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Model Predictive Direct Current Control: Formulation of the 
Stator Current Bounds and the Concept of the Switching Horizon

                   Tobias Geyer, Senior Member, IEEE

Abstract—A model predictive current controller for multi-
level inverters driving electrical machines is proposed that keeps
the stator currents within given bounds around their respective
references and balances the inverter’s neutral point potential
around zero. The inverter switch positions are directly set by
the controller, thus avoiding the use of a modulator. Admissible
switching sequences are enumerated, and a state-space model of
the drive is used to predict the drive’s response to each sequence.
The predicted short-term switching losses are evaluated and
minimized. The concept of extrapolation and the use of bounds
achieve an effective prediction horizon of up to 100 time-steps
despite the short switching horizon. When compared to classic
modulation schemes such as pulse width modulation, for long
prediction horizons, the switching losses and/or the harmonic
distortion of the current are almost halved when operating at
low pulse numbers, thus effectively resembling the steady-state
performance of optimized pulse patterns. During transients, the
dynamic response time of the proposed controller is in the range
of a few ms and thus very fast.

Index Terms—AC motor drives, model predictive control,
optimal control, direct current control

I. I NTRODUCTION

In high power applications exceeding one megawatt multi-
level (rather than two-level) inverters are typically used, in
order to reduce the rating of the semiconductor switching
devices, to minimize the harmonic distortions and to increase
the modulated voltage [1], [2]. The inverter must be operated
in such a way that the desired three-phase load currents
are produced. Several control methodologies are availableto
address this current control problem in three-phase voltage
source inverters. As shown in the survey paper [3], the
controllers can be grouped into linear and nonlinear control
schemes.

The most prominent representative of the linear controller
domain is Field Oriented Control (FOC), which is formulated
in a rotating orthogonal reference frame [4]. Two (orthogonal)
control loops are used, typically with Proportional Integral (PI)
controllers augmented with feedforward terms—one for the
torque producing and one for the flux producing current. A
subsequent Pulse Width or Space Vector Modulator (PWM
or SVM) translates the stator voltage reference signals into
gating commands for the inverter [5]. Examples of nonlinear
current control schemes include hysteresis controllers, which
typically directly set the inverter switch positions. In a drive
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setting, the current control loop typically constitutes the inner
loop within a cascaded control loop. On the machine side,
the outer loop includes the torque and/or speed and the flux
control loops, while on the grid side, the active and reactive
power is controlled.

Recently, the power electronics community has started to
investigate the concept of Model Predictive Control (MPC) [6],
[7]. The roots of MPC can be traced back to the process
industry, where the origins of MPC were developed in the
1970s [8]. The emerging field of MPC for three-phase voltage
source inverters can be divided into two categories. The first
one builds on FOC and replaces the inner (current) control
loop by MPC and keeps the modulator in place. Examples
of this approach include [9] and [10]. In the second variety,
MPC directly manipulates the inverter switch positions, thus
superseding a modulator. For Neutral Point Clamped (NPC)
inverters, the latter scheme is available with a prediction
horizon of one, as introduced in [11].

This paper proposes an MPC-based model predictive current
controller with very long prediction horizons in the range of
100 time-steps. Specifically, a Model Predictive Direct Current
Controller (MPDCC) for multi-level inverters is proposed
that keeps the stator currents within specified bounds around
their references, balances the inverter’s neutral point poten-
tial(s) around zero and minimizes either the inverter switching
losses or its switching frequency. The control problem is
formulated in an orthogonal reference frame, which can be
either stationary or synchronously rotating. A modulator is
not required, since the gating signals are directly synthesized
by the controller.

The key benefit of this approach is that both the current
control and the modulation problems are addressed in one
computational stage. As a result, the current harmonic dis-
tortion and the switching losses can be reduced at the same
time, when compared to PWM. Indeed, at low switching
frequencies, the resulting steady-state behavior is similar to the
one obtained by Optimized Pulse Patterns (OPP) [12], [13].
During transients, however, a very fast current response time
is achieved. This is in stark contrast to OPPs, which tend to
be applicable only in very slow control loops.

This MPDCC scheme can be considered as an adaptation
of Model Predictive Direct Torque Control (MPDTC) to the
current control problem. This is achieved by changing the
control objectives—namely, instead of controlling the torque
and flux magnitude, the stator currents are controlled. MPDTC
was developed in early 2004, see [7] and [14], with prediction
horizons in the range of a few dozentime-steps, experimen-
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Fig. 1: Switching losses as a function of the commutated current for the GCT
and the diodes. The GCT turn-on losses are indicated by the dotted blue line,
the GCT turn-off losses by the dash-dotted green line, and the reverse recovery
losses are the straight red line

tally verified on a 2.5 MVA drive in 2007 [15] and later
generalized to enable even longer prediction horizons [16].
Preliminary results of an MPDCC scheme for a two-level
inverter based on the initial MPDTC algorithm minimizing
the inverter switching frequency and using relatively short
prediction horizons were presented in [17].

II. PHYSICAL MODEL OF THEDRIVE SYSTEM

Throughout this paper, we will use normalized quantities.
Extending this to the time scalet, one time unit corresponds
to 1/ωb seconds, whereωb is the base angular velocity.
Additionally, we will useξ(t), t ∈ R, to denote continuous-
time variables, andξ(k), k ∈ N, to denote discrete-time
variables.

A. Theαβ0 Reference Frame

All variables ξabc = [ξa ξb ξc]
T in the three-phase system

(abc) are transformed toξαβ0 = [ξα ξβ ξ0]
T in the orthogonal

αβ0 stationary reference frame throughξαβ0 = P ξabc. Using
the αβ0 reference frame and aligning theα-axis with thea-
axis, the following transformation matrix is obtained

P =
2
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B. Physical Model of the Inverter

As an illustrative example for a variable speed drive system
with a multi-level inverter, consider a three-level Neutral Point
Clamped (NPC) voltage source inverter driving an induction
machine, as depicted in Fig. 2. The total dc-link voltageVdc

over the two dc-link capacitorsxc is assumed to be constant.
Let the integer variablesua, ub, uc ∈ {−1, 0, 1} denote the
switch positions in each phase leg—the so called phase states,
where the values−1, 0, 1 correspond to the phase voltages
−Vdc

2 , 0,
Vdc
2 , respectively. Note that in a three-level inverter 27

different switch combinations exist. The actual voltage applied
to the machine terminals is given byvαβ0 = 0.5VdcP uabc

with uabc = [ua ub uc]
T .

The neutral point potentialυn = 0.5(Vdc,lo−Vdc,up) between
the two capacitors floats. In here,Vdc,lo andVdc,up denote the

Vdc

xc

xc

N
NN

A
B

C

is,abc

IM

Fig. 2: Three-level neutral point clamped voltage source inverter driving an
induction machine

voltage over the lower and upper dc-link half, respectively.
The neutral point potential changes when current is drawn
directly from it, i.e. when one of the switch positions is zero.
Taking into account that the phase currents sum up to zero,
i.e. isa + isb + isc = 0, it is straightforward to derive

dυn

dt
=

1

2xc

|uabc|T P−1 is,αβ0 , (2)

whereis,αβ0 is the stator current expressed in the stator refer-
ence frame and|uabc| = [|ua| |ub| |uc|]T is the componentwise
absolute value of the inverter switch positions [7].

To avoid a shoot-through, direct switching between the
upper and lower rails is prohibited.

Switching losses arise in the inverter when turning the
semiconductors on or off and commutating the phase current.
These losses depend on the applied voltage, the commutated
current and the semiconductor characteristics. Considering
Integrated Gate Commutated Thyristors (IGCT), with the GCT
being the semiconductor switch, the switch-on and switch-
off losses can be well approximated to be linear in the dc-
link voltage and the phase current. Yet for diodes, the reverse
recovery losses are linear in the voltage, but nonlinear in the
commutated current.

Observing that in an NPC inverter, the voltage seen by each
semiconductor is always half the total dc-link voltageVdc leads
to the following turn-on (energy) loss of thej-th GCT.

Ej,on = eon
1

2
Vdc |iph| , (3)

whereeon is a GCT specific coefficient andiph is the phase
current. For the GCT turn-off and diode reverse recovery
losses, similar equations can be derived.

As shown in [16], [18], by inspecting the phase leg topology
and the commutation paths, the switching (energy) losses
per phase transition can be derived. Since the commutation
depends on the polarity of the phase current, the cases
with positive and negative phase current need to be treated
separately. Summing up the switching (energy) losses in the
individual semiconductor devices (with the unit Ws) yields the
total switching (energy) lossesEsw, and dividing them by the
elapsed time yields the average switching (power) lossesPsw

for the inverter (with the unit W).
Using the 35L4510 4.5 kV 4 kA IGCT and the 10H4520

fast recovery diode as examples both from ABB, the device
switching losses as a function of the commutated current are
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Fig. 3: Bounds on the current ripple inαβ, ab, ac and bc, when imposing current bounds inabc or in αβ, respectively. The right most figure shows the
current ripple bounds inαβ, resulting from the torque and flux bounds imposed in model predictive direct torque control

depicted in Fig. 1, assuming0.5Vdc = 2600 V and a nominal
operating temperature.

C. Physical Model of the Machine

The state-space model of a squirrel-cage induction machine
in the stationaryαβ reference frame is summarized hereafter.
For the current control problem at hand, it is convenient to
choose the stator currentsisα and isβ as state variables. The
state vector is complemented by the rotor flux linkagesψrα

andψrβ , and the rotor’s angular velocityωr. The model input
are the stator voltagesvα and vβ . The model parameters are
the stator and rotor resistancesrs andrr, the stator, rotor and
mutual reactancesxls, xlr andxm, respectively, the inertiaJ ,
and the mechanical load torqueTℓ, where the rotor quantities
are referred to the stator circuit.

The continuous-time state equations are [19], [20]

isα + τσ
′ disα

dt
=

kr

rστr
ψrα +

kr

rσ
ωrψrβ +

1

rσ
vα (4a)

isβ + τσ
′ disβ

dt
=

kr

rστr
ψrβ

− kr

rσ
ωrψrα +

1

rσ
vβ (4b)

ψrα + τr
dψrα

dt
= −ωrτrψrβ + xmisα (4c)

ψrβ + τr
dψrβ

dt
= ωrτrψrα + xmisβ (4d)

τm · dωr

dt
= Te − Tℓ , (4e)

with the electromagnetic torque

Te = kr(isβψrα − isαψrβ) . (5)

The deduced parameters used in here are the coupling factor
of the rotorkr = xm

xr
, the total leakage factorσ = 1 − xm

2

xsxr
,

the equivalent resistancerσ = rs + kr
2rr and the leakage

reactancexσ = σxs, wherexs = xls+xm andxr = xlr+xm.
The deduced time constants include the transient stator time
constantτσ ′ = σxs

rσ
, the rotor time constantτr = xr

rr
and the

mechanical time constantτm = 1/J .
Equations (4)–(5) represent the standard dynamical model

of an induction motor, where the saturation of the machine’s
magnetic material, the changes of the rotor resistance due

to the skin effect, and the temperature changes of the stator
resistance are neglected.

III. C URRENT CONTROL PROBLEM

The control problem is to regulate the stator currents around
their references. During transients, a high dynamic perfor-
mance is to be ensured, i.e. a short settling time in the rangeof
a few ms. At steady state operating conditions, the harmonic
distortion of the current is to be minimized, so as to reduce the
copper losses and thus the thermal losses in the stator winding
of the machine. The harmonic distortion of the current directly
relates to the current ripple, which is defined as the deviation
of the instantaneous current from its reference. Thus instead of
reducing the current harmonic distortion, we can also minimize
the ripple current. The proportionality between the rippleand
the harmonic distortion will be shown in Sect. VI-C.

With regards to the inverter, the switching losses in the
semiconductors are to be minimized. An indirect way of
achieving this is to reduce the device switching frequency.
The inverter’s state(s), such as the neutral point potential, has
to be balanced around zero.

A suitable measure for the harmonic distortion of the current
is the Total Demand Distortion (TDD)

ITDD =

√

0.5
∑

h6=0 I
2
h

Inom
, (6)

in which the nominal currentInom refers to the operating con-
dition at nominal speed and load of the drive. The (harmonic)
Fourier componentsIh, h ≥ 0, can be differentiated into
the fundamental current componentI0 and theh-th harmonic
amplitude componentIh1.

The TDD is a more suitable means to express the harmonic
distortion than the Total Harmonic Distortion (THD), which
is defined similarly to (6), but is referred to the fundamental
of the present current rather than the nominal current. As a

1Note that the nominal current is an rms value, while the harmonic
amplitudes are peak values. The factor0.5 is required to translate these peak
values into rms values. Moreover, the above definition holds for a single-
phase current only. To compute the TDD of a three-phase current, the TDD
is computed for eacha, b andc current component separately, and the overall
TDD is determined by taking the mean value of the three.
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result, for small amplitudes of the fundamental current, the
THD tends to go to infinity, while the TDD remains effectively
constant.

The harmonic distortion of the electromagnetic torque is
definedaccording to (6).

IV. FORMULATION OF THE STATOR CURRENT BOUNDS

The bounds on the stator currents can be imposed invarious
manners. Assume symmetric bounds around the current refer-
ence. Letδi denote the difference between the upper (lower)
bound and the reference.

The natural choice [3] is to impose upper and lower bounds
on theabc current of the form

|irip,a| ≤ δi , |irip,b| ≤ δi , |irip,c| ≤ δi , (7)

where the ripple current in phasea is defined asirip,a =
is,a − iref,a. The ripple currents in phasesb andc are defined
accordingly. Using (1) and taking into account that the ripple
currents are common mode free (the machine’s star point is
not connected), the constraints (7) can be translated from the
abc into theαβ frame.

|irip,α| ≤ δi , |irip,α| +
√

3|irip,β | ≤ 2δi (8)

The set of ripple currents inαβ that meet (7) is depicted in
Fig. 3(a) as a gray polygon. The edges of the polygon are
called facets. The facets are perpendicular to thea, b and c-
axes, respectively. The distance of the facets to the originis
given byδi. The 0-component of the current ripple is always
zero.

Conversely, one might impose upper and lower bounds on
the currents in theαβ frame, as proposed e.g. in [17].

|irip,α| ≤ δi , |irip,β | ≤ δi (9)

This constraint is visualized in Fig. 3(a) as a squarewith
dashed (red) lines. Translating the set imposed by (9) from
αβ to abc yields a non-trivial shape. Fig. 3(b) shows the set
in an orthogonal plane, spanned by thea and b-axis. In the
ac plane, this set is the same, while Fig. 3(c) shows the set in
the bc plane. The polygonsformed by the dashed (red) lines
in Figs. 3(b) and 3(c) refer to the constraint (7).

It is obvious that the two constraint formulations (7) and
(9) lead to different sets inαβ andabc. The current harmonic
distortion relates to the ripple inabc rather than inαβ. Thus,
from a TDD perspective, it is advantageous to impose the
constraint (7) rather than (9). This is confirmed by simulation
results, even though the difference is fairly small, amounting
only to a few percent. Since the machine model is formulated
in αβ, it is convenient to formulate the current constraints also
in this reference frame. Therefore, the constraint formulation
(8), which is equivalent to (7), is adopted for MPDCC.

On the other hand, in a model predictive direct torque and
flux control setting, i.e. MPDTC, the stator flux vector is the
key figure to be controlled. Specifically, the angle between
the stator and rotor flux vectors determines the electromagnetic
torque, while the stator flux’s magnitude is usually kept around
its nominal value to keep the machine fully magnetized. By
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Fig. 4: Model predictive direct current control (MPDCC) fora multi-level
voltage source inverter driving an electrical machine

imposing upper and lower bounds on the torque and the stator
flux magnitude, a target window results that defines the ripple
of the stator flux vector. Due to the direct correspondence
between the stator flux and the stator current, the stator flux’s
target window can be translated into an equivalent window
for the stator current ripple inαβ. The latter is shown in
Fig. 3(d).Particularly at high speed operation, the bounds on
the stator flux magnitude tend to be asymmetric with respect
to the desired average flux. Then,the set of ripple currents
is also asymmetric with respect to the origin. The curvature
results from the bounds on the stator flux magnitude. Note
that inαβ, this window rotates around the origin.

V. M ODEL PREDICTIVE DIRECT CURRENT CONTROL

As shown in Fig. 4, MPDCC constitutes the inner current
control loop formulated in the stationaryαβ reference frame.
The inverter switch positions are directly set by the controller,
thus not requiring the use of a modulator.The current loop is
augmented in a cascaded controllerfashionby an outer loop
that operates in the rotatingdq frame and comprises a flux
and a speed PI controller with feedforward terms.

A. Internal Controller Model

MPC relies on an internal model of the physical drive
system to predict the future drive trajectories, specifically the
current and neutral point trajectories.

The overall state vector of the drive is chosen to be
x = [isα isβ ψrα ψrβ υn]T , the switch positions constitute
the input vectoru = uabc = [ua ub uc]

T ∈ {−1, 0, 1}3, and
the stator current along with the neutral point potential isthe
output vectory = [isα isβ υn]T . The rotor speed is assumed
to be effectively constant within the prediction horizon, which
turns the speed into a time-varying parameter. The prediction
horizon being in the range of a few ms, this appears to
be a mild assumption for medium-voltage drive applications.
Nevertheless, including the speed as an additional state inthe
model might be necessary for highly dynamic drives and/or
drives with a small inertia.

Combining the motor model (4)–(5) with the inverter
model (2) and using the Euler formula,the followingdiscrete-
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time state-space model of the drive can be derived in accor-
dance with [14].

x(k + 1) =
(

I +

[

A 0

0 0

]

Ts

)

x(k)+ (10a)

+

[

B1

0

]

Tsu(k) +

[

0

B2(x(k))

]

Ts|u(k)|

y(k) = Cx(k) (10b)

In this model,I denotes the identity matrix andTs = 25µs is
the sampling interval. The definitions of the matricesA, B1,
B2 andC can be found in the appendix. The zeros in (10)
are vectors and matrices of appropriate dimensions. In (10a)
the first two terms capture the motor equations, while the third
expression captures the dynamic of the neutral point potential.

B. MPC Optimization Problem

As stated in Sect. III, the control objectives are to keep the
instantaneous stator current components within given bounds
around their respective references and to balance the neutral
point potential around zero, while minimizing the switching
losses. These control objectives are mapped into an objective
function that yields a scalar cost (here the short-term switching
losses) that is minimized subject to the dynamical evolution
of the internal prediction model of the drive system and
subject to constraints. This leads to the following closed-form
optimization problem.

J∗(x(k)) = min
U(k)

1

NpTs

k+Np−1
∑

ℓ=k

Esw(x(ℓ), u(ℓ), u(ℓ− 1))

(11a)

s. t. x(ℓ+ 1) = Ax(ℓ) +Bu(ℓ) (11b)

y(ℓ) = Cx(ℓ) (11c)

y(ℓ) − yref(ℓ) ∈ Y (11d)

u(ℓ) ∈ {−1, 0, 1}3,max |∆u(ℓ)| ≤ 1 (11e)

∀ℓ = k, . . . , k +Np − 1 (11f)

J∗(x(k)) denotes the minimum of the objective functionJ as
a function of the state vectorx(k) at the current time-instantk.
The sequence of control inputsU(k) = [u(k), . . . , u(k+Np−
1)] over the prediction horizonNp represents the sequence of
inverter switch positions the controller has to decide upon.

The objective function represents the sum of the switching
energy losses over the prediction horizon divided by the length
of the horizon in time—it thus approximates the short-term
average switching power losses. Note that, according to (3),
the instantaneous switching energy lossEsw at time-instantℓ
is a function of the stator currentis(ℓ), which is part of the
state vectorx(ℓ). Esw also depends on the inverter switching
transition at time-stepℓ, which can be deduced fromu(ℓ) and
u(ℓ−1). An indirect (and less effective) way of minimizing the
switching losses is to minimize the number of commutations,
i.e. the device switching frequency.

The objective function is minimized subject to the dynam-
ical evolution of the drive system, represented in state-space
form with the matricesA, B andC given in the appendix. The
bounds on the output variables are imposed by the constraint
(11d), withyref = [isα,ref isβ,ref υn,ref]

T denoting the reference
of the output vector. Note that the latter is time-varying in
αβ, but the reference trajectory can be approximated e.g. by a
quadratic function. The setY is given by the lower and upper
bounds, i.e.Y = [−δi, δi] × [−δi, δi] × [−δυ, δυ], with the
bound on the current rippleδi defined as previously, andδv
being the bound on the neutral point potential.

The constraint (11e) limits the control inputu to the integer
values{−1, 0, 1} available for a three-level inverter. Switching
between the upper and the lower rail is inhibited by the
second constraint in (11e) with∆u(ℓ) = u(ℓ) − u(ℓ − 1).
These constraints have to be met at every time-step within the
prediction horizon.

C. Simplified MPC Optimization Problem

Solving the closed-form optimization problem (11) is chal-
lenging from a computational point of view even for prediction
horizons of modest length. Solving it for reasonably long
horizons appears to be impossible, since this constitutes a
mixed-integer programming problem. One attractive solution
is to consider switching transitions only when the output
ripple y − yref is close to its boundY, i.e. when switching is
imminently required to keep the outputs within their bounds.
When the outputs are well within their bounds, the switch
positions are frozen and switching is not considered. This is
in line with the control objective (11a) and greatly reducesthe
number of switching sequences to be evaluated and thus the
computational burden.

To achieve this, three key concepts were introduced in [7],
[14], [16] that are adopted for MPDCC.

1) The formulation of the optimization problem in an
open form. For every admissible switching sequence the
corresponding output trajectories are computed forward
in time.

2) Between the switching events, the output trajectories are
computed using the model (11b) and (11c), to which we
refer as anextensionstep, or they are extrapolated in an
approximate manner, which is a so calledextrapolation
step. Typically, quadratic extrapolation is used, even
though linear extrapolation is often sufficiently accurate,
particularly at low speed. More elaborate extension
methods are conceivable, as shown in [21].

3) The set of admissible switching sequences is controlled
by the so calledswitching horizon, which is composed
of the elements ’S’ and ’E’ that stand for ’switch’ and
’extrapolate’ (or more generally ’extend’), respectively.
The element ’e’ denotes an optional extrapolation or
extension step.

It is important to distinguish between theswitchinghorizon
(number of switching instants within the horizon, i.e. the
degrees of freedom) and theprediction horizon (number of
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time-steps MPC looks into the future). Between the switching
instants, the switch positions are frozen and the drive behavior
is extrapolated until a hysteresis bound is hit. The conceptof
extrapolation gives rise to long prediction horizons (typically
30 to 100 time-steps), while the switching horizon is very short
(usually one to three). For more details about the concept of
the switching horizon and its elements ’S’, ’E’ and ’e’, the
reader is referred to [16].

Starting at the current time-stepk, the MPDCC algorithm it-
eratively explores the tree of feasible switching sequences for-
ward in time—for more details about this tree, please refer to
[22]. At each intermediate step, all switching sequences must
yield output trajectories that are eitherfeasible, or pointing in
the proper direction. We refer to these switching sequences as
candidatesequences. Feasibility means that the output variable
lies within its corresponding bounds; pointing in the proper
direction refers to the case in which an output variable is not
necessarily feasible, but the degree of the bound’s violation
decreases at every time-step within the switching horizon.The
above conditions need to holdcomponentwise, i.e. for all three
output variables2.

To visualize this concept, consider the switching horizon
’eSESE’ and the candidate switching sequence denoted by
straight (blue) lines in Fig. 5. The corresponding output
trajectories (abc ripple currents and neutral point potential)
are shown accordingly as straight (blue) lines3. Starting at
the present time-stepk, after an (optional) extrapolation step
’e’, the ripple current in phasec is predicted to hit its lower
bound shortly after time-stepk + 9. This triggers a predicted
switch transition at time-stepk+9 in phasec, followed by an
extrapolation segment, until one of the four output variables is
predicted to hit a bound. At stepk+ 53, phasea is predicted
to switch in order to avoid the ripple current in phasea to
violate its constraint. This transition constitutes the second
switching event in the horizon, which is followed by another
extrapolation step.

Another candidate switching sequence along with its output
trajectories is indicated by dashed (red) lines. Switchingis
predicted to occur at time-stepsk + 9 and k + 11. Even
though more switch transitions are required here, the switching
(power) losses for the dashed (red) switching sequence are
lower due to two reasons. Firstly, the second candidate switch-
ing sequence is roughly twice as long as the first one. Thus the
losses are depreciated over a longer prediction horizon. Sec-
ondly, as cannot be seen here, thea andb phase currents are
relatively small, thus incurring only small switching (energy)
losses.

2As an example, consider the case where theα-current component is
feasible, theβ-current component points in the proper direction and the neutral
point potential is feasible.

3Note that the MPDCC algorithm works with theαβ rather than with the
abc ripple currents, and it imposes the bounds (8). Since these bounds are
difficult to visualize, theabc ripple currents are shown in Fig. 5 along with
their corresponding upper and lower bounds.

k-20 k k+20 k+40 k+60 k+80 k+100k+120k+140
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(a) Ripple currents in phasea

k-20 k k+20 k+40 k+60 k+80 k+100k+120k+140

δi

0

−δi

(b) Ripple currents in phaseb
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(c) Ripple currents in phasec
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(d) Neutral point potentials
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−1

(e) Three-phase switching sequences

Fig. 5: Two candidate switching sequences with their associated three-
phase ripple current trajectories as well as with their neutral point potential
trajectories. These trajectories are constrained by theirrespective upper and
lower bounds. The time-axis is given by the sampling instants with the
sampling intervalTs = 25 µs. The switching horizon ’eSESE’ leads here
to a prediction horizon ofNp = 126 time-steps or 3.15 ms

D. Generalized MPDCC Algorithm

The generalized MPDCC algorithm is based on a Last In
First Out stack model, commonly used in computer science.
At time-stepk, the algorithm computes the three-phase switch
positionu(k) according to the following procedure.

1) Initialize the root node with the current state vector
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Fig. 6: Dynamic response of model predictive direct current control during torque steps of magnitude 1 pu. The torque reference with the torque response,
the three-phase stator currents and the switch positions are shown versus the time-axis in ms. The rotor’s angular velocity is ωr = 0.6 pu, the current bound
width is δi = 0.12 and the switching horizon is ’eSESE’.The neutral point potential is not shown here

x(k), the last switch positionu(k−1) and the switching
horizonNs, e.g.Ns =’SESE’. Push the root node onto
the stack.

2a) Take the top node with a non-empty switching horizon
Ns 6= ∅ from the stack.

2b) Read out the first elementfrom Ns and remove it. For
’S’, branch on all feasible switching transitions. For ’E’,
extend the trajectories either by extrapolation as detailed
in [7], [21] or by using the internal controller model of
Sect. V-A.

2c) Keep only the switching sequences that are candidates,
i.e. sequences that yield output trajectories that are either
feasible according to (11d) or pointing towards the
bounds.

2d) Push these sequences onto the stack.
2e) Stop if there are no more nodes with non-empty

switching horizonsNs. The result of this are the
predicted (candidate) switching sequencesU i(k) =
[ui(k), . . . , ui(k + ni − 1)] over the variable-length
prediction horizonsni, wherei ∈ I andI is an index
set.

3) Compute for each (candidate) sequencei ∈ I the
associated cost. If the switching frequency is to be
minimized, considerthe cost functionJ i = si/(niTs),
which approximates the average switching frequency,
wheresi =

∑k+ni−1
ℓ=k ||ui(ℓ) − ui(ℓ − 1)||1 is the total

number of switch transitions in the switching sequence
U i(k), and ni is the corresponding sequence length.
Conversely, if the switching losses are directly targeted,
the cost functionJ i = Esw,i/(niTs) is used, whereEsw,i

is the sum of the device switching losses for thei-th
switching sequence, according to Sect. II-B.

4) Choose the switching sequenceU∗ = U i(k) with the
minimal cost, wherei = arg mini∈I ci.

5) Apply (only) the first switch positionu(k) = u∗ of this
sequence, and execute the above procedure at the next
time-stepk + 1 over a shifted horizon.

In the following, four remarks about the proposed MPDCC
algorithm are provided to further clarify some of its important
properties. Firstly, the MPDCC algorithm derives a long

sequence of switch positions that minimizes the predicted
inverter switching losses and is predicted to keep the output
variables within their bounds. Out of this sequence, only the
first gating signal (at the current time-instant) is appliedto
the inverter. At the next sampling instant, new measurements
are obtained, the optimization step is repeated and a new
switching sequence is computed. During steady-state operating
conditions, this updated sequence is shifted in time by one
step. In general, this sequence is also slightly modified in order
to account for model mismatches, dc-link voltage fluctuations,
measurement noise, observer errors, etc. This strategy, which
is referred to as the receding horizon policy, provides feedback
and makes MPDCC robust. When the current references are
(significantly) changed, the switching sequence is completely
revised.

Secondly,by adapting the drive model, MPDCC can also
be formulated in adq reference frame, rotating synchronously
with the rotor. Indq, the current references are constant and
so are the upper and lower bounds. However, the hexagon-
shaped bounds, see Fig. 3(a), would rotate in thedq frame. A
possible simplification would be to approximate the hexagon
by a circle, similar to [23]. Moreover, indq, the voltage vectors
depend on the angular position of the frame, complicating the
computation of the drive response in the MPDCC Step 2b.

Thirdly, the controller’s computation time of one sampling
interval has been neglected above. Using the internal controller
model of the drive and the previously chosen switch position,
this delay can be easily compensated by translating the mea-
surements one time-step forward. For more details, see [15].

Fourthly, the bound width is the tuning parameter that sets
the trade-off between the switching losses and the current
distortion. For more details on how to tune MPDCC, see
Sect. VI-C.

VI. PERFORMANCEEVALUATION

As a case study, consider a three-level NPC voltage source
inverter driving an induction machine, as shown in Fig. 2.
A 3.3 kV and 50 Hz squirrel-cage induction machine rated at
2 MVA is used as an example for a commonly used medium-
voltage induction machine. The machine and inverter parame-
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Fig. 7: Field oriented control with PWM/SVM and the carrier frequencyfc = 270 Hz at 60% speed and full torque. The stator currents and the torque are
shown in the time- and frequency-domain. The neutral point potential and the switch positions are shown versus the time-axis in ms. All quantities are given
in pu
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Fig. 8: Model predictive direct current control (MPDCC) with the current boundδi = 0.086. The switching horizon ’eSESESE’ leads here to an average
prediction horizon of 69 time-steps. The operating point, the plots and their scaling are the same as in Fig. 7 to facilitatea direct comparison

ters are summarized in Table I. The semiconductors used are
ABB’s 35L4510 4.5 kV 4 kA IGCT and ABB’s 10H4520 fast
recovery diode. The pu system is established using the base
quantitiesVB =

√

2/3Vrat = 2694 V, IB =
√

2Irat = 503.5 A
and fB = frat = 50 Hz. As previously,δi denotes the width
of the bounds on theabc current components, which are
symmetric around the reference, whereδi is equal to the upper

bound minus the reference.

A. Transients

At 60 % speed, torque reference steps of magnitude 1 pu
are imposed. As shown in Fig. 6, a very fast current and
thus torque response is achieved, limiting the length of the
transients to about 1.5 ms. It is apparent from the control
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Control Control Switching Avg. prediction Psw fsw Is,TDD Te,TDD Psw fsw Is,TDD Te,TDD

scheme setting horizon horizonNp [steps] [kW] [Hz] [%] [%] [%] [%] [%] [%]

PWM/SVM fc = 90 Hz – – 1.78 60.0 17.5 5.77 100 100 100 100
MPDCC δi = 0.21 eSE 63.2 1.00 61.0 10.7 5.09 56.2 102 60.8 88.2

OPP d = 2 – – 1.78 61.0 10.4 5.14 100 102 59.5 89.1

PWM/SVM fc = 270 Hz – – 3.45 150 8.63 3.28 100 100 100 100
MPDCC δi = 0.116 eSE 23.6 3.43 192 8.23 6.67 99.4 128 95.4 203
MPDCC δi = 0.096 eSESE 51.1 3.50 187 6.36 4.12 101 125 73.7 126
MPDCC δi = 0.086 eSESESE 69.0 3.48 205 5.53 3.57 101 137 64.1 109

OPP d = 5 – – 3.73 152 5.57 3.02 108 101 64.5 92.1

PWM/SVM fc = 720 Hz – – 8.84 375 3.13 1.33 100 100 100 100
MPDCC δi = 0.048 eSE 10.8 8.71 412 3.26 2.41 98.5 110 104 181
MPDCC δi = 0.042 eSESE 21.8 8.70 441 2.71 1.77 98.4 118 86.6 133
MPDCC δi = 0.039 eSESESE 29.8 8.78 505 2.52 1.69 99.3 135 80.5 127

OPP d = 12 – – 8.54 365 2.92 1.19 96.7 97.3 93.3 89.5

TABLE II: Comparison of MPDCC with PWM/SVM and OPP in terms of switching lossesPsw, switching frequencyfsw, current TDDIs,TDD and torque
TDD Te,TDD. The center part shows absolute values, while the values in the right part are relative using PWM as a baseline. The three sets of comparisons
refer to a switching frequency of about 60 Hz, and switching losses of around 3.5 and 8.8 kW. The operating point is at 60% speed and nominal torque

algorithm described in Sect. V that MPDCC is similarly fast as
deadbeat and hysteresis control schemes. Note that excessive
switching during the transients is avoided, as can be seen from
Fig. 6(c).

B. Steady-State Operation

At 60% speed and full torque, closed-loop simulations
were run to evaluate MPDCC’s performance at steady-state
operating conditions. The key performance criteria here are
the harmonic distortions of the current and the torque, and the
switching losses in the inverter. This performance evaluation
is done for switching horizons of varying length and for var-
ious bounds. MPDCC is compared with two well-established
modulation methods: PWM/SVM and optimized pulse patterns
(OPP).

Specifically, a three-level regular sampled PWM is used
with two triangular carriers, which are in phase (phase dis-
position). It is generally accepted that for multi-level inverters
carrier-based PWM with phase disposition (PD) results in the
lowest harmonic distortion. As shown in [24]—by adding a
proper common mode voltage to the reference voltage, which
is of the min/max type plus a modulus operation—PWM with
PD is equivalent to SVM, in the sense that both methods yield
the same gating signals.

Alternatively, optimized pulse patterns can be calculated
in an off-line procedure by computing the optimal switching

Induction Motor

Voltage 3300 V rs 0.0108 pu
Current 356 A rr 0.0091 pu
Real power 1.587 MW xls 0.1493 pu
Apparent power 2.035 MVA xlr 0.1104 pu
Frequency 50 Hz xm 2.3489 pu
Rotational speed 596 rpm

Inverter

Dc-link voltage 5200 V Vdc 1.930 pu
xc 11.769 pu

TABLE I: Rated values (left) and parameters (right) of the drive

angles over one fundamental period for all possible operating
points [13], by minimizing the current distortion for a given
switching frequency (pulse number). OPPs are typically used
in a very slow control loop like V/f control, which is also
employed here for the OPPs.

As shown in Fig. 7, PWM/SVM with the carrier frequency
fc = 270 Hz leads to distinctive current and torque spectra
around multiples offc. The switching pattern is fairly uni-
formly distributed over a fundamental period. The resulting
switching losses are 3.45 kW and the current TDD is 8.63%,
as summarized in Table II. The MPDCC bounds are tuned such
that similar switching losses are obtained—more details about
the tuning of MPDCC can be found in Sect. VI-C. As the
switching horizon is increased, the average prediction horizon
increases, too, allowing MPDCC to make better informed
decision by looking further into the future. As a result, the
bounds can be tightened and thus the harmonic distortions
of the current and the torque are reduced, whilst keeping
the switching losses constant. This can be seen in Fig. 8,
which shows the results for MPDCC with a long switching
horizon and fairly tight bounds. For the same switching losses,
the current distortion is reduced by 36%, while the torque
distortion is not dissimilar. The switching frequency, however,
tends to be higher than in PWM, since it is not directly
minimized. By arranging the switching pattern such that a
significant proportion of the switching transitions occurswhen
the phase currents and thus the losses are small, the switching
losses are kept at the same level as with PWM/SVM, despite
the higher switching frequency. Interestingly enough, in terms
of switching losses and current distortions, MPDCC with long
horizons slightly beats the performance of OPPs—refer to
the OPP with pulse numberd = 5. The torque distortions,
however, are worse.

Alternatively, one may wish to minimize the switching
losses with regards to PWM/SVM, while keeping the current
TDD constant. As an example, consider again PWM with
fc = 270 Hz. MPDCC with the switching horizon ’eSE’,
prediction horizon of 63time-steps and bound widthδi = 0.21
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Fig. 9: Comparison of theabc switching patterns of an OPP withd = 2, and
MPDCC with the switching horizon ’eSE’ and the bound widthδi = 0.21.
Both schemes yield the same switching frequency of about60 Hz

leads to 24% higher current distortions, but the switching
losses are reduced from 3.45 down to 1.0 kW, i.e. by 71%!
In this case, MPDCC actually outperforms the OPP with
pulse numberd = 2 (44% less switching losses, while the
current and torque distortions are very similar). This might
appear to be counter-intuitive, since it is often assumed that
OPPs provide the upper bound on the achievable steady-
state performance of a modulator. Recall that the OPPs were
computed by minimizing only the current distortions, not
considering the switching losses. By also taking the switching
losses into account and by accordingly rearranging the pulses
as shown in Fig. 9, MPDCC is able to achieve similarly low
distortions, while further reducing the switching losses,see
Table III. MPDCC is particularly effective to yield low current
distortions, but less effective to reduce the torque distortion,
as explained in Sect. IV.

The benefit of MPDCC is particularly pronounced when
operating at low pulse numbers. For a switching frequency of
about60 Hz, MPDCC reduces both the switching losses and
the current TDD by about 40%, when compared to PWM with
the carrier frequency of 90 Hz. For higher switching frequen-
cies, however, the gain is less significant, as demonstratedby
the benchmarking with respect to PWM withfc = 720 Hz.
This characteristic can be also observed with OPPs, whose
performance benefit drops as the pulse number is increased,
see Table II.

C. Tuning

In MPDCC, the width of the current bounds is a tuning
parameter that sets the trade-off between the level of harmonic
distortion and the switching losses. This tuning parameteris

OPP MPDCC

ia [pu] -0.65 0.55 0.93 0.93 0.14 1.15 0.33 0.60

Eon [J] 0.16 0.02 0.06
Eoff [J] 1.48 1.25 2.12 2.62 1.37
Err [J] 1.94 2.78 0.41 0.99

∑

E [J] 9.73 5.47

TABLE III: Switching lossesE for the positive halfwaves in phasea shown
in Fig. 9. Eon, Eoff andErr denote the GCT turn-on, GCT turn-off and the
diode reverse recovery losses, respectively. MPDCC’s switching losses are
here 44% less than the ones of the OPP, which is in line with Table II
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Fig. 10: Tuning of MPDCC: Current TDD (straight green line),the torque
TDD (dashed blue line), the switching losses (dash dotted red line) and the
device switching frequency (dotted black line) vs the widthof the current
boundδi for MPDCC with the switching horizon ’eSE’ at 60% speed and full
torque. All four curves are given in percent and normalized totheir maximum
value in the intervalδi = [0.02, . . . 0.2]

equivalent to the carrier frequency in PWM/SVM. Specifically,
by tightening the current bounds, the current ripple is reduced
and so are the current and torque TDDs. Over a wide range, the
relation between the current ripple and the harmonic distortion
appears to be linear, as confirmed by Fig. 10.

VII. C ONCLUSIONS ANDDISCUSSION

The operation of medium-voltage drives is usually confined
to low switching frequencies in the range of a few 100 Hzin
order to keep the switching losses low. MPDCC yields very
low switching losses for a given level of tolerable current dis-
tortions. This also implies that the torque distortions aresmall.
As shown in [25], for the same switching losses and the same
switching horizon (computational burden), MPDCC appears to
slightly outperform MPDTC in terms of the current distortions.
To minimize the torque distortion, however, MPDTC appears
to be better suited, see also [25]. The shape of the current
ripple sets is responsible for this difference.

At very low switching frequencies, MPDCC achieves
switching losses and current distortion levels that are compa-
rable to the ones typically achieved with OPPs. For very low
pulse numbers,when approaching six-step operation,MPDCC
might even outperform OPPs in this respect.

Long horizons drastically improve the controller
performance—short horizons and particularly one-step
predictive control, such as [11], appear to be less effective
than PWM and SVM, as indicated by [25]. Long horizons
are achieved by combining the concept of extrapolation with
the notion of imposing bounds on the controlled variables.
Yet, when compared to FOC or DTC, the computational
burden tends to be high. For short switching horizons, a
successful implementation was shown in [15]. To implement
long switching horizons, techniques from mathematical
programming such as branch and bound can be used, as
proposed in [22]. Even though only simulation results
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were presented here, the significance of such simulations is
underlined by the very close match between the previous
simulation results in [14], which were obtained using the
same drive model as in this paper, and the experimental
results in [15].

In this paper, a three-level NPC inverter was used as a com-
monly used and illustrative example for a multi-level voltage
source inverter. It is a matter of changing the internal controller
model and thus a straightforward undertaking to address other
topologies and machines. In the case of MPDTC, this simple
adaptation was exemplified for five-level topologies [26] and
permanent-magnet synchronous machines [27].
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APPENDIX

The matrices of the discrete-time prediction model (10) are
the following.

A =
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