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Model Predictive Direct Torque Control:
Derivation and Analysis of the Explicit Control Law
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Abstract—This paper derives and visualizes the explicit state-
feedback control law of model predictive controllers for electrical
drives, using model predictive direct torque control (MPDTC) as
an illustrative example. The control law is given over the whole
state-space and computed in an offline procedure. The availability
of the control law allows one to analyze the controller, and to
visualize and better understand its behavior and decision mak-
ing process. Based on this concept, numerous other important
tasks can be accomplished, such as stability analysis, feasibility
analysis, reduction of the computational effort, derivation of
switching heuristics and the further improvement of the closed-
loop performance.

Index Terms—Model predictive direct torque control, model
predictive control, state-feedback control law, variable-speed
drives, medium-voltage drives

I. I NTRODUCTION

Model predictive direct torque control (MPDTC) is an
emerging control concept for three-phase electrical drive
system [1]–[3], adopting the principles of model predictive
control (MPC) [4], [5]. MPDTC is particularly well suited
for medium-voltage drives, which are based on multi-level
voltage source inverters and operate at very low switching
frequencies [6]. Compared with state-of-the-art schemes,such
as direct torque control (DTC) [7] and field oriented control
(FOC) [8] with space vector modulation (SVM), MPDTC
achieves a reduction of the switching losses by up to 50% [3]
for three-level neutral point clamped inverters. Alternatively,
the current or torque distortions can be reduced by the same
amount [9]. For five-level topologies, the performance benefits
are even more pronounced, as shown in [10] and [11].

Unlike DTC or FOC with SVM, MPDTC is based on
an online optimization stage. Given the torque and stator
flux references and their estimated values, a suitable inverter
switch position is computed, such that the switching effort
(either the switching frequency or the switching losses) is
minimized. This optimization is based on an internal model of
the drive that enables the controller to predict the impact of the
switching transitions under consideration. Unlike in DTC,the
control law is not directly available—for example in form of
a look-up table—and thus cannot be analyzed and visualized,
complicating the design process and the understanding of
MPDTC.

This issue motivates this paper. The state-feedback con-
trol law, which is the control input (the switch position)
represented as a function of the state vector over the state-
space, is computed, visualized and analyzed. The information
and insight thus obtained is not only meant to further the
understanding of MPDTC, but is also envisioned to help revise
and improve the MPDTC algorithm, e.g. with the aim to lower
its computational burden. The techniques proposed in this
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paper are directly applicable to other predictive drive control
methods, including one-step predictive control [12].

The paper is organized as follows. After describing the drive
system case study in the next section, the model predictive
control problem is formally stated in Sect. III. The MPDTC
solution approach and algorithm is summarized in Sect. IV.
The control law for MPDTC is computed, visualized and
analyzed in detail in Sects. V and VI. Section VII provides
concluding remarks.

II. D RIVE SYSTEM CASE STUDY

Throughout this paper, we will use normalized quantities.
Extending this to the time scalet, one time unit corresponds
to 1/ωb seconds, whereωb is the base angular velocity.
Additionally, we will useξ(t), t ∈ R, to denote continuous-
time variables, andξ(k), k ∈ N, to denote discrete-time
variables with the sampling intervalTs = 25µs.

A. Reference Frames

All variablesξabc = [ξa ξb ξc]
T in the three-phase system

(abc) can be transformed toξdq0 = [ξd ξq ξ0]
T in the orthog-

onal rotatingdq0 reference frame throughξdq0 = P (ϕ) ξabc,
whereϕ denotes the angle between thea-axis of the three-
phase system and thed-axis of the reference frame. By align-
ing thed-axis with the motor’s rotor flux,ϕ also corresponds to
the rotor’s angular position, see also Fig. 2. The transformation
matrix is given by

P (ϕ) =
2

3





cos(ϕ) cos(ϕ− 2π
3 ) cos(ϕ+ 2π

3 )

− sin(ϕ) − sin(ϕ− 2π
3 ) − sin(ϕ+ 2π

3 )
1
2

1
2

1
2



 .

(1)
The reference frame rotates with the angular speedωfr = ωr =
dϕ/dt, whereωr is the angular speed of the machine’s rotor.

The stationary (i.e. non-rotating)αβ0 reference frame is
obtained by setting bothϕ andωfr to zero. Thed- andq-axes
are then referred to asα- and β-axes, respectively, with the
0-axis remaining unchanged. The transformation from theabc
to theαβ0 reference frame is defined asξαβ0 = P (0)ξabc.

B. NPC Inverter

As an example for a medium-voltage drive system, consider
a three-level neutral point clamped (NPC) voltage source
inverter with an induction machine, as shown in Fig. 1. The
inverter is fed by two constant dc-link voltage sources, andits
total dc-link voltage isVdc = 5.2 kV. ABB’s 35L4510 4.5 kV
4 kA IGCT and ABB’s 10H4520 fast recovery diode are used
as semiconductor devices.

Let the integer variablesua, ub, uc ∈ {−1, 0, 1} denote the
switch positions in each phase leg, where the values−1, 0, 1
correspond to the phase voltages−Vdc

2 , 0,
Vdc
2 , respectively. The

actual voltage applied to the machine terminals is given by
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Fig. 1: Three-level neutral point clamped voltage source inverter driving an
induction motor with a fixed neutral point potential

vs,αβ0 = 0.5VdcP (0)uabc with u = uabc = [ua ub uc]
T .

Direct switching between the upper and lower rails is pro-
hibited, i.e. ||∆u(k)||∞ ≤ 1 is imposed with∆u(k) =
u(k) − u(k − 1).

Switching losses arise in the inverter when turning the
semiconductors on or off and commutating the phase current.
These losses depend on the applied voltage, the commutated
current and the semiconductor characteristics. For Integrated
Gate Commutated Thyristors (IGCT), with the GCT being the
semiconductor switch, the turn-on and turn-off losses can be
well approximated to be linear in the dc-link voltage and the
phase current. Yet for diodes, the reverse recovery losses are
linear in the voltage, but nonlinear in the commutated current.

As shown in [3], [13], the switching losses can be derived as
a function of the switching transition, the commutated phase
current and its polarity. The turn-on (energy) loss of a GCT,
for example, is given by

Eon = eon
1

2
Vdc iph , (2)

where eon is a GCT specific coefficient, which is readily
available from the manufacturer’s data sheets, andiph is the
phase current. For the GCT turn-off and diode reverse recovery
losses, similar equations can be derived.

C. Induction Machine

The machine considered here is a3.3 kV and50 Hz squirrel-
cage induction machine rated at2 MVA. A summary of the
machine parameters can be found in Table I. The induction
machine is modelled in theαβ reference frame using the
α- and β-components of the stator and rotor flux linkages
per second,ψsα, ψsβ , ψrα and ψrβ , respectively, as state
variables. The rotor speed dynamic is neglected and the rotor’s
rotational speedωr is assumed to remain constant within
the prediction horizon. The model parameters are the stator
and rotor resistancesRs and Rr, and the stator, rotor and
mutual reactancesXls, Xlr andXm, respectively. Introducing
ψs = [ψsα ψsβ ]T and accordinglyψr and vs, the state
equations [14] can be written as

dψs

dt
= −Rs

Xr

D
ψs +Rs

Xm

D
ψr + vs (3a)

dψr

dt
= Rr

Xm

D
ψs −Rr

Xs

D
ψr + ωr

[

0 −1

1 0

]

ψr (3b)

with Xs = Xls+Xm, Xr = Xlr+Xm andD = XsXr−X
2
m.

The electromagnetic torque is given by

Te =
Xm

D
ψr ×ψs = sin(θ)Ψs Ψr , (4)

Induction Voltage 3300 V Rs 0.0108 pu
machine Current 356 A Rr 0.0091 pu

Real power 1.587 MW Xls 0.1493 pu
Apparent power 2.035 MVA Xlr 0.1104 pu
Frequency 50 Hz Xm 2.3489 pu
Rotational speed 596 rpm

Inverter Vdc 1.930 pu

TABLE I: Rated values (left) and parameters (right) of the drive

with the load angleθ, which is the angle between the stator and
rotor flux vectors. Moreover,Ψs = ||ψs|| andΨr = ||ψr|| de-
note the length of the stator and rotor flux vector, respectively.
For more details on the modelling of the induction machine,
the reader is referred to [1]–[3] and [14].

III. MPC PROBLEM FORMULATION

A. Control Problem

The control problem is to keep the machine’s torque and
stator flux magnitude within given (hysteresis) bounds around
their respective references. During transients, a high dynamic
performance is to be ensured, i.e. a short torque settling time in
the range of a few ms. Under steady state operating conditions,
the total harmonic distortion (THD) of the current is to be kept
small, so as to reduce the copper losses and thus the thermal
losses in the stator windings of the machine. In addition, to
avoid problems with the mechanical load, such as wear of the
shaft and the possible excitation of eigenfrequencies of the
load, the torque THD needs to be kept at a minimum.

Regarding the inverter, the switching losses in the semicon-
ductors are to be minimized. An indirect way of achieving this
is to reduce the device switching frequency.

B. Target Window

Let Te,ref denote the reference of the electromagnetic torque.
The upper and lower torque bounds are given byTe,max
andTe,min, respectively. The reference of and bounds on the
magnitude of the stator flux vector are defined accordingly as
Ψs,ref, Ψs,max andΨs,min.

For a given rotor flux vectorψr, the references on the torque
and stator flux magnitude can be translated into an equivalent
reference stator flux vectorψs,ref, as shown in Fig. 2. The
upper and lower torque and flux magnitude bounds can be
translated accordingly into the stator flux space, spanned by
its d- and q-components. These bounds are thus equivalent
to a target window in the space of the stator flux vector.
Keeping the stator flux vector within this window is equivalent
to maintaining the electromagnetic torque and the stator flux
magnitude within their upper and lower bounds, thus ensuring
that the desired electromagnetic torque is generated and that
the machine is appropriately magnetized.

Under steady-state operating conditions, the target window
rotates in synchronism with the rotor flux vector. Specifically,
the target window is stationary within thedq reference frame,
with the torque bounds being parallel to thed-axis, while
the flux bounds are ring segments around the origin. During
transients, such as torque steps, the target window is shifted
along theq-axis. In this case, violations of the target window
might occur, and the stator flux vector is to be moved back
into the target window as quickly as possible, so as to ensure
a minimal torque settling time and the avoidance of too high
or too low a stator flux magnitude.
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Fig. 2: Stator and rotor flux vectorsψs andψr in the dq-reference frame,
which rotates with the angular velocityωfr . The target window around
the stator flux referenceψs,ref is indicated by straight (red) lines, which
correspond to the upper and lower bounds on the torque and stator flux
magnitude, respectively. The stator flux vector is driven by the voltage vector
vs. The dashed (black) lines indicate the rectangular set for which the state-
feedback control law will be derived

C. Optimization Problem

Writing the above control problem as a closed-form opti-
mization problem leads to

J∗(x(k),u(k − 1)) = min
U(k)

(

Jsw + Jbnd
)

(5a)

s. t.x(ℓ+ 1) = Ax(ℓ) +Bu(ℓ) (5b)

y(ℓ+ 1) = g(x(ℓ+ 1)) (5c)

y(ℓ+ 1) ∈ Y or εy(ℓ+ 1) < εy(ℓ) (5d)

u(ℓ) ∈ U , ||∆u(ℓ)||∞ ≤ 1 (5e)

∀ℓ = k, . . . , k +Np − 1 , (5f)

with J∗ denoting the minimum of the objective function
J = Jsw + Jbnd. These are a function of the state vector
x = [ψsα ψsβ ψrα ψrβ ]T at the current time-instantk
and the switch positionu(k − 1), which was set in the
previous control cycle. The sequence of control inputsU(k) =
[u(k), . . . ,u(k+Np−1)] over the prediction horizonNp rep-
resents the sequence of inverter switch positions the controller
decides upon. The objective function (5a) is minimized for all
U(k) subject to the dynamical evolution of the machine (5b),
its outputs (5c) and the constraints (5d) and (5e).

D. Objective Function

The objective function consists of two parts: The first part
Jsw captures the switching effort. Specifically,

Jf =
1

Np

k+Np−1
∑

ℓ=k

||∆u(ℓ)||1 (6)

represents the sum of the switching transitions (number
of commutations) over the prediction horizon divided by
the length of the horizon—it thus approximates the short-
term switchingfrequency. Alternatively, the switching (power)
losses can be directly represented through

JP =
1

Np

k+Np−1
∑

ℓ=k

Esw(x(ℓ),u(ℓ),u(ℓ− 1)) , (7)

which is the sum of the instantaneous switching (energy)
lossesEsw over the prediction horizon. Note that, according
to (2),Esw is a function of the stator currentis, which in turn
linearly depends on the state vectorx. In (5a) we either use
Jsw = Jf or Jsw = JP .

The drive’s output vectory = [Te Ψs]
T represents the

electromagnetic torque and the stator flux magnitude. To
quantify the degree of a bound violation, we introduce for
the torque

εT =







Te − Te,max if Te ≥ Te,max

Te,min − Te if Te ≤ Te,min

0 else
(8)

and accordinglyεΨ for the stator flux magnitude. The violation
of the output vector is thenεy = [εT εΨ]T .

The second term in the objective function (5a) penalizes the
output vectory violating its bounds. This term is defined as

Jbnd = q ǫT
y ǫy , (9)

with q being a scalar weighting term andǫy denoting the rms
output violation within the prediction horizon of lengthNp.
The first component ofǫy is given by

ǫT (k) =

√

√

√

√

1

Np

k+Np−1
∑

ℓ=k

(

εT (ℓ)
)2
, (10)

and the second component is defined accordingly.

E. Internal Prediction Model

The internal prediction model is derived by rewriting the
continuous-time machine equations (3) in the state-space form
dx
dt

(t) = Fx(t) + Gu(t). The exact Euler discretization
method is used to derive the discrete-time matrices

A = eFTs andB = −F−1(I −A)G (11)

for the discrete-time state-space representation of the machine
model (5b), withe denoting the matrix exponential,Ts the
sampling interval andI the identity matrix. As mentioned
earlier, the motor speed is assumed to be constant within the
prediction horizon—the speed is thus not part of the state
vector but rather a parameter of the model (5b).

F. Constraints

The upper and lower bounds form the setY =
[Te,min, Te,max] × [Ψs,min,Ψs,max]. The constraint (5d) is im-
posed componentwise, i.e. separately for the torque and the
stator flux magnitude. If an output component is at time-step
k within its bounds, then it has to stay within them. This is
the standard case during steady-state operation. If, however,
a component at time-stepk violates its bound, then it has
to move closer to the bounds at every time-stepℓ within the
prediction horizon, whereasℓ = k, . . . , k +Np − 1.

The constraint (5e) limits the control inputu to the integer
valuesU = {−1, 0, 1}3 available for the three-level inverter.
Switching in a phase by more than one step up or down is
not allowed. This is enforced by the second constraint in (5e),
||∆u(ℓ)||∞ ≤ 1, which limits the elements in∆u to ±1.
These constraints have to be met at every time-stepℓ within
the prediction horizon.
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Fig. 3: Model predictive direct torque control (MPDTC) for avoltage source
inverter driving an electrical machine

IV. M ODEL PREDICTIVE DIRECT TORQUECONTROL

A. MPDTC Solution Approach

The above optimization problem can be solved in real-time
by a tailored approach that relies on the fact that switchingis
mainly required in the vicinity of the bounds or when bounds
have been violated. When the torque and stator flux magnitude
are well within their bounds, switching is not required and the
switch position is frozen.

This gives rise to two different prediction horizons—the
switching horizon (the number of switching instants within
the horizon, i.e. the controller’s degrees of freedom) and the
prediction horizon (the number of time-steps MPDTC looks
into the future). Between the switching instants the switch
positions are frozen and the drive behavior is extrapolateduntil
a hysteresis bound is hit. The concept of extrapolation leads to
long prediction horizons (typically 10 to 100 time-steps),while
the switching horizon is very short (usually one to three). The
switching horizon is composed of the elements ’S’ and ’E’,
which stand for ’switch’ and ’extrapolate’ (or more generally
’extend’), respectively. We use the task ’e’ to add an optional
extension leg to the switching horizon. For more details about
the concept of the switching horizon, refer to [3].

B. MPDTC Algorithm

The drive’s system state is fully described by the pairx(k)
andu(k−1), i.e. the machine state and the previously chosen
inverter switch position. Based on those, the optimal control
input u∗(k) can be computed according to the following
procedure.

1) Initialize the root node with the current state vector
x(k), the switch positionu(k − 1) and the switching
horizon. Push the root node onto the stack.

2a) Take the top node with a non-empty switching horizon
from the stack.

2b) Read out the first element. For ’S’, branch on all feasible
switching transitions, according to (5e). Use the internal
prediction model (5b) to compute the state vector at the
next time-step. For ’E’, extend the trajectories either by
using extrapolation, as detailed in [1], [2], or by using
extrapolation with interpolation, as proposed in [15].

2c) Keep only the switching sequences that meet (5d).
2d) Push these sequences onto the stack.
2e) Stop if there are no more nodes with non-empty switch-

ing horizons. The result of this are the switching se-
quencesU i(k) = [ui(k), . . . ,ui(k +N i

p − 1)] over the

variable-length prediction horizonsN i
p, wherei ∈ I and

I is an index set.
3) Compute for each sequencei ∈ I the associated cost

Ji, as defined in (5a).
4) Choose the switching sequenceU∗ = U i(k) with the

minimal cost, wherei = arg mini∈I Ji.
5) Apply (only) the first switch positionu∗(k) out of this

sequence and execute the above procedure again at the
next time-stepk + 1.

For an in-depth description and analysis of this algorithm,
the reader is referred to [2], [3]. It is straightforward to
consider the balancing of a neutral point potential, see e.g. [2],
[3]. Branch and bound techniques can be used to reduce the
computation time [16] by an order of magnitude. As shown
in Fig. 3, MPDTC constitutes an inner torque and flux control
loop, which is typically augmented by an outer speed control
loop. Depending on the operating point (speed and torque) the
torque and stator flux bounds are adjusted by an external loop
so as to maintain an acceptable switching frequency.

V. CONTROL LAW FOR A GIVEN ROTOR FLUX VECTOR

The control law is the control input represented as a function
of the state vector over the state-spaceX of interest, i.e.

u∗(k) = fMPC(x(k)) ∀x ∈ X . (12)

A. Assumptions and Settings

In general, not the whole four-dimensional state-space is
of interest. Assume that the machine operates with a constant
rotor flux magnitude. This reduces the dimension of the state-
space from four to three, with the remaining state variables
being the stator flux vector ind andq, and the angular position
of the rotor flux vectorϕ. We also assume, without loss
of generality, that the machine operates at a constant speed.
This implies that thedq frame rotates with a constant angular
velocity.

In the sequel, if not otherwise stated, the operating point is
at nominal speed and torque, i.e.we = 1 pu andTe,ref = 1 pu.
The magnitude of the rotor flux vector is||ψr|| = 0.92,
ensuring that the rotor dynamics are at steady-state. This
implies that the stator flux reference vector indq is ψs,ref =
[0.972 0.235]T . The bounds on the electromagnetic torque are
chosen asTe,min = 0.85 and Te,max = 1.15, whereas the
bounds on the stator flux magnitude areΨs,min = 0.97 and
Ψs,max = 1.03. This defines the target window aroundψs,ref.

Consider the switching horizon ’SE’1 and the objective
function J = JP + Jbnd in (7), which targets the switching
losses. The penalty on the bound violation is set toq = 2. The
control law is derived for stator flux vectors within the dashed
rectangle in Fig. 2 and for the rotor flux angleϕ(k) = 0. The
dashed rectangle is centered around the stator flux reference
vector, its edges are parallel to thed- and q-axis, and the
length of its edges is chosen to be 0.16 pu. Along with||ψr||
defined above, this determines the subsetX of the state-space,
in which the control law is to be computed.

1Recall that ’SE’ implies that switching is considered only attime-stepk.
From time-stepk + 1 onwards, the switch position is frozen and the output
trajectories are extended or extrapolated until a bound is hit.
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Fig. 4: State-feedback control laws, i.e. inverter switch positionsu∗(k) as a function of the state vectorx(k), for the inverter switch positionu(k− 1) and
the rotor flux angleϕ(k). Predicted stator flux trajectories are shown as black lines, while the target window is indicated by straight (red) lines. The (red)
arrows indicate the voltage vectors

B. Algorithm

In order to compute the control law the stator flux vector
is varied within the dashed rectangle. Specifically, a fine grid
is generated along thed- andq-axis that corresponds to stator
flux positions within the rectangle. These grid points, along
with ϕ and ||ψr|| fully define the machine’s state vector
x. Then, for a given switch positionu(k − 1), the control
input can be computed for each grid point, yielding the state-
feedback control law. The latter can be stored in a table.

C. State-Feedback Control Law

Several control laws, which resulted from this procedure,
are shown in Fig. 4. The control lawsu∗(k), i.e. the optimal
switch positions, are plotted in the two-dimensional state-
space, which is defined byψs. Different shades of grey are
used to indicate the control laws. As can be seen, neighboring
state vectors (grid points) refer to the same control law,
forming distinctive regions in the state-space, which share
the same control law. The control laws of these regions are
indicated using the notation+, 0 and−. For example,00−
refers tou∗(k) = [0 0 − 1]T .

The target window is shown as the slightly curved parallel-
ogram with straight (red) lines. The (red) arrows correspond
to the voltage vectors indq. The length of the arrows indicates
the distanced by which the stator flux vector is moved within

100µs. These voltage vectors highlight the different velocities
by which and the directions in which the different switch
combinations drive the stator flux vector relative to the rotating
dq reference frame.

Moreover, predicted stator flux trajectories that correspond
to the respective control input, are shown for several regions.
Every second sampling instant (i.e. every50µs) along the
trajectories is indicated by a small circle. These trajectories
start at selected stator flux vectors and terminate when a bound
is about to get violated, thus predicting that switching will
be required at this point in the future. The length of the
trajectories corresponds to the prediction horizonNp. For the
stator flux trajectory starting in the lower right region with
u∗(k) = [−1 1 − 1]T , for example, the prediction horizon is
Np = 53 steps or 1.325 ms. Also note that in thedq reference
frame, in general, voltage vectors move the stator flux along
curved rather than straight lines.

D. Analysis and Observations

In the following details about the individual control laws in
Fig. 4 are provided. The control law in Fig. 4(a) is based on the
assumptions and settings stated in Sect. V-A. The switching
losses are minimized. The current switch position isu(k −
1) = [−1 0 − 1]T , while in Fig. 4(d) it is the zero vector
u(k − 1) = [0 0 0]T .

June 28, 2011 ECCE 2011



6

0.89 0.93 0.97 1.01 1.05
0.16

0.19

0.22

0.25

0.28

0.31

0

0.5

1

ψsd(k)

ψsq(k)

P
s
w

(a) Device switching lossesPsw in kW when minimizing the switching
losses

0.89 0.93 0.97 1.01 1.05
0.16

0.19

0.22

0.25

0.28

0.31

0

200

400

ψsd(k)

ψsq(k)

f s
w

(b) Device switching frequencyfsw in Hz when minimizing the switch-
ing frequency

Fig. 5: Predicted switching effort, discounted over the prediction horizon, as a function of the state vectorx(k) for the current inverter switch position
u(k − 1) = [−1 0 − 1]T . The target window is indicated by straight (red) lines

The resulting regions have clearly defined borders, forming
distinctive areas in the state-space in which the same control
input (switch position) is used. When the stator flux vector at
time-stepk is within the target window, as exemplified by the
almost vertical trajectory in Fig. 4(a), switching is not required
and thus avoided (this will be explained in more detail in
Sect. V-E). As a result, within the target window, the control
law heavily depends onu(k−1), since this largely determines
the switching losses and thus the overall cost.

The controller predicts when the target window will be
violated and aims to switch such that any violation is avoided.
As an example for this, consider in Fig. 4(a) the lower edge
of the target window, which refers to the lower torque bound.
Here, switching is performed already when the stator flux is
one sampling interval away from the lower torque bound. This
time-interval translates to different distances in the state-space,
depending on the velocity of the voltage vector relative to the
dq frame. This can be observed when comparing Figs. 4(a)
and 4(d).

When the stator flux vector is significantly outside of the
target window, however, the control laws2 tend to become
similar, irrespective ofu(k − 1). This can be seen when
comparing Figs. 4(a) and 4(d), which only differ with respect
to u(k − 1). The reason for this is that well outside of the
bounds, in the objective function, the bound violation term
Jbnd, which is independent ofu(k − 1), dominates over the
switching effort termJsw. Moreover, the second part of the
constraint (5d) ensures that only voltage vectors are considered
that move the stator flux vector closer to the target window.

When the switching frequency (rather than the switching
losses) is minimized, only small modifications in the resulting
control law result, as shown in Fig. 4(b). Differences arise
mostly with regards to the common mode of the voltage
vectors, as can be seen in the upper left corner of the figure.
When switching fromu(k−1) = [−1 0 −1]T to a zero vector
is required, two options exist, namelyu(k) = [−1 −1 −1]T

2To be precise, the differential mode of the voltage vectors becomes similar.
As an example for this, consider in Fig. 4(d) the region withu∗(k) = [0 1 0]T

that corresponds in Fig. 4(a) to the region withu∗(k) = [−1 0 − 1]T .

and u(k) = [0 0 0]T . The first option involves only one
switching transition, which is preferable when minimizing
the switching frequency. The second option involves two
switching transitions, but since the related phase currents are
very small in this case, it is advantageous to switch twice,
when minimizing the switching losses.

These differences are also reflected in Fig. 5, which shows
the predicted switching efforts for the two control laws dis-
cussed above. The predicted switching losses in kW are ob-
tained by dividingJP by 1000Ts. A subsequent division by 12
yields the average switching losses per semiconductor device,
which are depicted in Fig. 5(a). The switching frequency is
obtained accordingly.

Within the regions, as can be seen, the surfaces of the
switching efforts are smooth. When moving from one region to
a neighboring one, the transition is smooth, if both controllaws
meet the constraint (5d) at the intersection. As an example,
consider the regions with the control inputsu∗(k) = [0 1 −1]T

andu∗(k) = [−1 1 − 1]T . If, however, one of the control
inputs ceases to meet the constraint (5d), then the switching
effort at the transition changes in a step-wise fashion, when
moving from one region to a neighboring one. This can be seen
at the boundary between the regions withu∗(k) = [−1 0 −1]T

andu∗(k) = [0 1 − 1]T . When moving from the first region
towards the second one, the control input ceases to meet the
constraint, triggering a switching transition and a step-wise
change in the switching effort.

Next, consider the control law depicted in Fig. 4(c), which is
obtained by settingq to zero. As a result, only the switching
losses are penalized, but no incentive is provided to move
the stator flux vector quickly back into the target window.
The region in which the former control input is kept, i.e.
u∗(k) = u(k − 1), is now much enlarged. In this region, as
exemplified for the two predicted stator flux trajectories shown
in Fig. 4(c), the degree of the bound violation decreases at
every time-step. The second constraint in (5d) is thus met, but
the convergence rate is low for the rightmost trajectory. Note
that this trajectory terminates when the lower torque bound
and hence the constraint (5d) is about to be violated.

Fig. 4(e) shows the control law when lowering the speed
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Fig. 6: Visualization of the control law derivation along the lineψsd ∈ [0.89, 1.054] pu andψsq = 0.235 pu. Four out of the 12 possible switch positions are
considered: straight (blue) lines refer to keeping the current switch position, i.e.u(k) = u(k − 1) = [−1 0 − 1]T , dash-dotted (red) lines imply switching
phasea, i.e.u(k) = [0 0 − 1]T , dotted (black) lines refer to switching phaseb, i.e.u(k) = [−1 1 − 1]T , while dashed (green) lines relate to the case in
which phasesa andb are switched, i.e.u(k) = [0 1 − 1]T

operating point toωe = 0.1. The stator flux trajectories are
now effectively straight lines and the zero voltage vector leads
to a very slow stator flux movement.

So far, we have investigated control laws only for the case
with the angle of the rotor flux vector beingϕ(k) = 0◦.
Fig. 4(f) shows the control law forϕ(k) = 30◦.

E. Visualization of the Control Law Derivation

Additional insight in the derivation of the state-feedback
control law is provided hereafter. For this, consider the control
law along the line given byψsd ∈ [0.89, 1.054] pu and
ψsq = 0.235 pu, which corresponds to the torque reference.
This line is equivalent to a slice through the state-spaceX .
As previously, the current switch position isu(k − 1) =
[−1 0 − 1]T , from which transitions to 11 different switch
positions are possible, in accordance with the constraint (5e).
In Fig. 6 we consider only four options—keeping the cur-
rent switch position and switching to three new ones. For
some state vectors, certain options are not possible, e.g. for
ψsd < 0.94 keeping the current switch position would violate
the constraint (5d).

Fig. 6(f) shows the lengths of the predicted stator flux
trajectories. Due to the rotation of the reference frame, these
lines are slightly curved, but they also exhibit distinctive
changes in their slopes. The latter result when the bound, at
which the trajectory terminates, changes. Belowψsd < 0.955,
the straight (blue) line terminates at the lower flux bound,
while above this threshold it terminates at the lower torque
bound, see also Fig. 4(a).

The switching energy losses in Ws depend on the commu-
tated stator current, which in turn is a linear combination of

the stator and rotor flux vectors. The switching energy losses
thus depend linearly on the stator flux components. This is
confirmed by the characteristically straight lines in Fig. 6(e).
The different slopes result from the fact that the three stator
current components sum up to zero.

The cost on the switching effort in Fig. 6(b) is obtained by
dividing the switching energy losses by the trajectory lengths,
as explained earlier. Therefore, these costs are—similar tothe
trajectory lengths—slightly curved lines with discontinuities.
The switching power losses in Fig. 6(d) result by scaling
Fig. 6(b).

The cost on violating a bound is zero, as the stator flux
trajectory remains with the target window. This is the case
when its initial state is within the window, as shown in
Fig. 6(c). As the starting point of the stator flux trajectory
moves away from the target window, the cost on the bound
violation increases in an approximately quadratic fashion,
due to the quadratic formulation used in (9). The slopes
differ between the various switch positions, according to the
predicted rms violation of the bounds. Forψsd > 1, for
example, the switch positionu(k− 1) = [−1 1 − 1]T brings
the stator flux vector significantly faster back into the target
window thanu(k − 1) = [−1 0 − 1]T does. This is obvious
from Fig. 4(a) and is reflected in Fig. 6(c).

The total costJ in Fig. 6(a) is the sum of the costs on
the switching effort and on the bound violation, which are
shown in Figs. 6(b) and 6(c), respectively. Based on this cost
the optimal control inputu∗(k) is chosen. Forψsd < 0.94,
u(k−1) = [0 0 −1]T andu(k−1) = [0 1 −1]T yield similar
costs. The first switch position incurs a lower switching effort,
but tends to be slower in bringing the stator flux vector back
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Fig. 7: State-feedback control law along the lower flux boundof the target
window foru(k−1) = [−1 0 −1]T , whereϕ represents the angular position
of the rotor flux vector andθ the (load) angle between the stator and rotor
flux vectors

into the target window. Therefore, in the interval0.92 < ψsd <
0.94, the former is chosen as the optimal control inputu∗(k),
while for ψsd < 0.92 the latter is optimal. Within the target
window and when slightly violating the upper flux bound, i.e.
for 0.94 < ψsd < 1.00, it is optimal to not switch, i.e. to use
u∗(k) = u(k− 1). For significant violations of the upper flux
bound, i.e. forψsd > 1.00, u∗(k) = [−1 1 − 1]T is optimal.

VI. CONTROL LAW ALONG AN EDGE OF THETARGET
WINDOW

During steady-state operating conditions, when the stator
flux vector is kept within the target window, we have seen
in the previous section that switching is performed effectively
only along the edges of the target window. To gain insight
into the dependency of the control law for varying the rotor
flux angles, one can compute the control law for differentϕ,
as exemplified in Fig. 4(f). Alternatively, one can compute
the control law over a two-dimensional space, spanned by the
rotor angle and the position along one of the edges of the target
window. This is done separately for each edge. The lower flux
bound, for example, can be parameterized in polar coordinates
using the amplitudeΨs = ψs,min and the load angleθ, which
was defined as the angle between the two flux vectors.

The result is shown in Fig. 7, with the angles given in
degrees. As expected, the control law forϕ = 0◦ in Fig. 7
is identical to the one in Fig. 4(a) along the left edge of
the target window (lower flux bound). The same holds for
ϕ = 30◦ and Fig. 4(f). Due to symmetry properties, it suffices
to compute the control law over an angle span of 60◦ for ϕ to
fully characterize the controller. The switching effort can be
also plotted, similar to Fig. 5.

VII. C ONCLUSIONS

In model predictive control, including MPDTC, the control
law is not directly available, unlike in FOC or DTC. This
paper showed a straightforward method to compute the state-
feedback control law. The derivation and visualization of the
control law is paramount during the design process of the
controller, since it enables one to analyze the controller’s
choices, to assess the impact of different objective functions, to
understand the impact of switching constraints, and to evaluate

the influence of phenomena such as model uncertainties, ob-
server noise and unaccounted for dc-link voltage fluctuations.
Along with plotting the predicted trajectories, the availability
of this method constitutes one of the main advantages of
MPC over classic control methods, for which the design and
tuning process is usually restricted to running closed-loop
simulations.

Furthermore, with this tool at ones disposal, the following
tasks are envisioned to be achieved in the near future: stability
analysis, feasibility analysis, reduction of the computational
effort, derivation of switching heuristics and a further im-
provement of the closed-loop performance. Moreover, this tool
can be used equally well for other predictive drive control
concepts, such as [12] and [17]. It is also straightforward
to address multi-level inverter topologies and to include the
neutral point potential in the considerations.
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