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Abstract—Finite control set model predictive torque and flux
control uses a scalar weight in its cost function to determine the
trade-off between the torque and flux magnitude tracking error
terms. This weight strongly influences the current distortions.
It will be shown that an optimal weight can be computed alge-
braically, which minimizes the current distortions. The resulting
predictive torque and flux controller achieves current distortions
per switching frequency that are very similar to those of a
predictive current controller, provided that the corresponding
weight on the switching effort is selected appropriately. To this
end, a second analytical expression will be derived.

Index Terms—Model predictive control, finite control set, cost
function, penalty weights, tuning, torque and flux control, current
control, power converters, variable speed drives.

I. INTRODUCTION

Finite control set model predictive control (FCS-MPC) has

become popular thanks to its versatility, and its algorithmic and

computational simplicity [1]. In order to achieve the desired

closed-loop performance characteristic, however, the weights

in the cost function need to be selected carefully. This tuning

process is usually performed on a trial-and-error basis [2] and

is thus considered an unresolved issue [3].

An important member of the FCS-MPC family is predictive

torque and flux control [4] for variable speed drives. By di-

rectly controlling the electromagnetic torque and the machine

magnetization, a high degree of robustness to model parameter

variations can be achieved [5]. The predicted torque and stator

flux magnitude errors are penalized in the cost function. To

determine the relative importance of these two terms, a penalty

weight is introduced. The latter has a significant impact on

the control performance, particularly on the harmonic current

distortions, which tend to be worse than for predictive current

control, as will be discussed in this paper.

To select the weights in FCS-MPC, the commonly followed

approach is to run multiple closed-loop simulations for a range

of weights and to then choose the combination of weights

that minimizes a given performance criterium [6]–[9]. To

simplify this process, it is advisable to normalize the controlled

quantities [6], for example by adopting a per unit (pu) system.

To speed up the selection process, optimization methods can

be used to derive Pareto fronts, see [10].

On the other hand, an algebraic method was proposed in

[11] for predictive torque and flux control when applied to

two-level inverters; when alternating between active and zero

vectors, analytical expressions for the weights can be derived
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that minimize the torque ripple. By ranking the magnitude of

each cost function term and then taking the minimum of their

average value, the weights can be avoided altogether [12]. In

effect, this leads to a discrete cost function, but nevertheless

requires the tuning of the relative importance of the flux

magnitude with respect to the electromagnetic torque.

Alternatively, by adopting the notion of field orienta-

tion [13], the torque and machine magnetization can be

controlled indirectly through orthogonal stator current com-

ponents [14] using the notion of predictive current control.

This concept was introduced in [15] and later refined in

[16]–[18]. It is generally accepted that the two orthogonal

current components should be equally penalized to minimize

the current distortions, see also [19] and [20]. A mathemat-

ical justification is provided in Appendix A. To reduce the

switching frequency, the predicted number of commutations

should also be penalized in the cost function. The associated

trade-off between current tracking and switching frequency is

fundamental to power electronics and well understood, see for

example [21]. Alas, the commutations are often not penalized

in the literature.

This paper aims to improve the understanding of the weight

selection process in predictive torque and flux control by

answering two questions: First, what are the optimal weights

on the torque and flux error terms that achieve minimal current

distortions for a given switching frequency? It turns out that

a simple analytical expression can be derived.

Second, motivated by the observation that predictive cur-

rent control achieves lower current distortions than predictive

torque and flux control, is it possible to tune the latter con-

troller such that it becomes equivalent to the predictive current

controller in terms of the current distortions per switching

frequency? An analysis of the cost function level sets shows

that this is, in general, impossible. An analytical expression

for the weights can nevertheless be derived that makes both

controllers perform in as similar a manner as possible.

In summary, this paper provides tuning guidelines for the

two most commonly used predictive control methods. These

tuning guidelines are simple algebraic equations. A prelimi-

nary version of this paper is available at [22].

For illustrative purposes, a medium-voltage (MV) drive

system with a three-level neutral point clamped (NPC) inverter

and an induction machine will be considered. To simplify

the exposition, the neutral point potential will be assumed to

be zero, and a pu system will be adopted to normalize all

quantities. We will restrict the prediction horizon to one step,

as this variant of FCS-MPC is the one that is most widely used.
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Fig. 1: NPC inverter with an induction motor and a fixed neutral point potential

For long-horizon FCS-MPC, the interested reader is referred

to [23] and [24].

The paper is structured as follows. Sect. II summarizes

the drive system case study and its mathematical model.

Predictive torque and flux control is reviewed and its cost

function is analyzed in Sect. III, whereas Sect. IV summarizes

predictive current control. The main contribution of this paper,

the procedure to select the optimal weights using algebraic

equations, is provided in Sect. V. Sect. VI evaluates the per-

formance of the two predictive controllers. Sect. VII provides

a summary of the paper and conclusions. Appendix A shows

that for predictive current control the common choice of equal

weights on the two orthogonal current components minimizes

the current distortions. Appendix B discusses the trade-off

between current and torque distortions for predictive control.

II. DRIVE SYSTEM CASE STUDY

Consider an NPC voltage source inverter connected to an

MV induction machine, as shown in Fig. 1. A 3.3 kV and

50Hz squirrel-cage induction machine rated at 2MVA is used.

The dc-link voltage is assumed to be constant at Vdc = 5.2 kV,

and the potential of the neutral point N is fixed to zero.

Throughout the paper, we will use normalized quanti-

ties. The pu system is established using the base quantities

VB =
√

2/3Vrat = 2694V, IB =
√
2Irat = 503.5A and

fB = frat = 50Hz. We also normalize the time axis t, with

one time unit corresponding to 1/(2πfB) seconds. The rated

Voltage 3300 V

Current 356 A

Real power 1.587 MW

Apparent power 2.035 MVA

Stator frequency 50 Hz

Rotational speed 596 rpm

TABLE I: Rated values of the drive system

Stator resistance Rs = 0.0108

Rotor resistance Rr = 0.0091

Stator leakage reactance Xls = 0.1493

Rotor leakage reactance Xlr = 0.1104

Main reactance Xm = 2.349

Total leakage reactance Xσ = 0.2548

dc-link voltage Vdc = 1.930

TABLE II: Parameters of the drive system in the per unit system

values and the detailed parameters of the machine and inverter

are summarized in Tables I and II, respectively.

A. Reference Frames

All variables ξabc = [ξa ξb ξc]
T in the three-phase (abc)

system can be transformed to ξdq = [ξd ξq]
T in the orthogonal

rotating dq reference frame through ξdq =K(ϕ) ξabc with

K(ϕ) =
2

3

[

cos(ϕ) cos(ϕ− 2π
3 ) cos(ϕ+ 2π

3 )

− sin(ϕ) − sin(ϕ − 2π
3 ) − sin(ϕ+ 2π

3 )

]

.

In here, ϕ denotes the angle between the a-axis of the three-

phase system and the d-axis of the reference frame, which is

aligned with the rotor flux vector. The reference frame rotates

with the angular speed ωfr = ωs = dϕ/dt, where ωs is the

synchronous (or stator) angular frequency.

The stationary αβ reference frame is obtained by setting

ϕ and ωfr to zero. The d- and q-axes are then referred to as

α- and β-axes, respectively, and we write ξαβ = [ξα ξβ ]
T =

K(0)ξabc.

B. Modeling based on the Rotor Flux Linkage

We model the induction machine in the stationary reference

frame. A common choice is to write the dynamic machine

equations in terms of the stator current vector is,αβ and the

rotor flux linkage vector ψr,αβ . Using these vectors as the

state variables and treating the electrical angular speed of the

rotor ωr as a parameter, the continuous-time state-space model

of the induction machine

dis,αβ
dt

= − 1

τs
is,αβ +

( 1

τr
I − ωrQ

)Xm

D
ψr,αβ +

Xr

D
vs,αβ

(1a)

dψr,αβ

dt
=
Xm

τr
is,αβ +

(

ωrQ− 1

τr
I
)

ψr,αβ (1b)

can be obtained with the rotation matrix Q =

[

0 −1

1 0

]

and

the two-dimensional identity matrix I . The model parameters

are the stator (rotor) resistance Rs (Rr), the stator (rotor)

leakage reactance Xls (Xlr) and the main reactance Xm.

Furthermore, we define Xs = Xls+Xm, Xr = Xlr+Xm and

D = XsXr−X2
m. Note that all rotor quantities are referred to

the stator circuit. The transient stator and rotor time constants

are defined as

τs =
XrD

RsX2
r +RrX2

m

and τr =
Xr

Rr

, (2)

respectively. For an excellent reference on electrical machines,

the interested reader is referred to [25].

The stator voltage is given by

vs,αβ =
1

2
VdcK(0)u , (3)

where u = [ua ub uc]
T is the three-phase switch position. The

switch positions in the three phase legs are ua, ub, uc, which

are restricted to the set {−1, 0, 1} for a three-level converter.
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Fig. 2: Block diagram of the predictive torque and flux controller

The electromagnetic torque is given by

Te =
1

pf

Xm

Xr

ψr,αβ×is,αβ =
1

pf

Xm

Xr

(ψrαisβ−ψrβisα) , (4)

where the operator × refers to the cross product. The power

factor is given by pf = Prat/Srat, with Prat and Srat referring to

the rated real and apparent power, respectively. Note that the

per unit system is based on the apparent power, whereas the

real power relates to the electromagnetic torque. The inverse

of the power factor in (4) ensures that Te = 1 pu corresponds

to rated torque.

C. Modeling based on the Stator Flux Linkage

Alternatively, by inserting the expression

ψr,αβ =
Xr

Xm

ψs,αβ − D

Xm

is,αβ (5)

into (1), we obtain after several algebraic manipulations the

state-space model

dis,αβ
dt

=
(

ωrQ− RsXr +RrXs

D
I
)

is,αβ+

+
(Rr

D
I − ωrQ

Xr

D

)

ψs,αβ +
Xr

D
vs,αβ

(6a)

dψs,αβ

dt
= −Rsis,αβ + vs,αβ . (6b)

This model uses the stator current vector is,αβ and the stator

flux linkage vector ψs,αβ as state variables.

The torque equation (4) simplifies with the help of (5) to

Te =
1

pf
ψs,αβ × is,αβ =

1

pf
(ψsαisβ − ψsβisα) . (7)

Last, we define the magnitude of the stator flux vector as

Ψs = ||ψs,αβ ||2 =
√

ψ2
sα + ψ2

sβ . (8)

III. PREDICTIVE TORQUE AND FLUX CONTROL

The block diagram of the predictive torque and flux con-

troller is shown in Fig. 2. The controller tracks the references

of the electromagnetic torque T ∗

e and stator flux magnitude

Ψ∗

s by manipulating the three-phase switch position u ∈
{−1, 0, 1}3 [9]. At the same time, the switching frequency

is minimized.

The controller is based on the stator current measurement

and the stator flux estimate, which is estimated based on the

measured stator current and the stator voltage. The latter is

typically not measured, but it is rather reconstructed using the

dc-link voltage and the three-phase switch position. The torque

reference T ∗

e is usually adjusted by an outer speed control

loop. The magnetization of the machine is typically controlled

via the stator rather than the rotor flux magnitude by setting the

stator flux magnitude to Ψ∗

s = 1 pu, see, for example, [1]–[6],

[8], [9]. The controller structure is thus simple, only requiring

a speed controller and a stator flux observer. In particular, rotor

flux information is not required.

A. Controller Model

The controller model predicts the electromagnetic torque

and the magnitude of the stator flux vector at the next discrete

time step k + 1 as a function of the to-be-determined switch

position u(k) at the current time step k. These predictions are

based on the machine model (6) in the stationary orthogonal

αβ reference frame. Let Ts denote the sampling interval.

Integrating (6) from t = kTs to t = (k+1)Ts with the forward

Euler method and inserting (3) into it leads to the discrete-time

representation

is,αβ(k + 1) = A1is,αβ(k) +B1ψs,αβ(k) +B2u(k) (9a)

ψs,αβ(k + 1) = ψs,αβ(k) +B3is,αβ(k) +B4u(k) . (9b)

The system and input matrices are defined as

A1 = I +
(

ωrQ− RsXr +RrXs

D
I
)

Ts,

B1 =
(Rr

D
I − ωrQ

Xr

D

)

Ts, B2 =
Xr

D

Vdc

2
K(0)Ts,

B3 = −RsI Ts, B4 =
Vdc

2
K(0)Ts .

B. Optimization Problem

Over a one-step horizon, we define the cost function

J1 = JT + JΨ + JuT (10)

with the terms

JT = λT
(

T ∗

e (k + 1)− Te(k + 1)
)2
, (11a)

JΨ = (1− λT )
(

Ψ∗

s(k + 1)−Ψs(k + 1)
)2
, (11b)

JuT = λuT ||∆u(k)||1 . (11c)

The first term penalizes the predicted deviation of the elec-

tromagnetic torque from its reference at time step k + 1.

Accordingly, the second term penalizes the predicted devi-

ation of the stator flux magnitude from its reference. Both
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Fig. 3: Contour maps of the cost function terms of the predictive torque and flux controller in a plane spanned by the d- and q-components of the stator flux
vector. The reference stator flux and the rotor flux vectors are shown as arrows

terms are penalized quadratically. The third term penalizes

the switching effort at time step k, using the non-negative

scalar weight λuT and the change in the switch position

∆u(k) = u(k)− u(k − 1).
The weight λT is introduced to discount the torque ripple

and to prioritize the flux magnitude ripple, without changing

the cost ratio between these two terms and the switching effort.

In general, in order to obtain low current distortions, the stator

flux ripple needs to be much smaller than the torque ripple.

This can be achieved, for example, by setting λT to 0.1. The

impact of λT on the current distortion will be analyzed in

Sect. VI. To ensure that J1 is non-negative, the weight λT is

bounded between zero and one.

The optimization problem of the predictive torque and flux

controller with reference tracking and a prediction horizon of

one step can now be stated as

uopt(k) = arg minimize
u(k)

JT + JΨ + JuT (12a)

subject to (9) (12b)

Te(k + 1) =
1

pf
ψs,αβ(k + 1)× is,αβ(k + 1)

(12c)

Ψs(k + 1) = ||ψs,αβ(k + 1)||2 (12d)

u(k) ∈ {−1, 0, 1}3, ||∆u(k)||∞ ≤ 1 . (12e)

Note that ||∆u||∞ denotes the infinity-norm of the vector ∆u,

which is defined as the component of ∆u with the largest

absolute value, i.e. ||∆u||∞ = max(|∆ua|, |∆ub|, |∆uc|).
One of the advantages of this control problem formulation is

that the torque and flux references are constant during steady-

state operation. Hence we may assume that T ∗

e (k+1) = T ∗

e (k)
and Ψ∗

s(k + 1) = Ψ∗

s(k).

C. Control Algorithm

The optimization problem (12) is typically solved by enu-

merating all switch positions and computing the cost for each.

The switch position at time step k with the minimum cost,

uopt(k), is by definition the optimal one, see for example [1]

and [26].

D. Analysis

To analyse the predictive torque and flux controller, it

is convenient to adopt the dq reference frame rotating in

synchronism with the rotor flux. The latter is not required by

the controller, but eases the analysis. Furthermore, to improve

the readability, we drop in this section the time dependence

of the variables.

The torque equation (4) and the flux expression (5) also hold

in the dq reference frame, for which we replace the subindices

αβ by dq. Inserting (5) into (4) leads to the electromagnetic

torque in the dq reference frame

Te =
1

pf

Xm

D
ψr,dq ×ψs,dq =

1

pf

Xm

D
(ψrdψsq − ψrqψsd) .

(13)

By aligning the rotor flux vector with the d-axis, (13)

simplifies to

Te =
1

pf

Xm

D
ψrdψsq . (14)

With this, and noting that

Ψs = ||ψs,dq||2 =
√

ψ2
sd + ψ2

sq , (15)

the tracking error terms of the cost function can be expressed

in terms of the d- and q-components of the stator flux vector.

We rewrite (11a) and (11b) as

JT = λT
( 1

pf

Xm

D
ψrd

)2(
ψ∗

sq − ψsq

)2
and (16a)

JΨ = (1− λT )
(

||ψ∗

s,dq||2 − ||ψs,dq||2
)2
. (16b)
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Fig. 4: Block diagram of the predictive current controller

The reference of the stator flux vector is obtained from (14)

and (15) as

ψ∗

sq = pf
D

Xm

T ∗

e

ψrd

(17a)

ψ∗

sd =
√

(Ψ∗

s)
2 − (ψ∗

sq)
2 . (17b)

Note that ψrd is equal to the magnitude of the rotor flux vector.

To visualize the two cost function terms in (16), consider

the MV induction machine operating at nominal speed and

rated torque. A geometrical representation of the torque error

term JT is provided in Fig. 3(a). The rotor flux vector is

aligned with the d-axis. The reference of the stator flux

vector corresponds to nominal torque and a fully magnetized

machine. The contour lines of the torque error term JT with

the weight λT = 0.052 are shown as solid lines for the contour

values 0.01, 0.02, . . . , 0.08. The dash-dotted line refers to

JT = 0. Owing to (14), the contour lines are straight lines

that are parallel to the rotor flux vector.

Accordingly, the cost function term JΨ of the stator flux

magnitude error is illustrated in Fig. 3(b). The contour lines

of JΨ are depicted again for the values 0.01, 0.02, . . . , 0.08.

These contour lines form concentric circles that are centered

on the origin of the dq reference frame. The dash-dotted line

refers to JΨ = 0. Adding the two cost functions terms to

JT + JΨ leads to the contour map shown in Fig. 3(c).

IV. PREDICTIVE CURRENT CONTROL

The current control problem is typically formulated in the

stationary αβ reference frame. The objective of the current

controller is to manipulate the three-phase switch position u

such that the stator current is,αβ closely tracks its reference

i∗s,αβ , while minimizing the switching frequency.

The block diagram of the predictive current controller is

shown in Fig. 4. The controller predicts the stator current at

the next time step for all admissible switch positions. For the

prediction, the measured stator current is required, along with

the rotor flux vector, which is constructed by an observer.

Outer control loops are required, which are formulated in

the rotating dq reference frame with the angular position

ϕ of the rotor flux vector. These control loops provide the

stator current reference i
∗

s,dq in dq, which serves—after be-

ing translated into the stationary αβ coordinate system—as

the reference i∗s,αβ to the predictive current controller. The

feedforward terms shown in Fig. 4 for the magnetization and

torque controllers are typically augmented by PI control loops.

As the dynamics of the outer loops are slower than those of the

inner loop—typically by an order of magnitude—we neglect

them in the following to simplify the exposition.

A. Controller Model

To predict future stator currents as a function of the three-

phase switch position u, we adopt the machine model (1)

based on the rotor flux linkage. The forward Euler discretiza-

tion method directly leads to the discrete-time representation

is,αβ(k + 1) = A2is,αβ(k) +B5ψr,αβ(k) +B6u(k) (18)

with the system and input matrices

A2 = I(1− 1

τs
Ts), B5 =

( 1

τr
I − ωrQ

)Xm

D
Ts,

B6 =
Xr

D

Vdc

2
K(0)Ts .

Equation (18) allows one to predict the stator current at the

next time step k + 1. The rotor flux dynamic is not required,

because we adopted a one-step prediction horizon and the

forward Euler discretization method.

B. Optimization Problem

We define the cost function

J2 = JI + JuI (19)

with the stator current term JI and the penalty on switching

JuI :

JI = ||i∗s,αβ(k + 1)− is,αβ(k + 1)||22, (20a)

JuI = λuI ||∆u(k)||1 . (20b)

Note that ||ξαβ||22 = ξ2α + ξ2β and λuI ≥ 0. As shown

in Appendix A, the term JI approximates the total demand

distortion (TDD) of the stator current, albeit very coarsely.

The optimization problem underlying one-step predictive

current control with reference tracking follows as

uopt(k) = arg minimize
u(k)

JI + JuI (21a)

subject to (18) (21b)

u(k) ∈ {−1, 0, 1}3, ||∆u(k)||∞ ≤ 1 . (21c)

C. Analysis

We compare the contour plots of the predictive torque and

flux controller with those of the predictive current controller.

As previously, we drop the time dependence of the variables

and perform the analysis in the rotating dq reference frame. As
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Fig. 5: Contour map of the current error term JI of the predictive current
controller

the transformation from the stationary to the rotating reference

frame is amplitude-invariant, we can rewrite (20a) as

JI = ||i∗s,dq − is,dq||22 . (22)

We can express the stator current as a linear combination of

the stator and rotor flux vectors using

is,dq =
1

D
(Xrψs,dq −Xmψr,dq) , (23)

see also (5). This allows us to rewrite the current error term

(22) in terms of the stator flux:

JI =
(Xr

D

)2

||ψ∗

s,dq −ψs,dq||22 . (24)

The contour lines of the current error term are shown in

Fig. 5 as concentric circles around the stator flux reference.

The contour lines are plotted for the values 0.15, 0.3, . . . , 1.2.

Compared to the contour values used for the torque controller,

these values are multiplied by a factor of 15.

V. TUNING GUIDELINES

When comparing the tracking error terms of the torque and

flux controller (16) with that of the current controller (24), it

is obvious that the cost functions of the two controllers are

not equivalent. This observation is illustrated in Figs. 3(c) and

5 by the different shapes of the contour lines. Nevertheless,

by appropriately tuning the weights in the cost functions, a

large degree of similarity between the two controllers can be

achieved. Specifically, as shown in the following, λT can be

chosen such that the contour lines of the torque controller

approximate circles, particularly when the torque is close to

zero.

To simplify the exposition in the following derivation, we

set the torque reference to zero. Consider the stator flux vector

ψs,dq = ψ
∗

s,dq +

[

ψerr

0

]

(25)

with the flux error ψerr in the d-axis. Note that ψ∗

sq = 0 because

of our assumption that the torque reference is zero. According

ψsd
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s
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predictive torque and flux controller for three different weighting factors λT

to (16), the cost of the tracking error terms is

JT + JΨ = (1− λT )ψ
2
err . (26)

Similarly, for a stator flux vector with the flux error ψerr in

the q-axis, the cost is

JT + JΨ = λT
( 1

pf

Xm

D
ψrd

)2
ψ2

err , (27)

where we have neglected the minor contribution of JΨ. To

achieve circular contour lines, both costs are required to be

equal, which leads to

λT =
(pfD)2

(pfD)2 + (Xmψrd)2
. (28)

For the parameters of the considered drive system case study,

we obtain λT = 0.052.

The validity of this choice is confirmed by Fig. 6(a), which

depicts for three different λT the contour lines with the same

cost JT + JΨ = 0.025. When the torque reference is close

to zero, λT = 0.052 leads to an effectively circular contour
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TABLE III: Comparison of the predictive torque and flux controller with the predictive current controller in terms of the current TDD ITDD and torque TDD
TTDD . The switching penalties are chosen such that a switching frequency of approximately fsw = 220Hz results

Torque reference (pu) Control scheme Controller settings ITDD (%) TTDD (%) fsw (Hz)

T ∗

e = 0 Torque and flux λT = 0.052, λuT = 0.198 · 10−3 6.45 5.76 219

T ∗

e = 0 Current λuI = 3 · 10−3 6.38 5.57 220

T ∗

e = 1 Torque and flux λT = 0.052, λuT = 0.198 · 10−3 7.74 5.84 221

T ∗

e = 1 Current λuI = 3 · 10−3 6.69 5.51 222

line. Variations in λT mostly affect the shape of the contour

lines in the q-axis, which relates to the torque. Reducing λT ,

and hence the penalty on the torque error, widens the contour

lines along the torque axis and increases the torque ripple.

Conversely, when increasing λT and prioritizing the torque

error, the torque ripple is reduced. In both cases, contour lines

of elliptical shapes result. Note that variations of λT around

0.052 have only a minor effect on the contour lines along the d-

axis, which relates to the stator flux magnitude and determines

its ripple.

Increasing the torque reference from zero to one distorts

the contour lines along the circular reference of the stator

flux magnitude, as can be seen in Fig. 6(b). In particular, the

circular shape of the contour line for λT = 0.052 becomes

somewhat compromised. Nevertheless, as will be shown in

the next section, the two predictive control schemes provide

similar performance results at all torque setpoints, provided

that λT and the penalties on switching are appropriately

chosen.

Tuning of the latter is required, because the diameters of

the (almost circular) reference tracking contour lines of the

two control schemes differ; this can be seen when comparing

Fig. 3(c) with Fig. 5. More specifically, errors in the stator flux

vector are penalized more heavily for the current controller

than for the torque controller. This implies that the switching

penalty needs to be increased accordingly for the current

controller to achieve the same switching frequency as the

torque controller.

In the end, the ratio between the cost values of the tracking

error and the switching penalty terms determines the controller

response. To achieve a similar closed-loop behavior for the two

predictive controllers, these ratios should be the same. We thus

set
JT + JΨ

λuT ||∆u(k)||1
=

JI
λuI ||∆u(k)||1

. (29)

Consider again a zero torque reference, a stator flux error

ψerr in the d-axis and zero flux error in the q-axis as in (25).

With (26) and (24), the expression (29) can be simplified to

(1− λT )ψ
2
err

λuT
=

(Xr

D

)2ψ2
err

λuI
. (30)

This leads to

λuI =
(Xr

D

)2 λuT
1− λT

. (31)

We conclude that both control schemes issue very similar

switching commands when their penalties are selected accord-

ing to the following rules:

• For the torque controller, set λT according to (28). The

second degree of freedom, the penalty on switching λuT ,

is selected such that the desired switching frequency is

achieved.

• For the current controller, set its penalty on switching

λuI according to (31).

These tuning guidelines depend on the rotor flux amplitude,

see (28), and several machine parameters: the power factor pf,

the stator and rotor leakage reactances Xls and Xlr, and the

main reactance Xm. The latter three parameters form D and

Xr, see also Sect. II-B. It is clear that the guidelines hold

independently of the speed ωr and torque Te.

When applying these tuning guidelines, the two predictive

control schemes are expected to yield similar current and

torque distortions for a given switching frequency. This state-

ment will be substantiated in the next section through closed-

loop simulations.

VI. PERFORMANCE EVALUATION

For the performance evaluation of the predictive controllers,

consider again the MV drive system case study of Sect. II.

For the predictive torque and flux controller, unless otherwise

mentioned, we choose the penalty λT = 0.052 according to

(28). This choice ensures almost circular contour lines for the

torque and flux error term. The resulting reference tracking

error term in the cost function of the torque and flux controller

is as similar as possible to that of the current controller. The

switching penalty is set to λuT = 0.198 · 10−3 to achieve a

switching frequency of around 250 Hz. The sampling interval

is set to Ts = 25µs.

A. Operation at Nominal Speed

In the following, we consider operation at nominal speed.

At rated torque, the predictive torque and flux controller

yields a current TDD of 7.74%, a torque TDD of 5.84% and

a device switching frequency of 221 Hz. The corresponding

stator currents, electromagnetic torque and switch positions

are shown in Fig. 7 over one fundamental period.

As shown in Table III, the distortions and switching fre-

quencies are similar to those obtained by the predictive current

controller with the switching penalty λuI = 3 · 10−3. The

latter closely matches the design guideline (31), i.e. λuI =
16.25λuT . In particular, the current controller achieves the

same switching frequency as the torque and flux controller.

At zero torque, both controllers yield effectively the same

current and torque TDDs, see Table III, whereas at rated torque

the current TDD deteriorates by 16% when using the torque

and flux instead of the current controller. This worsening is
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Fig. 7: Predictive torque and flux control during steady-state operation for λT = 0.052 and λuT = 0.198 · 10−3, with ITDD = 7.74% and fsw = 221Hz
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Fig. 8: Predictive current control during steady-state operation for λuI = 3 · 10−3, with ITDD = 6.69% and fsw = 222Hz

due to the slightly non-circular shape of the contour lines

for the stator flux error, which results in non-circular contour

lines for the stator current error. The latter defines the current

ripple and the current TDD. Nevertheless, at rated torque, the

stator current ripple, torque ripple and the switching pattern

are similar to those of the current controller. This can be

seen when comparing Figs. 7 and 8. The instantaneous values

are, however, different at rated torque, owing to the slightly

different cost functions. Note that at zero torque, also the

instantaneous values are very similar.

Similarly, when applying step changes in the torque ref-

erence, both controllers exhibit effectively the same transient

behavior, provided that the above stated tuning guidelines are

followed.

B. Trade-Off between Distortions and Switching Frequency at

Nominal Speed and Rated Torque

Consider the torque and flux controller when operating

at nominal speed and rated torque. To determine the trade-

off between distortions and switching frequency, the penalty

on switching, λuT , was varied between 0.02 · 10−3 and

4 · 10−3. Four different torque weights λT were considered;

for each one about 500 simulations were run, leading to the

approximately hyperbolic trade-off curves in Fig. 9.

Fig. 9(a) shows the influence λT has on the current TDD.

The value of λT = 0.052 clearly minimizes the current TDD,

confirming the cost function analysis provided in Sect. V.

For the torque TDD, however, the relatively small penalty of

λT = 0.052 leads to relatively large torque distortions, as

shown in Fig. 9(b). Increasing the penalty fivefold to 0.25,

for example, halves the torque TDD throughout the consid-

ered switching frequency range from 50 Hz to 1.2 kHz. This

reduction in the torque TDD, however, comes at the price of

pronounced current distortions, see Fig. 9(a) and Appendix B

for an explanation. Nevertheless, for some applications, very

low torque TDDs might be beneficial. The weight λT endows

the torque controller with a degree of freedom to facilitate this.

Fig. 10 compares the current controller with the torque and

flux controller; the latter uses the weight λT = 0.052 to min-

imize the current TDD. The penalties on switching, λuI and

λuT , are varied for the two controllers to investigate operation

at different switching frequencies. To ensure a strong similarity

between the two control methods, the ratio λuI = 16.25λuT
is adopted, in accordance with the design guideline (31).

The resulting current and torque TDDs versus the switching

frequency in Fig. 10 confirm the strong similarity between

the two control schemes. For switching frequencies in ex-

cess of 250 Hz, both schemes yield almost identical current

and torque TDDs for a given switching frequency, with the

current controller slightly outperforming the torque and flux
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Fig. 9: Predictive torque and flux control with different torque weights λT when operating at nominal speed and rated torque

0 200 400 600 800 1000 1200

fsw (Hz)

I T
D

D
(%

)

0

2

4

6

8

10

Torque and flux control

Current control

(a) Current TDD versus switching frequency

0 200 400 600 800 1000 1200

fsw (Hz)

0

2

4

6

8

10

Torque and flux control

Current control

T
T

D
D

(%
)

(b) Torque TDD versus switching frequency

Fig. 10: Predictive torque and flux control with λT = 0.052 is compared with predictive current control when operating at nominal speed and rated torque

controller. This small difference becomes more pronounced at

low switching frequencies.

When the two predictive controllers operate at low switch-

ing frequencies, the switching frequency tends to lock

into integer multiples of the fundamental frequency, such

as 50, 100, . . . , 250Hz, despite significant variations in the

switching penalty. This phenomenon can be seen in Figs. 9

and 10. It implies a certain degree of periodicity in the

switching actions and a somewhat discrete current spectrum.

This feature is more pronounced in the case of long prediction

horizons, as discussed and analyzed in [24].

C. Operation at Multiple Speed Operating Points

Last, we consider operation at various speed operating

points, by varying the electrical angular speed of the rotor ωr

between 0.2 and 1 pu. For the torque and flux controller, we set

the torque weight again to λT = 0.052. The switching penalty

is set to λuT = 0.198 · 10−3 as in Sect. VI-A. Following

precisely the design guideline (31), the switching penalty of

the predictive current controller is set to λuI = 3.218 · 10−3.

Fig. 11 shows the current TDD and switching frequency for

both control methods when the torque reference is zero. The

current TDD is bounded between 6% and 7.5%; it is thus more

or less constant across the different speed operating points.

The switching frequency, however, varies between 180 and

almost 300 Hz. To achieve certain distortions with a three-level

converter, a higher switching frequency is required around

25% and 75% of the output voltage than around 50% and

90%. This characteristic is reflected in Fig. 11(b).

Of particular importance is the product ITDD · fsw between

the current distortions and the switching frequency. This metric

characterizes a given modulation method [21]. At a given

speed (and thus modulation index), both control methods yield

effectively the same performance metric when operating at

zero torque, see Fig. 11(c).
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Fig. 11: Predictive torque and flux control versus predictive current control. Operation at zero torque (T ∗

e = 0 pu) and multiple speed operating points ωr
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Fig. 12: Predictive torque and flux control versus predictive current control. Operation at rated torque (T ∗

e = 1 pu) and multiple speed operating points ωr

At rated torque, the current controller achieves lower current

distortions, but tends to require higher switching frequencies

to do so, see Figs. 12(a) and 12(b). The performance metric

in Fig. 12(c) indicates that, on average, the current controller

achieves lower current distortions for a given switching fre-

quency than the torque and flux controller. This observation is

in line with the analysis done in Sect. V and the performance

analysis in this section.

VII. CONCLUSIONS

We conclude that, in general, the predictive torque and flux

controller and the current controller yield similar performance

metrics at steady-state operation, provided that the weights are

chosen in accordance with the two algebraic design guidelines

stated in this paper. The first guideline (28) ensures that

the torque and flux controller achieves minimum current

distortions per switching frequency. The second guideline

(31) ensures a strong performance similarity between the two

control schemes. This implies that both controllers achieve

similar current and torque distortions and operate at a similar

switching frequency. Furthermore, their transient responses in

the presence of torque steps are nearly identical.

In light of this similarity, additional criteria could be consid-

ered when deciding between the predictive current controller

and the predictive torque and flux controller. Besides the

harmonic performance, relevant criteria include the robustness

to parameter variations, the simplicity of the outer control

loops and the ease with which current constraints could be

added.

APPENDIX A: PENALTY ON THE STATOR CURRENT ERROR

The predictive current controller in Sect. IV penalizes the

predicted stator current error at time step k + 1 in its cost

function. The corresponding term JI , which is defined in

(20a), is derived in this appendix.

Assume steady-state operation. In phase a we define the

stator current error

ierr,a(ℓ) = i∗sa(ℓ)− isa(ℓ) (32)

as the difference between the (sinusoidal) stator current ref-

erence i∗sa and the stator current isa. In here, ℓ ∈ N denotes

the discrete time step. The current errors in phases b and c are

defined accordingly.

In the time domain, the stator current TDD of phase a is

proportional to the root mean square (rms) value of the stator

current error ierr,a over an infinitely long window. We center
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this window at the current time step k and define

Ia,TDD = lim
N1→∞

N2→∞

1

Is,nom

√

√

√

√

1

N1 +N2

k+N2
∑

ℓ=k−N1+1

i2err,a(ℓ) , (33)

where Is,nom is the nominal rms stator current. The phase b
and c current TDDs are defined accordingly.

The TDD of the three-phase stator current

ITDD =

√

1

3

(

I2a,TDD + I2b,TDD + I2c,TDD

)

(34)

is the rms value of the single-phase TDDs.

In an effort to account for the current TDD in the cost

function, we interpret N2 in (33) as the prediction horizon.

For the predictive current controller, we set N2 = 1, which

approximates (33) as

Ia,TDD ≈ lim
N1→∞

1

Is,nom

√

√

√

√

1

N1 + 1

k+1
∑

ℓ=k−N1+1

i2err,a(ℓ) . (35)

By inserting (35) in (34), we obtain the approximation of

the squared current TDD

I2TDD ≈ 1

3I2s,nom

lim
N1→∞

1

N1 + 1

k+1
∑

ℓ=k−N1+1

(

i2err,a(ℓ) + i2err,b(ℓ) + i2err,c(ℓ)
)

.

(36)

The sum from k − N1 + 1 to k captures the past current

distortions, whereas the time step k+1 corresponds to future

current distortions. Only the latter can be influenced by the

controller. We thus define the cost function term

JI =
2

3

(

i2err,a(k + 1) + i2err,b(k + 1) + i2err,c(k + 1)
)

=
2

3

(

ierr,abc(k + 1)
)T
ierr,abc(k + 1)

(37)

with the (seemingly arbitrary) scaling factor 2/3 and the three-

phase stator current error ierr,abc = [ierr,a ierr,b ierr,c]
T .

We also define the stator current error in the stationary

orthogonal coordinate system as

ierr,αβ = i∗s,αβ − is,αβ . (38)

Inserting ierr,abc = K−1(0)ierr,αβ in (37) and noting that

K−T (0)K−1(0) = 1.5 diag(1, 1) results in

JI =
(

ierr,αβ(k+1)
)T
ierr,αβ(k+1) = ||ierr,αβ(k+1)||22 . (39)

This directly leads to the commonly used cost function term

JI = ||i∗s,αβ(k + 1)− is,αβ(k + 1)||22 (40)

for the stator current error.

APPENDIX B: CURRENT AND TORQUE TDDS

Low current TDDs imply low torque TDDs, but the converse

statement does not necessarily hold true. To show this, we

consider in this appendix the current and torque ripples (or

steady-state tracking errors), which directly correspond to their

respective TDDs.

Recall the torque equation (4) in terms of the rotor flux

linkage and the stator current and define the torque reference

T ∗

e = 1
pf

Xm

Xr

ψr,αβ × i∗s,αβ . The torque ripple is then given by

Terr = T ∗

e − Te =
1

pf

Xm

Xr

ψr,αβ × ierr,αβ

=
1

pf

Xm

Xr

(ψrαierr,β − ψrβierr,α) ,

(41)

where the stator current ripple (or error) was defined in (38).

It follows directly from (41) that by minimizing the current

ripple in the α- and β-axis, the torque ripple is also minimized.

In particular, zero current ripple implies zero torque ripple.

In order to minimize the torque ripple, however, the right-

hand side of (41) must be minimized. Zero torque ripple is

achieved when the α- and β-components of the current ripple

have the same ratio as the α- and β-components of the rotor

flux vector, i.e.
ierr,α

ierr,β

=
ψrα

ψrβ

. (42)

(We neglect here the special case when any of the β-

components is zero.) This implies that in order to minimize

the torque ripple, the stator current ripple vector must rotate

synchronously with the rotor flux vector, but the magnitude of

the current ripple vector is not required to be small. In contrast,

in order to minimize the current distortions, the current ripple

components should be of the same magnitude and as small as

possible, as discussed in Appendix A.

When increasing for the predictive torque and flux controller

the weight λT in the cost function (10) beyond the value

that provides close-to-circular bounds, the torque ripple is

penalized strongly, whereas the stator flux magnitude ripple

is penalized less. Owing to (23), with Xr/D = 3.92 in our

particular case, the current ripple is penalized significantly

less. Large λT thus reduce the torque ripple but tend to

increase the current ripple. We conclude that very low torque

distortions can be achieved with predictive torque and flux

control, albeit at the expense of pronounced current distortions.
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