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Computationally Efficient
Model Predictive Direct Torque Control
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Abstract—For medium-voltage drives, Model Predictive Direct
Torque Control (MPDTC) significantly reduces the switching
losses and/or the harmonic distortions of the torque and stator
currents, when compared to standard schemes, such as direct
torque control or pulse width modulation. Extending the pre-
diction horizon in MPDTC further improves the performance.
At the same time, the computational burden is greatly increased
due to the combinatorial explosion of the number of admissible
switching sequences. Adopting techniques from mathematical
programming, most notably branch and bound, the number of
switching sequences explored can be significantly reduced by
discarding suboptimal sequences. This reduces the computation
time by an order of magnitude, enabling MPDTC with long
prediction horizons to be executed on today’s available hardware.

Index Terms—AC motor drives, model predictive control,
optimal control, optimization methods, branch and bound

I. I NTRODUCTION

Direct Torque Control (DTC) [28] is ABB’s method of
choice for controlling the motor’s torque and flux in medium-
voltage drive applications [6], [30], with a typical product
being the ACS 6000 drive [1]. Over the past decade, DTC
has demonstrated a high degree of reliability, robustness and a
superior performance during transients [3], [4]. The switching
losses, however, which represent a major part of the overall
losses of the drive, can be substantial in DTC.

As shown in [11], [12], [17], the switching losses can be
significantly reduced through Model Predictive Direct Torque
Control (MPDTC), which is based on the concept of Model
Predictive Control (MPC) [10], [27].As can be seen in Fig. 1,
similar to DTC, MPDTC directly controls the torque and flux
by manipulating the inverter switch positions. A modulator
is not required. MPDTC is part of the family of emerging
predictive control schemes for electrical drives, some of which
are highlighted in [7]. Recent publications in this field include
[29] and [20].

The initial version of MPDTC is available in two forms:
with switching horizons of one or two steps [11], [17] and with
prediction horizons in the range of a few dozen steps. MPDTC
was generalized in [12], allowing for an extended switching
horizon, which is composed of multiple hinges (groups of
switch transitions) linked by several extrapolation or extension
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segments. This enables prediction horizons of 100 steps and
more, despite relatively short switching horizons.

Initial results suggest that—with respect to state of the art
DTC—MPDTC reduces the switching losses by up to 60%,
while the Total Harmonic Distortion (THD) of the torque and
the current is kept constant. Alternatively, the THDs can be
reduced by the same amount, while keeping the switching
losses constant [12]. These results are based on a medium-
voltage three-phase Neutral Point Clamped (NPC) inverter
driving an induction machine. Similar results [13] are obtained
with respect to Field Oriented Control (FOC) with Pulse Width
or Space Vector Modulation (PWM/SVM) [18].

The computational complexity of MPDTC is proportional
to the number of admissible switching transitions at every
time-step to the power of the number of switching events
considered in the prediction horizon. The former, the number
of switching transitions per time-step, is determined by the
inverter topology—most prominently by the number of voltage
levels available. The latter, the number of switching events,
is set by the switching horizon. Long switching horizons
greatly boost the performance of MPDTC, in the sense that the
switching losses and/or the current or torque THD are further
lowered [13]. However, long switching horizons lead to a
combinatorial explosion of the number of admissible switching
sequences to be explored. So far, to find the optimal switching
sequence, all admissible sequences were investigated by the
MPDTC algorithm using full enumeration. This brute-force
concept becomes computationally very expensive, and thus
prohibitive, for long switching horizons. As a result, it has
only been possible to implement and run MPDTC on a
control hardware platform when restricting oneself to very
short switching horizons [26].

This shortcoming motivates this paper, which presents tech-
niques to drastically reduce the number of switching sequences
explored and thus to lessen MPDTC’s computational burden.
The first technique, branch and bound, uses upper and lower
bounds on the objective function to discard large parts of the
search tree [21]. As a result, the optimal solution is found
quicker and theaveragenumber of computations is reduced.
To limit the maximalnumber of computations, the optimiza-
tion procedure can be stopped if the number of computational
steps exceeds a certain threshold. Despite leading to potentially
suboptimal results, if the threshold is chosen carefully, the
impact on the performance is small. Alternatively, one may
stop, if the current best solution is sufficiently close to the
optimum.

Simulation results indicate that these techniques reduce the
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Fig. 1:Control block diagram including model predictive direct torque control
(MPDTC), a speed controller and a flux observer

computation time by an order of magnitude when compared
to full enumeration. MPDTC with long switching horizons is
thus expected to become implementable on today’s available
control hardware, so as to take full advantage of MPDTC’s
performance benefits. The significance of such simulations is
underlined by the very close match between previous simu-
lations and experimental results using the same model. The
simulation results in [17] predicted the experimental results in
[26] accurately to within a few percent.

For one-step predictive drive control, methods to reduce the
computational effort include [8], in which the search space
of the considered voltage vectors is restricted to the ones
neighboring the currently applied vector. Instead of ruling
out voltage vectorsa priori, the branch and bound technique
presented in this paper removes voltage vectors dynamically
during the optimization stage, basing the line of reasoning
on the cost function rather than on the voltage vectors. The
proposed method thus appears to be more elegant and less
restrictive than previously reported approaches.

The paper is structured as follows. After revisiting the
drive control problem in Sect. II, Sect. III briefly recapitulates
the key concepts of MPDTC, introduces the notion of the
search tree and presents a slightly modified MPDTC algorithm
that is solved using full enumeration. Sect. IV proposes a
computationally efficient version of MPDTC based on branch
and bound and an upper bound on the number of computations.
Computational results are presented in Sect. V, the impli-
cations of the proposed MPDTC algorithm are discussed in
Sect. VIbefore conclusions are drawn in Sect. VII. Appendix
A details the internal model used for the predictions, and
Appendix B provides an introduction to the general concept
of branch and bound.

II. CONTROL PROBLEM

The DTC control objectives are to keep the so called output
variables, namely the electromagnetic torque, the length (or
magnitude) of the stator flux vector and the neutral point
potential(s), within given hysteresis bounds. In MPDTC, these
objectives are inherited from DTC. In addition, the inverter
losses are to be minimized. An indirect way of achieving thisis
to minimize the (short-term) average switching frequency [11],
[17] or to directly minimize the switching losses [12], [22].

The MPC controller is endowed with a discrete-time model
of the drive, which is derived and summarized in Appendix
A. This internal modelenables the controller to anticipate the
impact of its decisions. The control objectives are mapped into
an objective function that yields a scalar cost (here the short-
term switching losses) that is to be minimized. At every time-
step, the controller computes a sequence of switch positions
over a certain time-interval, the prediction horizon, thatentails
the minimal switching losses over this interval. Out of this
sequence, only the first gating signal is applied at the current
sampling instant, and the optimization step is repeated with
new measurements at the next sampling instant.Typically, the
sampling interval is very short withTs = 25µs, while the
prediction horizon entails up to 160 steps and is thus up to
4 ms long.

It is important to understand that, even though a sequence
of switch positions is planned over a long prediction horizon,
only the first switch position is implemented. The predictions
are recomputed at the next sampling interval using new mea-
surements and a shifted—and if necessary revised—sequence
of switch positions is derived. This is referred to as the
receding horizon policy, which provides feedback and makes
MPDTC robust to parameter uncertainties in the underlying
prediction model. As a result, the internal model used for the
predictions is not required to be overly accurate.

Writing the above control problem as a closed-form opti-
mization problem leads to

J∗(x(k)) = min
U(k)

1

Np

k+Np−1
∑

ℓ=k

Esw(x(ℓ), u(ℓ), u(ℓ− 1)) (1a)

s. t. x(ℓ+ 1) = Ax(ℓ) +Bu(ℓ) (1b)

y(ℓ) = g(x(ℓ)) (1c)

y(ℓ) ∈ Y (1d)

u(ℓ) ∈ U , max |∆u(ℓ)| ≤ 1 (1e)

∀ℓ = k, . . . , k +Np − 1 , (1f)

with J∗(x(k)) denoting the minimum of the objective function
J as a function of the state vectorx(k) at the current time-
instantk. Often, the stator and rotor flux vectors represented
in theαβ reference frame are used as state vectorx along with
the neutral point potential(s). The motor speed is assumed to
be constant within the prediction horizon and is thus not part
of the state vector, but rather is a parameter of the model (1b).
The sequence of control inputsU(k) = [u(k), . . . , u(k+Np−
1)] over the prediction horizonNp represents the sequence of
inverter switch positions, the controller has to decide upon.
The objective function represents the sum of the switching
losses over the prediction horizon divided by the horizon
length—it thus approximates the short-term average switching
losses. Note that the instantaneous switching (energy) lossEsw

at time-instantℓ is a function of the stator currentis(ℓ), which
in turn linearly depends on the state vectorx(ℓ). The switching
lossEsw(ℓ) also depends on the inverter switching transition
at time-stepℓ. The latter can be deduced fromu(ℓ) and
u(ℓ−1). An indirect, and less effective, way of minimizing the
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switching losses is to minimize the number of commutations,
i.e. the device switching frequency.

The objective function is minimized subject to the dynam-
ical evolution of the drive, represented in state-space form
with the matricesA andB, see Appendix A-C. The drive’s
output vectory represents the torque, stator flux magnitude and
neutral point potential(s), which are to be kept within their
respective bounds, given by the setY. The constraint (1e)
limits the control inputu to the integer valuesU available
for the specific inverter topology1. Switching in a phase by
more than one step up or down is typically not allowed
and can be inhibited by the second constraint in (1e) with
∆u(ℓ) = u(ℓ) − u(ℓ − 1). These constraints have to be met
at every time-stepℓTs within the prediction horizon, with
ℓ = k, . . . , k +Np − 1.

III. MPDTC WITH FULL ENUMERATION

To solve the closed-form optimization problem (1) is chal-
lenging from a computationally point of view even for pre-
diction horizons of modest length. Solving it for reasonably
long horizons appears to be impossible2. Since this is a
combinatorial optimization problem, it is well-known that, in
the worst case, all switching sequences need to be enumerated
and evaluated to find the optimum.

A. The Concept of the Switching Horizon

One attractive solution is to consider switching transitions
only when the outputsy are close to their respective boundsY,
i.e. when switching is imminently required to keep the outputs
within their bounds. When the outputs are well within their
bounds, the switch positions are frozen and switching is not
considered. This is in line with the control objective in (1)
and greatly reduces the number of switching sequences to be
considered and thus the computational burden.

To achieve this, three key concepts were introduced in [11],
[12], [17] that characterize Model Predictive Direct Torque
Control (MPDTC).

1) The formulation of the optimization problem in an
open form. For every admissible switching sequence, the
corresponding output trajectories are computed forward
in time.

2) Between the switching events, the output trajectories are
computed using the model (1b) and (1c), to which we
refer as anextensionstep, or they are extrapolated in an
approximate manner, which is a so calledextrapolation
step. Typically, quadratic extrapolation is used, even
though linear extrapolation is often sufficiently accurate.

3) The set of admissible switching sequences is controlled
by the so calledswitching horizon, which is composed

1For a three-level inverter, we haveU = {−1, 0, 1}3 and U =
{−2,−1, 0, 1, 2}3 for a five-level inverter.

2Using a three-level inverter as an example, for a given switchpositionu(ℓ),
the number of admissible future switch positionsu(ℓ + 1) is on average 12
and thus less than 27 due to (1e). Nevertheless, forNp = 75 for example,
the number of possible switching sequencesU amounts to12Np = 1080,
which is equal to the estimated number of atoms in the observableuniverse.
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Fig. 2: Three candidate switching sequences for the switching horizon
’eSSESE’ with the associated torque and stator flux trajectories between their
respective upper and lower bounds. The neutral point potential is not shown.
The prediction horizon here isNp = 45 time-steps

of the elements ’S’ and ’E’ that stand for ’switch’ and
’extrapolate’ (or more generally ’extend’), respectively.

It is important to distinguish between theswitching hori-
zon—the number of time-steps within the horizon when
switching transitions are considered, i.e. the degrees of free-
dom, and theprediction horizon—the number of time-steps
MPDTC looks into the future. Between the switching instants,
the switch positions are frozen and the drive behavior is
extrapolated until a hysteresis bound is hit. The concept of
extrapolation gives rise to long prediction horizons (typically
50 to 100 time-steps), while the switching horizon is very short
(usually one to four switching events are considered).

Example 1:As an example for a switching horizon, con-
sider ’SSESE’, which stands for switching at time-stepsk and
k + 1 and subsequently extending the trajectories until one
or more output trajectory ceases to be feasible, i.e. violates a
bound, and/or ceases to point in the proper direction. Assume
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Fig. 3: Example of a search tree, induced by the switching horizon ’SSESE’
with (blue) ovals denoting the root and bud nodes, (green) stars being complete
candidate switching sequences, and inverted (red) Ts marking non-candidate
switching sequences. Switching transitions ’S’ are shown as thin (black) lines,
while extrapolation / extension steps ’E’ are thick (blue) lines. The discrete-
time axis is shown on the left along with the prediction horizon Np

this happens at time-stepk + ℓ, thus triggering the third
switching event that is followed by another extension step.
We use the task ’e’ to add an optional extension leg to
the switching horizon. Using ’eSSESE’ as an example, three
candidate switching sequences are depicted in Fig. 2 along
with their output trajectories.

B. Search Tree

The switching horizon induces a search tree, as shown in
Fig. 3. Each node in the search tree is specified by the 6-tuple
{U,X, Y,E,N,A} defined as follows.

• A switching sequenceU is a sequence of three-phase
switch positionsu of length N starting at the current
time-stepk, i.e. U = [u(k), . . . , u(k + N − 1)]. An
admissibleswitching sequence meets the constraint (1e)
at every time-step, as well as other constraints, such as
additional switching constraints induced by the inverter
topology. Only admissible switching sequences are con-
sidered in MPDTC. Acandidatesequence yields output
trajectories that are, at every time-step, either feasible, or
point in the proper direction. Feasibility means that the
output variables lie within their corresponding bounds;
pointing in the proper direction refers to the case, in
which an output variable is not necessarily feasible, but
the degree of the bounds’ violations decreases at every
time-step. These conditions must hold componentwise for

all output variables3.
• Associated with a switching sequence is the state se-

quenceX = [x(k + 1), . . . , x(k + N)], which is a se-
quence of state vectorsx that fully describes the evolution
of the drive from the initial statex(k) onwards, when
applying the input sequenceU . The state vector typically
encompasses the four components of the machine fluxes
as well as the inverter’s neutral point potential(s).

• Similarly, the evolution of the drive’s outputs is described
by the output sequenceY = [y(k + 1), . . . , y(k + N)],
where y is composed of the torque, the stator flux
magnitude and the neutral point potential(s).

• The switching (energy) lossesE =
∑k+N−1

ℓ=k e(ℓ) are
the sum of the individual switching lossese(ℓ) in the
switching sequenceU . Their unit is Ws. Dividing them
by a time interval, such as the length of the prediction
horizon, leads to the switching (power) lossesPsw with
the unit W.

• N denotes the lengths of the predicted sequencesU , X
and Y . It can be interpreted as the resulting prediction
horizon of variable length that is induced by the switching
horizon.

• A denotes the sequence of actions to be performed on
the node, with the elements ofA being in{’S’, ’E’ }.

It follows that there is a direct correspondence between
switching sequences and nodes. Thus both terms will be
used interchangeably in the sequel. Nodes either refer to
incomplete or to complete solutions (switching sequences)of
the optimization problem. More specifically, we distinguish
between the following nodes.

• The root node is the initial node at time-stepk. It
is initialized with {∅, ∅, ∅, 0, 0, ’SSESE’}, assuming the
switching horizon ’SSESE’ and using∅ to denote an
empty sequence. In Fig. 3, it is depicted as a (blue) oval.

• Bud nodesare incomplete candidateswitching sequences
with actions left that induce child nodes. The correspond-
ing output sequences fulfill the candidacy requirement (so
far). They are also depicted as a (blue) ovals.

• There are two types ofleaf nodes. (i) Complete candidate
switching sequence that have been fully computed with
no actions remaining and candidacy fulfilled at every
time-step. They are shown as a (green) stars. (ii)Non-
candidate switching sequences, which are not further
considered, are denoted by an inverted (red) T.

Pairs of nodes connected by switching transitions are shown
as thin (black) lines, while extrapolation or extension steps are
depicted as thick (blue) lines.

C. MPDTC Algorithm with Full Enumeration

In its basic form stated above, the MPDTC algorithm enu-
merates all admissible switching sequences that are candidate
sequences and computes their corresponding output trajecto-
ries and their cost. Hence all nodes in the search tree are visited

3As an example, consider the case where the torque is feasible,the stator
flux points in the proper direction and the neutral point potential is feasible.
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that belong to candidate switching sequences. Specifically, at
time-stepk, the MPDTC algorithm computesu(k) according
to the following procedure, which was presented in [12] and
is slightly modified here to facilitate the addition of branch
and bound techniques in the next section.

1) Initialize the root node and push it onto the stack.
2a) Take the top nodei with a non-emptyAi from the stack.
2b) Read out the first element fromAi and remove it. For

’S’, branch on all admissible switching transitions and
add the (incremental) switching lossesEi = Ei + e(ℓ)
caused by switching at the time-stepℓ. For ’E’, extend
the trajectories either by extrapolation as detailed in [11]
and [31], or by using the internal controller model [12].

2c) Keep only the nodes that are candidates and push them
onto the stack.

2d) Stop, if there are no more nodes with non-emptyAi.
3) Compute for each (candidate) leaf nodei ∈ I, with I

being an index set, the associated costci = Ei/(NiTs),
which targets the switching losses.

4) Choose the leaf nodei = arg mini∈I ci with the mini-
mal cost and read out the associated switching sequence
U∗ = Ui(k).

5) Apply (only) the first switch positionu(k) = u∗ of this
sequence and execute the above procedure again at the
next time-stepk + 1.

If the switching frequency is to be minimized, replaceEi by
the number of commutationsSi, add the incremental number
of commutations in Step 2b when switching, and use in Step 3
the costci = Si/(NiTs), which approximates the average
switching frequency over the length of the prediction horizon.

The Steps 2a to 2c are executed until all nodes of the search
tree have been enumerated. Subsequently, Steps 3 and 4 are run
on a subset of the nodes, the candidate leaf nodes. Therefore,
the computational burden of the MPDTC algorithm with full
enumeration is proportional to the total number of nodes in
the search tree.

IV. COMPUTATIONALLY EFFICIENT MPDTC

The problem at hand is to devise a modified algorithm that
is computationally efficient, thus allowing the implementation
of MPDTC with long switching horizons on today’s available
computational hardware. This implies that the worst-case
computational effort has to be reduced by at least an order of
magnitude. This can be achieved by using tailored optimiza-
tion techniques that reduce the number of nodes visited in the
search tree. These techniques include the so called branch and
bound methodology that is used in mathematical programming
to solvediscrete programs, such ascombinatorial and (mixed)
integer programs [21], [23].

A. Cost Evolution of a Switching Sequence

First of all, note that the evolution of the cost over time,
associated with a switching sequence, is neither smooth nor
monotonically increasing or decreasing. Instead, at time-
instants when switching transitions occur, the cost is increased

in a step-like fashion. As the sequence is extended, the cost
decreases smoothly.

Example 2:As an example, consider the switching horizon
’SESE’ and the cost evolution of the switching sequence 1
over time, which is given by the straight (green) line in
Fig. 4. The initial cost is zero. At time-stepsk and k + 7,
switching transitions occur that carry the switching energy
lossese1 and e2, respectively. Between the switching events,
the trajectories are extended, which reduces the cost (switching
power losses) by distributing the switching energy losses over
a longer time-interval. In this example, sequence 1a is an
incomplete candidate switching sequence with the actions ’SE’
remaining. At k + 7, more than one admissible switching
transition is feasible. Another transition with the energylosses
e3 leads to the dashed (blue) sequence 2. Sequences 1 and 2
are complete candidate switching sequences with no actions
remaining, whose first parts coincide with sequence 1a.

B. Terminology

Before proceeding, some terminology needs to be intro-
duced [25]. In this, the indexi refers to thei-th switching
sequence (node).

• ci = Ei/(NiTs) is the cost associated with a (complete)
candidate switching sequence, whereEi is the sum of the
switching energy losses.

• c∗ is the optimal (minimal) cost of the complete candidate
switching sequences.

• c̄ denotes the incumbent minimal cost, i.e. the smallest
cost found so far for all complete candidate switching
sequences. This cost constitutes an upper bound on the
optimal cost to be found, i.e.̄c ≥ c∗.

• Nmax is an upper bound to the (maximal) length of the
prediction horizon, i.e. it is assumed thatNi ≤ Nmax for
all i.

• ci = Ei/(NmaxTs) is a lower bound on the cost of the
i-th incomplete switching sequence, whereEi is the sum
of the switching energy losses incurred so far for this
sequence4.

• c refers to the minimum of all lower boundsci. It holds
that c ≤ c∗.

C. The Concept of Branch and BoundTailored to MPDTC

The general concept of branch and bound is summarized
in Appendix B. Hereafter, a modified version of branch
and bound, which is tailored to the needs of MPDTC, is
introduced in an intuitively accessible way. For this consider
again Example 2.

Example 3: In Fig. 4, the cost associated with the complete
candidate sequence 1 isc1 = (e1+e2)/(N1Ts), with N1 = 12
time-steps. The incumbent minimal cost isc̄ = c1. Having
computed the second switching transition atk + 7 with
the energy lossese3, one can try to find a proofbefore
extending sequence 2 that this sequence, when completed,

4Since Ei increases monotonically as thei-th switching sequence is
extended andNi ≤ Nmax by definition, it holds thatci ≤ ci, i.e. ci always
underestimates the costci.
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Fig. 4: Cost evolution (W) of switching sequences over time, were theei denote switching energy losses (Ws). The incumbent minimal costc̄ = (e1 +
e2)/(12Ts) refers to sequence 1, andNmax = 14 denotes the upper bound on the expected length of the prediction horizon

will only lead to a suboptimal solution that is inferior to the
incumbent optimum. This proof can be found by computing
the lower bound on the cost for sequence 2, which is given by
c2 = (e1 + e3)/(NmaxTs). If c2 is equal to or exceeds̄c, the
remainder of this sequence can be discarded and removed from
the search tree. If this is not the case, however, the sequence
should be further considered and, in this case, extended. The
same applies to the dash-dotted (red) sequence 3. Having
computed the first switching transition with the lossese4,
the whole subtree, starting at this node, can be discarded if
c4 = e4/(NmaxTs) ≥ c̄.

More formally, the branch and bound algorithm tailored
to the MPDTC problem setup is as follows. Compute the
switching sequences and the associated output trajectories and
costs iteratively as the tree is explored from its root node
to the terminal nodes (leaves). Assume that the bud node
i, which corresponds to the incomplete candidate switching
sequenceUi, has the minimum cost incurred so far. Discard
the bud node and prune the attached unexplored part of the
tree, if ci ≥ c̄. If a candidate switching sequence is completed,
compute its costci and update the incumbent minimal cost, if
required, by settinḡc = min(c̄, ci). The algorithm summarized
in Sect. III-C can be easily augmented by the branch and
bound methodology, as will be shown in Sect. IV-F.

D. Properties of Branch and Bound

Example 4:Consider one instance of the combinatorial
optimization problem, arising for example from a three-level
inverter and a switching horizon of ’eSSESE’. The induced
search tree contains 730 nodes. Using full enumeration, all
730 nodes are explored. As shown in Fig. 5(a), the incumbent
minimal cost drops fairly quickly, but the minimal cost of
2.25 kW is only found after having almost fully explored the
search tree. The optimalu∗, which is the first element in the
optimal switching sequenceU∗, is found already after having
explored 221 nodes. To obtain a certificate that this is indeed
the optimalu∗, the search tree has to be fully explored.

In contrast to that, with branch and bound, promising nodes
are explored first and clearly inferior parts of the search tree

are removed. As a result, the optimal costc∗ and the optimal
u∗ are found significantly earlier—in this example already
after 61 steps. Some additional nodes need to be explored
to prove that this is indeed the optimum. This certificate is
obtained after a total of 140 nodes visited.

A few remarks concerning branch and bound [21] are in
order. This algorithm does not impact optimality, i.e. the same
optimal switching sequence is found as with full enumeration.
In general, branch and bound drastically reduces theaverage
computation time, when compared to full enumeration. Yet,
in the worst case, despite branch and bound techniques, a
full enumeration of the search tree might be required to find
not only the optimum, but also a proof (certificate) that the
optimum has indeed been found. Such a certificate is provided
when no more bud nodes exist withci < c̄. The optimal
switching sequence is usually found a lot quicker. Note thatwe
only require the first element of this sequence, i.e. the optimal
u∗, which is found even quicker, as indicated by the arrows
in Fig. 5(a).

At every step during the optimization procedure, the optimal
cost is upper and lower bounded byc ≤ c∗ ≤ c̄. As the
optimization proceeds, these bounds are tightened. The bounds
provide information on how close the incumbent minimal cost
is to the optimum. This can be seen in Fig. 5(a), where the
upper thick line refers tōc, while the lower one corresponds
to c. Both lines converge to the optimal cost, which is given
by the dashed (black) line.

Branch and bound works best, if the upper and lower bounds
are tight. A tight upper bound̄c is achieved by finding a close
to optimal leaf node with a low cost during an early stage of
the optimization. To achieve this, depth-first search techniques
can be employed and the optimal switching sequence from
the previous time-stepk − 1 can be used to warm start the
optimization. A tight lower boundc is the result of a tight
upper bound on the maximal length of the prediction horizon.
During the optimization process, branching heuristics canhelp
to identify and to focus on the most promising nodes first.
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Fig. 5: Evolution of the optimal cost (kW) while solving one instance of the MPDTC optimization problem. (a) shows the incumbent minimal cost vs the
number of nodes visited, with the arrows indicating when the optimal u∗ is found. The thick cyan line refers to the minimumc of the lower boundsci. (b)
and (c) depict, for every switching sequence, the cost as a function of the time-step within the prediction horizon. Complete candidate switching sequences
are green, incomplete (i.e. pruned) candidate sequences areblue, and non-candidate sequences are red. Note the logarithmic scaling of the cost in (b) and (c)

E. Limiting the Maximal Number of Computations

In a practical controller implementation, only a certain
number of computations can be performed within the sam-
pling interval, which is typically of a fixed length in time.
Therefore, it might be necessary to limit the maximal number
of computational steps and/or to impose an upper bound on the
computation time. Aborting the branch and bound optimization
before a certificate of optimality is obtained, might lead to
suboptimal solutions, i.e. switching sequences that yielda
higher cost than the optimal sequence. Yet, as explained in
the last section, in most cases the optimum will have been
found already.

Since long prediction horizons lead to a better performance
(i.e. lower switching losses for the same distortion levels
and vice versa), MPDTC’s performance can be improved by
considering longer switching horizons, by imposing an upper
bound on the number of computations, and by accepting that
the result is, in some cases, (slightly) suboptimal. This isin
contrast to the classic approach of using fairly short switching
horizons, so as to ensure that the search tree can be fully
enumerated in the time available and that the optimal solution
is thus found under all circumstances.

More specifically, one of the following stopping criteria can
be added to the MPDTC algorithm.

• An upper bound on the number of nodes to be explored
and/or the computation time available is imposed. The
optimization is halted, if this number or time is exceeded,
and the switching sequence with the incumbent minimal
cost is accepted as the solution.

• Alternatively, one may run the optimization procedure for
as long as possible, e.g. until an interrupt is received to
stop it. This allows one to reduce idle processor time and
to rather spend this time on improving the incumbent
optimal solution.

One might also stop with a guarantee of closeness to
optimality. Choose an acceptable distance to optimality in
terms of the cost, e.g. 5%, and stop the search whenc ≥ 0.95c̄.

F. The Computationally Efficient MPDTC Algorithm

In the sequel, a computationally efficient version of the
MPDTC algorithm is presented that is based on a tailored
branch and bound technique that reduces the average computa-
tional burden. By adding the upper boundjmax on the number
of explored nodesj, the maximal computational burden is
limited, too.

1) Initialize the root node and push it onto the stack. Set
c̄ = ∞ and j = 0.

2a) Take the nodei with a non-emptyAi from the stack that
has the minimum costci.

2b) Read out the first element fromAi and remove it. For
’S’, branch on all admissible switching transitions and
add the (incremental) switching lossesEi = Ei + e(ℓ)
caused by switching at the time-stepℓ. For ’E’, extend
the trajectories either by extrapolation as detailed in [11]
and [31], or by using the internal controller model [12].

2c) Setj = j + #S for ’S’, where#S denotes the number
of switching transitions, and setj = j + 1 for ’E’.

2d) Keep only the nodes that are candidates.
2e) For leaf nodes: compute their costsci and updatēc =

min(c̄, ci). For bud nodes: compute the lower boundsci
on their costs and remove bud nodes withci ≥ c̄.

2f) Push the remaining nodes onto the stack.
2g) Stop, if there are no more nodes with non-emptyAi on

the stack or ifj > jmax.
3) Compute for each (candidate) leaf nodei ∈ I, with I

being an index set, the associated costci = Ei/(NiTs).

Induction Motor
Voltage 3300 V rs 0.0108 p.u.
Current 356 A rr 0.0091 p.u.
Real power 1.587 MW xls 0.1493 p.u.
Apparent power 2.035 MVA xlr 0.1104 p.u.
Frequency 50 Hz xm 2.3489 p.u.
Rotational speed 596 rpm

Inverter
Dc-link voltage 4294 V Vdc 1.5937 p.u.

xc 11.769 p.u.

TABLE I: Rated values (left) and parameters (right) of the drive
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Fig. 6: Standard DTC, corresponding to the first row in Table II
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Fig. 7: Computationally efficient MPDTC with the switching horizon ’eSSE’, corresponding to the fifths row in Table II
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Fig. 8: Computationally efficient MPDTC with the switching horizon ’eSSESESE’, corresponding to the last row in Table II

4) Choose the leaf nodei with ci = c̄ and read out the
associated switching sequenceU∗ = Ui(k).

5) Apply (only) the first switch positionu(k) = u∗ of this
sequence, and execute the above procedure again at the
next time-stepk + 1.

V. COMPUTATIONAL RESULTS

As a case study, consider a three-level voltage source in-
verter driving an electrical machine with a constant mechanical
load. A 3.3 kV and 50 Hz squirrel-cage induction motor rated
at2 MVA is used as an example for a commonly used medium-
voltage machine. The detailed parameters of the drive can be
found in Table I. At 60% speed with a 100% torque setpoint,
the steady-state performance of DTC was compared with the
one of computationally efficient MPDTC for short and long
switching horizons.

For this comparison, a very accurate and detailed Mat-
lab/Simulink model of the drive system was usedthat rep-
resents the physical drive system5. This drive modelwas
provided by ABB, to ensure a simulation set-upas realistic
as possible. The model includes an outer (speed) control loop
that adjusts the torque reference and the (time-varying) bounds
on the torque accordingly, see also Fig. 1. The induction
motor model includes the saturation of the machine’s magnetic
material, the changes of the rotor resistance due to the skin
effect, and speed variations due to load torque changes. Fur-
thermore, the inverter switching behavior, the inverter dead-
time, minimum on- and off-times and fluctuations of the dc-
link voltage are modelled.To run MPDTC, the DTC look-up
table was replaced by the computationally efficient versionof

5This model of the physical drive system is not to be confused with the
controller’s internal model used for the predictions.
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Fig. 9: Histogram of the computational burden (number of explored nodes) for MPDTC with the switching horizon ’eSSESESE’
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Fig. 10: Histogram of the number of nodes required to be explored to obtain the optimal costc∗ for MPDTC with the switching horizon ’eSSESESE’

the MPDTC algorithm. The significance of such simulations
is underlined by the very close match between the previous
simulation results in [17], which were obtained using the same
model, and the experimental results in [26].

Using pu quantities, the comparisons are shown in Figs. 6
to 8. For MPDTC, the torque and flux bounds were widened by
1.5% and 0.5%, respectively, to account for DTC’s imminent
violations of the bounds. As a result, DTC and MPDTC yield
similar current THDs, while for MPDTC with long horizons
the torque THD is slightly lower than for DTC, see Table II.

More importantly, with respect to DTC, MPDTC with the
fairly short switching horizon ’eSSE’ reduces the switching
losses by 40%. The standard MPDTC algorithm based on the
full enumeration of the search tree requires the exploration
of up to 277 nodes to achieve this result, as shown in the
second row in Table II. Using branch and bound techniques
and tighteningNmax almost halves the average number of
nodes visited. Yet, the maximal number of nodes explored
remains high. Limiting the number of computations by setting
jmax = 50 leads to suboptimal results—in almost 8% of the
cases a suboptimalu(k) is computed, but this appears, at least
in this particular case, to barely affect the performance. As a
result, the maximal computational burden is reduced by 82%,
from 277 to 50 nodes explored.

For the long switching horizon ’eSSESESE’, the switching
losses are reduced by another 35%, with respect to MPDTC
with ’eSSE’. This is achieved, as can be observed from
Fig. 8(c), by reducing the switching frequency by another

30% and by carefully redistributing the remaining switching
transitions along the time-axis. As a result, about half of the
transitions occur when the respective phase current, and hence
the incurred switching losses, are small. Note that the current
and torque distortions are not increased by doing this—instead,
they tend to get smaller.

However, the computational burden for MPDTC with full
enumeration is exorbitant, with search trees featuring almost
up to 8000 nodes. Branch and bound with a tightNmax cuts
down the average computation time by two thirds, but a
fairly small upper bound on the number of explored nodes,
jmax = 600, is required to achieve an overall reduction of
more than 90%. As previously, the impact on the performance
appears to be small. Figs. 9 and 10 show the histograms of
the computational burden and the number of computational
steps required to derive the optimal cost, respectively. The
(blue) vertical lines denote percentiles, with the straight, dash-
dotted and dashed lines referring to the 50%, 95% and 99%
percentiles. The effect of branch and bound on the cost is
particularly remarkable, as shown in Fig. 10(b).

VI. DISCUSSION

A. Minimization of the Switching Frequency versus Minimiza-
tion of the Switching Losses

In general, as evidenced in Table II, MPDTC achieves a
greater reduction in the switching losses than in the switching
frequency. At a first glance, this might appear to be counter–
intuitive. Recall that the control objective in Sect. II was
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Controller settings Pred. horizon Nodes explored u∗ Performance [%]
Scheme Sw. horizon Nmax jmax avg. max. avg. max. found [%] Psw fsw Is,THD Te,THD

DTC – – – – – – – – 100 100 100 100
MPDTC eSSE – – 26.6 96 112 277 100 57.3 71.2 103 98.4
MPDTC eSSE 100 – 25.7 92 86.9 275 100 57.3 71.2 103 98.4
MPDTC eSSE 50 – 25.6 96 64.3 249 97.4 57.7 73.4 103 102
MPDTC eSSE 50 50 22.0 97 43.6 50 92.2 58.3 74.1 104 103
MPDTC eSSESESE – – 98.2 150 3246 7693 100 37.9 48.9 97.0 92.0
MPDTC eSSESESE 150 – 95.2 150 1884 6806 100 37.9 48.9 97.0 92.0
MPDTC eSSESESE 110 – 92.5 150 1102 4756 96.7 40.9 50.0 99.5 92.2
MPDTC eSSESESE 110 600 88.0 152 483 600 92.1 38.6 51.4 97.3 94.0

TABLE II: Comparison of DTC with MPDTC and computationally efficient MPDTC with the upper boundsNmax and jmax on the horizon length and the
number of nodes explored, respectively. The fifths and sixthscolumns indicate the average and maximal lengths of the achieved prediction horizon. Columns
seven and eight state the number of explored nodes in the search tree, followed by the probability that the optimalu(k) is found at every control cycle. The
last four columns relate to the switching lossesPsw, switching frequencyfsw, current THDIs,THD and torque THDTe,THD, using DTC as a baseline

to minimize the switching losses rather than the switching
frequency. Accordingly, the cost function (1a) captures the
switching losses. This is also reflected in Step 3 of the MPDTC
algorithms in Sects. III-C and IV-F.

As a result, MPDTC arranges the switching pattern such that
a significant number of the switch transitions takes place when
the corresponding phase current is small. This can be observed
in Fig. 8(c) and to a lesser extent in Fig. 7(c). In contrast to
this, as shown in Fig. 6(c), DTC switches regardless of the
phase current, similar to PWM and SVM.

Therefore, MPDTC not only switches less often—thus
reducing the switching frequency—but it also aims at placing
the switch transitions at times when the phase current is small,
thus further reducing the switching losses. This is a key feature
of MPDTC that was also highlighted in [12]. Alternatively, the
switching frequencymay be targeted in (1a) and in Step 3 of
the algorithms, as proposed in [11], [17]. This tends to leadto
slightly lower switching frequencies at the expense of higher
switching losses, as shown in [12].

B. Practical Implications of the Proposed Algorithm

Recall that the computational burden of MPDTC is propor-
tional to the number of nodes explored. Therefore, by reducing
this number by an order of magnitude, the computational
burden—and thus the computation time—can be reduced
accordingly by an order of magnitude, when compared to the
original algorithm based on full enumeration of the search tree.

So far, MPDTC has only been implemented and exper-
imentally verified on a medium-voltage drive setup with a
very short switching horizon, using the so calledN = 1
approach [26]. To facilitate this, an additional FPGA was
added to the DSP to perform the bulk of the MPDTC computa-
tions. With respect to this, MPDTC based on full enumeration
and the switching horizon ’eSSE’ improves the performance
(lowers the switching losses) by about 10%, whilst increasing
the computational burden fivefold6. Table II shows that the
computationally efficient version of MPDTC can mitigate this
fivefold increase, with very little impact on the performance

6MPDTC with the switching horizon ’eSSE’ is conceptually very similar
to theN = 2 approach, despite it minimizing the switching frequency. With
respect toN = 1, N = 2 reduces the switching frequency by another 10%,
but its computational effort is five times higher. For more details, refer to the
analysis of the algorithms and the simulation results in [11],[17] and [26].

(in the range of 1%). This implies that the proposed MPDTC
scheme with ’eSSE’ can be implemented on today’s commonly
used drive control hardware.

As shown in Table II, MPDTC with the switching horizon
’eSSE’ reduces the switching losses by 40% with respect to
DTC, while the distortion levels remain effectively unchanged.
In the medium-voltage arena, the switching losses typically
dominate over the conduction losses. When the thermal cool-
ing capability is the limiting factor, lower switching losses
enable one to increase the current accordingly. As a result,the
power rating of the inverter hardware can be increased, i.e.a
10 MVA inverter, for example, can be uprated to 12 MVA and
sold accordingly at a higher price. The standard drive control
hardware, augmented with an FPGA, appears to suffice for
this.

The switching losses can be reduced by another 35% and the
inverter can be uprated by another 15 to 20%, when extending
the switching horizon from ’eSSE’ to ’eSSESESE’, see Ta-
ble II. At the same time, however, the computational burden
is increased by a factor of 12, necessitating a significantly
more powerful control platform. In light of the high price tag
of medium-voltage drive equipment, this might be an attractive
option—particularly in view of the ever increasing processing
power of the computational hardware available.

C. Memory Requirement of the Search Tree

Another important aspect is the memory required to store
the search tree. The memory requirement is equal to the
maximal number of nodes considered at any time during the
branch and bound optimization multiplied with the memory
requirement of each node. Recall that each node in the search
tree is given by the 6-tuple{U,X, Y,E,N,A}. The memory
requirement of this 6-tuple is estimated to be 19 bytes (B)7.

7The estimated 19 B result from the following reasoning. Out ofthe switch-
ing sequenceU , only the first and the last switch positionu ∈ {−1, 0, 1}3

need to be stored, requiring 1 byte (B). It suffices to store the states and outputs
at the end of the switching sequence rather than the complete sequencesX
and Y . Assume that the five states (four components of the machine fluxes
and the neutral point potential) and the two outputs (torqueand stator flux
magnitude) are stored with 16-bit accuracy. Thus 14 B are required. The sum
of the switching energy lossesE is also stored with 16-bit accuracy and hence
requires 2 B. The length of the switching sequenceN is shorter than 256 and
thus requires 1 B. The sequence of actionsA to be performed can be captured
by 1 B, if the switching horizon has at most eight elements. Therefore, each
node requires 19 B.
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The number of nodes considered by the algorithm at any
time is upper bounded by the total number of nodes explored,
jmax. For the long switching horizon ’eSSESESE’ andjmax =
600, the memory required to store the search tree is thus upper
bounded by600·19 B, which is equal to 11.1 kB and thus very
low.

VII. C ONCLUSION

This paper proposed a modified version of the MPDTC
algorithm based on branch and bound techniques adopted from
mathematical programming. Using upper and lower bounds on
the optimal cost, suboptimal parts of the search tree can be
identified and pruned thus avoiding the full enumeration of the
tree, as it was required with the previous MPDTC algorithm.

Initial simulation results suggest that the worst-case com-
putational effort can be reduced by an order of magnitude.
MPDTC with the switching horizon ’eSSE’ can thus be
implemented on today’s standard drive control hardware.In
general, the longer the horizon the more significant is the
percentage-wise reduction of the computational burden and
thus the saving. This makes this scheme particularly attractive
for MPDTC with very long prediction horizons, offering
the opportunity to implement MPDTC with such very long
horizons, so as to allowone to take full advantage of MPDTC’s
performance benefits. Smart branching heuristics are expected
to further cut down the computation time.

The techniques presented here are equally applicable to
the recently proposed adaptation of MPDTC to the current
control problem, Model Predictive Direct Current Control
(MPDCC) [14], as well as to other inverter topologies, such
as five-level topologies[16] andsynchronousmachines [15].

APPENDIX A: I NTERNAL PREDICTION MODEL

This appendix outlines the derivation of MPDTC’s internal
prediction model. Starting with the continuous-time model
of the inverter’s neutral point potential and of the electrical
machine, a discrete-time state-space model is derived. This
was previously shown in [11], [17] and [12].

We use normalized quantities and a normalized time-axis.
All variables ξabc = [ξa ξb ξc]

T in the three-phase system
(abc) are transformed toξαβ0 = [ξα ξβ ξ0]

T in the orthogonal
αβ0 stationary reference frame through

ξαβ0 = P ξabc (2)

with

P =
2

3





1 − 1
2 − 1

2

0
√

3
2 −

√
3

2
1
2

1
2

1
2



 . (3)

A. Continuous-Time Inverter Model

Consider a neutral point clamped (three-level) inverter con-
nected to a three-phase induction machine. The total dc-link
voltage Vdc over the two dc-link capacitorsxc is assumed
to be constant, while the neutral point potentialυn between
the two capacitors floats. Let the integer variablesua, ub,

uc ∈ {−1, 0, 1} denote the switch positions in each phase
leg. The voltage applied to the machine terminals is given
by vαβ0 = 0.5VdcP uabc, with vαβ0 = [vα vβ v0]

T and
uabc = [ua ub uc]

T .
The neutral point potentialυn depends on the state of charge

of the two dc-link capacitors and is only affected when current
is drawn directly from it, i.e. when one of the switch positions
is zero. This yields

dυn

dt
= −

1

2xc

(

(1−|ua|)isa+(1−|ub|)isb+(1−|uc|)isc

)

(4)

with the stator phase currentsisa, isb, isc and one of the two
symmetric capacitorsxc of the dc-link.

In the inverter considered here—due to the fact that only
one di/dt snubber is available in the upper and the lower
half, respectively—not all switch transitions are possible.
Specifically, each phase leg can switch only by at most one
step, at most two phase legs can switch at the same time,
and if so, switching needs to occur in the opposite halves of
the inverter. For example, from[1 1 1]T , switching is only
admissible to[0 1 1]T , [1 0 1]T or [1 1 0]T , and not to any
of the other 23 switch positions.

The switching losses depend on the applied voltage, the
commutated current and the semiconductor characteristics.
Considering Integrated Gate Commutated Thyristors (IGCTs),
with the GCT being the semiconductor switch, the switch-on
and switch-off losses can be well approximated to be linear
in the dc-link voltage and the phase current. For a diode,
the switch-on losses are effectively zero, while the turn-off
losses—the reverse recovery losses—are again linear in the
voltage, but nonlinear in the commutated phase current. For
a derivation of the switching losses, the reader is referredto
[12].

B. Continuous-Time Machine Model

The squirrel-cage induction motor is modelled in theαβ
reference frame using theα- andβ-components of the stator
and the rotor flux linkages per second,ψsα, ψsβ , ψrα and
ψrβ , respectively, as state variables. The rotor speed dynamic
is neglected and the rotor’s rotational speedωr is assumed to
remain constant within the prediction horizon. This allowsus
to treat the speed as a model parameter rather than as a state.
The other model parameters are the base angular velocityωb,
the stator and rotor resistancesrs andrr, and the stator, rotor
and mutual reactancesxls, xlr andxm, respectively. The state
equations are [19]

dψsα

dt
= −rs

xrr

D
ψsα + rs

xm

D
ψrα + vα (5a)

dψsβ

dt
= −rs

xrr

D
ψsβ + rs

xm

D
ψrβ + vβ (5b)

dψrα

dt
= rr

xm

D
ψsα − rr

xss

D
ψrα − ωrψrβ (5c)

dψrβ

dt
= rr

xm

D
ψsβ + ωrψrα − rr

xss

D
ψrβ (5d)

with xss = xls +xm, xrr = xlr +xm andD = xssxrr −x
2
m.
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The electromagnetic torque is given by

Te =
xm

D
(ψsβψrα − ψsαψrβ) (6)

and the length of the stator flux vector is

Ψs =
√

ψ2
sα + ψ2

sβ . (7)

For more details, the reader is referred to [11], [17] and [12].

C. Discrete-Time Inverter and Machine Model

Combining the motor model (5)–(7) with the inverter
model (4), taking advantage of the fact that theα- and β-
components of the stator currentis,αβ0 are linear combinations
of the stator and rotor flux components (see e.g. [19] for
details), i.e.

is,αβ0 =
1

D

[

xrrψsα − xmψrα xrrψsβ − xmψrβ 0
]T

,

and using the Euler formula, a discrete-time model of the drive
can be derived. As in standard DTC, a sampling interval of
Ts = 25µs is used. The discrete-time model is omitted here
due to space limitations, but it can be found in [11] and [17].

In summary, the internal prediction model includes the
inverter switching behavior, restrictions on the switching tran-
sitions, the switching losses, the dynamics of the neutral point
potential, and the standard dynamical model of an induction
machine with four states, where the saturation of the machine’s
magnetic material, the changes of the rotor resistance due
to the skin effect, and the temperature changes of the stator
resistance are neglected. Moreover, the inverter dead-time is
neglected. If required, variations on the dc-link voltage can
be taken into account as well as changes of the machine’s
rotational speed.

APPENDIX B: GENERAL CONCEPT OFBRANCH AND

BOUND

The branch and bound concept was developed in the 1960s.
It has since become paramount in solving discrete optimization
problems, such as optimization problems with boolean or
integer variables. The solution space of such problems is
discrete. Consider the problem of finding the minimum of
an objective functionJ that is a function of the vectorz
of discrete decision variables, withz being restricted to the
feasible setΩ. This can be formally written as

J∗ = min
z
J(z) (8a)

s. t. z ∈ Ω . (8b)

Rather than enumerating all possible solutions in the search
tree, branch and bound seeks to reduce the number of investi-
gated solutions by applying bounds. These bounds allow one
to remove uninvestigated solutions from further consideration
by proving that these solutions would be suboptimal. As a
result, in general, only a small part of the set of solutions—
and thus of the search tree—needs to be enumerated to find
the optimal solution.

Specifically, as the name indicates, branch and bound con-
sists of the following two operations.

Node 1

Node 2 Node 3

Node 4 Node 5

Ω

Ω1 Ω2

Ω11 Ω12

Ω1 ∪ Ω2 = Ω

Ω1 ∩ Ω2 = ∅

Ω11 ∪ Ω12 = Ω1

Ω11 ∩ Ω12 = ∅

Fig. 11: Branch and bound concept. The set of feasible solutions Ω is
recursively split into disjoint subsets. Upper and lower bounds on the objective
function are applied to identify and to remove subproblems that contain only
suboptimal solutions.

1) Branching: The optimization problem is recursively split
into subproblems by dividing the set of feasible solutions
Ω into two or more disjoint subsets, e.g. intoΩ1 andΩ2,
such thatΩ1 ∪ Ω2 = Ω andΩ1 ∩ Ω2 = ∅.

2) Bounding: An upper bound is kept, which is the best
solution found so far, i.e. the solution that yields the
smallest value of the objective function. Lower bounds
on the subsets’ optimal solutions are usually provided
by relaxations to ensure that they are quick to compute.
If the upper bound is smaller than the lower bound for
a subset, then the optimal solution cannot be part of
this subset and the corresponding subproblem can be
removed from further consideration.

Branch and bound is a universal concept that is highlighted
in Fig. 11, which was reproduced from [2]. A good intro-
duction and summary of the branch and bound methodology
is provided in [2] and [5, Chaps. 12 and 13]. A more
mathematical account is presented in [24] and [9, Chap. 8],
while [21] provides a survey on branch and bound methods.
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