable control scheme, the dash-dotted lines correspond to the

idealized scheme.

Figs. 8.12 and 8.13 depict the closed-loop performance of the two schemes for the step-up

and the step-down case. As can be observed, the dynamic behavior of the implementable

scheme is similar to the idealized scheme – the major difference being the larger settling

time, which results from the dynamics of the Kalman filter. These depend on the noise

covariance matrices that allow for a trade-off between speed and sensitivity. Apart from

that, the Kalman filter in the implementable scheme tends to yield smaller steady-state

errors in the output voltage due to its inherent integrating action. Note that the large over-

and undershoots observed in these two cases are equal for both control schemes, since they

stem from the open-loop characteristics of the converter (relatively small output capacitor)
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Figure 8.12: Closed-loop response to a step-up change in the load resistor from ro = 1 p.u.

to ro = 4 p.u. at time-instant k = 4. The straight lines correspond to the

implementable control scheme (state-feedback controller and Kalman filter),

the dash-dotted lines correspond to the idealized scheme (on-line solution

with model adaptation)

and the fact that the worst-case scenario is examined here, where the disturbance is fed

to the control scheme with the maximum time delay of one switching period.

In the last case, we examine a crucial aspect of the controller operation, namely the

system’s protection against excessive load currents. The load drops at k = 4 from its

nominal value to a very small one (namely to ro = 0.05), almost creating a short circuit
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Figure 8.13: Closed-loop response to a step-down change in the load resistor from ro =

1 p.u. to ro = 0.5 p.u. at time-instant k = 4. The straight lines correspond

to the implementable control scheme (state-feedback controller and Kalman

filter), the dash-dotted lines correspond to the idealized scheme (on-line so-

lution with model adaptation)

at the output. The simulation results in Fig. 8.14 show that the controller respects the

current limit and forces the output voltage vo to drop to the level that is needed in order

to respect the constraint.

Such a feature is utilized in all practical applications through various protection schemes,

but is usually not explicitly considered as part of the controller design. The proposed
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Figure 8.14: Closed-loop response to a short circuit (the load resistance is reduced from

ro = 1 p.u. to ro = 0.05 p.u.) at time-instant k = 4. The straight lines

correspond to the implementable control scheme (state-feedback controller

and Kalman filter), the dash-dotted lines correspond to the idealized scheme

(on-line solution with model adaptation)

approach, however, addresses the current constraint (as well as the duty cycle constraint)

explicitly during the controller design, as can be also seen from the start-up simulation.

Considering the comparison of the two control schemes, we observe that they both

practically yield the same performance, since the Kalman filter and the inaccuracy intro-

duced by the usage of the nominal ro are overshadowed by the presence of the current
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constraint. The argument that follows is that for small changes in ro, a Kalman filter is

needed leading to a zero steady-state error, but possibly to a small deterioration of the

dynamic performance. Yet for large load drops, the Kalman filter has hardly any effect

on the closed-loop dynamics due to the activation of the current constraint. In particular,

the Kalman filter does not lead to violation of this constraint. This argument justifies the

reasoning in Section 8.3.4, where we have proposed the use of a prediction model with

nominal ro in combination with a Kalman filter.

8.6 Conclusions and Future Research

Conclusions

In this chapter, we have presented a new control approach for fixed frequency switch-

mode DC-DC converters by formulating an optimal control problem using hybrid systems

methodologies. More specifically, a novel ν-resolution hybrid model was introduced to

avoid averaging and to model the converter arbitrarily accurate, and a constrained finite

time optimal control problem was formulated and solved on-line and off-line. This control

methodology allowed us to explicitly take into account during the design phase physical

constraints, such as the restriction of the duty cycle to the interval between zero and

one, and safety constraints, such as current limiting. The off-line solution to the control

problem yielded an explicit state-feedback controller defined over a polyhedral partition of

the state-space that allows for the practical implementation of the proposed scheme. This

controller is parameterized not only over the measured states i′ℓ(k) and v′o(k), which are

scaled by the input voltage vs, and the previous duty cycle d(k−1), but also over the scaled

output voltage reference v′o,ref (k) and the scaled current limit i′ℓ,max(k). This allowed

us to efficiently reject disturbances in the input voltage of any magnitude. Moreover,

the addition of a Kalman filter estimating the output voltage error and adjusting the

voltage reference accordingly provides disturbance rejection to large changes in the output

resistance. These include short circuits, for which the output voltage is dropped such that

the safety constraints is respected. Most importantly, we were able to compute the control

invariant set and showed that the controller renders the nominal system exponentiallly

stable. Simulation results have been provided demonstrating that the proposed controller

leads to a closed-loop system with very favorable dynamical properties.

Simplification

These favorable properties come to the expense of a rather complex control law that is

yet expected to be implementable using today’s available hardware. Nevertheless, when

assuming a time-invariant output voltage reference as it is the case in a large number of
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applications, the controller can be simplified at the expense of a slight deterioration in

the performance with regard to the current limit. More specifically, let vo,ref be constant

and, without loss of generality, equal to one. Then, one may rewrite (8.10) as

i′ℓ,max = iℓ,max

v′o,ref

vo,ref

= iℓ,maxv
′
o,ref . (8.31)

With the reasonable assumption that iℓ,max is time-invariant, and taking into account that

the control law uses v′o,ref as a parameter, this reformulation removes the parameter i′ℓ,max

from the controller thus reducing the dimension of its parameter space from five to four.

The number of polyhedra of the controller is reduced roughly by a factor of two. However,

since the Kalman filter adjusts the output voltage reference, we have replaced at the end of

Section 8.3.4 v′o,ref by ṽ′o,ref = v′o,ref − v̂
′
e as in (8.23). This can lead to an ill-computation

of the current limit within the prediction model, and subsequently to a violation of the

actual current constraint. This violation is a linear function of the estimated output

voltage offset v̂′e. Therefore, the adverse influence of the above simplification can be easily

limited by imposing an upper constraint on v̂′e.

Future Research

Rather than deriving a discrete-time PWA model of the converter, another approach would

be to consider the nonlinear discrete-time averaged model, which is nonlinear but not

hybrid. Using this model, we propose to formulate a nonlinear optimal control problem,

and to derive the explicit control law using multi-parametric nonlinear programming (mp-

NLP) [Fia83]. Such a problem has been tackled in an approximate way in [Joh02] by

locally approximating the mp-NLP with multi-parametric quadratic programming (mp-

QP) sub-problems. Further results are reported in [Joh04]. The ideas reported in [BF02]

and [Bem04] might prove to be useful and inspiring, too. Based on these concepts, an

mp-NLP approach suitable for DC-DC converters should emerge that might be extended

in a later stage to a more general problem class.

Alternatively, one might refrain from computing an explicit state-feedback controller

altogether and solve the control problem on-line. The main advantage of such an approach

would be that parameters such as the input voltage, the output voltage reference, and an

estimate of the load resistance could be updated on-line in the prediction model. Such

an approach might be computationally feasible when restricting oneself to a very short

control horizon. The prediction horizon, however, might be chosen to be rather large if

necessary, since it does not significantly increase the computational burden. In particular,

for a control horizon of one, the optimizer of the minimization problem would be scalar.

By deriving a solution technique that exploits the system structure and is tailored to the

problem, a very short computation time is expected, which even might lie in the range
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of the time needed to search through a look-up table with 100 or more polyhedra in

a four or five-dimensional space. With such an approach, we would gain an enormous

flexibility and might be able to tackle any converter topology without major changes in

the problem set-up. This idea is inspired by the MPC-E scheme in Section 7.4 and the

on-line optimization reported in [LK04].
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9

Emergency Voltage Control in Power

Systems

9.1 Introduction

9.1.1 Voltage Stability in Power Systems

An electrical power system consists of numerous components connected together to form

a complex system generating, transmitting and distributing electrical power. Apart from

being among the largest man-made systems, power systems are substantially nonlinear,

the time-constants of its dynamics comprise several orders of magnitude, and many of its

control inputs are discrete-valued. Examples for the latter include capacitor banks and

tap changers, which must be switched using fixed step sizes, and load-shedding, which

must be carried out by disconnecting whole feeders since most utilities lack direct load

control schemes. Furthermore, generators include saturations to protect them from over-

excitation, and propositional logic, finite state machines and discrete events in general are

often part of embedded control loops. As an example, consider a transformer equipped

with an on-load tap changer (OLTC) and a rule-based controller to regulate the secondary

voltage by adjusting the transformer’s tap position. Concluding the above, power systems

are inherently hybrid systems.

Electric power systems and additional preventive control schemes are designed in such

a way that the system should be able to withstand any single contingency, that is, outage

of any single component without loss of stability and with all system variables kept within

predefined ranges [Kun94]. This is usually referred to as N-1 security. Not all possible

disturbances, however, can be foreseen at the planning stage and these may result in

instability leading eventually to collapse or islanding of the system. Guaranteeing that a

power system can cope with one outage is in many cases not sufficient, since the initial

outage triggers often additional outages thus requiring N-2 or N-3 security that is hard and

costly to ensure. Furthermore, because of environmental constraints on the extension of

213
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the transmission capacity, increased electricity consumption and new economic constraints

imposed by the liberalized power market, power systems are operated closer and closer to

their stability limits.

If a power system is heavily stressed, it can become unstable exhibiting slow voltage

drops that may lead to a voltage collapse resulting in a blackout if appropriate countermea-

sures are not taken. The main factors contributing to a voltage collapse are the generator

limits on the reactive power leading to a loss of voltage control at the generators, and

the self-restoring dynamic behavior evident in most loads. Moreover, additional primary

control loops regulating the voltage like OLTC can lead to instabilities. In general, the

main problem is the inability of the power system to meet its reactive demands. A voltage

collapse generally manifests itself as a slow decay of voltage over a time frame of several

minutes [Kun94].

In the past, a number of severe voltage instability incidents have occurred around the

globe [Tay94, vV98, TE97], most notably the recent blackouts in northeastern US and

southern Canada in August 2003 [US 04], in southern Sweden and eastern Denmark in

September 2003, followed only within a few days by the major blackout in Italy that

has affected most of the country’s 58 million people. As a consequence, voltage stability

has become a major concern in power system planning and operation and the need for

emergency control schemes that ensure stability – even during cascaded or multiple outages

– has increased. For an introduction to voltage stability, the reader is referred to the

textbooks [Kun94,Tay94,vV98] and the extensive bibliography [AL98].

In this chapter, we focus on the emergency voltage control problem on the level of the

transmission system. Emergency control needs to be applied in case of severe contingencies

that result in the violation of operational limits or even a voltage collapse unless proper

emergency control actions are taken. In the next section, we provide a brief review of

some of the related control methodologies.

9.1.2 Review of Emergency Voltage Control

Currently, most practical implementations of protection systems against voltage collapses

are purely rule-based and most often rely only on local criteria [CIG00]. General rules

are to disconnect load and to connect any available capacitor bank if the voltage drops

to abnormally low levels. Traditionally, these rules are tuned on an ad-hoc basis [CIG00].

In [vML02] however, a systematic approach has been reported, where an optimally tuned

rule is derived by solving a combinatorial optimization problem. Preliminary work by the

same authors includes [MLv00], where a Genetic Algorithm is used.

While local protection schemes have the obvious advantage of simplicity – they do not

require wide-area communication – it has been been shown that substantial benefits can
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be gained by coordinating the actions taken in different parts of the system [LK03]. In

particular, proper coordination of all control measures minimizes the amount of load shed.

Additionally, because of the nonlinearity of the power system, it is very difficult to specify

a single appropriate rule for the complete range of operating conditions.

Recent advances in computation, communication and power system instrumentation

technology, more specifically Phasor Measurement Units and Wide-Area Measurement

Systems [Reh01], have made coordinated and model-based approaches tractable. They are

highly attractive since the use of a model in combination with on-line optimization allows

for optimal coordination of different control moves and automatic adaption to changing

operating conditions. Thanks to this, they are less conservative than non-adaptive local

schemes – even if the local schemes have been optimally tuned – and avoid unnecessary

operations of the protection schemes thus minimizing the amount of load being shed.

Hence, in the sequel, we focus on emergency voltage control schemes adopting a cen-

tralized approach based on wide-area measurements. These schemes can be grouped into

static and dynamic control approaches. Static approaches such as power flow methods

are based on static models, and aim at restoring a lost equilibrium by applying adequate

control actions. These approaches can only guarantee the existence of such an equilib-

rium, but not that the system will be actually attracted to it. Therefore, we restrict

ourself to control schemes that are based on dynamic models to account for load restora-

tion phenomena and tap changer dynamics that constitute an integral part of the voltage

instability phenomena. Moreover, we consider only schemes that are model-based and

afford a systematic design procedure excluding heuristic methods.

Model Predictive Control

The concept of Model Predictive Control (MPC), which is summarized in Section 2.4,

is very suitable to be applied to power systems by formulating the emergency control

problem as an optimal control problem over a receding horizon. Specifically, the control

objectives – like keeping the voltages close to their nominal values, minimizing the control

moves, and avoiding load-shedding unless absolutely necessary – can be easily mapped

into a cost function. In particular, priorities in the control actions can be easily specified to

distinguish between cheap and expensive (emergency) control actions like load-shedding.

Since the optimal control input is obtained by solving the optimal control problem on-line,

the model can be adapted on-line in the presence of faults or changes in the topology of the

power system. Most importantly, MPC can directly handle soft and hard constraints, and

deal with integer manipulated variables and linear hybrid systems. The disadvantages

of MPC are that a rather accurate model of the power system is necessary, and that

the computation times for hybrid systems may explode when increasing the problem

complexity.
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Linearized Models In [LHO02], a control scheme for optimal coordination of load-

shedding, capacitor switching and tap changer operation is proposed that uses a dynamic

system model to preserve long-term voltage stability. This paper is the first to apply MPC

to the emergency voltage control problem. The hybrid behavior of the power system is

taken into account at the current sampling instant, but neglected within the prediction

interval, since a single linearized model is used for the whole prediction horizon. To fully

take the hybrid behavior into account, it is suggested to obtain the system response for each

admissible control move by simulating the system model over the prediction interval, what

is in general computationally very demanding. Moreover, the control scheme is restricted

to discrete-valued control variables thus leading to a purely combinatorial optimization

problem, which is solved by an exhaustive tree search. The computational burden of the

underlying optimization problem is reduced by employing a control horizon of one and

limiting the depth of the tree, or equivalently, restricting the maximal number of control

moves.

To render the problem tractable for large-scale applications, this work is extended

in [LK03] by heuristic search enhancements. In particular, a transposition table, branch

and bound techniques, search ordering, and iterative broadening are used. Moreover, the

scheme uses a simpler prediction model that is a linearized about the current operating

point of the power system. Yet, the scheme is successfully applied to the Nordic test

system from [CIG95] yielding impressive improvements with respect to the best available

local control strategies.

Models based on Trajectory Sensitivity In [ZA03], an emergency control scheme

is proposed that uses MPC and the notion of trajectory sensitivity [HP00,HP02], which

provide first-order approximations around the voltage trajectories (rather than an oper-

ating point). In the event of a contingency, the nominal system trajectory is predicted

over a given time horizon. If any voltage violates a given bound, the emergency control

scheme is triggered, and the sensitivities of the voltage trajectories are computed with

respect to changes in the control inputs at the current time-instant. The control inputs

include (constrained) real-valued inputs such as voltage references for Automatic Voltage

Regulators (AVR) in generators, and discrete-valued inputs such as load-shedding and

tap changer commands. Even though the hybrid character of the power system is partly

accounted for by allowing for discrete-valued inputs, OLTC automata are neglected. An

MPC formulation is devised with a control horizon of one, where the control actions are

prioritized as follows: tap changes, changes in the generator reference voltages and load-

shedding. Since the 1-norm is used, the underlying optimization problem amounts to a

Mixed-Integer Linear Program (MILP).

A related approach is pursued in [HG04], where an emergency control scheme is pre-
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sented aiming at using load-shedding in a non-disruptive way. This is achieved by ex-

ploiting the fact that in many cases load (like air conditioning) can be shed for a short

time with hardly any noticeable effect to the consumer. A hierarchical control scheme is

proposed, where a lower level scheme monitors and adjusts the controllable loads, and a

higher level controller establishes a coordinated load shedding strategy. For the latter,

MPC is used with a control horizon of one. The internal model of MPC incorporates a

static voltage dependent load model, and constraints on the control inputs and the con-

trolled voltages are introduced. The objective is to shed the minimal amount of load such

that the voltage constraints are met. This leads to a nonlinear optimization problem,

which is turned into an easy-to-solve Linear Program (LP) by approximating the voltage

behavior using the methodology of trajectory sensitivity [HP00,HP02]. Summing up, by

not explicitly addressing the hybrid nature of the power system, assuming real-valued

bounded control inputs and using first-order approximations around the voltage trajecto-

ries leads to a promising control approach with an underlying optimization problem that

can be efficiently solved for problems of very large scale.

Contributions of Control and Computation Project

In the Control and Computation (CC) project of the IST research framework IST-2001-

33520, two power systems defined in [Lar02] and [Lar03] were proposed as case studies.

These systems exhibit hybrid features, and are intended to develop and evaluate hybrid

control methodologies. The system [Lar03] is a two bus power system with an infinite

bus, a transmission corridor, a transformer equipped with an OLTC, a capacitor bank

and a dynamic load. The case study in [Lar02] features four buses and extends the

aforementioned power system by two more transmission corridors and a generator that is

equipped with an AVR. Before outlining our approach to tackle the case study [Lar02],

we provide for completeness a summary of the contributions proposed by the CC project

partners.

The approach described in [AAC05] tackles the four bus power system [Lar02], and aims

at formulating a nonlinear optimal control problem with the objective to keep the voltages

within the imposed bounds while minimizing load-shedding. A number of simplifications

are introduced, namely the problem is reformulated such that the power system features

only discrete-valued control inputs, and some of the control inputs are required to remain

constant over the prediction horizon. The first simplification leads to a discrete-valued set

of admissible control sequences, and the second one drastically reduces the cardinality of

this set. The control sequences are ordered such that non-disruptive control actions like

tap changing and capacitor switching are preferred over load-shedding. The simplified

nonlinear optimal control problem is solved at each time-step by simulating the system

responses to all admissible control sequences, using a Matlab/Simulink representation
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of the model. Previously, the same approach has been used to tackle the simplified

benchmark problem [Lar03]. Results can be found in [AAC04].

Obviously, such an approach is only feasible since all control inputs are discrete-valued,

and the set of control sequences has been considerably reduced. Unfortunately, an in-

ternal model to obtain the predictions is not available, and hence a closed form of the

optimization problem cannot be derived. Moreover, classic solver techniques for combi-

natorial optimization problems such as branch and bound are abandoned. Initially, in

2001, we have implemented precisely such an approach, too, but considered all control

sequences and used branch and bound techniques to cut down on the computation time.

The approach was dropped since it cannot handle real-valued control inputs and it scales

inherently poorly to large problems.

Another line of research is pursued in [Sol04], where the author proposes for the two bus

power system [Lar03] a controller consisting of three control loops. The first loop aims

at driving the power system to a stable equilibrium point (provided that such a point

exists). It manipulates the voltage reference of the OLTC, and consists of a feed-forward

compensator from the line impedance, and a feedback controller from the line and load

impedances, and the turn ratio of the transformer. The second and the third control loop

shed load and connect capacitors to the power system, respectively, if certain thresholds

on a stability margin are exceeded. It is our impression that this control scheme not only

circumvents the hybrid features of the power system, but the tuning and prioritization of

the control moves appears to be non-obvious and non-intuitive given that the controller

consists of three interacting control loops. Instead of being a wide-area emergency control

scheme, this approach rather resembles a local scheme that coordinates the control moves

in the OLTC and the load-shedding in the attached load, using only local information.

9.1.3 Outlook

This chapter is structured in the following way. After summarizing in Section 9.2 the

nonlinear model of the example power system, we detail the derivation of the prediction

model in Section 9.3. For the modelling, we use the Mixed Logical Dynamical (MLD)

framework (see Section 2.2.2) to account for the hybrid character of the power system.

Even though nonlinear functions need to be approximated by piecewise affine (PWA)

functions, the MLD methodology allows for modelling the power system in an arbitrarily

accurate fashion. Most importantly, all hybrid features of the power system such as OTLC

controllers with thresholds, propositional logic and state automata can be described by

introducing integer variables and mixed-integer linear inequality constraints. Moreover,

real-valued control inputs, and not only discrete-valued ones, can be directly addressed.

The optimal control problem is stated in Section 9.4, where we set up an MPC prob-
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lem. In its objective function, the deviation of the bus voltages from their references,

the violation of given soft constraints on these bus voltages, and the switching of the

manipulated variables are penalized. The control moves are categorized as nominal and

emergency control moves, with switching the capacitor bank and changing the voltage

reference of the tap changer being nominal moves, while load-shedding constitutes the

emergency control action. The latter is only applied if the soft constraints on the bus

voltages cannot be met when only resorting to nominal control moves. Note that MPC

allows for straightforwardly setting up the cost function. Specifically, tuning is avoided

since the control moves are prioritized according to the aforementioned objectives. More-

over, our MPC scheme is capable of predicting the hybrid evolution of the power system,

it features control horizons larger than one, and the underlying optimization problem is

given in a closed form.

In Section 9.5, the optimal control problem is solved on-line and simulation results are

provided. For the given example, the bus voltages can be stabilized by the proposed MPC

scheme using only nominal control moves. The chapter is concluded in Section 9.6, where

some future research directions are provided, too.

We would like to stress that in comparison to the previous work [LHO02, LK03], the

MLD framework allows us to model the hybrid behavior of the power system and thus

provides better accuracy since effectively the global behavior of the system is accounted

for in the prediction interval. It is believed that this is the first time a general-purpose

optimal control framework for hybrid systems is applied successfully to the emergency

voltage control problem.

9.1.4 Notation

Throughout this chapter, we assume that the voltages V , the currents I and the apparent

power S can be represented by phasors. The voltage V for example may be written as

V = Vmeδ = Vd + jVq , (9.1)

where the absolute value (or magnitude) of the voltage is Vm = |V |, the angle is δ = arg(V ),

and the direct and quadrature components are Vd = ℜ{V } and Vq = ℑ{V }, respectively.

As it is common practice in the power system community, all equations, variables and

parameters are normalized using the per-unit system (see e.g. [MBB97]).

9.2 Nonlinear Model

In this chapter, we will focus on the aforementioned power system [Lar02,GLM02], which

is contained in the Control and Computation (CC) project of the IST research framework
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Figure 9.1: Example power system, where the number of capacitor banks connected to the

system sC , the amount of load shed sL and the load voltage reference V4m,ref

are the three input variables. The output variables are the three bus voltages

V2m, V3m, V4m at Bus 2, 3 and 4, respectively

IST-2001-33520 as a case study. This power system incorporates all the components of a

mature power system and can be driven unstable exhibiting a voltage collapse. Neverthe-

less, it is small enough to serve as a starting point allowing for a successful derivation of

an emergency control scheme. Moreover, as shown in [LRB03], such a small system can

be used to model sensitive and vulnerable parts of a large power system. As an example,

consider a transmission corridor between two subsystems as described in [LRB03].

9.2.1 Overview

As depicted in Fig. 9.1, the power system contains two generators. Generator 1 is modelled

as an infinite bus, i.e. a large power system, whereas Generator 2 can only produce a limited

amount of reactive power. The latter includes an internal controller regulating the voltage

at Bus 2. The two generators are connected with each other and the transformer by the

three transmission corridors L1, L2 and L3. All these components form the transmission
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system of the power system.

The transformer incorporates an internal controller regulating the load voltage V4m

within a dead-band around the voltage reference V4m,ref . This controller is a finite state

machine and allows for changes in the tap position nT only every 30 s by one discrete step.

In addition, by manipulating sC , parts of the capacitor bank can be used to support the

power system by producing reactive power close to the load.

The distribution system that, in general, consists of numerous loads on different voltage

levels connected with each other by transformers is modelled using one load model aggre-

gating and approximating the whole distribution system. It is connected to the secondary

side of the transformer. Discrete parts of the load can be disconnected by using sL.

Originally, the model of the example power system has been given in Modelica [Til01]

describing the different component separately and connecting them with each other by

algebraic network equations. In the next section, the model is restated and reformulated

for convenience and to define a consistent notation.

9.2.2 Component Models

Hereafter, we present in detail the component models of the power system, namely the

two generators, the capacitor bank, the transformer, the load and the network. The

latter connects the components with each other via algebraic equality constraints thus

forming the overall model. In this, the bus voltages Vi = Vid + jViq, i ∈ {1, 2, 3, 4}, and

the currents Ii = Iid + jIiq, i ∈ {1, 2, 3, 4, 5} and Ic = Icd + jIcq may be considered as

“global” variables. Apart from these, additional “local” variables are necessary to model

the internal behavior of the components. The respective parameters of the component

models are given in Section 9.2.5.

Generator 1

Generator 1 represents a strong surrounding power grid that is modelled as an infinite

bus with the fixed voltage V1.

V1d = V1m,ref (9.2a)

V1q = 0 (9.2b)

Generator 2

According to Fig. 9.2, Generator 2 is made up by three parts, namely the turbine, the

synchronous machine and the automatic voltage regulator (AVR). The turbine delivers

the constant mechanical power Pm0 and drives the synchronous machine, which turns the

mechanical power into electrical power. As the time-scales of voltage instability scenarios
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Figure 9.2: Scheme of Generator 2

are well above one second, the transient and subtransient dynamics of the synchronous

machine may be neglected. Therefore, the synchronous machine exhibits simply a static

nonlinear input-output behavior.

The swing equation together with the transient EMF equation and the equation for the

electrical power amount to

Pm0 = Efdiq + (xd − xq)idiq , (9.3)

where the field voltage Efd is controlled by the AVR, and id and iq are the rotating

armature currents on the d- and q-axis, respectively. The armature voltages vd and vq are

given by

vd = −xqiq (9.4a)

vq = Efd + xdid . (9.4b)

Depending on the rotor angle φ, the Park transformation relates the rotating armature

entities to the terminal current I2 = I2d +jI2q and to the terminal voltage V2 = V2d +jV2q.

−I2d = − sin(φ)id + cos(φ)iq (9.5a)

−I2q = cos(φ)id + sin(φ)iq (9.5b)

V2d = − sin(φ)vd + cos(φ)vq (9.5c)

V2q = cos(φ)vd + sin(φ)vq (9.5d)

The equations of the synchronous machine (9.3)–(9.5) can be simplified to the algebraic

constraint

Efd =
V 4

2m + V 2
2mQ2(xd + xq) + (P 2

2 +Q2
2)xdxq

V2m

√

V 4
2m + (P 2

2 +Q2
2)x

2
q + 2V 2

2mQ2xq

(9.6)

with

P2 = −V2dI2d − V2qI2q = Pm0 (9.7a)

Q2 = V2dI2q − V2qI2d (9.7b)
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Figure 9.3: Scheme of the transformer

and

V2m =
√

(V2d)2 + (V2q)2 . (9.8)

Assuming that the generator is operating in voltage control mode, an AVR is used

to adjust the field voltage Efd and consequently the current in the field winding of the

synchronous machine. Specifically, the AVR is a saturating P-controller with an input

nonlinearity controlling the absolute value of the terminal voltage V2m by manipulating

Efd.

dEfd = 50(V2m,ref − V2m) (9.9a)

Efd = min(Ef,max, dEfd + Ef0) (9.9b)

The saturation element protects the generator against too high a field current and thus

from overheating. Yet, when Efd saturates, the control over the terminal voltage is lost,

and in case of a voltage instability scenario, this is one of the driving forces leading to a

voltage collapse if no appropriate countermeasures are taken.

Capacitor Bank

The capacitor bank can be used to inject reactive power close to the load. This enhances

the apparent power factor of the load, which is usually inductive, and reduces the amount

of reactive power to be transferred over the transmission network. Thus, the generators

are relieved and additional active power can be transferred via the transmission lines.

As a result, in general, the voltage at Bus 4 increases. According to the integer input

sC ∈ {0, 1, 2, 3} to the capacitor bank, different discrete parts cstep of the capacitor banks

are connected to Bus 3.

Icd = −cstep · sC · V3q (9.10a)

Icq = cstep · sC · V3d (9.10b)

Transformer

The transformer depicted in Fig. 9.3 connects the transmission system with the load by

stepping down the voltage. Moreover, the transformer is equipped with a tap on one of the
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windings to allow for controlling the load voltage by adapting the turns ratio. Since the

tap can be changed whilst the transformer is energized, one refers to such a transformer

as under-load tap changing (ULTC) or on-load tap changing (OLTC) transformer.

Modelling the transformer as an ideal transformer with the tap position nT and the

additional impedance RT + jXT , the primary voltages and currents can be expressed in

terms of the secondary voltages and currents in the following way.

V3d =
1

nT

V4d − nT (RT I4d −XT I4q) (9.11a)

V3q =
1

nT

V4q − nT (XT I4d +RT I4q) (9.11b)

I3d = −nT I4d (9.11c)

I3q = −nT I4q (9.11d)

The absolute value of the secondary voltage V4m, which is equal to the load voltage, is

given by

V4m =
√

(V4d)2 + (V4q)2 . (9.12)

This secondary voltage is required to vary only within small bounds around the given

reference of the secondary voltage V4m,ref in order to ensure an adequately constant load

voltage. This is accomplished by an internal voltage controller that manipulates nT

according to the evolution of the error V4m−V4m,ref . Specifically, a tolerance band centered

around the reference voltage V4m,ref with the width dT is introduced. If the load voltage

V4m exceeds this tolerance band, one of the two binary variables lwTol, upTol ∈ {0, 1}

is set to one, depending on whether the lower or the upper bound has been hit. These

binary variables are defined by the logic implications

[lwTol = 1] ←→ [V4m < V4m,ref −
dT

2
] (9.13a)

[upTol = 1] ←→ [V4m > V4m,ref +
dT

2
] . (9.13b)

Combining both variables, we define the binary variable

excTol = lwTol ∨ upTol (9.14)

stating whether the tolerance band has been exceeded or not.

The controller performs a tapping action, if the tolerance band has been exceeded

for a certain time, provided that the lower or upper physical limits of the tap changer

have not been reached yet. In [Lar02], the controller has been modelled as a finite state

machine. Here, we model the controller in an equivalent yet simplified way by switched

affine dynamics and logic implications as shown hereafter.
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First, we introduce the timer tT and the binary variable excDel stating whether the

time delay has been exceeded or not.

[excDel = 1] ←→ [tT ≥ τtapDelay + τmechDelay] (9.15)

The time delay is composed of two parts. The tapping delay τtapDelay, which is controller

specific and a tuning parameter, is introduced to avoid excessive tapping actions. Usually,

it lies in the range of 30 s to 60 s. The mechanical delay τmechDelay accounts for the time

the transformer requires to tap one step up or down. This takes usually less than 1 s.

Formulating the controller in the discrete-time domain, the timer is increased by the

sampling interval Ts if the load voltage violates the tolerance band and the time delay has

not been exceeded; else the timer is set to zero. This leads to the discrete-time switched

dynamic

tT (k + 1) =

{

tT (k) + Ts if [excTol(k) ∧ excDel(k) = 1] ,

0 else ,
(9.16)

where k ∈ N0 represents the discrete time-instant. In particular, the timer is reset to zero

when the time delay has been exceeded and, as we will see later, a tapping action has

been performed.

Since the tap position is constrained to nT ∈ [nmin, nmax], two additional binary variables

are needed to evaluate if tapping can be physically performed, or more specifically, whether

the tap position is not at its lower or upper limit nmin or nmax, respectively.

[lwLmt = 1] ←→ [nT = nmin] (9.17a)

[upLmt = 1] ←→ [nT = nmax] (9.17b)

If the load voltage is too large (small), the time delay has been exceeded and the trans-

former can physically tap down (up), the internal controller steps the transformer down

(up) by one tap step nstep. Summing up, the discrete-time switched dynamic for the tap

position nT is

nT (k + 1) =







nT (k)− nstep if [upTol(k) ∧ excDel(k) ∧ lwLmt(k)] ,

nT (k) + nstep if [lwTol(k) ∧ excDel(k) ∧ upLmt(k)] ,

nT (k) else .

(9.18)

The controller can be further simplified if the sampling interval Ts is equal to 30 s. In

this case, the timer along with (9.14)–(9.16) is not needed, and the term excDel is removed

from (9.18).

Load

The whole distribution network with different voltage levels and various loads like motors,

heating, lighting, etc. is aggregated in one model shown schematically in Fig. 9.4. The
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Figure 9.4: Scheme of the load

power consumed by most load devices is voltage dependent. Hence, the load admittance

varies dynamically with the voltage. When the supply voltage decreases, most loads

exhibit an instantaneous load relief. Yet, following such a disturbance, internal controllers

of the various loads like thermostats of electrical heating and power electronics regulating

the rotational speed of machines restore the power demand, which settles usually below

the pre-disturbance level. Following [KH94] and references therein, this self-restoring

behavior can be described by two first-order continuous-time dynamical systems – one for

the active power and one for the reactive power. The model of the active power

dxLp

dt
= −

xLp

Tp

+ PL0

(
(V4m)as − (V4m)at

)
(9.19a)

PL = (1− sL · ℓstep)
(xLp

Tp

+ PL0 · (V4m)at
)

(9.19b)

has the internal real-valued state xLp, which models the load recovery dynamic with the

time constant Tp. The instantaneous voltage dependency is expressed by (V4m)at and the

steady-state voltage dependency is given by (V4m)as . In this model, the absolute value

of the load voltage V4m can be considered as an input, the actual active power PL as

an output, and the rated power of the load PL0 as a parameter. Discrete parts of the

load of size ℓstep can be disconnected from the feeder according to the input variable

sL ∈ {0, 1, 2, 3}. The load model for the reactive power is defined accordingly.

dxLq

dt
= −

xLq

Tq

+QL0

(
(V4m)bs − (V4m)bt

)
(9.20a)

QL = (1− sL · ℓstep)
(xLq

Tq

+QL0 · (V4m)bt
)

(9.20b)

Note that the absolute value of the load voltage V4m is given in (9.12).

The currents depend on the active and the reactive powers as well as on the direct and

quadrature voltages.

I5d =
PLV4d +QLV4q

(V4m)2
(9.21a)

I5q =
PLV4q −QLV4d

(V4m)2
(9.21b)
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Figure 9.5: Open-loop response of the bus voltages following a fault in corridor L3 at time

t = 100 s: V2m is the dash-dotted, V3m is the dashed and V4m is the solid line

Network

The different system components are connected with each other by the network. Let YL1,

YL2 and YL3 denote the admittances of the equivalent lines of the transmission corridors

L1, L2 and L3, respectively. At each bus, according to Kirchhoff’s law, the sum of the

currents is required to sum up to zero yielding two linear algebraic equations per bus.

−I1d = YL1(V1q − V2q) + YL3(V1q − V3q) (9.22a)

−I1q = YL1(−V1d + V2d) + YL3(−V1q + V3d) (9.22b)

−I2d = YL1(−V1q + V2q) + YL2(V2q − V3q) (9.22c)

−I2q = YL1(V1d − V2d) + YL2(−V2q + V3d) (9.22d)

−(Icd + I3d) = YL2(V3q − V2q) + YL3(V3q − V1q) (9.22e)

−(Icq + I3q) = YL2(−V3d + V2d) + YL3(−V3q + V1d) (9.22f)

I4d + I5d = 0 (9.22g)

I4q + I5q = 0 (9.22h)

9.2.3 Fault Scenario

At time t = 100 s, a short circuit occurs in two of the three transmission lines of the heavily

loaded transmission corridor L3. The two affected lines are immediately disconnected. As
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a consequence, the admittance of the equivalent line (of the corridor) is reduced from 2 p.u.

to 2
3
p.u., which increases the reactive power losses on the corridor and also constricts the

active power transmitted from Generator 1 to the load. Hence the load voltage drops,

and due to the instantaneous voltage dependence of the load, the power drawn by the

load drops, too. Yet, the AVR in Generator 2 quickly restores the terminal voltage by

increasing the field voltage and the excitation. Moreover, the OLTC of the transformer

tries to restore the load voltage by tapping up, and the power demand of the load recovers

due to internal control loops. Both, the internal controller of the tap changer and the load

dynamics drive Generator 2 to its loading limit. At time t = 224 s, the over-excitation

limiter of the second generator is activated leading to a loss of voltage control and to a

fast voltage collapse within less than 200 s. The corresponding bus voltages are depicted

in Fig. 9.5.

9.2.4 Characteristics and Summary

Summing up, the power system features three input variables, namely the real-valued and

constrained reference voltage V4m,ref ∈ [0.8, 1.2] of the tap changer and the two integer

variables sC ∈ {0, 1, 2, 3} and sL ∈ {0, 1, 2, 3} denoting the number of capacitors connected

to the system and the amount of load shed, respectively. The outputs of main interest

are the three real-valued bus voltages Vim ∈ R, i ∈ {2, 3, 4}. Besides that, the power

system has the following real and discrete-valued states. The two continuous states xLp,

xLq ∈ R model the dynamics of the active and reactive load power. The discrete-valued

variable nT ∈ {0.8, 0.82, 0.84, . . . , 1.2} denotes the tap position of the transformer. The

OLTC controller has another real-valued state, namely the timer tT ∈ R≥. As mentioned

before, the timer becomes obsolete if the sampling interval equals the time delay of the

tap changer (here roughly 30 s).

Concluding the above, the power system under consideration is a hybrid system con-

taining integer manipulated variables, a saturation element (in the AVR), two switched

dynamics and six logic implications (in the tap changer controller), two ordinary differ-

ential equations (in the load model) and a total of 31 algebraic equations1, of which 18

are nonlinear.

9.2.5 Parameters

All parameters of the example power system are given in Table 9.1 using the notation

introduced above. For completeness, the initial values of the load states are given by

xLp(0) = xLq(0) = 0, the initial position of the tap changer is nT (0) = 1.02, and the

1They can be easily reduced to 27 by setting I5 = −I4 and by putting the two equations of Generator

1 into the network equations.
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Component Parameter Value Description

Generator 1 V1m,ref 1.03 Reference voltage [p.u.]

Generator 2 V2m,ref 1.03 Reference voltage [p.u.]

Generator 2 Ef0 1.55 Default field voltage [p.u.]

Generator 2 Ef,max 2.2 Maximal field voltage [p.u.]

Generator 2 xd 2.38 Direct axis synchronous reactance [p.u.]

Generator 2 xq 2.27 Quadrature axis synchronous reactance [p.u.]

Generator 2 Pm0 0.352 Mechanical power [p.u.]

Transformer RT 0 Leakage resistance [p.u.]

Transformer XT 0.0031 Leakage reactance [p.u.]

Transformer dT 0.03 Deadband around V4m,ref [p.u.]

Transformer τtapDelay 30 Time-delay between tapping [s]

Transformer τmechDelay 1 Mechanical time-delay during tapping [s]

Transformer nmin 0.8 Minimal tap position [p.u.]

Transformer nmax 1.2 Maximal tap position [p.u.]

Transformer nstep 0.02 Tapping step size [p.u.]

Capacitor bank cstep 0.1 Capacitor bank switching step size [p.u.]

Load PL0 1 Rated active power load [p.u.]

Load QL0 0.2 Rated reactive power load [p.u.]

Load as 0 Steady-state active power voltage dep.

Load at 2 Transient active power voltage dependency

Load bs 1 Steady-state reactive power voltage dep.

Load bt 2 Transient reactive power voltage dependency

Load Tp 60 Active power recovery time constant [s]

Load Tq 60 Reactive power recovery time constant [s]

Load ℓstep 0.05 Load shedding step size [p.u.]

Network YL1
4
3

Admittance of Corridor 1 [p.u.]

Network YL2
1

0.7
Admittance of Corridor 2 [p.u.]

Network YL3,noFault 2 Admittance of nominal Corridor 3 [p.u.]

Network YL3,withFault
2
3

Admittance of faulted Corridor 3 [p.u.]

Table 9.1: Parameters of the example power system

timer is set to tT (0) = 0. Furthermore, the initial inputs to the system are V4m,ref (0) = 1,

sC(0) = 2 and sL(0) = 0.
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Figure 9.6: Model decomposition

9.3 Hybrid Modelling

9.3.1 Decomposition

Before modelling the power system in the MLD framework, which is summarized in Sec-

tion 2.2.2, we briefly show that the power system can be decomposed into two parts,

specifically into a switched nonlinear and a switched affine dynamical system.

(i) The switched nonlinear system. This part is a differential algebraic equation (DAE)

system formed by the two ordinary differential equations (ODE) (9.19a) and (9.20a)

of the load and the algebraic equations (equality constraints) of the generators (9.2)–

(9.5) and (9.8), the capacitor bank (9.10), the transformer (9.11)–(9.12), the load

(9.19b), (9.20b) and (9.21), and the network (9.22). The ODE as well as most of the

algebraic equations are nonlinear. Additionally, the saturation of the internal AVR

(9.9) of Generator 2 is included as part of the switched nonlinear dynamics. The

discrete-valued nT and the integers sC and sL form the inputs to this subsystem,

the three bus voltages Vim, i ∈ {2, 3, 4} constitute the outputs, and xLp, xLq are the

real-valued states. Note that this subsystem is a switched nonlinear system since

each combination of discrete-valued inputs is associated with a (different) nonlinear

dynamic.

(ii) The switched affine system. It combines the thresholds, the logic implications and

the switched affine dynamics modelling the internal OLTC controller (9.13)–(9.18) of

the transformer. V4m,ref and the bus voltage V4m are the continuous-valued inputs,

the tap position nT is both the discrete-valued output and a state, and the timer tT

is a real-valued state.

The model decomposition is shown in Fig. 9.6, where we have used y = [V2m V3m V4m]T .
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9.3.2 MLD Model

Before deriving the MLD model, we observe that in the load model the transient voltage

dependencies of the active and reactive powers are linearly dependent. Moreover, the

steady-state voltage dependency is almost linearly dependent – at least in a neighborhood

around the nominal operating point. This is confirmed through simulations indicating

that the ratio between the load states is almost constant, i.e.
xLp

xLq
∈ [9.995, 10.4]. The

function 10 + 5( 1
V4m
− 1) approximates

xLp

xLq
accurately for xLp ∈ [−1, 10] observed during

experiments. Hence, we reduce the number of model states by one by replacing the state

xLp by the algebraic relation

xLp(V4m) =
(
10 + 5(

1

V4m

− 1)
)
xLq . (9.23)

Subsequently, we outline two different approaches to cast the nonlinear model of the

power system into MLD form.

The first approach is to consider each nonlinear function (dynamic or algebraic con-

straint) individually. Since the MLD framework is defined in the discrete time domain, all

continuous-time dynamics need to be first represented by discrete-time dynamics. Next,

each nonlinear function is approximated by a PWA function. This can been done using

an algorithm based on [FMLM03] that exploits the combined use of clustering, linear

identification and classification techniques allowing one to identify at the same time both

the affine functions and the polyhedral partition of the domain. However, as most of the

involved expressions are strongly nonlinear and defined over two- or three-dimensional

domains and since the interactions between the nonlinear algebraic constraints are tight,

this approach leads to a disproportionally large number of polyhedra and unacceptably

large approximation errors [GLM02]. Hence, this approach is not pursued here.

The second approach exploits the structure of the example power system, which was

shown in the previous section. The switched affine subsystem can be directly translated

into MLD form by introducing binary and auxiliary continuous variables [BM99b]. Addi-

tional approximations are not needed – in particular, the switched affine system is already

given in discrete time. On the other hand, the switched nonlinear subsystem features after

the model reduction the continuous-valued state xLq, the discrete-valued input nT and

the integer inputs sC and sL. Rather than approximating each nonlinearity individually,

we suggest to approximate the system behavior as a whole. In particular, we propose to

partition the two-dimensional state-input space spanned by xLq and nT into polyhedra,

and to sample the system response for each combination of integer inputs. This yields the

discrete-time state-update functions of the load as well as the output functions of the bus

voltages. Note that these are implicitly defined by the DAE and not explicitly given. Due

to the fact that the switched nonlinear system (as a whole) is only mildly nonlinear (in
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contrast to the individual nonlinearities), it is sufficient to partition the two-dimensional

state-input space into 24 triangular polyhedra or simplices. The toolbox [Jul00] is then

used to compute the PWA state-update and output functions for a given integer input

combination. Note that the partition does not depend on the integer inputs. For each

binary input combination, however, the polyhedra refer in general to different PWA state-

update and output functions. Additionally, to reduce the complexity of the MLD model,

we reduce the number of available control inputs. Since sC = 0 or sC = 1 would desta-

bilize the system and sL ≥ 2 is never necessary to stabilize the system, we only consider

sC = {2, 3} and sL = {0, 1}. This second modelling approach is clearly preferable since

it reduces not only the number of polyhedra of the PWA approximation but it also leads

to significantly smaller approximation errors compared to the first approach.

The second modelling procedure yields an MLD system with three states (nT , xLq and

tT ), 302 z-variables, 31 δ-variables and 1660 inequality constraints. The derivation of the

MLD system is performed by the compiler HYSDEL (HYbrid System DEscription Lan-

guage) generating the matrices of the MLD system starting from a high-level description

of the system [TB04].

9.4 Constrained Optimal Control

After stating the control objectives, we will cast them into a cost function, and formulate a

constrained finite time optimal control (CFTOC) problem, which is solved on-line. More-

over, to avoid accidental tap changes due to small model mismatches, we will introduce a

cascaded controller scheme.

9.4.1 Control Objectives

The control objectives are to bring the load voltage V4m as close to its reference value one

as possible while fulfilling the soft constraints on the bus voltages V2m ∈ [0.95, 1.05] p.u.,

V3m ∈ [0.9, 1.1] p.u. and V4m ∈ [0.9, 1.1] p.u., and while switching the manipulated variables

as little as possible.

The control moves can be classified as nominal and emergency control. During nominal

control, the soft constraints on the bus voltages can be fulfilled by using only “cheap”

control moves, i.e. capacitor bank switching sC and changing the tap changer voltage

reference V4m,ref . If the soft constraints cannot be met by only applying cheap control

moves, the controller has to switch to emergency control and use the full range of available

control moves including load-shedding, which is considered to be very expensive.
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9.4.2 Cascaded Controller Scheme

The reference voltage V4m,ref is used to communicate to the internal controller of the tap

changer whether the tap position shall be kept, increased or decreased by one step, in

accordance to whether V4m lies in the tolerance band centered around V4m,ref , below or

above it. Obviously, small variations in V4m,ref can trigger major changes (tapping actions)

making V4m,ref prone to modelling errors. To circumvent this, we introduce the tapping

strategy ∆nT ∈ {0, nstep,−nstep}, and we consider for the control problem formulation

that ∆nT is manipulated directly rather than V4m,ref . For the implementation, however,

we convert back from ∆nT , which is calculated by the controller, to V4m,ref , which is

actually applied to the power system.

V4m,ref (k) =







V4m,ref (k − 1) if ∆nT (k) = 0

0.8 p.u. if ∆nT (k) = −nstep

1.2 p.u. if ∆nT (k) = nstep

(9.24)

Note that 0.8 p.u. and 1.2 p.u. constitute the minimal and maximal admissible values of

V4m,ref and nstep = 0.02 p.u. is the physical step size of the tap changer.

9.4.3 Objective Function

In accordance with the aforementioned cascaded controller structure, we define the vector

of manipulated variables as

u(k) =
[

∆nT (k) sC(k) sL(k)
]T

, (9.25)

which is constrained to u(k) ∈ U with U = {−nstep, 0, nstep} × {2, 3} × {0, 1}.

The control objectives of Section 9.4.1 are cast into the objective function

J(x(k), u(k − 1), U(k)) =
N−1∑

ℓ=0

(

‖V4m(k + ℓ|k)− 1‖+ ‖Q∆u(k + ℓ)‖∞
)

+
N−1∑

ℓ=1

(

S(k + ℓ|k) + S(k + ℓ|k)
)

,

(9.26)

which penalizes the evolution of three terms over the prediction horizon N given the

sequence of manipulated variables U(k) = [(u(k))T , . . . , (u(k +N − 1)T ]T . Hereafter, we

will elaborate on these three terms in the objective function. The first term penalizes the

deviation of the load voltage V4m from its reference one using the 1-norm. The second term

penalizes the switching of the manipulated variables using the diagonal weight matrix Q

and the ∞-norm. Here, we are using a ∆u formulation with

∆u(k) = u(k)− u(k − 1) (9.27)



234 9 Emergency Voltage Control in Power Systems

to penalize the switching rather than the absolute value. This approach adds the integer

state vector u(k − 1) to the CFTOC formulation. Additionally, due to the cascaded

controller scheme, the tap changer strategy ∆nT is weighted rather than the reference

voltage V4m,ref . From a physical point of view this is reasonable, too, as the mechanical

wear of the transformer results from tapping and not from changes in the reference voltage.

Third, the soft constraints on the bus voltages are penalized. To take the soft constraints

on the lower bounds into account, we introduce the binary variables bi, i ∈ {2, 3, 4},

[bi(k) = 1] ←→ [Vim(k) < V im] , (9.28)

which indicate the violation of the i-th lower soft constraint. Here, V 2m = 0.95 p.u.,

V 3m = V 4m = 0.9 p.u. are the lower bounds on the respective bus voltages as defined in

Section 9.4.1. Additionally, the slack variables si ≥ 0, i ∈ {2, 3, 4},

si(k) =

{

0 if bi(k) = 0

V im − Vim(k) if bi(k) = 1
(9.29)

denote the degree of the violation. Penalizing the violation as well as the degree of the

violation yields

S(k + ℓ|k) = p ·
4∑

i=2

(

bi(k + ℓ|k) + si(k + ℓ|k)
)

, (9.30)

where p is a large penalty. The soft constraints on the upper bound S(k+ ℓ|k) are defined

accordingly.

Choosing the weights in the objective function is rather straightforward, and time con-

suming fine tuning is avoided as shown hereafter. After setting the weight on the voltage

deviation ‖V4m(k + ℓ|k) − 1‖ to one, the weight Q = diag(q1, q2, q3) on the manipulated

variables is chosen such that control moves are performed when the penalty on the voltage

deviation exceeds a certain limit. Therefore, Q is derived by comparing the cost on the

voltage deviation ‖V4m(k + ℓ|k)− 1‖ when refraining from using a control move with the

cost of performing a control action [LHO02]. Assume, that the tap changer may be moved

by one step up or down, if this results in a reduction of the voltage deviation by at least

0.004 p.u.. As one step is given by nstep = 0.02 p.u., we get q1 = 0.004
0.02

= 0.2. Analogously,

assuming that one part of the capacitor bank may be switched if this reduces the volt-

age deviation by 0.03 p.u. or more leads to q2 = 0.03
1

= 0.03. As the lower and upper

voltage constraints on V4m are equal to 0.9 p.u. and 1.1 p.u., respectively, the maximal

cost resulting from the voltage deviation is 0.1. Load-shedding has to be avoided unless a

soft constraint on the bus voltages is violated. This implies q3 ≫
0.1
1

= 0.1 and therefore

q3 = 1 is chosen. Concerning the soft constraints, the weight p is chosen such that the

full range of control moves can be used to remove the violation. This reasoning leads to

p≫ max
u(k),u(k−1)∈U

‖Q ·∆u(k)‖∞ = 3 (9.31)
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and to the choice p = 10.

This choice of the penalties will cause emergency actions to be triggered as soon as

one of the soft constraints is either violated or predicted to be violated when refraining

from emergency control moves. Hence, violations of the soft constraints are avoided unless

no appropriate (emergency) control move is available. This is achieved by three penalty

levels, where the penalties on the load voltage deviation, tapping and capacitor switching

are the lowest. The penalty on load-shedding is of medium size, and the soft constraints

have large penalties. Moreover, to avoid an unnecessary activation of emergency control

actions in case of small measurement noise and/or model mismatch, the soft constraints

are not imposed on the current time-instant k but only on the next time-instant k+ 1 as

can be seen from (9.26). This enables the controller to remove unpredicted violations of

the soft constraints within one sampling interval.

9.4.4 On-Line Computation of Control Input

The control input at time-instant k is obtained by minimizing the objective function (9.26)

over the sequence of control inputs U(k) subject to the mixed-integer linear inequality

constraints of the MLD model (2.8) described in Section 9.3.2, the constraints on the

sequence of manipulated variables

u(ℓ) ∈ U , ℓ = k, ..., k +N − 1 , (9.32)

the expression (9.27), and the terms (9.28)–(9.30) modelling the soft constraints. This

amounts to the CFTOC

U∗(k) = arg min
U(k)

J(x(k), u(k − 1), U(k)) (9.33a)

subj. to MLD model (2.8), (9.27)–(9.30), (9.32) (9.33b)

leading to the sequence of optimal control inputs U∗(k). Of this sequence, only the

first element u∗(k) is considered, which is, after being translated according to (9.24) into

an input vector of the form [V4m sC sL]T , applied to the power system. At the next

sampling interval, k is set to k + 1, a new state measurement (or estimate) is obtained,

and the CFTOC problem is solved again over the shifted horizon according to the receding

horizon policy. As we are using linear norms in all cost expressions, the CFTOC problem

amounts to solving a Mixed-Integer Linear Program (MILP), for which efficient solvers

exist like [ILO02].
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(a) The voltage V3m at Bus 3 of the nonlinear (MLD) model is the solid (dash-dotted)

line; the voltage V4m at Bus 4 of the nonlinear (MLD) model is the dashed (dotted) line
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(b) The upper and lower bounds of the tolerance band (centered around V4m,ref ) are the

dash-dotted lines; the voltage V4m at Bus 4 of the nonlinear model is represented by the

solid line

Figure 9.7: Closed-loop evolution of the bus voltages [p.u.] over time [s] for Ts = 30 s
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(b) Integer manipulated variables: Capacitor switching sC is a solid, load-shedding sL is

a dash-dotted line

Figure 9.8: Closed-loop evolution of the tap changer position and the integer manipulated

variables over time [s] for Ts = 30 s

9.5 Simulation Results

This section presents control experiments using the cascaded controller scheme. MPC

employs the derived MLD model as prediction model, whereas the “real” power system

is represented by the more accurate nonlinear model described in Section 9.2. Since the

load state(s) and the tap changer position can be easily measured or estimated, we assume

that they are available for the MPC scheme. Furthermore, setting the sampling interval

to Ts = 30 s allows us to use the simplified OLTC controller. The length of the prediction

horizon N is set to three, making sure that the prediction time interval amounts to 90 s

and thus exceeds the dominant time constants Tp = Tq = 60 s of the load. Then, given the

initial states and inputs of Section 9.3.1 and applying the fault in transmission corridor

L3 at time t = 100 s, we obtain the hereafter discussed closed-loop results.

Fig. 9.7(a) shows the bus voltages V3m and V4m of the original nonlinear model as well as

the ones of the MLD model. V2m is not depicted, as it remains within [1.02, 1.03] during the

control experiment and is thus only of minor interest. The manipulated variable V4m,ref

together with its tolerance band is shown in Fig. 9.7(b), whereas Fig. 9.8(a) displays the
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trajectory of the tap position nT . The integer manipulated variables, namely capacitor

switching sC and load-shedding sL, are visualized in Fig. 9.8(b).

The fault at time t = 100 s reduces the bus voltages instantaneously leading to a voltage

collapse if no appropriate control actions are taken as shown Fig. 9.5. At the first sampling

instant after the fault at time t = 120 s, MPC predicts the potential collapse and connects

the remaining part of the capacitor bank to the power system by setting sC to its maximum

value three. This control move is both necessary and sufficient to stabilize the system and

therefore, thanks to the proper timing, only nominal control moves are needed to prevent a

voltage collapse. In particular, load-shedding is avoided and sL is kept at zero. Note that

the proper timing of the control actions is important, since connecting the capacitor bank

a few sampling instants later would lead to a severe violation of the lower soft constraint

on V3m that could not be removed by nominal control moves only (within one sampling

interval). As a result, emergency control would be applied and part of the load would be

shed in order to meet the soft constraints.

Apart from the capacitor switching, V4m,ref is set to its maximum at time t = 120 s to

step up the tap changer twice thus reducing the deviation of V4m from its reference. At

t = 270 s and t = 480 s, however, MPC issues tap down commands to avoid a violation of

the lower soft constraint on V3m. According to the objective function and the horizon, this

is the optimal sequence of control moves. If desired, a different tuning of the objective

function and a longer prediction horizon can avoid the tap up and down actions and keep

the tap changer at its initial position.

In Fig. 9.7(a), the modelling error, which results from approximating the switched

nonlinear system by a PWA representation, can be seen as a small mismatch between

the respective bus voltages of the nonlinear and the MLD model. Increasing the number

of partitions of the PWA approximation would reduce the errors arbitrarily. The major

error, however, is introduced by discretizing the time with Ts = 30 s. Using a sampling

interval of 10 s reduces this error significantly.

Hence, in a second simulation, we set Ts = 10 s and N = 7. The complete OLTC

model (9.13)–(9.18) is included in the MLD model and the timer tT is added as additional

state. As can be seen from the simulations in Figs. 9.9 and 9.10, the obtained closed-loop

results are similar to the previous case with Ts = 30 s with the main difference that the

controller issues the first stabilizing control moves already at time t = 110 s. However,

since only eight polyhedra were used to approximate the switched nonlinear system, the

approximation error is pronounced.

The computation times for solving the optimal control problem at each time-step when

running CPLEX 8.0 on a Pentium IV 2.8 GHz machine are as follows. For Ts = 30 s and

a horizon N = 3, the computation time is on average 1.8 s and always less than 3.5 s. For

Ts = 10 s and N = 7, the respective times are 11 s and 160 s.
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(a) The voltage V3m at Bus 3 of the nonlinear (MLD) model is the solid (dash-dotted)

line; the voltage V4m at Bus 4 of the nonlinear (MLD) model is the dashed (dotted) line
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(b) The upper and lower bounds of the tolerance band (centered around V4m,ref ) are the

dash-dotted lines; the voltage V4m at Bus 4 of the nonlinear model is represented by the

solid line

Figure 9.9: Closed-loop evolution of the bus voltages [p.u.] over time [s] for Ts = 10 s
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(b) Integer manipulated variables: Capacitor switching sC is a solid, load-shedding sL is

a dash-dotted line

Figure 9.10: Closed-loop evolution of the tap changer position and the integer manipu-

lated variables over time [s] for Ts = 10 s

Temporal Decomposition of CFTOC

Given a CFTOC problem for a hybrid system in the MLD framework, we have proposed

in [BGM04] a temporal decomposition scheme that efficiently derives the control actions

by performing Lagrangian decomposition on the prediction horizon. More specifically,

the algorithm translates the original optimal control problem into a temporal sequence of

independent subproblems of smaller dimension. The solution to the Lagrangian problem

yields a sequence of control actions for the full horizon that is approximate in nature due to

the non-convexity of the hybrid optimal control problem formulation and the consequent

duality gap. For cases, however, where the duality gap is sufficiently narrow, the approxi-

mate control law yields basically the same closed-loop behavior as the one obtained from

the original optimal controller, but with a considerably smaller computational burden.

In [BGM04], we have considered as an illustrative example the CFTOC (9.33) for the

above presented power system with N = 6 and Ts = 30 s. When running the above control

experiment (with the only difference being the prediction horizon of six), a reduction of

the computation time by an order of magnitude is achieved. In particular, the maximal

computation time is reduced from 486 s to 25.2 s, while the average computation time
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is cut down from 276 s to 18.6 s. The duality gap is always less than 12 %. Because the

duality gap is small, combined with the fact that the control inputs are purely integer pre-

venting small deviations in the input variables that would otherwise occur, the Lagrangian

decomposition scheme actually attains the optimal solution to the CFTOC (9.33). For

the case study considered, the control problem may thus be tackled with a substantially

lower computational effort, so that the effective potential for future applications appears

to be encouraging. For details about the decomposition scheme, the reader is referred

to [BGM04].

9.6 Conclusions and Future Research

Conclusions

To account for the hybrid character, the example power system was modelled in the MLD

framework. Replacing the nonlinearities by PWA approximations introduces only small

modelling errors hardly manifesting themselves in the control experiments thus proving

the usefulness of the MLD modelling approach. We have shown that the load voltage

can be stabilized by an MPC controller using only nominal control moves. The tuning of

the controller is straightforward and systematic allowing us to easily distinguish between

nominal and emergency control moves.

Future Research

Two more topics might be investigated for the case study under consideration: The

derivation of the (explicit) state-feedback control law in accordance to Section 2.4.2, and

the verification of closed-loop stability by performing an a posteriori analysis of the state-

feedback control law. Yet, these results would only be meaningful for the specific fault.

For a general emergency control scheme, they are only of limited value.

To extend the applicability of the scheme to power system of larger scale, one viable

way is to consider decomposition schemes, in particular Lagrangian decomposition in time

or in space. Decomposition in time, as proposed in [BGM04] for the above treated case

study, might be also applied to larger systems. Decomposition in space is motivated by

the fact that even though power systems are (highly) meshed grids, they can be often

subdivided into several areas interconnected by a few tie lines. As an example consider

the Nordic power system with the production located mainly in the north and several

consumer areas in the south. A spatial decomposition scheme might exploit this topology

by splitting the large optimization problem into smaller (and easier) to solve subproblems

that are linked by dual variables. Unfortunately, since four variables2 are associated with

2For example real and imaginary parts of voltage and current.
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each tie line, one would need to introduce four dual variables for each tie line that is cut.

In general, we have experienced two major problems when casting a nonlinear power

system in the MLD framework by approximating the nonlinearities in a PWA fashion.

Firstly, from a control point of view the model complexity is unnecessarily increased by

introducing a large number of binary variables associated with the approximations. As a

result, the computation time for solving the underlying MILP becomes disproportionately

large. Secondly, the approximations deteriorate the model accuracy. In particular for

power systems, this is a drawback since apart from the load most system parameters

are accurately known. Therefore, we suggest to avoid PWA approximations, to consider

the original nonlinear hybrid model, and to directly tackle the resulting mixed-integer

nonlinear optimization problem.

Probably the most promising approach is to combine the advantages of the MLD frame-

work with the concept of trajectory sensitivities by considering optimal control schemes

with prediction models that use mixed-integer linear inequality constraints to capture

thresholds, logic and automata, and adopt first-order approximations around the nominal

open-loop trajectories. Such an approach would allow one to capture the hybrid features

of power systems, but the resulting optimization problem would comprise only integers

that are necessary to model load-shedding, capacitor switching and OLTC dynamics.
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A

HYSDEL Code

In this appendix, the Hysdel codes used in this thesis are provided. Specifically, the

paperboy example from Section 3.5.2, the model of the DTC drive from Section 6.5 both

with a two- and a three-level inverter, the model of the synchronous step-down DC-DC

converter from Section 8.2.3, and the example power system from Section 9.3.2 are given

hereafter.

A.1 Paperboy Example

SYSTEM paperboy {

INTERFACE {

PARAMETER {

/* DHA 1: */

REAL width = 4; /* width of the road in m */

/* friction per region */

REAL mu1x = 2, mu2x = 1.5, mu3x = -0.5, mu4x = -1, mu5x = 0;

REAL mu1y = 0, mu2y = 0, mu3y = 0, mu4y = 0, mu5y = 0;

REAL nu1x = 2, nu2x = 0.5, nu3x = 1, nu4x = 1.5, nu5x = 0.05;

REAL nu1y = 2, nu2y = 0.5, nu3y = 1, nu4y = 1.5, nu5y = 0.05;

/* DHA 2: */

REAL size = 10; /* size of a house in m */

REAL xh1 = -40, yh1 = -40; /* position of the House 1 in m */

REAL xh2 = 40, yh2 = 40; /* position of the House 2 in m */

/* DHA 3: */

REAL Mb = 90; /* mass of the paperboy and his bike in kg */

REAL Mm = 10; /* mass of one mail item in kg */

REAL Ts = 1; /* sampling time in s */

/* constraints: */

REAL Fmax = 162; /* maximal force in N */

REAL space = 1000; /* size of x-y space in m */

REAL vmax = 15; /* maximal speed in m/s */

}

INPUT {

REAL Fbx [-Fmax, Fmax], Fby [-Fmax, Fmax]; /* force applied by paperboy in N */

}
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STATE {

REAL x [-space, space], y [-space, space]; /* position of paperboy in m*/

REAL vx [-vmax, vmax], vy [-vmax, vmax]; /* speed of paperboy in m/s */

BOOL d1, d2; /* status of mail delivery */

}

OUTPUT {

REAL xo, yo; /* position of paperboy in m */

REAL n; /* number of delivered mail items */

}

}

IMPLEMENTATION {

AUX {

BOOL dx1, dx2, dy, /* variables to characterize the topology */

h1x1, h1x2, h1y1, h1y2, /* one variable per ’border’ of House 1 */

h2x1, h2x2, h2y1, h2y2, /* one variable per ’border’ of House 2 */

dh1, dh2, /* true if paperboy inside of respective house */

i1, i2, i3, i4, i5, /* true if paperboy inside of the respective region */

no_del; /* true if both d1 and d2 false*/

REAL F_i1x, F_i2x, F_i3x, F_i4x, /* auxiliary forces in x */

F_i1y, F_i2y, F_i3y, F_i4y; /* auxiliary forces in y */

REAL Fx, Fy; /* effective force */

REAL F_d1x, F_d2x, F_d3x, /* auxiliary forces in x */

F_d1y, F_d2y, F_d3y; /* auxiliary forces in y */

}

/* DHA 1: */

AD {

dx1 = x <= -width/2;

dx2 = x >= width/2;

dy = y >= 0;

}

LOGIC {

i1 = dx1 & dy;

i2 = dx2 & dy;

i3 = dx1 & ~dy;

i4 = dx2 & ~dy;

i5 = ~dx1 & ~dx2;

}

DA {

F_i1x = {IF i1 THEN Fbx - mu1x - nu1x * vx};

F_i1y = {IF i1 THEN Fby - mu1y - nu1y * vy};

F_i2x = {IF i2 THEN Fbx - mu2x - nu2x * vx};

F_i2y = {IF i2 THEN Fby - mu2y - nu2y * vy};

F_i3x = {IF i3 THEN Fbx - mu3x - nu3x * vx};

F_i3y = {IF i3 THEN Fby - mu3y - nu3y * vy};

F_i4x = {IF i4 THEN Fbx - mu4x - nu4x * vx};

F_i4y = {IF i4 THEN Fby - mu4y - nu4y * vy};

/* Trick: the definition of F_i5 is omitted */

Fx = {IF i5 THEN Fbx - mu5x - nu5x * vx

ELSE F_i1x + F_i2x + F_i3x + F_i4x};

Fy = {IF i5 THEN Fby - mu5y - nu5y * vy

ELSE F_i1y + F_i2y + F_i3y + F_i4y};

}

/* DHA 2: */

AD {

h1x1 = x - xh1 <= size/2; h1x2 = x - xh1 >= -size/2;
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h1y1 = y - yh1 <= size/2; h1y2 = y - yh1 >= -size/2;

h2x1 = x - xh2 <= size/2; h2x2 = x - xh2 >= -size/2;

h2y1 = y - yh2 <= size/2; h2y2 = y - yh2 >= -size/2;

}

LOGIC {

dh1 = h1x1 & h1x2 & h1y1 & h1y2;

dh2 = h2x1 & h2x2 & h2y1 & h2y2;

}

AUTOMATA {

d1 = d1 || dh1;

d2 = d2 || dh2;

}

/* DHA 3: */

LOGIC {

no_del = ~d1 & ~d2;

}

DA {

F_d1x = {IF ~d1 THEN Fx / (Mb + Mm) - Fx / Mb};

F_d1y = {IF ~d1 THEN Fy / (Mb + Mm) - Fy / Mb};

F_d2x = {IF ~d2 THEN Fx / (Mb + Mm) - Fx / Mb};

F_d2y = {IF ~d2 THEN Fy / (Mb + Mm) - Fy / Mb};

F_d3x = {IF no_del THEN Fx / (Mb + 2*Mm) - F_d1x - F_d2x - Fx / Mb};

F_d3y = {IF no_del THEN Fy / (Mb + 2*Mm) - F_d1y - F_d2y - Fy / Mb};

}

CONTINUOUS {

vx = vx + Ts *(F_d1x + F_d2x + F_d3x + Fx / Mb);

vy = vy + Ts *(F_d1y + F_d2y + F_d3y + Fy / Mb);

x = x + vx * Ts;

y = y + vy * Ts;

}

OUTPUT {

xo = x; yo = y;

n = (REAL d1) + (REAL d2);

}

MUST {

Fbx >= -Fmax; Fbx <= Fmax;

Fby >= -Fmax; Fby <= Fmax;

x >= -space; x <= space;

y >= -space; y <= space;

vx >= -vmax; vx <= vmax;

vy >= -vmax; vy <= vmax;

}

}

}

A.2 DTC Drive with Two-Level Inverter

SYSTEM drive_2level {

INTERFACE {

STATE {
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REAL psi_ds [0, 1.2], /* d-component of stator flux */

psi_qs [0, 1.2], /* q-component of stator flux */

alpha [0.4, 1], /* alpha = cos(phi) */

u_a_old [-1, 1], /* last switch position (stack a) */

u_b_old [-1, 1], /* last switch position (stack b) */

u_c_old [-1, 1]; /* last switch position (stack c) */

}

INPUT {

BOOL u_ap, u_bp, u_cp, /* current switch position (zero or positive) */

u_an, u_bn, u_cn; /* current switch position (zero or negative) */

}

OUTPUT {

REAL Te_out, /* torque */

psi_s_sq_out; /* squared stator flux */

}

PARAMETER {

REAL /* d-component of rotor flux */

psi_dr,

/* parameters depending on sampling interval */

am_11 = 0.9997, am_12 = 0, am_21 = 0, am_22 = 0.9997,

b_11 = 0.0078, b_12 = 0, b_21 = 0, b_22 = 0.0078,

/* parameters depending on operating point */

ar_11, /* ar_11=cos(Ts*wr) */

ar_12, /* ar_12=sin(Ts*wr) */

/* motor and inverter model parameters */

Vdc = 1.5937,

xm = 2.3489,

D = 0.6265,

rs = 0.0108,

/* bounds and references */

Te_min, Te_max,

psi_s_sq_min, psi_s_sq_max, psi_s_sq_ref,

/* penalties */

Q_torque_bound,

Q_flux_bound, Q_flux_ref,

Q_du;

}

}

IMPLEMENTATION {

AUX {

/* inputs */

REAL in1, in2,

u_a, u_b, u_c,

u_d, u_q;

REAL zap_Y_d, zan_Y_d, zap_Y_q, zan_Y_q,

zbp_Y_d, zbn_Y_d, zbp_Y_q, zbn_Y_q,

zcp_Y_d, zcn_Y_d, zcp_Y_q, zcn_Y_q,

za_Y_d, zb_Y_d, zc_Y_d,

za_Y_q, zb_Y_q, zc_Y_q;

/* 1-dim approximation of \psi_{ds}^2 as a function of \psi_{ds} */

BOOL d10;
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REAL psi_ds_sq,

z10, z11;

/* 1-dim approximation of \psi_{qs}^2 as a function of \psi_{qs} */

BOOL d20, d21;

REAL psi_qs_sq,

z20, z21, z22;

/* v1-dim approximation of \beta as a function of \alpha */

BOOL d30, d31, d32;

REAL beta [0, 0.95],

z30, z31, z32, z33;

/* outputs */

REAL Te [-0.5, 1.2],

psi_s_sq [0.5, 1.5];

/* penalties */

REAL e_objective,

e_switching,

e_Te,

e_psi_s_sq, e_psi_s_sq_ref,

e_dua, e_dub, e_duc;

}

/********** Voltage vector section **********/

LINEAR {

/* each phase is described by an integer variable u_x */

u_a = (REAL u_ap) - (REAL u_an);

u_b = (REAL u_bp) - (REAL u_bn);

u_c = (REAL u_cp) - (REAL u_cn);

}

DA {

/* Park transformation for the d-component of the stator voltage */

zap_Y_d = {IF u_ap THEN alpha ELSE 0};

zan_Y_d = {IF u_an THEN -alpha ELSE 0};

zbp_Y_d = {IF u_bp THEN -0.5*alpha + 0.866*beta ELSE 0};

zbn_Y_d = {IF u_bn THEN 0.5*alpha - 0.866*beta ELSE 0};

zcp_Y_d = {IF u_cp THEN -0.5*alpha - 0.866*beta ELSE 0};

zcn_Y_d = {IF u_cn THEN 0.5*alpha + 0.866*beta ELSE 0 };

/* Park transformation for the q-component of the stator voltage */

zap_Y_q = {IF u_ap THEN -beta ELSE 0};

zan_Y_q = {IF u_an THEN beta ELSE 0};

zbp_Y_q = {IF u_bp THEN 0.5*beta + 0.866*alpha ELSE 0};

zbn_Y_q = {IF u_bn THEN -0.5*beta - 0.866*alpha ELSE 0};

zcp_Y_q = {IF u_cp THEN -0.866*alpha + 0.5*beta ELSE 0};

zcn_Y_q = {IF u_cn THEN 0.866*alpha - 0.5*beta ELSE 0};

}

LINEAR {

/* d-component of the voltage vector at each phase is calculated by: */

za_Y_d = zap_Y_d + zan_Y_d;

zb_Y_d = zbp_Y_d + zbn_Y_d;

zc_Y_d = zcp_Y_d + zcn_Y_d;
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/* q-component of the voltage vector at each phase is calculated by: */

za_Y_q = zap_Y_q + zan_Y_q;

zb_Y_q = zbp_Y_q + zbn_Y_q;

zc_Y_q = zcp_Y_q + zcn_Y_q;

/* d- and q-components of the stator voltage: */

u_d = (2/3)*(Vdc/2)*(za_Y_d + zb_Y_d + zc_Y_d);

u_q = (2/3)*(Vdc/2)*(za_Y_q + zb_Y_q + zc_Y_q);

}

MUST {

/* restrict switch position to {-1, 0, 1} */

(REAL u_ap) + (REAL u_an) <= 1;

(REAL u_bp) + (REAL u_bn) <= 1;

(REAL u_cp) + (REAL u_cn) <= 1;

/* restrict switch position to {-1, 1} to yield a 2-level inverter */

1 -(REAL u_ap) - (REAL u_an) <= 0;

1 -(REAL u_bp) - (REAL u_bn) <= 0;

1 -(REAL u_cp) - (REAL u_cn) <= 0;

}

/********** Motor section **********/

AD {

/* 1-dim approximation of \psi_{ds}^2 as a function of \psi_{ds} */

d10 = psi_ds -0.925 <= 0;

/* 1-dim approximation of \psi_{qs}^2 as a function of \psi_{qs} */

d20 = psi_qs -0.13 <= 0;

d21 = psi_qs -0.27 <= 0;

/* 1-dim approximation of \beta as a function of \alpha */

d30 = alpha -0.61084 <= 0;

d31 = alpha -0.79118 <= 0;

d32 = alpha -0.93104 <= 0;

}

DA {

/* 1-dim approximation of \psi_{ds}^2 as a function of \psi_{ds} */

z10 = {IF d10 THEN 1.72*psi_ds -0.7387};

z11 = {IF ~d10 THEN 1.98*psi_ds -0.9792};

/* 1-dim approximation of \psi_{qs}^2 as a function of \psi_{qs} */

z20 = {IF d20 THEN 0.12*psi_qs -0.002};

z21 = {IF ~d20 & d21 THEN 0.40*psi_qs -0.0384};

z22 = {IF ~d21 THEN 0.68*psi_qs -0.114};

/* 1-dim approximation of \beta as a function of \alpha */

z30 = {IF d30 THEN -0.5661*alpha +1.143};

z31 = {IF ~d30 & d31 THEN -0.9871*alpha +1.4001};

z32 = {IF ~d31 & d32 THEN -1.6232*alpha +1.9034};

z33 = {IF ~d32 THEN -5.6862*alpha +5.6862};

}

LINEAR {

/* building beta: */

beta = z30 + z31 + z32 + z33;

/* inputs to the state update equations (stator voltage and rotor flux): */

in1 = b_11*(u_d + (rs*xm/D)*psi_dr) + b_12*u_q;
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in2 = b_21*(u_d + (rs*xm/D)*psi_dr) + b_22*u_q;

}

CONTINUOUS {

/* state update equations for the motor */

psi_ds = ( ar_11*am_11+ar_12*am_21)*psi_ds + ( ar_11*am_12+ar_12*am_22)*psi_qs + in1;

psi_qs = (-ar_12*am_11+ar_11*am_21)*psi_ds + (-ar_12*am_12+ar_11*am_22)*psi_qs + in2;

alpha = ar_11*alpha - ar_12*beta;

}

LINEAR {

/* squared stator flux: */

psi_ds_sq = z10 + z11;

psi_qs_sq = z20 + z21 + z22;

psi_s_sq = psi_ds_sq + psi_qs_sq ;

/* torque (linear in psi_qs): */

Te = (xm/D)*psi_dr*psi_qs;

}

/********** Output section **********/

OUTPUT {

/* torque and squared stator flux: */

Te_out = Te;

psi_s_sq_out = psi_s_sq;

}

/********** Cost section **********/

CONTINUOUS {

/* previous switching for penalizing */

u_a_old = u_a;

u_b_old = u_b;

u_c_old = u_c;

}

MUST {

/* penalty on torque */

Q_torque_bound*( Te - Te_max) <= e_Te;

Q_torque_bound*(-Te + Te_min) <= e_Te;

0 <= e_Te;

/* penalties on flux */

Q_flux_bound*( psi_s_sq - psi_s_sq_max) <= e_psi_s_sq;

Q_flux_bound*(-psi_s_sq + psi_s_sq_min) <= e_psi_s_sq;

0 <= e_psi_s_sq;

Q_flux_ref*( psi_s_sq - psi_s_sq_ref) <= e_psi_s_sq_ref;

Q_flux_ref*(-psi_s_sq + psi_s_sq_ref) <= e_psi_s_sq_ref;

/* penalties on switching */

Q_du*( u_a - u_a_old) <= e_dua;

Q_du*(-u_a + u_a_old) <= e_dua;

Q_du*( u_b - u_b_old) <= e_dub;

Q_du*(-u_b + u_b_old) <= e_dub;

Q_du*( u_c - u_c_old) <= e_duc;

Q_du*(-u_c + u_c_old) <= e_duc;

}

LINEAR {

/* penalties */
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e_objective = e_Te + e_psi_s_sq + e_psi_s_sq_ref; /* with time-invariant penalties */

e_switching = e_dua + e_dub + e_duc; /* with time-varying penalties */

}

}

}

A.3 DTC Drive with Three-Level Inverter

To improve the readability and to shorten the exposition of the Hysdel code for the

three-level inverter, we present in the following only the parts of the code that differ from

the one of the two-level inverter. To the Interface section, the following is added.

STATE {

REAL npp [-0.2, 0.2], /* neutral point potential */

lamda [-20, 20], /* distribution of switching losses */

}

PARAMETER {

REAL /* parameters depending on sampling interval */

Ts = 0.0078,

/* motor and inverter model parameters */

xrr = 2.4593,

xCt = 4.3715,

/* bounds and references */

npp_min, npp_max,

/* penalties */

Q_npp,

Q_lamda;

}

In the Implementation section, the following modifications need to be done. First, the

restriction

MUST {

/* restrict switch position to {-1, 1} to yield a 2-level inverter */

1 -(REAL u_ap) - (REAL u_an) <= 0;

1 -(REAL u_bp) - (REAL u_bn) <= 0;

1 -(REAL u_cp) - (REAL u_cn) <= 0;

}

is removed. Second, in the cost section, the sums of the penalties in

LINEAR {

/* penalties */

e_objective = e_Te + e_psi_s_sq + e_psi_s_sq_ref; /* with time-invariant penalties */

e_switching = e_dua + e_dub + e_duc; /* with time-varying penalties */

}

are replaced by
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LINEAR {

/* penalties */

e_objective = e_Te + e_psi_s_sq + e_psi_s_sq_ref + e_npp + e_lamda; /* with time-invariant penalties */

e_switching = e_dua + e_dub + e_duc; /* with time-varying penalties */

}

Third, the following parts are added.

AUX {

/* approximation of neutral point potential */

BOOL d40, d41, d42, d43, d44;

REAL term1 [0, 0.6],

z40, z41, z42, z43, z44, z45, z46, z47;

BOOL d50, d51, d52, d53, d54;

REAL term2 [0, 0.6],

z50, z51, z52, z53, z54, z55, z56, z57;

BOOL d60, d61, d62, d63, d64;

REAL term3 [0, 1.2],

z60, z61, z62, z63, z64, z65, z66, z67;

BOOL d70, d71, d72, d73, d74;

REAL term4 [0, 1.2],

z70, z71, z72, z73, z74, z75, z76, z77;

REAL id [0, 0.6], iq [0, 1.2],

first_row [-2, 2], second_row [-2, 2], third_row [-2, 2],

i_npp_1, i_npp_2, i_npp_3, i_npp;

/* penalties */

REAL e_npp,

e_lamda;

/* switching constraints */

BOOL d_sw_a, d_sw_a_low, d_sw_a_hig,

d_sw_b, d_sw_b_low, d_sw_b_hig,

d_sw_c, d_sw_c_low, d_sw_c_hig,

d_sw_ab, d_sw_ac, d_sw_bc;

REAL z_sw_ab_new, z_sw_ab_old,

z_sw_ac_new, z_sw_ac_old,

z_sw_bc_new, z_sw_bc_old;

}

/********** Inverter section **********/

LINEAR {

/* stator current: */

id = (xrr/D)*psi_ds - (xm/D)*psi_dr;

iq = (xrr/D)*psi_qs;

}

/* the modeling of the neutral point potential requires the pwa approximation of 4 terms:

1. the term \alpha*i_d = term1

2. the term \beta *i_d = term2

3. the term \alpha*i_q = term3

4. the term \beta *i_q = term4 */

AD {

/* 2-dim approximation of \alpha*i_d */

d40 = id -0.3 <= 0;

d41 = 0.3*alpha -0.3*id -0.12 <= 0;

d42 = alpha -0.7 <= 0;
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d43 = 0.3*alpha -0.3*id -0.03 <= 0;

d44 = 0.3*alpha -0.3*id -0.21 <= 0;

/* 2-dim approximation of \beta*i_d */

d50 = id -0.3 <= 0;

d51 = 0.3*beta -0.455*id <= 0;

d52 = beta -0.455 <= 0;

d53 = 0.3*beta -0.455*id +0.1365 <= 0;

d54 = 0.3*beta -0.455*id -0.1365 <= 0;

/* 2-dim approximation of \alpha*i_q */

d60 = iq -0.6 <= 0;

d61 = 0.6*alpha -0.3*iq -0.24 <= 0;

d62 = alpha -0.7 <= 0;

d63 = 0.6*alpha -0.3*iq -0.06 <= 0;

d64 = 0.6*alpha -0.3*iq -0.42 <= 0;

/* 2-dim approximation of \beta*i_q */

d70 = iq -0.6 <= 0;

d71 = 0.6*beta -0.455*iq <= 0;

d72 = beta -0.455 <= 0;

d73 = 0.6*beta -0.455*iq +0.273 <= 0;

d74 = 0.6*beta -0.455*iq -0.273 <= 0;

}

DA {

/* 2-dim approximation of \alpha*i_d */

z40 = {IF d40 & d41 THEN 0.3006200*alpha + 0.40286*id -0.12849};

z41 = {IF ~d41 & d42 THEN 0.0028604*alpha + 0.70062*id -0.0093802};

z42 = {IF d43 THEN 0.5749200*alpha + 0.42508*id -0.24487};

z43 = {IF ~d40 & d42 & ~d43 THEN 0.3006200*alpha + 0.69938*id -0.21744};

z44 = {IF d40 & ~d42 & d44 THEN 0.2993800*alpha + 0.70062*id -0.21694};

z45 = {IF ~d44 THEN 0.0250790*alpha + 0.97492*id -0.024933};

z46 = {IF d41 & ~d42 THEN 0.5971400*alpha + 0.69938*id -0.425};

z47 = {IF ~d40 & ~d41 THEN 0.2993800*alpha + 0.99714*id -0.3059};

/* 2-dim approximation of \beta*i_d */

z50 = {IF d50 & d51 THEN 0.3050000*beta + 0.0087773*id -0.014692};

z51 = {IF ~d51 & d52 THEN 0.0057872*beta + 0.4625900*id -0.014692};

z52 = {IF d53 THEN 0.5745100*beta + 0.0386600*id -0.023657};

z53 = {IF ~d50 & d52 & ~d53 THEN 0.3050000*beta + 0.4474100*id -0.14628};

z54 = {IF d50 & ~d52 & d54 THEN 0.2950000*beta + 0.4625900*id -0.14628};

z55 = {IF ~d54 THEN 0.0254900*beta + 0.8713400*id -0.023657};

z56 = {IF d51 & ~d52 THEN 0.5942100*beta + 0.4474100*id -0.27787};

z57 = {IF ~d50 & ~d51 THEN 0.2950000*beta + 0.9012200*id -0.27787};

/* 2-dim approximation of \alpha*i_q */

z60 = {IF d60 & d61 THEN 0.610010*alpha + 0.40579*iq -0.26338};

z61 = {IF ~d61 & d62 THEN 0.011574*alpha + 0.70500*iq -0.024004};

z62 = {IF d63 THEN 1.149000*alpha + 0.42549*iq -0.4908};

z63 = {IF ~d60 & d62 & ~d63 THEN 0.610010*alpha + 0.69500*iq -0.4369};

z64 = {IF d60 & ~d62 & d64 THEN 0.589990*alpha + 0.70500*iq -0.4289};

z65 = {IF ~d64 THEN 0.050981*alpha + 0.97451*iq -0.051588};

z66 = {IF d61 & ~d62 THEN 1.188400*alpha + 0.69500*iq -0.84179};

z67 = {IF ~d60 & ~d61 THEN 0.589990*alpha + 0.99421*iq -0.60242};

/* 2-dim approximation of \beta*i_q */

z70 = {IF d70 & d71 THEN 0.610010*beta + 0.0087773*iq -0.029384};

z71 = {IF ~d71 & d72 THEN 0.011574*beta + 0.4625900*iq -0.029384};
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z72 = {IF d73 THEN 1.149000*beta + 0.0386600*iq -0.047314};

z73 = {IF ~d70 & d72 & ~d73 THEN 0.610010*beta + 0.4474100*iq -0.29256};

z74 = {IF d70 & ~d72 & d74 THEN 0.589990*beta + 0.4625900*iq -0.29256};

z75 = {IF ~d74 THEN 0.050981*beta + 0.8713400*iq -0.047314};

z76 = {IF d71 & ~d72 THEN 1.188400*beta + 0.4474100*iq -0.55574};

z77 = {IF ~d70 & ~d71 THEN 0.589990*beta + 0.9012200*iq -0.55574};

}

LINEAR {

/* building term1, term2, term3 and term4: */

term1 = z40 + z41 + z42 + z43 + z44 + z45 + z46 + z47;

term2 = z50 + z51 + z52 + z53 + z54 + z55 + z56 + z57;

term3 = z60 + z61 + z62 + z63 + z64 + z65 + z66 + z67;

term4 = z70 + z71 + z72 + z73 + z74 + z75 + z76 + z77;

/* auxiliary variables for expression P^(-1)*[id iq 0]’: */

first_row = term1 - term4;

second_row = -0.500*term1 + 0.866*term2 + 0.866*term3 + 0.500*term4;

third_row = -0.500*term1 - 0.866*term2 - 0.866*term3 + 0.500*term4;

}

DA {

/* components of current flowing through npp (depending on switch positions): */

i_npp_1 = {IF u_ap || u_an THEN first_row ELSE 0};

i_npp_2 = {IF u_bp || u_bn THEN second_row ELSE 0};

i_npp_3 = {IF u_cp || u_cn THEN third_row ELSE 0};

}

LINEAR {

/* npp current: */

i_npp = i_npp_1 + i_npp_2 + i_npp_3;

}

CONTINUOUS {

/* state update equations for the inverter */

npp = npp + ((Ts/(2*xCt))*i_npp); /* the plus sign in these two equations holds for */

lamda = lamda + (u_a + u_b + u_c); /* the even sectors (0,2,4); for odd sectors (1,3,5) */

/* we need a minus sign instead */

}

/********** Cost section **********/

MUST {

/* penalty on neutral point potential */

Q_npp*( npp - npp_max) <= e_npp;

Q_npp*(-npp + npp_min) <= e_npp;

0 <= e_npp;

/* penalty on distribution of switching losses */

Q_lamda*( lamda ) <= e_lamda;

Q_lamda*(-lamda ) <= e_lamda;

0 <= e_lamda;

}

/********** Switching constraints section **********/

AD {

/* detecting switch change in phase: */

d_sw_a_low = u_a - u_a_old <= 0;

d_sw_a_hig = -u_a + u_a_old <= 0;

d_sw_b_low = u_b - u_b_old <= 0;

d_sw_b_hig = -u_b + u_b_old <= 0;
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d_sw_c_low = u_c - u_c_old <= 0;

d_sw_c_hig = -u_c + u_c_old <= 0;

}

LOGIC {

/* detecting case of no switch transition within phase: */

d_sw_a = d_sw_a_low & d_sw_a_hig; /* phase a did NOT switch */

d_sw_b = d_sw_b_low & d_sw_b_hig; /* phase b did NOT switch */

d_sw_c = d_sw_c_low & d_sw_c_hig; /* phase c did NOT switch */

/* detecting case of two transitions: */

d_sw_ab = ~d_sw_a & ~d_sw_b & d_sw_c; /* phases a and b switched, c did not switch */

d_sw_ac = ~d_sw_a & d_sw_b & ~d_sw_c; /* phases a and c switched, b did not switch */

d_sw_bc = d_sw_a & ~d_sw_b & ~d_sw_c; /* phases c and b switched, a did not switch */

}

DA {

/* case of two switch transitions: */

z_sw_ab_new = {IF d_sw_ab THEN u_a + u_b ELSE 0};

z_sw_ac_new = {IF d_sw_ac THEN u_a + u_c ELSE 0};

z_sw_bc_new = {IF d_sw_bc THEN u_b + u_c ELSE 0};

z_sw_ab_old = {IF d_sw_ab THEN u_a_old + u_b_old ELSE 0};

z_sw_ac_old = {IF d_sw_ac THEN u_a_old + u_c_old ELSE 0};

z_sw_bc_old = {IF d_sw_bc THEN u_b_old + u_c_old ELSE 0};

}

MUST {

/* transitions between -1 and 1 are not allowed */

u_a - u_a_old <= 1;

-u_a + u_a_old <= 1;

u_b - u_b_old <= 1;

-u_b + u_b_old <= 1;

u_c - u_c_old <= 1;

-u_c + u_c_old <= 1;

/* with two transitions, the sum of the previous and the new states must be 0 */

z_sw_ab_new + z_sw_ab_old <= 0;

-z_sw_ab_new - z_sw_ab_old <= 0;

z_sw_ac_new + z_sw_ac_old <= 0;

-z_sw_ac_new - z_sw_ac_old <= 0;

z_sw_bc_new + z_sw_bc_old <= 0;

-z_sw_bc_new - z_sw_bc_old <= 0;

/* all switches changing (three transitions) not allowed */

1 - (REAL d_sw_a) - (REAL d_sw_b) - (REAL d_sw_c) <= 0;

}

A.4 Synchronous Step-Down DC-DC Converter

SYSTEM syn_nu3 {

INTERFACE {

STATE {

REAL iL [-3, 3],
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vo [-1, 1],

d_old [0, 1],

vo_ref [0.2, 1],

iL_max [0.6, 3];

}

INPUT {

REAL d [0, 1];

}

OUTPUT {

REAL vo_errSum_out,

du_out;

}

PARAMETER {

REAL a_11 = 0.9557, a_12 = -0.6724, a_21 = 0.0285, a_22 = 0.9573,

b_1 = 0.6826, b_2 = 0.0135,

Ts = 1/3;

}

}

IMPLEMENTATION {

AUX {

REAL iL_upd_0, vo_upd_0;

BOOL s1, s1_2;

REAL iL1, iL_upd0_1, iL_upd1_1, vo1, vo_upd0_1, vo_upd1_1;

BOOL s2, s2_3;

REAL iL2, iL_upd0_2, iL_upd1_2, vo2, vo_upd0_2, vo_upd1_2;

BOOL s3;

REAL iL3, vo3;

REAL vo_errSum;

}

/* n = 0 */

DA {

iL_upd_0 = { IF s1 THEN b_1 ELSE b_1*(d/Ts-0) };

vo_upd_0 = { IF s1 THEN b_2 ELSE b_2*(d/Ts-0) };

}

LINEAR {

iL1 = a_11*iL + a_12*vo + iL_upd_0;

vo1 = a_21*iL + a_22*vo + vo_upd_0;

}

/* n = 1 */

AD {

s1 = d >= 1*Ts;

}

LOGIC {

s1_2 = s1 & ~s2;

}

DA {

iL_upd0_1 = { IF s1_2 THEN b_1*(d/Ts-1) };

iL_upd1_1 = { IF s2 THEN b_1 };

vo_upd0_1 = { IF s1_2 THEN b_2*(d/Ts-1) };

vo_upd1_1 = { IF s2 THEN b_2 };

}

LINEAR {

iL2 = a_11*iL1 + a_12*vo1 + iL_upd0_1 + iL_upd1_1;

vo2 = a_21*iL1 + a_22*vo1 + vo_upd0_1 + vo_upd1_1;

}
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/* n = 2 */

AD {

s2 = d >= 2*Ts;

}

LOGIC {

s2_3 = s2 & ~s3;

}

DA {

iL_upd0_2 = { IF s2_3 THEN b_1*(d/Ts-2) };

iL_upd1_2 = { IF s3 THEN b_1 };

vo_upd0_2 = { IF s2_3 THEN b_2*(d/Ts-2) };

vo_upd1_2 = { IF s3 THEN b_2 };

}

LINEAR {

iL3 = a_11*iL2 + a_12*vo2 + iL_upd0_2 + iL_upd1_2;

vo3 = a_21*iL2 + a_22*vo2 + vo_upd0_2 + vo_upd1_2;

}

/* n = 3 */

AD {

s3 = d >= 3*Ts;

}

/* state-update from k to k+1 */

CONTINUOUS {

iL = iL3;

vo = vo3;

d_old = d;

vo_ref = vo_ref;

iL_max = iL_max;

}

/* output voltage error */

LINEAR {

vo_errSum = (0.5*vo0 + vo1 + vo2 + 0.5*vo3)*Ts - vo_ref;

}

/* outputs */

OUTPUT {

vo_errSum_out = vo_errSum;

du_out = d-d_old;

}

/* hard constraints on variables */

MUST {

iL >= -iL_max; iL <= iL_max;

iL1 >= -iL_max; iL1 <= iL_max;

iL2 >= -iL_max; iL2 <= iL_max;

iL3 >= -iL_max; iL3 <= iL_max;

vo >= -1; vo <= 1;

d_old >= 0; d_old <= 1;

vo_ref >= 0.2; vo_ref <= 1;

iL_max >= 0.6; iL_max <= 3;

d >= 0; d <= 1;

}

}

}
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A.5 Power System

This section presents the Hysdel code of the example power system from Section 9.3.2

with the sampling interval Ts = 10 s and the fault in the tie line being applied. Since

the OLTC is modelled here by a finite state machine, the model differs slightly from the

representation (9.13)–(9.18).

SYSTEM powerSystem_Ts10_withFault {

INTERFACE {

STATE {

REAL n [0.8, 1.2], /* tap position */

x [-0.5, 10], /* load state */

timer [-0.1, 1000]; /* timer of OLTC */

BOOL idle, tapdelay, /* discrete states for OLTC automaton */

sC_old, sL_old; /* previous capacitor switching, load-shedding */

}

INPUT {

BOOL n_up, n_down, /* tap command */

sC, sL; /* capacitor switching, load-shedding */

}

OUTPUT {

REAL V3m_out, V4m_out; /* bus voltages 3 and 4 */

REAL sc_slSUM_out; /* sum of slacks on bus voltages */

BOOL sc_violated_out; /* at least one soft constraint on bus voltage violated */

}

PARAMETER {

REAL Ts = 10,

Eps = 1e-3;

REAL n_min = 0.8, /* constants of OLTC model */

n_max = 1.2,

n_step = 0.02,

t_tapdelay = 29;

REAL V3m_min = 0.9, /* lower soft constraints on bus voltages */

V4m_min = 0.9;

}

}

IMPLEMENTATION {

AUX {

/* delta u(k) */

REAL Dn [-0.03, 0.03], DsC [-1, 1], DsL [-1, 1];

/* OLTC */

BOOL n_updown,

n_upbound, n_lobound,

wait_tapdelay, ready2tap;

REAL timer_z1, timer_z2, timer_z3;

REAL n_z1[-0.03, 0.01], n_z2[-0.01, 0.03];

/* soft constraints on bus voltages */

REAL sc3lo_sl [-0.2, 0], sc3lo_slPOS[0, 0.1],

sc4lo_sl [-0.2, 0], sc4lo_slPOS[0, 0.1],

sc_slSUM [0, 0.2];

BOOL sc3lo_d, sc4lo_d,

sc_violated;
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/* PWA approximation of switched nonlinear system (DAE with AVR) */

BOOL reg_d1, reg_d2, reg_d3, reg_d4, reg_d5, reg_d6, reg_d7, reg_d8;

BOOL d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, d13, d14, d15, d16, d17, d18, d19,

d20, d21, d22, d23, d24, d25, d26, d27, d28, d29, d30, d31, d32;

REAL xt[-0.5, 10], xt_z1, xt_z2, xt_z3, xt_z4, xt_z5, xt_z6, xt_z7, xt_z8, xt_z9, xt_z10,

xt_z11, xt_z12, xt_z13, xt_z14, xt_z15, xt_z16, xt_z17, xt_z18, xt_z19, xt_z20, xt_z21,

xt_z22, xt_z23, xt_z24, xt_z25, xt_z26, xt_z27, xt_z28, xt_z29, xt_z30, xt_z31, xt_z32;

REAL V3m[0.8, 1.1], V3m_z1, V3m_z2, V3m_z3, V3m_z4, V3m_z5, V3m_z6, V3m_z7, V3m_z8, V3m_z9,

V3m_z10, V3m_z11, V3m_z12, V3m_z13, V3m_z14, V3m_z15, V3m_z16, V3m_z17, V3m_z18,

V3m_z19, V3m_z20, V3m_z21, V3m_z22, V3m_z23, V3m_z24, V3m_z25, V3m_z26, V3m_z27,

V3m_z28, V3m_z29, V3m_z30, V3m_z31, V3m_z32;

REAL V4m[0.8, 1.1], V4m_z1, V4m_z2, V4m_z3, V4m_z4, V4m_z5, V4m_z6, V4m_z7, V4m_z8, V4m_z9,

V4m_z10, V4m_z11, V4m_z12, V4m_z13, V4m_z14, V4m_z15, V4m_z16, V4m_z17, V4m_z18,

V4m_z19, V4m_z20, V4m_z21, V4m_z22, V4m_z23, V4m_z24, V4m_z25, V4m_z26, V4m_z27,

V4m_z28, V4m_z29, V4m_z30, V4m_z31, V4m_z32;

}

/********** OLTC **********/

AD {

n_upbound = n >= n_max;

n_lobound = n <= n_min;

wait_tapdelay = timer -t_tapdelay +Eps <= 0;

}

LOGIC {

n_updown = n_up | n_down;

ready2tap = tapdelay & ~wait_tapdelay;

}

DA {

timer_z1 = {IF idle THEN Ts

ELSE timer};

timer_z2 = {IF tapdelay THEN Ts};

timer_z3 = {IF ready2tap THEN -t_tapdelay};

n_z1 = {IF (ready2tap & n_down & ~n_lobound) THEN -n_step};

n_z2 = {IF (ready2tap & n_up & ~n_upbound) THEN n_step};

}

CONTINUOUS {

timer = timer_z1 + timer_z2 + timer_z3;

n = n + n_z1 + n_z2;

}

AUTOMATA {

idle = (idle | tapdelay | ready2tap) & ~n_updown;

tapdelay = (idle | (tapdelay & wait_tapdelay) | ready2tap) & n_updown;

}

/********** PWA Approximation of Switched Nonlinear System (DAE with AVR) **********/

/* delta variables associated with polyhedra (simplices) */

MUST {

n -1 -0.21 +0.21*(REAL reg_d1) <= 0;

0.2*x -5.25*n +4.3 -2.11 +2.11*(REAL reg_d1) <= 0;

x -4.75 -5.26 +5.26*(REAL reg_d2) <= 0;

-0.2*x +5.25*n -4.3 -2.11 +2.11*(REAL reg_d2) <= 0;

0.2*x -5.25*n +5.35 -3.16 +3.16*(REAL reg_d3) <= 0;

x -4.75 -5.26 +5.26*(REAL reg_d4) <= 0;

-n +1 -0.21 +0.21*(REAL reg_d4) <= 0;

-0.2*x +5.25*n -5.35 -1.06 +1.06*(REAL reg_d4) <= 0;

-x +4.75 -5.26 +5.26*(REAL reg_d5) <= 0;

n -1 -0.21 +0.21*(REAL reg_d5) <= 0;

0.2*x -5.25*n +3.25 -1.06 +1.06*(REAL reg_d5) <= 0;
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-0.2*x +5.25*n -3.25 -3.16 +3.16*(REAL reg_d6) <= 0;

-x +4.75 -5.26 +5.26*(REAL reg_d7) <= 0;

0.2*x -5.25*n +4.3 -2.11 +2.11*(REAL reg_d7) <= 0;

-n +1 -0.21 +0.21*(REAL reg_d8) <= 0;

-0.2*x +5.25*n -4.3 -2.11 +2.11*(REAL reg_d8) <= 0;

}

LINEAR {

(REAL reg_d1) +(REAL reg_d2) +(REAL reg_d3) +(REAL reg_d4) +(REAL reg_d5) +(REAL reg_d6) +

(REAL reg_d7) +(REAL reg_d8) <= 1;

}

/* delta variables associated with polyhedron and control input */

LOGIC {

d1 = reg_d1 & ~sC & ~sL;

d2 = reg_d2 & ~sC & ~sL;

d3 = reg_d3 & ~sC & ~sL;

d4 = reg_d4 & ~sC & ~sL;

d5 = reg_d5 & ~sC & ~sL;

d6 = reg_d6 & ~sC & ~sL;

d7 = reg_d7 & ~sC & ~sL;

d8 = reg_d8 & ~sC & ~sL;

d9 = reg_d1 & ~sC & sL;

d10 = reg_d2 & ~sC & sL;

d11 = reg_d3 & ~sC & sL;

d12 = reg_d4 & ~sC & sL;

d13 = reg_d5 & ~sC & sL;

d14 = reg_d6 & ~sC & sL;

d15 = reg_d7 & ~sC & sL;

d16 = reg_d8 & ~sC & sL;

d17 = reg_d1 & sC & ~sL;

d18 = reg_d2 & sC & ~sL;

d19 = reg_d3 & sC & ~sL;

d20 = reg_d4 & sC & ~sL;

d21 = reg_d5 & sC & ~sL;

d22 = reg_d6 & sC & ~sL;

d23 = reg_d7 & sC & ~sL;

d24 = reg_d8 & sC & ~sL;

d25 = reg_d1 & sC & sL;

d26 = reg_d2 & sC & sL;

d27 = reg_d3 & sC & sL;

d28 = reg_d4 & sC & sL;

d29 = reg_d5 & sC & sL;

d30 = reg_d6 & sC & sL;

d31 = reg_d7 & sC & sL;

d32 = reg_d8 & sC & sL;

}

/* state-update for load state */

DA {

xt_z1 = {IF d1 THEN 0.91644*x -9.4548*n +10.7348};

xt_z2 = {IF d2 THEN 0.88369*x -8.5953*n +10.0308};

xt_z3 = {IF d3 THEN 0.98589*x -4.2417*n +5.5564};

xt_z4 = {IF d4 THEN 0.91644*x -2.4185*n +3.6985};

xt_z5 = {IF d5 THEN 0.9329*x -8.5953*n +9.7971};

xt_z6 = {IF d6 THEN 0.89168*x -7.5133*n +9.1273};
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xt_z7 = {IF d7 THEN 1.0203*x -2.4185*n +3.2053};

xt_z8 = {IF d8 THEN 0.9329*x -0.12495*n +1.3267};

xt_z9 = {IF d9 THEN 0.91061*x -9.8792*n +10.9583};

xt_z10 = {IF d10 THEN 0.88207*x -9.1301*n +10.3447};

xt_z11 = {IF d11 THEN 0.96404*x -5.4483*n +6.554};

xt_z12 = {IF d12 THEN 0.91061*x -4.0458*n +5.1249};

xt_z13 = {IF d13 THEN 0.92411*x -9.1301*n +10.145};

xt_z14 = {IF d14 THEN 0.88891*x -8.2062*n +9.5731};

xt_z15 = {IF d15 THEN 0.99518*x -4.0458*n +4.7231};

xt_z16 = {IF d16 THEN 0.92411*x -2.1801*n +3.195};

xt_z17 = {IF d17 THEN 0.92027*x -9.6151*n +10.2334};

xt_z18 = {IF d18 THEN 0.88873*x -8.7872*n +9.5552};

xt_z19 = {IF d19 THEN 0.98645*x -4.2027*n +4.8541};

xt_z20 = {IF d20 THEN 0.92027*x -2.4656*n +3.0839};

xt_z21 = {IF d21 THEN 0.93663*x -8.7872*n +9.3277};

xt_z22 = {IF d22 THEN 0.89629*x -7.7282*n +8.6721};

xt_z23 = {IF d23 THEN 1.0204*x -2.4656*n +2.6084};

xt_z24 = {IF d24 THEN 0.93663*x -0.26755*n +0.80808};

xt_z25 = {IF d25 THEN 0.91751*x -10.206*n +10.5757};

xt_z26 = {IF d26 THEN 0.8859*x -9.3761*n +9.896};

xt_z27 = {IF d27 THEN 0.9607*x -5.1994*n +5.5907};

xt_z28 = {IF d28 THEN 0.91751*x -4.0657*n +4.4353};

xt_z29 = {IF d29 THEN 0.92771*x -9.3761*n +9.6973};

xt_z30 = {IF d30 THEN 0.8937*x -8.4833*n +9.1446};

xt_z31 = {IF d31 THEN 0.99247*x -4.0657*n +4.0793};

xt_z32 = {IF d32 THEN 0.92771*x -2.3657*n +2.6869};

}

LINEAR {

xt = xt_z1+xt_z2+xt_z3+xt_z4+xt_z5+xt_z6+xt_z7+xt_z8+xt_z9+xt_z10+xt_z11+xt_z12+xt_z13+xt_z14+

xt_z15+xt_z16+xt_z17+xt_z18+xt_z19+xt_z20+xt_z21+xt_z22+xt_z23+xt_z24+xt_z25+xt_z26+xt_z27+

xt_z28+xt_z29+xt_z30+xt_z31+xt_z32;

}

CONTINUOUS {

x = xt;

}

/* output for V3m */

DA {

V3m_z1 = {IF d1 THEN -0.004198*x -0.45468*n +1.3815};

V3m_z2 = {IF d2 THEN -0.0034351*x -0.47471*n +1.3979};

V3m_z3 = {IF d3 THEN -0.0068194*x -0.5657*n +1.4912};

V3m_z4 = {IF d4 THEN -0.004198*x -0.63451*n +1.5613};

V3m_z5 = {IF d5 THEN -0.0053059*x -0.47471*n +1.4068};

V3m_z6 = {IF d6 THEN -0.0039272*x -0.5109*n +1.4292};

V3m_z7 = {IF d7 THEN -0.0087429*x -0.63451*n +1.5829};

V3m_z8 = {IF d8 THEN -0.0053059*x -0.72473*n +1.6568};

V3m_z9 = {IF d9 THEN -0.0038391*x -0.43929*n +1.378};

V3m_z10 = {IF d10 THEN -0.0032119*x -0.45576*n +1.3915};

V3m_z11 = {IF d11 THEN -0.0057266*x -0.5303*n +1.468};

V3m_z12 = {IF d12 THEN -0.0038391*x -0.57984*n +1.5185};

V3m_z13 = {IF d13 THEN -0.0047388*x -0.45576*n +1.3987};

V3m_z14 = {IF d14 THEN -0.0036339*x -0.48476*n +1.4167};

V3m_z15 = {IF d15 THEN -0.0073669*x -0.57984*n +1.5353};

V3m_z16 = {IF d16 THEN -0.0047388*x -0.64883*n +1.5918};

V3m_z17 = {IF d17 THEN -0.0043015*x -0.51951*n +1.4829};

V3m_z18 = {IF d18 THEN -0.00364*x -0.53687*n +1.4971};

V3m_z19 = {IF d19 THEN -0.0067065*x -0.61076*n +1.573};

V3m_z20 = {IF d20 THEN -0.0043015*x -0.67389*n +1.6373};
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V3m_z21 = {IF d21 THEN -0.0053781*x -0.53687*n +1.5054};

V3m_z22 = {IF d22 THEN -0.0040903*x -0.57068*n +1.5263};

V3m_z23 = {IF d23 THEN -0.0085055*x -0.67389*n +1.6573};

V3m_z24 = {IF d24 THEN -0.0053781*x -0.75599*n +1.7245};

V3m_z25 = {IF d25 THEN -0.0040495*x -0.49926*n +1.4764};

V3m_z26 = {IF d26 THEN -0.0033708*x -0.51707*n +1.491};

V3m_z27 = {IF d27 THEN -0.0055011*x -0.585*n +1.5615};

V3m_z28 = {IF d28 THEN -0.0040495*x -0.62311*n +1.6003};

V3m_z29 = {IF d29 THEN -0.0048139*x -0.51707*n +1.4979};

V3m_z30 = {IF d30 THEN -0.0038027*x -0.54361*n +1.5143};

V3m_z31 = {IF d31 THEN -0.0070844*x -0.62311*n +1.6147};

V3m_z32 = {IF d32 THEN -0.0048139*x -0.68271*n +1.6635};

}

LINEAR {

V3m = V3m_z1+V3m_z2+V3m_z3+V3m_z4+V3m_z5+V3m_z6+V3m_z7+V3m_z8+V3m_z9+V3m_z10+V3m_z11+V3m_z12+

V3m_z13+V3m_z14+V3m_z15+V3m_z16+V3m_z17+V3m_z18+V3m_z19+V3m_z20+V3m_z21+V3m_z22+V3m_z23+

V3m_z24+V3m_z25+V3m_z26+V3m_z27+V3m_z28+V3m_z29+V3m_z30+V3m_z31+V3m_z32;

}

/* output for V3m */

DA {

V4m_z1 = {IF d1 THEN -0.0042148*x +0.5742*n +0.35671};

V4m_z2 = {IF d2 THEN -0.0027113*x +0.53474*n +0.38904};

V4m_z3 = {IF d3 THEN -0.007896*x +0.23665*n +0.69242};

V4m_z4 = {IF d4 THEN -0.0042148*x +0.14002*n +0.79089};

V4m_z5 = {IF d5 THEN -0.0053157*x +0.53474*n +0.40141};

V4m_z6 = {IF d6 THEN -0.0032767*x +0.48121*n +0.43454};

V4m_z7 = {IF d7 THEN -0.010209*x +0.14002*n +0.81936};

V4m_z8 = {IF d8 THEN -0.0053157*x +0.011585*n +0.92456};

V4m_z9 = {IF d9 THEN -0.0038537*x +0.59557*n +0.34678};

V4m_z10 = {IF d10 THEN -0.0025578*x +0.56155*n +0.37464};

V4m_z11 = {IF d11 THEN -0.0066124*x +0.29265*n +0.64831};

V4m_z12 = {IF d12 THEN -0.0038537*x +0.22024*n +0.72211};

V4m_z13 = {IF d13 THEN -0.0047327*x +0.56155*n +0.38497};

V4m_z14 = {IF d14 THEN -0.0030512*x +0.51741*n +0.41229};

V4m_z15 = {IF d15 THEN -0.0086266*x +0.22024*n +0.74478};

V4m_z16 = {IF d16 THEN -0.0047327*x +0.11802*n +0.8285};

V4m_z17 = {IF d17 THEN -0.0043121*x +0.55748*n +0.41025};

V4m_z18 = {IF d18 THEN -0.0029022*x +0.52047*n +0.44056};

V4m_z19 = {IF d19 THEN -0.00775*x +0.21904*n +0.74697};

V4m_z20 = {IF d20 THEN -0.0043121*x +0.12879*n +0.83893};

V4m_z21 = {IF d21 THEN -0.0053703*x +0.52047*n +0.45228};

V4m_z22 = {IF d22 THEN -0.0034356*x +0.46968*n +0.48372};

V4m_z23 = {IF d23 THEN -0.0099521*x +0.12879*n +0.86572};

V4m_z24 = {IF d24 THEN -0.0053703*x +0.0085202*n +0.96423};

V4m_z25 = {IF d25 THEN -0.0040795*x +0.58536*n +0.3958};

V4m_z26 = {IF d26 THEN -0.002698*x +0.54909*n +0.4255};

V4m_z27 = {IF d27 THEN -0.0063244*x +0.26507*n +0.71496};

V4m_z28 = {IF d28 THEN -0.0040795*x +0.20614*n +0.77501};

V4m_z29 = {IF d29 THEN -0.0047908*x +0.54909*n +0.43544};

V4m_z30 = {IF d30 THEN -0.0032191*x +0.50783*n +0.46098};

V4m_z31 = {IF d31 THEN -0.0083022*x +0.20614*n +0.79507};

V4m_z32 = {IF d32 THEN -0.0047908*x +0.11397*n +0.87057};

}

LINEAR {

V4m = V4m_z1+V4m_z2+V4m_z3+V4m_z4+V4m_z5+V4m_z6+V4m_z7+V4m_z8+V4m_z9+V4m_z10+V4m_z11+V4m_z12+

V4m_z13+V4m_z14+V4m_z15+V4m_z16+V4m_z17+V4m_z18+V4m_z19+V4m_z20+V4m_z21+V4m_z22+

V4m_z23+V4m_z24+V4m_z25+V4m_z26+V4m_z27+V4m_z28+V4m_z29+V4m_z30+V4m_z31+V4m_z32;
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}

/********** Costs on Switching and Slacks on Soft Constraints **********/

/* slack variables on lower soft constraints on bus voltages 3 and 4 */

LINEAR {

sc3lo_sl = V3m_min - V3m;

sc4lo_sl = V4m_min - V4m;

}

AD {

sc3lo_d = -sc3lo_sl <= 0;

sc4lo_d = -sc4lo_sl <= 0;

}

DA {

sc3lo_slPOS = {IF sc3lo_d THEN sc3lo_sl};

sc4lo_slPOS = {IF sc4lo_d THEN sc4lo_sl};

}

LINEAR {

sc_slSUM = sc3lo_slPOS + sc4lo_slPOS; /* sum of slacks */

}

/* violation of a soft constraint on bus voltage */

LOGIC {

sc_violated = sc3lo_d | sc4lo_d;

}

/* costs for switching */

AUTOMATA {

sC_old = sC;

sL_old = sL;

}

LINEAR {

Dn = -n_z1 + n_z2 + ( (REAL n_up) + (REAL n_down) )*n_step*0.001; /* change in tap position */

DsC = (REAL sC) - (REAL sC_old); /* capacitor switching */

DsL = (REAL sL) - (REAL sL_old); /* change in load-shedding */

}

/********** Outputs **********/

OUTPUT {

V3m_out = V3m;

V4m_out = V4m;

sc_slSUM_out = sc_slSUM;

sc_violated_out = sc_violated;

}

/********** Constraint on Input **********/

MUST {

(REAL n_up) + (REAL n_down) <= 1.1;

}

}

}
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Nomenclature

Mathematical Definitions

Throughout this thesis, as a general rule, scalars and vectors are denoted with the lower

case letters (e.g., a, b, . . .), matrices are denoted with the upper case letters (e.g., A,B, . . .),

and sets are denoted with the upper case calligraphic letters (e.g., A,W , . . .). If not

otherwise noted, all vectors are column vectors. In the following let c ∈ C be a complex

number, s ∈ Rn a column vector, S ∈ Rn×n a square matrix, and R ∈ Rn×m a rectangular

matrix.

General

· general placeholder (for any variable)

, definition

| or : such that

∈ is element of (belongs to)

∀ for all

∃ exists at least one

/∈,∄, . . . / denotes negation

→ mapping

7→ maps to

265
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SpacesN positive integers, N , Z>N0 non-negative integers, N , Z≥Z integersZ≥ non-negative integersZ> positive integersR real numbersRn space of n-dimensional real vectorsRn×m space of n by m real matricesR≥ non-negative real numbersC complex numbers

Operations with Logic Variables

∨ or

∧ and

⇒ implies

⇔ if and only if

Operations with Complex Numbers

ℜ{c} real part of a complex number

ℑ{c} imaginary part of a complex number

Operations with VectorsOn vector of zeros, On , [0 0 . . . 0]T ∈ Rn1n vector of ones, 1n , [1 1 . . . 1]T ∈ Rn

< element-wise comparison, similar for ≤,=,≥, >

sT row vector

|s| element-wise absolute value

‖s‖ any vector norm

‖s‖1 sum of absolute elements of a vector

‖s‖2 Euclidian norm

‖s‖∞ largest absolute element of a vector
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Operations with Matrices

I identity matrix (of appropriate dimension)

S (�) ≻ 0 positive (semi)definite matrix

S (�) ≺ 0 negative (semi)definite matrix

RT matrix transpose

S−1 inverse of the square matrix

det(S) determinant of the square matrix

rank(R) rank of a matrix

Operations with Sets

∅ the empty set

(⊂) ⊆ (strict) subset

(⊃) ⊇ (strict) superset

∩ intersection

∪ union

Optimization

min minimum

max maximum

inf infimum

sup supremum

Variables

In the sequel, we provide an alphabetical list of the variables used in this thesis. Care has

been taken to avoid multiple definitions, yet these could not be avoided in all cases.

Symbol Meaning

ai normal vector of the i-th hyperplane in Rd (of a collection of n

hyperplanes)

a matrix Rd×n of normal vectors of a collection of n hyperplanes in Rd

α cos(ϕ), in DTC

A state-space matrix (system), in MLD model

Ai state-space matrix (system) corresponding to mode i, e.g. in DHA and

in PWA model

A hyperplane arrangement

bi offset of the i-th hyperplane from the origin (of a collection of n

hyperplanes)
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Symbol Meaning

b vector Rn of offsets of a collection of n hyperplanes

β sin(ϕ), in DTC

B1, B2, B3 state-space matrices (input, δ and z) in MLD model

Bi state-space matrix (input) corresponding to mode i, e.g. in DHA and

in PWA model

C state-space matrix (output), in MLD model

Ci state-space matrix (output) corresponding to mode i, e.g. in DHA and

in PWA model

d dimension of Euclidian space

d duty cycle, in DC-DC converter

δ binary (or Boolean) vector, e.g. in MLD model

δ rotor angle, in Power System

δe event (binary signal), in DHA

δi i-th Boolean variable, in OCR

∆ set of Boolean vectors, in OCR

D1, D2, D3 state-space matrices (direct feedthrough, δ and z), in MLD model

Di state-space matrix (direct feedthrough) corresponding to mode i, e.g.

in DHA and in PWA model

D set of δe, in DHA

E1, . . . , E5 inequality constraint matrices, in MLD model

E edge of a digraph G , in Mode Enumeration

f state-space vector (offset) in continuous-time, in DC-DC converter

fi state-space vector (offset in state-update) corresponding to mode i, e.g.

in DHA and in PWA model

fB, fH, fM logic state-update, affine threshold and mode selector function, in DHA

fW Boolean function, in OCR

fPWA state-update function, in PWA model

F state-space matrix (system) in continuous-time, in DC-DC converter

Fj matrix of j-th state-feedback control law

F feedback arc set for digraph G , in Mode Enumeration

g nonlinear output function, in DTC

gB binary output function, in DHA

gi state-space vector (offset in output) corresponding to mode i, e.g. in

DHA and in PWA model

gj offset vector of j-th state-feedback control law
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Symbol Meaning

gPWA output function, in PWA model

G digraph G = (V ,E ), in Mode Enumeration

Hi i-th hyperplane (in a collection of hyperplanes)

i index, e.g. for hyperplane arrangement, mode

iabc vector of stator currents with components ia, ib, ic, in DTC

iℓ inductor current, in DC-DC converter

Iid, Iiq d- and q-component of i-th current, in Power System

I set of indices, i ∈ I, e.g. for modes, hyperplanes

j index, e.g. for polyhedron, mode, hyperplane arrangement

J cost function

J set of indices, j ∈ J , e.g. for modes in PWA model

k discrete-time instants, k ∈ N0

l current computational order or step, in Mode Enumeration

ℓ time-step within prediction interval

λ distribution of switching effort, in DTC

L Lyapunov function, in DC-DC converter

m marking (of a cell in a hyperplane arrangement)

mr, mb dimension of real and binary input vectors ur and ub

µ sector number, in DTC

M set of markings (of cells in a hyperplane arrangement)

Mb,Mw set of markings referring to black and white polyhedra (in a

hyperplane arrangement)

n number of hyperplanes in hyperplane arrangement

n discrete-time instants of subperiods, n ∈ {0, 1, . . . , ν − 1}, in DC-DC

converter

nr, nb dimensions of real and binary state vectors xr and xb

ne dimension of event vector δe, in DHA

nδ, nz dimensions of δ and z, in MLD model

nT tap position, in Power System

ν sector number, in DTC

ν number of subperiods, in DC-DC converter

N length of prediction horizon

O order of complexity

p number of polyhedra in a set of polyhedra
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Symbol Meaning

pr, pb length of real and binary output vectors yr and yb

ϕ angle between a-axis of three-phase system and d-axis of reference frame,

and angular position of rotating reference frame, in DTC

φ rotor angle, in Power System

ψs stator flux vector with components ψds, ψqs, in DTC

ψr rotor flux vector with components ψdr, ψqr, in DTC

P Park transformation, in DTC

P2, PL active power of Generator 2 and load, in Power System

Pj j-th polyhedron, e.g. in PWA model

Pm polyhedron (cell) in hyperplane arrangement (corresponding to

marking m)

Ψs length of stator flux vector, in DTC

Ψ state-space matrix (system) referring to sampling interval τs, in DC-DC

converter

Φ state-space vector (input) referring to sampling interval τs, in DC-DC

converter

Π mapping matrix, in DTC

q number of polyhedra in a set of polyhedra

Q penalty matrix

Q2, QL reactive power of Generator 2 and load, in Power System

Qc
u, Q

r
u core and ring (set of polyhedra) for control input u, in DTC

Qj j-th polyhedron, e.g. in OCR

ro output resistance, in DC-DC converter

R rotation matrix, in DTC

R polyhedral domain (a hyperplane arrangement is restricted to)

s number of DHAs in a composition, in Mode Enumeration

sC number of capacitor banks connected, in Power System

sL amount of load shed, in Power System

σn sampled switch position at time-instants nτs, in DC-DC converter

S, S soft constraints on lower and upper bounds, in Power System

Sj j-th PWA dynamic, i.e. the collection {Aj, Bj, fj, Cj, Dj, gj}, in Mode

Enumeration

Σ hybrid model, e.g. a DHA or a PWA model

t continuous-time axis, also clock variable in EG

tT timer in OLTC, in Power System
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Symbol Meaning

τs sampling interval of subperiods, in DC-DC converter

ϑ angle corresponding to flux rotation, in DTC

Te electromagnetic torque, in DTC

Tℓ load torque, in DTC

Ts sampling interval

u input vector (holding both real and binary components)

uabc vector of switch positions of inverter with components ua, ub, uc, in DTC

udq0 voltage vector with components ud, uq, u0, in DTC

ur, ub real and binary input vectors

U sequence of input vectors (within prediction horizon)

U set of input vector u

Ur, Ub sets of real and binary input vectors ur and ub

v auxiliary input vector (holding both real and binary components), for

compositions of DHAs with loops, in Mode Enumeration

vr, vb auxiliary real and binary input vectors, for compositions of DHAs with

loop, in Mode Enumeration

vc, vs, vo capacitor, input and output voltages, in DC-DC converter

υn neutral point potential, in DTC

Vdc dc-link voltage, in DTC

Vim absolute value of i-th bus voltage, in Power System

Vid, Viq d- and q-component of i-th bus voltage, in Power System

V set of auxiliary input vector v, in Mode Enumeration

V set of parameters, in DC-DC converter

Vr, Vb set of auxiliary real and binary input vectors, in Mode Enumeration

V vertex of a digraph G , in Mode Enumeration

wij element of matrix W , in Mode Enumeration

W adjacency matrix of digraph G, in Mode Enumeration

ωb base angular velocity, in DTC

ωfr angular velocity of frame, in DTC

ωr angular velocity of rotor, in DTC

x state vector (holding both real and binary components)

xm motor state vector, in DTC

xr, xb real and binary state vectors

xLd, xLq d- and q-components of load state, in Power System

ξ state supersampled with τs, in DC-DC converter
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Symbol Meaning

X ”don’t care” in Boolean minimization, in OCR

X set of state vector x

Xr, Xb sets of real and binary state vectors xr and xb

y output vector (holding both real and binary components)

yr, yb real and binary output vectors

Y set of output vector y

Yr, Yb sets of real and binary output vectors yr and yb

z auxiliary real vector, in MLD model

z upper bound, in OCR

ζ optimization variable

ζ state of closed-loop (autonomous) system, in DC-DC converter

Z set of states ζ, in DC-DC converter

Z0 control invariant subset of Z, in DC-DC converter
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Acronyms

AVR Automatic Voltage Regulator

CFTOC Constrained Finite Time Optimal Control

DAE Differential Algebraic Equation

DHA Discrete Hybrid Automaton

DP Dynamic Program(ming)

DTC Direct Torque Control

EG Event Generator

FAS Feedback Arc Set

FSM Finite State Machine

HYSDEL HYbrid System DEscription Language

LP Linear Program(ming)

LQR Linear Quadratic Regulator

MILP Mixed Integer Linear Program(ming)

MIQP Mixed Integer Quadratic Program(ming)

MLD Mixed Logical Dynamical

MPC Model Predictive Control

mp-LP multi-parametric Linear Program(ming)

mp-MILP multi-parametric Mixed Integer Linear Program(ming)

mp-MIQP multi-parametric Mixed Integer Quadratic Program(ming)

mp-QP multi-parametric Quadratic Program(ming)

MS Mode Selector

OCR Optimal Complexity Reduction

p.u. per unit

PWA Piecewise Affine

PWM Pulse Width Modulation

PWQ Piecewise Quadratic

QP Quadratic Program(ming)

RHC Receding Horizon Control

SAS Switched Affine System
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[EvM82] Erickson, R.W., S. Čuk and R.D. Middlebrook: Large Signal Model-

ing and Analysis of Switching Regulators. In Proceedings of the IEEE Power

Electronics Specialists Conference, pages 240–250, 1982.

[FCMM02] Ferrari-Trecate, G., F.A. Cuzzola, D. Mignone and M. Morari:

Analysis of Discrete-Time Piecewise Affine and Hybrid Systems. Automatica,

38(12):2139–2146, March 2002.

[FF02] Ferrez, J.A. and K. Fukuda: Implementations of LP-based Reverse

Search Algorithms for the Zonotope Construction and the Fixed-Rank Convex

Quadratic Maximization in Binary Variables Using the ZRAM and the cd-

dlib Libraries. Technical Report, Mcgill, http://www.cs.mcgill.ca/∼fukuda/

download/mink/RS TOPE020713.tar.gz, July 2002.

[FFL01] Ferrez, J.A., K. Fukuda and Th.M. Liebling: Cuts, Zonotopes and

Arrangements. Technical Report, EPF Lausanne, Switzerland, November

2001.

[Fia83] Fiacco, A.V.: Introduction to Sensitivity and Stability Analysis in Nonlin-

ear Programming. Academic Press, 1983.

[Flo95] Floudas, C.A.: Nonlinear and Mixed-Integer Optimization. Oxford Uni-

versity Press, 1995.

[FMLM03] Ferrari-Trecate, G., M. Muselli, D. Liberati and M. Morari: A

Clustering Technique for the Identification of Piecewise Affine Systems. Au-

tomatica, 39(2):205–217, February 2003.

[FMM02] Ferrari-Trecate, G., D. Mignone and M. Morari: Moving Horizon

Estimation for Hybrid Systems. IEEE Transactions on Automatic Control,

47(10):1663–1676, 2002.

[GLM02] Geyer, T., M. Larsson and M. Morari: Hybrid Control of Voltage

Collapse in Power Systems. Technical Report AUT02-12, Automatic Control

Laboratory ETH Zurich, http://control.ee.ethz.ch/, 2002.

[GLM03] Geyer, T., M. Larsson and M. Morari: Hybrid Emergency Voltage Con-

trol in Power Systems. In Proceedings of the European Control Conference,

Cambridge, UK, September 2003.
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