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Abstract—This paper derives and visualizes the explicit state-
feedback control law of model predictive controllers for electrical
drives, using model predictive direct torque control as an illustra-
tive example. The control law is given over the whole state-space
and computed in an offline procedure. The availability of the
control law allows one to analyze the controller, and to visualize
and better understand its behavior and decision making process.
Based on this concept, numerous other important tasks can
be accomplished, such as stability analysis, feasibility analysis,
reduction of the computational effort, derivation of switching
heuristics and the further improvement of the closed-loop per-
formance.

Index Terms—Model predictive direct torque control, model
predictive control, state-feedback control law, variable-speed
drives, medium-voltage drives

NOTATION

ϕ Angle between thea-axis of the three-phase system
and thed-axis of the reference frame.

θ Load angle, i.e. angle between the stator and rotor
flux vectors.

ψs Stator flux vector withψs = [ψsd ψsq]
T .

ψr Rotor flux vector withψr = [ψrd ψrq]
T .

Ψs Magnitude of the stator flux vector||ψs||.
Ψr Magnitude of the rotor flux vector||ψr||.
Te Electromagnetic torque.
Te,ref Reference value of the electromagnetic torque.
Te,min Lower bound on the electromagnetic torque.
Te,max Upper bound on the electromagnetic torque.
J Cost function.
Np Length of the prediction horizon (number of time-

steps).
ǫy Rms bound violation of the torque and stator flux

magnitude withǫy = [ǫT ǫΨ]
T .

q Penalty weight on bound violations.
u Control input (three-phase switch position).
u∗ Optimal control input.
vs Stator voltage.
x State vector withx = [ψsα ψsβ ψrα ψrβ]

T .
ωfr Angular speed of thedq reference frame.
ωr Electrical angular speed of the rotor.

I. I NTRODUCTION

Model predictive direct torque control (MPDTC) is an
emerging control concept for three-phase electrical drive
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system [1]–[4], adopting the principles of model predictive
control (MPC) [5], [6]. MPDTC is particularly well suited
for medium-voltage drives, which are based on multi-level
voltage source inverters and operate at very low switching
frequencies [7]. Compared with state-of-the-art schemes,such
as direct torque control (DTC) [8] and field oriented control
(FOC) [9] with space vector modulation (SVM), MPDTC
achieves a reduction of the switching losses by up to 50% [4]
for three-level neutral point clamped inverters. Alternatively,
the current or torque distortions can be reduced by the same
amount [10]. For five-level topologies, the performance bene-
fits are even more pronounced, as shown in [11] and [12].

Unlike DTC or FOC with SVM, MPDTC is based on
an online optimization stage. Given the torque and stator
flux references and their estimated values, a suitable inverter
switch position is computed, minimizing the switching effort
(either the switching frequency or the switching losses). This
optimization is based on an internal model of the drive that
enables the controller to predict the impact the switching
transitions under consideration have on the torque, currents
and flux vectors. Unlike in DTC, the control law is not directly
available—for example in form of a look-up table—and thus
cannot be analyzed easily and visualized, complicating the
design process and the understanding of MPDTC.

This issue motivates this paper. The state-feedback con-
trol law, which is the control input (the switch position)
represented as a function of the state vector over the state-
space, is computed, visualized and analyzed. The impact of
varying the length of the switching horizon will be shown.
The information and insight obtained is not only meant to
further the understanding of MPDTC, but it is also envisioned
that this will help revise and improve the MPDTC algorithm,
e.g. with the aim to lower its computational burden. The
techniques proposed in this paper are directly applicable to
other predictive drive control methods, including one-step
predictive control [13].

When formulating MPC problems for linear and piecewise
affine (linear plus offset) systems with piecewise affine con-
straints, so called hybrid systems, the explicit solutionscan
be computed in a mathematically elegant way. The resulting
control input is piecewise affine in the state vector. Specif-
ically, the state space is divided into polyhedral regions and
the control input for each region is affine in the state vector, i.e.
linear plus an offset. For more details on the explicit solution
of MPC for piecewise affine systems, the reader is referred to
[14] and the references therein. The multi-parametric toolbox
provides a powerful set of tools to compute and analyze such



solutions [15].
For three-phase electrical drive systems we have previously

derived explicit control laws, by approximating the nonlin-
earities of the torque and stator flux magnitude by piecewise
affine functions, modelling the drive system in the mixed
logical dynamical (MLD) framework [16], formulating the
MPC control problem as a closed-form optimization problem
and using a modified version of the MPT toolbox to derive
the explicit control law. Due to the daunting computational
complexity, this approach was only applicable to two-levelin-
verters [1], [17] and dc-dc converters [18]. A problem specific
computational scheme, which exploits the structure of the drive
control problem, was proposed in [19]. An explicit solutionfor
a simplified FOC problem was described in [20]. In this paper,
however, we refrain from approximating the drive model and
formulate the control problem as an open-from optimization
problem. As a result, the standard techniques from hybrid
control theory to compute explicit solutions are not applicable.

The paper is organized as follows. After describing the drive
system case study in the next section, the model predictive
control problem is formally stated in Sect. III. The MPDTC
solution approach and algorithm is summarized in Sect. IV.
The control law for MPDTC is computed, visualized and
analyzed in detail in Sects. V and VI. Section VII provides
concluding remarks.

II. D RIVE SYSTEM CASE STUDY

Throughout this paper, we will use normalized quantities.
Extending this to the time scalet, one time unit corresponds
to 1/ωb seconds, whereωb is the base angular velocity.
Additionally, we will useξ(t), t ∈ R, to denote continuous-
time variables, andξ(k), k ∈ N, to denote discrete-time
variables with the sampling intervalTs = 25µs.

A. Reference Frames

All variablesξabc = [ξa ξb ξc]
T in the three-phase system

(abc) can be transformed toξdq0 = [ξd ξq ξ0]
T in the orthog-

onal rotatingdq0 reference frame throughξdq0 = P (ϕ) ξabc,
whereϕ denotes the angle between thea-axis of the three-
phase system and thed-axis of the reference frame. By align-
ing thed-axis with the motor’s rotor flux,ϕ also corresponds
to the rotor’s angular position, see Fig. 2. The transformation
matrix is given by

P (ϕ) =
2

3
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(1)
The reference frame rotates with the angular speedωfr =
dϕ/dt.

The stationary (i.e. non-rotating)αβ0 reference frame is
obtained by setting bothϕ andωfr to zero. Thed- andq-axes
are then referred to asα- andβ-axes, respectively, with the0-
axis remaining unchanged. The transformation from theabc to
theαβ0 reference frame is defined throughξαβ0 = P (0)ξabc.
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Fig. 1: Three-level neutral point clamped voltage source inverter driving an
induction motor with a fixed neutral point potential

B. NPC Inverter

As an example for a medium-voltage drive system, consider
a three-level neutral point clamped (NPC) voltage source
inverter with an induction machine, as shown in Fig. 1. The
inverter is fed by two constant dc-link voltage sources, andits
total dc-link voltage isVdc = 5.2 kV. ABB’s 35L4510 4.5 kV
4 kA IGCT and ABB’s 10H4520 fast recovery diode are used
as semiconductor devices.

Let the integer variablesua, ub, uc ∈ {−1, 0, 1} denote the
switch positions in each phase leg, where the values−1, 0, 1
correspond to the phase voltages−Vdc

2 , 0,
Vdc
2 , respectively. The

actual voltage applied to the machine terminals is given by
vs,αβ0 = 0.5VdcP (0)uabc with u = uabc = [ua ub uc]

T .
Direct switching between the upper and lower rails is pro-
hibited, i.e. ||∆u(k)||∞ ≤ 1 is imposed with∆u(k) =
u(k)− u(k − 1).

Switching losses arise in the inverter when turning the
semiconductors on or off and commutating the phase current.
These losses depend on the applied voltage, the commutated
current and the semiconductor characteristics. For Integrated
Gate Commutated Thyristors (IGCT), with the GCT being the
semiconductor switch, the turn-on and turn-off losses can be
well approximated to be linear in the dc-link voltage and the
phase current. Yet for diodes, the reverse recovery losses are
linear in the voltage, but nonlinear in the commutated current.

As shown in [4], [21], the switching losses can be derived as
a function of the switching transition, the commutated phase
current and its polarity. The turn-on (energy) loss of a GCT,
for example, is given by

Eon = eon
1

2
Vdc iph , (2)

where eon is a GCT specific coefficient, which is readily
available from the manufacturer’s data sheets, andiph is the
phase current. For the GCT turn-off and diode reverse recovery
losses, similar equations can be derived.

C. Induction Machine

The machine considered here is a3.3 kV and50Hz squirrel-
cage induction machine rated at2MVA. A summary of the
machine parameters can be found in Table I. The induction
machine is modeled in theαβ reference frame using theα-
and β-components of the stator and rotor flux linkages per



second,ψsα, ψsβ , ψrα andψrβ , respectively, as state variables.
The rotor speed dynamic is neglected and the rotor’s angular
speedωr is assumed to remain constant within the prediction
horizon.

The model parameters are the stator and rotor resistances
Rs andRr, and the stator, rotor and mutual reactancesXls,
Xlr andXm, respectively. Introducingψs = [ψsα ψsβ ]

T and
accordinglyψr andvs, the state equations of the machine can
be written as [22]

dψs

dt
= −Rs

Xr

D
ψs +Rs

Xm

D
ψr + vs (3a)

dψr

dt
= Rr

Xm

D
ψs −Rr

Xs

D
ψr + ωr

[

0 −1

1 0

]

ψr (3b)

with Xs = Xls+Xm,Xr = Xlr+Xm andD = XsXr−X2
m.

The electromagnetic torque is given by

Te =
Xm

D
ψr ×ψs = sin(θ)Ψs Ψr , (4)

with the load angleθ, which is the angle between the stator and
rotor flux vectors. Moreover,Ψs = ||ψs|| andΨr = ||ψr|| de-
note the length of the stator and rotor flux vector, respectively.
For more details on the modelling of the induction machine,
the reader is referred to [1], [2], [4] and [22].

III. MPC PROBLEM FORMULATION

A. Control Problem

The control problem is to keep the machine’s torque and sta-
tor flux magnitude within given bounds around their respective
references. During transients, a high dynamic performanceis
to be ensured, i.e. a short torque settling time in the range of
a few ms. Under steady state operating conditions, the total
harmonic distortion (THD) of the current is to be kept small,
so as to reduce the copper losses and thus the thermal losses
in the stator windings of the machine. In addition, to avoid
problems with the mechanical load, such as wear of the shaft
and the possible excitation of eigenfrequencies of the load, the
torque THD needs to be kept at a minimum.

Regarding the inverter, the switching losses in the semicon-
ductors are to be minimized. An indirect way of achieving this
is to reduce the device switching frequency.

B. Target Window

Let Te,ref denote the reference of the electromagnetic torque.
The upper and lower torque bounds are given byTe,max

andTe,min, respectively. The reference of and bounds on the

Induction Voltage 3300 V Rs 0.0108 pu
machine Current 356 A Rr 0.0091 pu

Real power 1.587 MW Xls 0.1493 pu
Apparent power 2.035 MVA Xlr 0.1104 pu
Frequency 50 Hz Xm 2.3489 pu
Rotational speed 596 rpm

Inverter Vdc 1.930 pu

TABLE I: Rated values (left) and parameters (right) of the drive
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Fig. 2: Stator and rotor flux vectorsψs andψr in the dq-reference frame,
which rotates with the angular velocityωfr . The target window around
the stator flux referenceψs,ref is indicated by straight (red) lines, which
correspond to the upper and lower bounds on the torque and stator flux
magnitude, respectively. The stator flux vector is driven bythe voltage vector
vs. The dashed (black) lines indicate the rectangular set for which the state-
feedback control law will be derived

magnitude of the stator flux vector are defined accordingly as
Ψs,ref, Ψs,max andΨs,min.

For a given rotor flux vectorψr, the references on the torque
and stator flux magnitude can be translated into an equivalent
reference stator flux vectorψs,ref, as shown in Fig. 2. The
upper and lower torque and flux magnitude bounds can be
translated accordingly into the stator flux space, spanned by
its d- and q-components. These bounds are thus equivalent
to a target window in the space of the stator flux vector.
Keeping the stator flux vector within this window is equivalent
to maintaining the electromagnetic torque and the stator flux
magnitude within their upper and lower bounds, thus ensuring
that the desired electromagnetic torque is generated and that
the machine is appropriately magnetized.

Under steady-state operating conditions, the target window
rotates in synchronism with the rotor flux vector. Specifically,
the target window is stationary within thedq reference frame,
with the torque bounds being parallel to thed-axis, while
the flux bounds are ring segments around the origin. During
transients, such as torque steps, the target window is shifted
along theq-axis. In this case, violations of the target window
might occur, and the stator flux vector is to be moved back
into the target window as quickly as possible, so as to ensure
a minimal torque settling time and to avoid too high or too
low a stator flux magnitude.

C. Model Predictive Control Principle

The drive control problem can be addressed by adopting the
notion of model predictive control (MPC) [6]. Specifically,a
discrete-time model of the drive system is used to predict the
machine’s response and the switching effort as a function of
possible switching sequences over a long prediction horizon.
At each time-step, the controller computes a sequence of



switch positions over the prediction horizon that keeps the
torque and stator flux magnitude within the imposed bounds
and minimizes the switching frequency or losses. Out of this
sequence, only the first gating signal is applied to the inverter,
and the optimization step is repeated with new measurements
at the next sampling instant. Typically, the sampling interval
is with Ts = 25µs very short, while the prediction horizon
entails up to 160 steps and is thus up to 4 ms long [4].

D. Optimization Problem

Writing the above control problem as a closed-form opti-
mization problem leads to

J∗(x(k),u(k − 1)) = min
U(k)

(

Jsw + Jbnd
)

(5a)

s. t.x(ℓ+ 1) = Ax(ℓ) +Bu(ℓ) (5b)

y(ℓ+ 1) = g(x(ℓ+ 1)) (5c)

y(ℓ+ 1) ∈ Y or εy(ℓ+ 1) < εy(ℓ) (5d)

u(ℓ) ∈ U , ||∆u(ℓ)||∞ ≤ 1 (5e)

∀ℓ = k, . . . , k +Np − 1 , (5f)

with J∗ denoting the minimum of the objective function
J = Jsw + Jbnd. The latter is a function of the state vector
x = [ψsα ψsβ ψrα ψrβ ]

T at the current time-instantk
and the switch positionu(k − 1), which was set in the
previous control cycle. The sequence of control inputsU(k) =
[uT (k),uT (k+1) . . . ,uT (k+Np − 1)]T over the prediction
horizonNp represents the sequence of inverter switch posi-
tions the controller decides upon. The objective function (5a)
is minimized for allU(k) subject to the dynamical evolution
of the machine (5b), its outputs (5c) and the constraints (5d)
and (5e). The variables in (5) are defined in the remainder of
this section.

E. Objective Function

The objective function consists of two parts: The first part
Jsw captures the switching effort. Specifically,

Jf =
1

Np

k+Np−1
∑

ℓ=k

||∆u(ℓ)||1 (6)

represents the sum of the switching transitions (number
of commutations) over the prediction horizon divided by
the length of the horizon—it thus approximates the short-
term switchingfrequency. Alternatively, the switching (power)
losses can be directly represented through

JP =
1

Np

k+Np−1
∑

ℓ=k

Esw(x(ℓ),u(ℓ),u(ℓ− 1)) , (7)

which is the sum of the instantaneous switching (energy)
lossesEsw over the prediction horizon. Note that, according
to (2),Esw is a function of the stator currentis, which in turn
depends linearly on the state vectorx. In (5a) we either use
Jsw = Jf or Jsw = JP .

The drive’s output vectory = [Te Ψs]
T represents the

electromagnetic torque and the stator flux magnitude. To

quantify the degree of a bound violation, we introduce for
the torque

εT =











Te − Te,max if Te ≥ Te,max

Te,min − Te if Te ≤ Te,min

0 else.

(8)

The rms bound violation of the torque over the prediction
horizon can be captured by

ǫT (k) =

√

√

√

√

1

Np

k+Np−1
∑

ℓ=k

(

εT (ℓ)
)2
. (9)

For the stator flux magnitude,εΨ andǫΨ are defined accord-
ingly. The second term in the objective function (5a),

Jbnd = q ǫTy ǫy , (10)

penalizes the rms bound violation of the output vector, which
is ǫy = [ǫT ǫΨ]

T . The parameterq is a positive scalar
weighting term.

F. Internal Prediction Model

The internal prediction model is derived by rewriting the
continuous-time machine equations (3) in the state-space form
dx
dt (t) = Fx(t) + Gu(t). The exact Euler discretization
method is used to derive the discrete-time matrices

A = eFTs andB = −F−1(I −A)G (11)

for the discrete-time state-space representation of the machine
model (5b), withe denoting the matrix exponential,Ts the
sampling interval andI the identity matrix. As mentioned
earlier, the motor speed is assumed to be constant within the
prediction horizon—the speed is thus not part of the state
vector but rather a parameter of the model (5b).

G. Constraints

The lower and upper bounds on the torque and stator flux
magnitude form the setY = [Te,min, Te,max]× [Ψs,min,Ψs,max].
The constraint (5d) is imposed componentwise, i.e. separately
for the torque and the stator flux magnitude. If at time-step
k an output variable is within its bounds, then it has to stay
within them. This is the standard case during steady-state op-
eration. If, however, at time-stepk a variable violates a bound,
then it has to move closer to the bound at every time-stepℓ
within the prediction horizon, whereℓ = k, . . . , k +Np − 1.

The constraint (5e) limits the control inputu to the integer
valuesU = {−1, 0, 1}3 available for the three-level inverter.
Switching in a phase by more than one step up or down is
not allowed. This is enforced by the second constraint in (5e),
||∆u(ℓ)||∞ ≤ 1, which limits the elements in∆u to ±1.
These constraints have to be met at every time-stepℓ within
the prediction horizon.
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Fig. 3: Model predictive direct torque control (MPDTC) for avoltage source
inverter driving an electrical machine

IV. M ODEL PREDICTIVE DIRECT TORQUE CONTROL

A. MPDTC Solution Approach

The above optimization problem can be solved in real-time
by a tailored approach that relies on the fact that switchingis
mainly required in the vicinity of the bounds or when bounds
have been violated. When the torque and stator flux magnitude
are well within their bounds, switching is not required and the
switch position is frozen.

This gives rise to two different prediction horizons—the
switching horizon (the number of switching instants within
the horizon, i.e. the controller’s degree of freedom) and the
prediction horizon (the number of time-steps MPDTC looks
into the future). Between the switching instants the switch
positions are frozen and the drive behavior is extrapolated
until a bound is hit. The concept of extrapolation leads to
long prediction horizons (typically 100 time-steps), while the
switching horizon is very short (usually one to three). The
switching horizon is composed of the elements ’S’ and ’E’,
which stand for ’switch’ and ’extrapolate’ (or more generally
’extend’), respectively. We use the task ’e’ to add an optional
extension leg to the switching horizon. For more details about
the concept of the switching horizon, refer to [4].

B. MPDTC Algorithm

The drive’s system state is fully described by the pairx(k)
andu(k−1), i.e. the machine state and the previously chosen
inverter switch position. Based on those, the optimal control
input u∗(k) can be computed according to the following
procedure.

1) Initialize the root node with the current state vector
x(k), the switch positionu(k − 1) and the switching
horizon. Push the root node onto the stack.

2a) Take the top node with a non-empty switching horizon
from the stack.

2b) Read out the first element. For ’S’, branch on all feasible
switching transitions, according to (5e). Use the internal
prediction model (5b) to compute the state vector at the
next time-step. For ’E’, extend the trajectories either by
using extrapolation, as detailed in [1], [2], or by using
extrapolation with interpolation, as proposed in [23].

2c) Keep only the switching sequences that meet (5d).

2d) Push these sequences onto the stack.
2e) Stop if there are no more nodes with non-empty switch-

ing horizons. The result of this are the switching se-
quencesU i(k) over the variable-length prediction hori-
zonsN i

p, wherei ∈ I andI is an index set.
3) Compute for each sequencei ∈ I the associated cost

Ji, as defined in (5a).
4) Choose the switching sequenceU∗ = U i(k) with the

minimal cost, wherei = argmini∈I Ji.
5) Apply (only) the first switch positionu∗(k) out of this

sequence and execute the above procedure again at the
next time-stepk + 1.

For an in-depth description and analysis of this algorithm,
the reader is referred to [2] and [4]. It is straightforward to
consider the balancing of a neutral point potential, see e.g. [2],
[4], and of other internal voltages of the inverter, as shown
in [12]. Branch and bound techniques can be used to reduce
the computation time by an order of magnitude [24]. Smart
extrapolation methods can be used to increase the accuracy of
the predictions [23]. Infeasible states, so called deadlocks, can
be largely avoided, by adding terminal weights and terminal
constraints [25] to (5). A deadlock resolution strategy hasbeen
proposed in [3].

As shown in Fig. 3, MPDTC constitutes an inner torque and
flux control loop, which is typically augmented by an outer
speed control loop. Depending on the operating point (speed
and torque) the torque and stator flux bounds are adjusted by
an external loop so as to maintain an acceptable switching
frequency.

V. CONTROL LAW FOR A GIVEN ROTOR FLUX VECTOR

The state-feedback control law is the optimal control input
u∗ represented as a functionof the state vectorx over the
state-spaceX of interest, i.e.

u∗(k) = fMPC(x(k)) , x ∈X . (12)

The functionfMPC can be evaluated by executing the MPDTC
algorithm summarized in the previous section. In a closed-loop
drive control setting, these computations are performed online
and in real-time. The control law is not directly available.This
section proposes a technique to compute offline the control
law.

A. Assumptions and Settings

In the sequel, the per unit (pu) system is adopted. The
pu system is established using the base quantitiesVB =
√

2/3Vrat = 2694V, IB =
√
2Irat = 503.5A and fB = frat =

50Hz. To simplify the notation, if not otherwise stated, we
will drop the pu symbol from all variables and parameters,
including the speed, torque, stator and rotor fluxes, and the
corresponding upper and lower bounds.

In general, not the whole four-dimensional state-space is
of interest. Assume that the machine operates with a constant
rotor flux magnitude. This reduces the dimension of the state-
space from four to three, with the remaining state variables
being the stator flux vector ind andq, and the angular position
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Fig. 4: State-feedback control laws, i.e. inverter switch position u∗(k) as a function of the state vectorx(k), for the inverter switch positionu(k − 1) and
the rotor flux angleϕ(k). Predicted stator flux trajectories are shown as black lines, while the target window is indicated by straight (red) lines. The (red)
arrows indicate the voltage vectors.If not otherwise stated, the rotor flux angle isϕ(k) = 0◦, the speed operating point isωr = 1, and the current switch
position isu(k − 1) = [−1 0 − 1]T . In all cases, the switching horizon ’SE’ is used



of the rotor flux vectorϕ. We also assume, without loss
of generality, that the machine operates at a constant speed.
This implies that thedq frame rotates with a constant angular
velocity.

The operating point is at nominal speed and torque, i.e.
ωr = 1 andTe,ref = 1. For the machine with the parameters
given in Table I, at steady-state, the magnitude of the rotor
flux vector is ||ψr|| = 0.92 and the stator flux reference
vector in dq is ψs,ref = [0.972 0.235]T . The bounds on
the electromagnetic torque are chosen asTe,min = 0.85
and Te,max = 1.15, whereas the bounds on the stator flux
magnitude areΨs,min = 0.97 andΨs,max = 1.03. This defines
the target window aroundψs,ref.

Consider the switching horizon ’SE’1 and the objective
functionJ = JP + Jbnd, see (5a), (7) and (10),which targets
the switching losses. The penalty on the bound violation is
set to q = 2, see (10).The control law is derived for stator
flux vectors within the dashed rectangle in Fig. 2 and for the
rotor flux angleϕ(k) = 0◦. The dashed rectangle is centered
around the stator flux reference vector, its edges are parallel to
the d- andq-axes, and the length of its edges is chosen to be
0.16 pu.The edge length along with the rotor flux angleϕ(k)
defined abovedetermines the subsetX of the state-space, in
which the control law is to be computed.

B. Algorithm

In order to compute the control law, the stator flux vector
is varied within the dashed rectangleshown in Fig. 2. Specif-
ically, a fine grid is generated along thed- and q-axes that
corresponds to stator flux positions within the rectangle. These
grid points, along withϕ and||ψr|| fully define the machine’s
state vectorx. Then, for a given switch positionu(k−1), the
optimal control inputu∗(k) can be computed for each grid
point, yielding the state-feedback control law. The lattercan
be stored in a table.

C. State-Feedback Control Law

Several control laws, which resulted from this procedure,
are shown in Fig. 4. Theoptimal switch positionsu∗(k) are
plotted in the two-dimensional state-space,spanned byψs.
Different shades of grey refer todifferent switch positions. As
can be seen, neighboring state vectors (grid points) refer to
the sameswitch position, forming distinctive regions in the
state-space, which share the samecontrol input. The switch
positionsof these regions are indicated using the notation+,
0 and−. For example,00− refers tou∗(k) = [0 0 − 1]T .

The target window is shown as the slightly curved parallel-
ogram with straight (red) lines. The (red) arrows correspond to
the voltage vectors indq. The length of these arrows indicates
the amount by which the stator flux vector is moved within
100µs. This highlightsthe different velocities by which and
the directions in which the different switch combinations drive
the stator flux vector relative to the rotatingdq reference frame.

1Recall that ’SE’ implies that switching is considered only at time-stepk.
From time-stepk + 1 onwards, the switch position is frozen and the output
trajectories are extended or extrapolated until a bound is hit.

Moreover,selectedpredicted stator flux trajectories,which
correspond to the respective control input, are shown for sev-
eral regions. Every second sampling instant (i.e. every50µs)
along the trajectories is indicated by a small circle. These
trajectories start at selected stator flux vectors and terminate
when a bound is about to get violated, thus predicting that
switching will be required at this point in the future. The
length of the trajectories corresponds to the prediction horizon
Np. In Fig. 4(a) for example, for the stator flux trajectory
starting in the lower right region withu∗(k) = [−1 1 − 1]T ,
the prediction horizon isNp = 53 steps or 1.325 ms long.
Also note that in thedq reference frame, in general, voltage
vectors move the stator flux along curved rather than straight
trajectories.

D. Analysis and Observations

In the following, details about the individual control lawsin
Fig. 4 are provided. The control law in Fig. 4(a) is based on the
assumptions and settings stated in Sect. V-A. The switching
losses are minimized. The current switch position isu(k −
1) = [−1 0 − 1]T , while in Fig. 4(d) it is the zero vector
u(k − 1) = [0 0 0]T .

The resulting regions have clearly defined borders, forming
distinctive areas in the state-space, in which the same control
input (switch position) is used. When the stator flux vector
at time-stepk is within the target window,switching is
not required and thus avoided, as exemplified by the almost
vertical trajectory in Fig. 4(a). This characteristic willbe
explained in more detail in Sect. V-E.As a result, within the
target window, the control law heavily depends onu(k − 1),
since this largely determines the switching losses and thusthe
overall cost.

The controller predicts when the target window will be
violated and aims to switch such that any violation is avoided.
As an example for this, consider in Fig. 4(a) the lower edge
of the target window, which refers to the lower torque bound.
Here, switching is performed already when the stator flux
is one sampling interval away from the lower torque bound.
This time-interval translates to different distances in the state-
space, depending on the velocity of the voltage vector relative
to the dq frame. This can be observed when comparing
Figs. 4(a) and 4(d)with each other. The voltage vector in
Fig. 4(d) roughly points in the same direction, but its velocity
is significantly higher. As a result, the band around the lower
torque bound, in which switching is performed, is accordingly
larger.

When the stator flux vectorsignificantly violatesthe target
window, however, the control laws tend to become similar2,
irrespective ofu(k − 1). This can be seen when comparing
Figs. 4(a) and 4(d), which only differ with respect tou(k−1).
The reason for this is that well outside of the bounds, the

2To be precise, the differential mode of the voltage vectors becomes similar.
As an example for this, consider in Fig. 4(d) the region withu∗(k) = [0 1 0]T

that corresponds in Fig. 4(a) to the region withu∗(k) = [−1 0 − 1]T .
The voltage vectors have the same differential mode voltage, but a different
common mode.



0.89 0.93 0.97 1.01 1.05
0.16

0.19

0.22

0.25

0.28

0.31

0

0.5

1

ψsd(k)

ψsq(k)

P
s
w

(a) Device switching lossesPsw in kW when minimizing the switching losses

0.89 0.93 0.97 1.01 1.05
0.16

0.19

0.22

0.25

0.28

0.31

0

200

400

ψsd(k)

ψsq(k)

f s
w

(b) Device switching frequencyfsw in Hz when minimizing the switching
frequency

Fig. 5: Predicted switching effort, discounted over the prediction horizon, as a function of the state vectorx(k) for the current inverter switch position
u(k − 1) = [−1 0 − 1]T . The target window is indicated by straight (red) lines.The two figures relate to Figs. 4(a) and 4(b), respectively

bound violation termJbnd, which is independent ofu(k− 1),
dominates in the objective function over the switching effort
termJsw. Moreover, the second constraint in (5d) ensures that
only voltage vectors are considered that move the stator flux
vector closer to the target window.

When minimizing the switching frequency instead of the
switching losses, only minor alterationsin the resulting control
law result, as shown in Fig. 4(b). Differences arise mostly with
regard to the common mode of the voltage vectors, as can be
seen in the upper left corner of the figure. When a switching
transition fromu(k − 1) = [−1 0 − 1]T to a zero vector is
required, two options exist, namelyu(k) = [−1 −1 −1]T and
u(k) = [0 0 0]T . The first option involves only one switching
transition, which is preferable when minimizing the switching
frequency. The second option involves two switching tran-
sitions with—in this particular case—very small currents in
the corresponding phases. Therefore, when minimizing the
switching losses, it is advantageous to switch twice, at least
in this particular example.

These differences are also reflected in Fig. 5, which shows
the predicted switching efforts for the two control laws
discussed above. The predicted switching losses in kW are
obtained by dividingJP by 1000Ts. A subsequent division
by 12 yields the average switching losses per semiconductor
device3, which are depicted in Fig. 5(a). The device switching
frequency is obtained accordingly.

It can be seen that the surfaces of the switching efforts are
smooth within the regions.When moving from one region to a
neighboring one, the transition is smooth, if both control laws
meet the constraint (5d) at the intersection. As an example,
consider the regions with the control inputsu∗(k) = [0 1 −1]T

andu∗(k) = [−1 1 − 1]T . If, however, one of the control
inputs ceases to meet the constraint (5d), then the switching

3Recall that an NPC inverter is used with 12 IGCTs.

effort at the transition changes in a step-wise fashion, when
moving from one region to a neighboring one. This can be seen
at the boundary between the regions withu∗(k) = [−1 0 −1]T

andu∗(k) = [0 1 − 1]T . When moving from the first region
towards the second one, the control input ceases to meet the
constraint, triggering a switching transition and a step-wise
change in the switching effort.

Next, consider the control law depicted in Fig. 4(c), which
is obtained by settingthe weightq to zero. As a result, only
the switching losses are penalized, but no incentive is provided
to move the stator flux vector quickly back into the target win-
dow. This greatly enlarges the region, in which the previously
applied control input is maintained, i.e.u∗(k) = u(k − 1).
In this region, as exemplified for the two predicted stator
flux trajectories shown in Fig. 4(c), the degree of the bound
violation decreases at every time-step. The second constraint
in (5d) is thus met, but the convergence rate is slow for the
right trajectory. Note that this trajectory terminates when the
lower torque bound and hence the constraint (5d) is about to
be violated.

Fig. 4(e) shows the control law when lowering the speed
operating point toωr = 0.1. The stator flux trajectories are
now effectively straight lines and the zero voltage vector leads
to a very slow stator flux movement relative to thedq reference
frame.

So far, we have investigated control laws only for the case
where the rotor flux angle isϕ(k) = 0◦. Fig. 4(f) shows the
control law forϕ(k) = 30◦ at nominal speed. When compared
to the caseϕ(k) = 0◦ shown in Fig. 4(a), the voltage vectors
are rotated by30◦ and the regions are deformed accordingly.

E. Visualization of the Control Law Derivation

Additional insight in the derivation of the state-feedback
control law is provided hereafter. For this, considerin Fig. 4(a)
the control law along the(not shown)line given byψsd ∈
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Fig. 6: Visualization of the control law derivation along the line ψsd ∈ [0.89, 1.054] and ψsq = 0.235 in Fig. 4(a). Four out of the 12 possible switch
positions are considered: straight (blue) lines refer to keeping the current switch position, i.e.u(k) = u(k − 1) = [−1 0 − 1]T , dash-dotted (red) lines
imply switching phasea, i.e. u(k) = [0 0 − 1]T , dotted (black) lines refer to switching phaseb, i.e. u(k) = [−1 1 − 1]T , while dashed (green) lines
relate to the case in which phasesa andb are switched, i.e.u(k) = [0 1 − 1]T

[0.89, 1.054] and ψsq = 0.235, which corresponds to the
torque reference. This line is equivalent to a one-dimensional
slice through the state-spaceX . As previously, the current
switch position isu(k − 1) = [−1 0 − 1]T , from which
transitions to 11 different switch positions are possible,in
accordance with the constraint (5e). In Fig. 6, we consider
only four options—keeping the current switch position and
switching to three new ones. For some state vectors, certain
options are not possible, e.g. keeping the current switch
position forψsd < 0.94 would violate the constraint (5d).

Fig. 6(f) shows the lengths of the predicted stator flux tra-
jectories. Due to the rotation of the reference frame, theselines
are slightly curved, but they also exhibit distinctive changes in
their slopes. Slope changes result, when the bound, at which
the trajectory terminates, changes. Belowψsd < 0.955, the
straight (blue) line terminates at the lower flux bound, while
above this threshold it terminates at the lower torque bound,
see also Fig. 4(a).

The switching energy losses in Ws depend on the commu-
tated stator current, which in turn is a linear combination of
the stator and rotor flux vectors. The switching energy losses
thus depend linearly on the stator flux components. This is
confirmed by thedistinctively straightlines in Fig. 6(e).

The cost on the switching effortJsw in Fig. 6(b) is obtained
by dividing the switching energy losses by the trajectory

lengths, as explained earlier.As a result,these costs are—
similar to the trajectory lengths—slightly curved lines with
discontinuities. The switching power losses in Fig. 6(d)are
obtainedby scaling Fig. 6(b), as described in the previous
section.

The cost onthe bound violationJbnd is zero, for as long as
the stator flux trajectory remains with the target window. This
is the case when the initial state of the stator flux is within
the window, as shown in Fig. 6(c). As the starting point of
the stator flux trajectory moves away from the target window,
the cost on the bound violation increases in an approximately
quadratic fashion, due to the quadratic formulation used in
(10). The slopes differ between the various switch positions,
according to the predicted rms violation of the bounds. For
ψsd > 1, for example, the switch positionu(k−1) = [−1 1 −
1]T brings the stator flux vector significantly faster back into
the target window thanu(k− 1) = [−1 0 − 1]T does. This is
obvious from Fig. 4(a) and is reflected in Fig. 6(c),in that the
former switch position entails a lower penalty on the bound
violation.

The total costJ in Fig. 6(a) is the sum of the costs on the
switching effort and on the bound violation, which are shown
in Figs. 6(b) and 6(c), respectively. By minimizing the total
cost, the optimal control inputu∗(k) is derived. Forψsd <
0.94, u(k− 1) = [0 0 − 1]T andu(k− 1) = [0 1 − 1]T yield
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Fig. 7: State-feedback control law for the switching horizon ’SESE’ and the inverter switch positionu(k − 1) = [−1 0 − 1]T . This figure corresponds to
Fig. 4(a) with the switching horizon ’SE’

similar costs. The first switch position incurs a lower switching
effort, but tends to be slower in bringing the stator flux vector
back into the target window. Therefore, in the interval0.92 <
ψsd < 0.94, the former is chosen as the optimal control input
u∗(k), while for ψsd < 0.92 the latter is optimal. Within
the target window and when slightly violating the upper flux
bound, i.e. for0.94 < ψsd < 1, it is optimal to not switch,
i.e. to useu∗(k) = u(k− 1). For significant violations of the
upper flux bound, i.e. forψsd > 1, u∗(k) = [−1 1 − 1]T is
optimal.

F. Analysis for Longer Switching Horizons

So far, the analysis has focused on the switching horizon
’SE’. In this section, longer switching horizons are considered,
using ’SESE’ as an illustrative example. The same assump-
tions as previously are used, as summarized in Sect. V-A.
Specifically, the switching losses are minimized, the previously
applied switch position isu(k − 1) = [−1 0 − 1]T , and the
rotor’s angular position isϕ(k) = 0◦.

Using the same algorithm as before to compute the state-
feedback control law, the latter is shown in Fig. 7. As
previously, several predicted stator flux trajectories areshown
as (black) lines with every second sampling instant being
indicated by a small circle. Three features distinguish the
control law with the switching horizon ’SESE’ from the one
with ’SE’.

First, switching isscheduled to beperformed twice within
the prediction horizon, namely at the current time-stepk
and again when a bound is predicted to be hit. As a result,
two different switch positions are used within the prediction
horizon, leading to distinctive vertices in the predicted stator
flux trajectories. The control law refers to the first switch
position, i.e. to the optimal switch position at time-stepk,
u∗(k). The second, predicted switch position, sayu(ℓ), ℓ > k,
cannot be directly observed from the control map in Fig. 7. It

can be reconstructed, though, from the direction and velocity
of the predicted stator flux trajectory. In general,u(ℓ) does not
coincide with the switch positionu∗(k) of the region in which
the second switching is predicted to occur. As an example,
consider the dotted predicted trajectory in Fig. 7(a) and its
switching transition at the lower flux bound. The control law
associated with the region in which this transition is predicted
to occur isu∗(k) = [0 0 − 1]T , while the second switch
position isu(ℓ) = [0 1 − 1]T .

Second, switching is also performed well within the target
window, as can be seen in Fig. 7(a). Consider the predicted
trajectory with the straightdownward-pointingline, for which
switching is postponed until the lower torque bound is about
to be hit. When moving towards this bound, the number of
steps, over which the switching effort can be depreciated, gets
smaller and smaller, up to the point, where switching preemp-
tively becomes cheaperthan further delaying the switching
transition. As a result, the region with the control input
u∗(k) = [−1 1 −1]T is extended well into the target window.
This is exemplified by the dotted trajectory. Therefore, when
optimizing over multiple switching transitions, it may be
beneficial to switch preemptively.

Third, some regions maynot havewell-defined boundaries,
as can be observed in Fig. 7(b) between the regions with
u∗(k) = [0 0 − 1]T andu∗(k) = [0 1 − 1]T . Two example
trajectories are shown, which start from very similar stator
flux positions and provide—despite their different switching
sequences—very similar overall costs. By perturbingψs(k)
slightly, one or the other switching sequence is selected.
This phenomenon results from the fact that MPDTC operates
in the discrete time-domain and that the trajectory length
is a natural—rather than a real—number. It is obvious that
the length of the upper trajectory is very sensitive to small
perturbations inψs(k)—shifting ψs(k) slightly along thed-
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axis has a major influence on the length of the downward-
pointing second part of the trajectory.Reducing the length
of the sampling interval mitigates this issue. It is important
to point out that both trajectories effectively have the same
cost and thus provide the same performance, making the
choice between the two irrelevant. In order to avoid switching
repeatedly between one strategy and another, it is important
that MPDTC adheres to a strategy once selected. This is
typically achieved by re-evaluating the control input onlyonce
a bound of the target window is about to be violated.

VI. CONTROL LAW ALONG AN EDGE OF THETARGET

WINDOW

We have seen in Sect. V-Dthat during steady-state oper-
ation, when the stator flux vector is kept within the target
window and the switching horizon ’SE’ is used, switching
is performed effectively only along the edges of the target
window.

To gain insight into the dependency of the control law when
varying the rotor flux angle, one can compute the control law
for different angular positions of the rotor flux vector,ϕ(k), as
exemplified in Fig. 4(f). An alternative approach is to compute
the control law over a two-dimensional space, spanned by the
rotor angle and the position along one of the edges of the target
window, separately for eachof the fouredges. The lower flux
bound, for example, can be parameterized in polar coordinates
using the amplitudeΨs = ψs,min and the load angleθ(k),
which has previously been defined as the angle between the
two flux vectors.In summary, for the lower flux bound, the
control law can be derived as a function of the rotor flux angle
ϕ(k) and the load angleθ(k).

The result is shown in Fig. 8, with the angles given in
degrees. As expected, the control law forϕ = 0◦ in Fig. 8
is identical to the one in Fig. 4(a) along thelower flux bound
(left edge) of the target window. The same holdstrue for
ϕ = 30◦ and Fig. 4(f). Due to symmetry properties, it suffices

to compute the control law over an angle span of 60◦ for ϕ to
fully characterize the controller. The switching effort can also
be plotted, similar to Fig. 5.

VII. C ONCLUSIONS

Unlike field oriented and direct torque control, the control
law is not directly available in model predictive control (MPC),
including model predictive direct torque control (MPDTC).
This paper showed a straightforward method to compute the
state-feedback control law and—by analyzing and interpreting
it—provided new insight into MPDTC.

The derivation and visualization of the control law is
paramount during the design process of the controller, since it
enables one to analyzeand understandthe controller’s choices,
to assess the impactdifferent objective functions have on the
closed-loop behavior, to understand the impact of switching
constraints, and to evaluate the influence of phenomena such
as model uncertainties, observer noise and unaccounted for
dc-link voltage fluctuations. Along with plotting the predicted
trajectories, the availability of this method constitutesone of
the main advantages of MPC over classic control methods, for
which the design and tuning process is usually restricted to
running closed-loop simulations, and trial and error iterations.

Furthermore, with this tool at ones disposal, the following
tasks are envisioned to be achieved in the near future: stability
analysis, feasibility analysis, reduction of the computational
effort, derivation of switching heuristics and a further im-
provement of the closed-loop performance. This tool can be
used equally well for other predictive drive control concepts,
such as one-step predictive control [13], model predictive
direct current control (MPDCC) [26], [27],model predictive
direct power control [28] and model predictive direct balancing
control [29]. It is also straightforward to address multi-level
inverter topologies and to include the neutral point potential
in the considerations. Since its inception, the derivationof the
state-feedback control as described in this paper has proven
to be instrumental in analyzing and improving MPDTC. This
includes the stability proof for MPDCC in [30].
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