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Abstract—For medium-voltage drives, Model Predictive Direct segments. This enables prediction horizons of 100 steps and
Torque Control (MPDTC) significantly reduces the switching more, despite relatively short switching horizons.
losses and/or the harmonic distortions of the torque and stator Initial results suggest that—with respect to state of the art
currents, when compared to standard schemes, such as direct d h itchi | b 60%
torque control or pulse width modulation. Extending the pre- DT,C_MPDTC re uce§ t Pf SW'FC Ing losses by up to o
diction horizon in MPDTC further improves the performance. While the Total Harmonic Distortion (THD) of the torque and
At the same time, the computational burden is greatly increased the current is kept constant. Alternatively, the THDs can be
due to the combinatorial explosion of the number of admissible reduced by the same amount, while keeping the switching
switching sequences. Adopting techniques from mathematical losses constant [12]. These results are based on a medium-

programming, most notably branch and bound, the number of . .
switching sequences explored can be significantly reduced byvoltage three-phase Neutral Point Clamped (NPC) inverter

discarding suboptimal sequences. This reduces the computation driving an induction machine. Similar results [13] are ol
time by an order of magnitude, enabling MPDTC with long with respect to Field Oriented Control (FOC) with Pulse Widt
prediction horizons to be executed on today’s available hardware. or Space Vector Modulation (PWM/SVM) [18].

The computational complexity of MPDTC is proportional
to the number of admissible switching transitions at every
time-step to the power of the number of switching events
considered in the prediction horizon. The former, the numbe
of switching transitions per time-step, is determined bg th

Direct Torque Control (DTC) [28] is ABB's method of inverter topology—most prominently by the number of voltage
choice for controlling the motor’s torque and flux in mediumlevels available. The latter, the number of switching esgent
voltage drive applications [6], [30], with a typical produciS Set by the switching horizon. Long s_W|tch|ng horizons
being the ACS6000 drive [1]. Over the past decade, DT@featly boost the performance of MPDTC, in the sense that the
has demonstrated a high degree of reliability, robustnegsaa SWitching losses and/or the current or torque THD are furthe
superior performance during transients [3], [4]. The shiiig lowered [13]. However, long switching horizons lead to a
losses, however, which represent a major part of the overg@mbinatorial explosion of the number of admissible switgh
losses of the drive, can be substantial in DTC. sequences to be explored. So far, to find the optimal swigchin

As shown in [11], [12], [17], the switching losses can b&€duence, all admissible sequences were investigatedeby th

significantly reduced through Model Predictive Direct Tueq MPDTC algorithm using fuII' enumeration. This.brute—force
Control (MPDTC), which is based on the concept of Moddloncept becomes computationally very expensive, and thus
Predictive Control (MPC) [10], [27]As can be seen in Fig. 1, prohibitive, for ang swﬂghlng horizons. As a result, itsha
similar to DTC, MPDTC directly controls the torque and flu,2Ny been possible to implement and run MPDTC on a
by manipulating the inverter switch positions. A modulatofontrol hardware platform when restricting oneself to very
is not required. MPDTC is part of the family of emerging®hOrt switching horizons [26]. .
predictive control schemes for electrical drives, some loiciv This shortcoming motivates this paper, which presents-tech
are highlighted in [7]. Recent publications in this fieldluge Niques to drastically reduce the number of switching seceen
[29] and [20]. explored and thus to lessen MPDTC’s computational burden.
The initial version of MPDTC is available in two forms: | N€ first technique, branch and bound, uses upper and lower
with switching horizons of one or two steps [11], [17] andtwit bounds on the objective function to discard large parts ef th

prediction horizons in the range of a few dozen steps. MPDTRE'Ch tree [21]. As a result, the optimal solution is found
was generalized in [12], allowing for an extended switchinUicker and theaveragenumber of computations is reduced.
horizon, which is composed of multiple hinges (groups o limit the maximalnumber of computations, the optimiza-

switch transitions) linked by several extrapolation oreesion 1N Procedure can be stopped if the number of computational
steps exceeds a certain threshold. Despite leading totitgn
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I. INTRODUCTION
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- Dorlnk | The MPC controller is endowed with a discrete-time model
Wref : “= T Minmization of u = of the drive which is derived and summarized in Appendix
W ref—pa|_Cost function = A. This internal modeknables the controller to anticipate the
impact of its decisions. The control objectives are mappéal i
an objective function that yields a scalar cost (here thetsho
term switching losses) that is to be minimized. At every ime
step, the controller computes a sequence of switch position
over a certain time-interval, the prediction horizon, thatails
the minimal switching losses over this interval. Out of this
sequence, only the first gating signal is applied at the otirre
Fig. 1: Control block diagram including model predictive directifoe control sampling instant, and the optlmlzatlo_n S'Fep IS repeated wit
(MPDTC), a speed controller and a flux observer new measurements at the next sampling insteygically, the
sampling interval is very short witll; = 25 us, while the

computation time by an order of magnitude when compangéedlcnon horizon entails up to 160 steps and is thus up to

to full enumeration. MPDTC with long switching horizons is ms long,

. : . It is important to understand that, even though a sequence
thus expected to become implementable on today’s availab . o . 2 .
Qf switch positions is planned over a long prediction hamizo
control hardware, so as to take full advantage of MPDTC’s ; . e o
anly the first switch position is implemented. The prediatio

performance benefits. The significance of such simulatisns_| S X
are recomputed at the next sampling interval using new mea-

underlined by the very close match between previous simu- . . .
. . . urements and a shifted—and if necessary revised—sequence
lations and experimental results using the same model.

: : : : ; " of switch positions is derived. This is referred to as the
simulation results in [17] predicted the experimental ltssin : : : ; .
o receding horizon policy, which provides feedback and makes
[26] accurately to within a few percent.

- _ PDTC robust to parameter uncertainties in the underlying
For one-step predictive drive control, methods to reduee t

. X . . rediction model. As a result, the internal model used fer th
computational effort include [8], in which the search spa r?redictions is not required to be overly accurate.

;’f ithheb Cr?:s'?ﬁ red \r/rcmna'tlge vec”to;s vIS trerStrl'ﬁt?d ;o Te l‘i’;‘eswming the above control problem as a closed-form opti-
eighboring the currently applied vector. nstead ot 1IN 7 i problem leads to

out voltage vectors priori, the branch and bound technique
presented in this paper removes voltage vectors dynamicall )
during the optimization stage, basing the line of reasoning/” (z(k)) = min — >~ Egy(x(£), u(l), u(t — 1)) (1)

Speed

Prediction of MPDTC
controller .

trajectories
X

wﬁ! /l/}T

E+N,—1

on the cost function rather than on the voltage vectors. The v Ny t=k

proposed method thus appears to be more elegant and less s.t.a(l+1) = Az(() + Bu(f) (1b)

restrictive than previously reported approaches. y(0) = g(x(0)) (1c)
The paper is strugtured as follows. After revisiti_ng the y(0) ey (1d)

drive control problem in Sect. I, Sect. Il briefly recapédtes w(l) €U, max|Au()] <1 (1e)

the key concepts of MPDTC, introduces the notion of the
search tree and presents a slightly modified MPDTC algorithm Vl=k,....k+ N, —1, (1f)
that is S(_)Ived using full enumeration. Sect. IV proposes g J*(z(k)) denoting the minimum of the objective function
computationally efficient version of MPDTC based on branc as a function of the state vectark) at the current time-
and bounq and an upper bound on the n.umber of computationgang . Often, the stator and rotor flux vectors represented
Computat|onal results are presented N Sec;t.thg impli- in the a8 reference frame are used as state vectalong with
gatlon\sllcl;f fthe prop?se.d MPDTg algor |thsm arc\a/l?li:usseg.ﬂqe neutral point potential(s). The motor speed is assumed t
ect. efore conclusions are drawn in Sect. VIl. Appendiyg ¢qnstant within the prediction horizon and is thus not par

A detall_s the mt_ernal m(_)del use_d for the predictions, a the state vector, but rather is a parameter of the modél (1b
Appendix B provides an introduction to the general concepy,, sequence of control input&(k) = [u(k), ..., u(k+ N,
of branch and bound. 1)] over the prediction horizoiV, represents the sequence of
inverter switch positions, the controller has to decide rupo
The objective function represents the sum of the switching
The DTC control objectives are to keep the so called outplaisses over the prediction horizon divided by the horizon
variables, namely the electromagnetic torque, the length (ength—it thus approximates the short-term average switchi
magnitude) of the stator flux vector and the neutral poifiisses. Note that the instantaneous switching (energy)Hgs
potential(s), within given hysteresis bounds. In MPDT@&s#a at time-instant is a function of the stator curreig(¢), which
objectives are inherited from DTC. In addition, the inverten turn linearly depends on the state vect¢¢). The switching
losses are to be minimized. An indirect way of achieving ihis loss Esy(¢) also depends on the inverter switching transition
to minimize the (short-term) average switching frequerdd][ at time-step?. The latter can be deduced from(¢) and
[17] or to directly minimize the switching losses [12], [22] «(¢—1). Anindirect, and less effective, way of minimizing the

II. CONTROL PROBLEM
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switching losses is to minimize the number of commutation
i.e. the device switching frequency.

The objective function is minimized subject to the dynam
ical evolution of the drive, represented in state-spacenfor
with the matricesA and B, see Appendix A-C. The drive’s
output vector represents the torque, stator flux magnitude at
neutral point potential(s), which are to be kept within thei v
respective bounds, given by the sBt The constraint (1€) Tt min
limits the control inputu to the integer value$/ available
for the specific inverter topology Switching in a phase by
more than one step up or down is typically not allowed
and can be inhibited by the second constraint in (1e) wi- .
Au(f) = u(f) — u(¢ — 1). These constraints have to be me ¥s.maxr
at every time-step/T, within the prediction horizonwith
C=Fk,....,k+N,—1.

T ,max

I1l. MPDTC wITH FULL ENUMERATION

To solve the closed-form optimization problem (1) is chal
lenging from a computationally point of view even for pre: _
diction horizons of modest length. Solving it for reasoyabl "™ R0 %120 Bi30 Fid0 im0
long horizons appears to be imposstleSince this is a
combinatorial optimization problem, it is well-known than (b) Predicted stator flux trajectories
the worst case, all switching sequences need to be enumers*~
and evaluated to find the optimum.

A. The Concept of the Switching Horizon

One attractive solution is to consider switching transisio
only when the outputg are close to their respective bourids
i.e. when switching is imminently required to keep the otgpu
within their bounds. When the outputs are well within thei
bounds, the switch positions are frozen and switching is n A S S S
considered. This is in line with the control objective in (1, ko k+10 k+20 k+30 k+40 k+50
and greatly reduces the number of switching sequences to be (c) Predicted switching sequences
considered and thus the computational burden. _ _ o o

To achieve this, three key conoepts were introduced in [1{J3, 2L T7ree sanditae swiching sequences, o e sufptionzon

[12], [17] that characterize Model Predictive Direct ToeqU respective upper and lower bounds. The neutral point patéatnot shown.
Control (MPDTC). The prediction horizon here &7, = 45 time-steps

—okR Ro— Ro
— T T
L]
(]

1) The formulation of the optimization problem in an
open form For every admissible switching sequence, the  of the elements 'S’ and 'E’ that stand for 'switch’ and
corresponding output trajectories are computed forward  ’extrapolate’ (or more generally 'extend’), respectively

In time. . _ , It is important to distinguish between tisvitching hori-

2) Between the _SW|tch|ng events, the output trajecto_nes Yon—the number of time-steps within the horizon when
computed using the model (1b) and (1c), to which Weyjitching transitions are considered, i.e. the degreeseet- f
refer as arextensiorstep, or they are extrapolated in aryom and theprediction horizor—the number of time-steps
approximate manner, which is a so calledrapolation  \ppTc Iooks into the future. Between the switching instants
step. Typically, quadratic extrapolation is used, evefe gyitch positions are frozen and the drive behavior is
though linear ex_tra_polatlo_n ls_often SUfflClenﬂ_y aCCUfat%Xtrapmated until a hysteresis bound is hit. The concept of

3) The set of adm|SS|_bIe_SW|tch|_ng sequences is Coer"%QtrapoIation gives rise to long prediction horizons (6atly
by the so calledswitching horizonwhich is composed 5 4 100 time-steps), while the switching horizon is vergrsh

IFor a three-level inverter, we hawl — {-1,0,1}* and & — (usually one to four switching events are considered).

{=2,-1,0,1,2)3 for a five-level inverter. Y Example 1:As an example for a switching horizon, con-
2Using a three-level inverter as an example, for a given svatditionu(¢),  sider 'SSESE’, which stands for switching at time-stépnd

the number of admissible future switch position& + 1) is on average 12 1. 4 1 gnd subsequently extending the trajectories until one

and thus less than 27 due to (1e). NeverthelessMpr= 75 for example, or more output trajectory ceases to be feasible, i.e. \éelat

the number of possible switching sequenéésamounts to12N» = 1030, Tt . .
which is equal to the estimated number of atoms in the obseratiterse. bound, and/or ceases to point in the proper direction. Assum
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all output variabled

o Associated with a switching sequence is the state se-
quenceX = [z(k + 1),...,2(k + N)], which is a se-
guence of state vectossthat fully describes the evolution
of the drive from the initial state:(k) onwards, when
applying the input sequendg. The state vector typically
encompasses the four components of the machine fluxes
as well as the inverter’s neutral point potential(s).

« Similarly, the evolution of the drive’s outputs is descdbe
by the output sequenck = [y(k + 1),...,y(k + N)],
where y is composed of the torque, the stator flux
magnitude and the neutral point potential(s).

« The switching (energy) losseB = SV " e(¢) are
the sum of the individual switching losse$/) in the
switching sequencé. Their unit is Ws. Dividing them
by a time interval, such as the length of the prediction
horizon, leads to the switching (power) lossBg, with
the unit W.

o N denotes the lengths of the predicted sequeliteX

R Np oo K andY. It can be interpreted as the resulting prediction

y horizon of variable length that is induced by the switching

horizon.

Fig. 3: Example of a search tree, induced by the switchingzbariSSESE’ « A denotes the sequence of actions to be performed on

with (blue) ovals denoting the root and bud nodes, (greem$ $teing complete the node, with the elements ¢f being in {'S’, 0= }
candidate switching sequences, and inverted (red) Ts ntarion-candidate . .
switching sequences. Switching transitions 'S’ are shosthin (black) lines, It follows that there is a direct correspondence between

vyhile e>_<tr{:1p0|ation | extension steps E are thick _(b_Iuia)e!;. _The discrete- switching sequences and nodes. Thus both terms will be
time axis is shown on the left along with the prediction honizg, used interchangeably in the sequel. Nodes either refer to
incomplete or to complete solutions (switching sequenoés)
this happens at time-step + ¢, thus triggering the third the optimization problem. More specifically, we distinduis
switching event that is followed by another extension stepetween the following nodes.
We use the task 'e’ to add an optional extension leg to. The root nodeis the initial node at time-steg. It
the switching horizon. Using 'eSSESE’ as an example, three s initialized with {0, 0,0, 0,0,’"SSESE?}, assuming the
candidate switching sequences are depicted in Fig. 2 along switching horizon 'SSESE’ and usin@ to denote an
with their output trajectories. empty sequence. In Fig. 3, it is depicted as a (blue) oval.
« Bud nodesareincomplete candidatswitching sequences
with actions left that induce child nodes. The correspond-
ing output sequences fulfill the candidacy requirement (so
The switching horizon induces a search tree, as shown in far). They are also depicted as a (blue) ovals.
Fig. 3. Each node in the search tree is specified by the 6-tuple There are two types déaf nodes(i) Complete candidate
{U,X,Y,E, N, A} defined as follows. switching sequence that have been fully computed with
no actions remaining and candidacy fulfilled at every
time-step. They are shown as a (green) stars.Nap-
candidate switching sequences, which are not further

kE+1 1
k+2A
k+3 A

k+4 A

B. Search Tree

« A switching sequencé/ is a sequence of three-phase
switch positionsu of length N starting at the current
t|mejstgpk, €. U = [u(k),...,u(k + N —1)]. An considered, are denoted by an inverted (red) T.
admissibleswitching sequence meets the constraint (1e)

at every time-step, as well as other constraints, such adairs of nodes connected by switching transitions are shown

additional switching constraints induced by the invertet® thin (black) lines, while extrapolation or extensiorpstare

topology. Only admissible switching sequences are Coﬂ(_apicted as thick (blue) lines.
sidered in MPDTC. Acandidatesequence yields output- MpPDTC Algorithm with Full Enumeration

trajectories that are, at every time-step, either feasdyle ) ) )
point in the proper direction. Feasibility means that the ' itS basic form stated above, the MPDTC algorithm enu-

output variables lie within their corresponding bounddnerates all admissible switching sequences that are catedid
pointing in the proper direction refers to the case, iREdUENCes .and computes their cor_respondlng output aject
which an output variable is not necessarily feasible, b{{ES and their cost. Hence all nodes in the search tree atedsis

the degree of the bOL!I’?dS' violations decreases at_ EVEIYas an example, consider the case where the torque is feasiblestator
time-step. These conditions must hold componentwise fiarx points in the proper direction and the neutral point pit is feasible.
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that belong to candidate switching sequences. Specifiallyin a step-like fashion. As the sequence is extended, the cost
time-stepk, the MPDTC algorithm computes(k) according decreases smoothly.

to the following procedure, which was presented in [12] and Example 2: As an example, consider the switching horizon
is slightly modified here to facilitate the addition of br&inc’'SESE’ and the cost evolution of the switching sequence 1
and bound techniques in the next section. over time, which is given by the straight (green) line in

1) Initialize the root node and push it onto the stack. ~ Fig- 4. The initial cost is zero. At time-stegsand & + 7,
2a) Take the top nodewith a non-empty4; from the stack. Switching transitions occur that carry the switching egerg
2b) Read out the first element from; and remove it. For 10SSese; andes, respectively. Between the switching events,
'S", branch on all admissible switching transitions anéhe trajectories are extended, which reduces the cosiofsng
add the (incremental) switching loss&s = F; + e(¢) Power losses) by distributing the switching energy losses o
caused by switching at the time-stépFor 'E’, extend @ longer time-interval. In this example, sequence la is an
the trajectories either by extrapolation as detailed ir} [1incomplete candidate switching sequence with the actiBis ’
and [31] or by using the internal controller model [12].rémaining. Atk + 7, more than one admissible switching
2c) Keep only the nodes that are candidates and push théasition is feasible. Another transition with the enelagses
onto the stack. es leads to the dashed (blue) sequence 2. Sequences 1 and 2
2d) Stop, if there are no more nodes with non-emgty ~ are complete candidate switching sequences with no actions
3) Compute for each (candidate) leaf node Z, with 7 remaining, whose first parts coincide with sequence 1la.
being an index set, the associated cgst E;/(N;T),

which targets the switching losses. Bef di inol d be |
4) Choose the leaf node— arg min,ez ¢; with the mini- efore proceeding, some terminology needs to be intro-

mal cost and read out the associated switching sequeH&@e‘j [25]. In this, the index refers to thei-th switching
U* =U(k). sequence (node).

5) Apply (only) the first switch positiom(k) = «* of this e ¢i = E;/(N;T.) is the cost associated with a (complete)
sequence and execute the above procedure again at the candidate switching sequence, whéfeis the sum of the

next time-stepk + 1. switching energy losses.
o c* is the optimal (minimal) cost of the complete candidate

switching sequences.

¢ denotes the incumbent minimal cost, i.e. the smallest
cost found so far for all complete candidate switching
sequences. This cost constitutes an upper bound on the
optimal cost to be found, i.e > ¢*.

Nmax IS an upper bound to the (maximal) length of the
prediction horizon, i.e. it is assumed thalf < Npax for

B. Terminology

If the switching frequency is to be minimized, replaEgby
the number of commutationS;, add the incremental number
of commutations in Step 2b when switching, and use in Step 3°
the coste; = S;/(INV;Ts), which approximates the average
switching frequency over the length of the prediction hamiz

The Steps 2a to 2c are executed until all nodes of the search
tree have been enumerated. Subsequently, Steps 3 and #are rli
on a subset qf the nodes, the candidate leaf n(_)des. T_herefore all i
the computational burden of the MPDTC algorithm with full ¢, — E;/(NmaeT,) is a lower bound on the cost of the

tehneu?:ar;ig;??relz proportional to the total number of nodes in i-th incomplete switching sequence, whéfgis the sum

of the switching energy losses incurred so far for this
sequence

o c refers to the minimum of all lower bounds. It holds
The problem at hand is to devise a modified algorithm that  that ¢ < ¢*,

is computationally efficient, thus allowing the implemedita

of MPDTC with long switching horizons on today’s availablé>- The Concept of Branch and Boufidilored to MPDTC
computational hardware. This implies that the worst-caseThe general concept of branch and bound is summarized
computational effort has to be reduced by at least an orderinf Appendix B. Hereafter, a modified version of branch
magnitude. This can be achieved by using tailored optimizand bound, which is tailored to the needs of MPDTC, is
tion techniques that reduce the number of nodes visiteden timtroduced in an intuitively accessible way. For this cdesi
search tree. These techniques include the so called brawich again Example 2.

bound methodology that is used in mathematical programmingExample 3:1n Fig. 4, the cost associated with the complete
to solvediscrete programs, such asmbinatorial and (mixed) candidate sequence 1lds= (e +e3)/(N1Ts), with Ny = 12

IV. COMPUTATIONALLY EFFICIENTMPDTC

integer programs [21], [23]. time-steps. The incumbent minimal costds= ¢;. Having
_ o computed the second switching transition /at+ 7 with
A. Cost Evolution of a Switching Sequence the energy lossess, one can try to find a proobefore

First of all, note that the evolution of the cost over timeextending sequence 2 that this sequence, when completed,
associated with a switching sequence, is neither smooth noy_. _ , ‘ L ,
ically i . decreasin Instead. at tim “Since E; increases monotonically as theth switching sequence is
monOton'Ca y mg:reqsmg Or. ) 9. o Extended andV; < Nmax by definition, it holds that; < ¢;, i.e. ¢, always
instants when switching transitions occur, the cost isdased underestimates the cost.
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4 cost

| | | i i | | »

k+10 k+12  k+Nmax time

Fig. 4: Cost evolution (W) of switching sequences over timereathe ¢; denote switching energy losses (Ws). The incumbent minimal €est(e; +
e2)/(12T's) refers to sequence 1, admax = 14 denotes the upper bound on the expected length of the pirrdivorizon

will only lead to a suboptimal solution that is inferior toeth are removed. As a result, the optimal cestand the optimal
incumbent optimum. This proof can be found by computing® are found significantly earlier—in this example already
the lower bound on the cost for sequence 2, which is given bjter 61 steps. Some additional nodes need to be explored
¢y = (e1 + e3)/(Nmaxls). If ¢, is equal to or exceeds the to prove that this is indeed the optimum. This certificate is
remainder of this sequence can be discarded and removed frastained after a total of 140 nodes visited.

the search tree. If this is not the case, however, the sequenc . .
should be further considered and, in this case, extendesl. ThA few _remark; concerning pranch anq bqun(_j [21] are in
same applies to the dash-dotted (red) sequence 3. Hav?rqg.er' Thls.alg'orlthm does npt Impact opumahty, -€. tlams.
computed the first switching transition with the losses optimal switching sequence is found as with full enumeratio

the whole subtree, starting at this node, can be discardednifgenerql' brgnch and bound drastically reducesatl wage
¢y = ea)(NmaxTs) > computation time, when compared to full enumeration. Yet,
=4 — - b

More formally, the branch and bound algorithm tailore the worst case, despite branch and bound techniques, a

to the MPDTC problem setup is as follows. Compute thé‘” enumeration.of the search tree might be .r.equired to find

switching sequences and the associated output trajestmie not. only the gptlmum, but also a proof (cer‘gflcate) that t.he

costs iteratively as the tree is explored from its root noo%Dtlmum has indeed been foun_d. Su_ch ace_rt|f|cate IS _prowded
to the terminal nodes (leaves). Assume that the bud no\HQ_en no-more bUd. nodes exist with < “ The optimal

7, which corresponds to the incomplete candidate switchiﬁézll'mhmg sequence is usually found a lot quicker. Note et

sequencd/;, has the minimum cost incurred so far. Discar§"Y require the first element of this sequence, i.e. thenui

the bud node and prune the attached unexplored part of fh*e which is found even quicker, as indicated by the arrows

tree, ifc, > c. If a candidate switching sequence is completqu, Fig. 5(a).

compute its cost; and update the incumbent minimal cost, if - At every step during the optimization procedure, the optima
required, by setting = min(c, ¢;). The algorithm summarized cost is upper and lower bounded hy< ¢* < ¢ As the

in Sect. Ill-C can be easily augmented by the branch aggtimization proceeds, these bounds are tightened. Thedsou
bound methodology, as will be shown in Sect. IV-F. provide information on how close the incumbent minimal cost
D. Properties of Branch and Bound is to the_opti_mum. This can pe seen in Fig. 5(a), where the
pper thick line refers t@, while the lower one corresponds

E.xa'lmp'le 4:Consider one instance of the combinatori 0 c¢. Both lines converge to the optimal cost, which is given
optimization problem, arising for example from a threeelevb the dashed (black) line

inverter and a switching horizon of 'eSSESE’. The inducedy
search tree contains 730 nodes. Using full enumeration, allBranch and bound works best, if the upper and lower bounds
730 nodes are explored. As shown in Fig. 5(a), the incumbeare tight. A tight upper bound is achieved by finding a close
minimal cost drops fairly quickly, but the minimal cost ofto optimal leaf node with a low cost during an early stage of
2.25kW is only found after having almost fully explored thehe optimization. To achieve this, depth-first search tepres
search tree. The optimal*, which is the first element in the can be employed and the optimal switching sequence from
optimal switching sequendg*, is found already after having the previous time-stefp — 1 can be used to warm start the
explored 221 nodes. To obtain a certificate that this is iddeeptimization. A tight lower bound: is the result of a tight
the optimalu*, the search tree has to be fully explored.  upper bound on the maximal length of the prediction horizon.
In contrast to that, with branch and bound, promising nod&siring the optimization process, branching heuristicsiozeip
are explored first and clearly inferior parts of the searele trto identify and to focus on the most promising nodes first.
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Fig. 5: Evolution of the optimal cost (kW) while solving one tasce of the MPDTC optimization problem. (a) shows the incurhip@inimal cost vs the
number of nodes visited, with the arrows indicating when thtneal «* is found. The thick cyan line refers to the minimunof the lower bounds:;. (b)
and (c) depict, for every switching sequence, the cost asietiin of the time-step within the prediction horizon. Conteleandidate switching sequences
are green, incomplete (i.e. pruned) candidate sequencésuareand non-candidate sequences are red. Note the logariscaling of the cost in (b) and (c)

E. Limiting the Maximal Number of Computations F. The Computationally Efficient MPDTC Algorithm

In the sequel, a computationally efficient version of the
PDTC algorithm is presented that is based on a tailored
anch and bound technique that reduces the average cemputa

In a practical controller implementation, only a certairpvI
number of computations can be performed within the sarBF

pling interval, which is typically of a fixed length in time. : .
Therefore, it might be necessary to limit the maximal numban":lI burden. By ""F"d'”g the upper bouyiehx on the number_
f explored nodesj, the maximal computational burden is

of computational steps and/or to impose an upper bound on fhe.
computation time. Aborting the branch and bound optimarati imited, .t_oo_. )

before a certificate of optimality is obtained, might lead to 1) Nitialize the root node and push it onto the stack. Set
suboptimal solutions, i.e. switching sequences that yeeld ¢ = oo andj = 0.

higher cost than the optimal sequence. Yet, as explained i) T@ke the nodewith a non-empty4; from the stack that

the last section, in most cases the optimum will have been Nas the minimum cost;. _
found already. 2b) Read out the first element fror; and remove it. For

Since long prediction horizons lead to a better performance j:id ?Laem(:izc?gr:gn?;;mssv’vs;gﬁi|$Wlltc():shslgg t_rag_sﬂoen(;)and
(i.e. lower switching losses for the same distortion levels caused by switching at the timge—stépFo:'E'z extond
and vice versa), MPDTC's performance can be improved by X . ) ; N
considering longer switching horizons, by imposing an uppe rnedt[gﬁcé?rgsjs'tizertgg ?rﬁz?r?;lii;%?rgﬁe?erﬁlde; |[r]1%1
bound on the number of computations, and by accepting thaztc) Seti — '+#¥g for gS where 45 denotes the number.
the result is, in some cases, (slightly) suboptimal. Thifis o S{N Ecinn ransitions. and Sete 1 + 1 for &
contrast to the classic approach of using fairly short dviritg d) K | gh q h g= é'd '
horizons, so as to ensure that the search tree can be fu ) Keep only the nodes that are candidates.

enumerated in the time available and that the optimal swoiuti €) Fgr Ifaaf nodes: compute. their cosfsand update: =
is thus found under all circumstances. min(¢, ¢;). For bud nodes: compute the lower boumgls

. . . L on their costs and remove bud nodes with> ¢.
More specifically, one of the following stopping criterianca 2f) Push the remaining nodes onto the stack
be added to the MPDTC algorithm. :

2g) Stop, if there are no more nodes with non-empfyon
« An upper bound on the number of nodes to be explored the stack or ifj > jmax-
and/or the computation time available is imposed. The 3) Compute for each (candidate) leaf node Z, with Z
optimization is halted, if this number or time is exceeded,  being an index set, the associated egst E;/(N,T).
and the switching sequence with the incumbent minimal
cost is accepted as the solution.

Induction Motor

« Alternatively, one may run the optimization procedure for Voltage 3300V 7. 0.0108p.u.
as long as possible, e.g. until an interrupt is received to Current 356 A r»  0.0091p.u.
stop it. This allows one to reduce idle processor time and Real power 1587MW | z;;  0.1493p.u.
to rather spend this time on improving the incumbent Apparent power - 2.035MVA| i, 0.1104p.u.
0 . p_ P 9 Frequency 50 Hz T, 2.3489p.u.
optimal solution. Rotational speed 596 rpm

; : Inverter
One might also stop with a guarantee of closeness to ok voliage 4294V Vi TEO3T P

optimality. Choose an acceptable distance to optimality in r.  11.769p.u.
terms of the cost, e.g. 5%, and stop the search whert).95¢.

TABLE [: Rated values (left) and parameters (right) of thevelri
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Fig. 8: Computationally efficient MPDTC with the switchingrimon 'eSSESESE’, corresponding to the last row in Table Il

4) Choose the leaf nodewith ¢; = ¢ and read out the For this comparison, a very accurate and detailed Mat-
associated switching sequengé = U, (k). lab/Simulink model of the drive system was usttt rep-

5) Apply (only) the first switch positiom(k) = v* of this resents the physical drive systeniThis drive modelwas
sequence, and execute the above procedure again atpfevided by ABB, to ensure a simulation set-ap realistic

next time-stepk + 1. as possibleThe model includes an outer (speed) control loop
that adjusts the torque reference and the (time-varyinghti®
V. COMPUTATIONAL RESULTS on the torque accordingly, see also Fig. 1. The induction

As a case study, consider a three-level voltage source fROOT model includes the saturation of the machine’s magnet
verter driving an electrical machine with a constant meitain Material, the changes of the rotor resistance due to the skin
load. A3.3kV and 50 Hz squirrel-cage induction motor ratedéffect, and speed variations due to load torque changes. Fur-
at2 MVA is used as an example for a commonly used mediuriPermore, the inverter switching behavior, the inverteadie
voltage machine. The detailed parameters of the drive can g€, minimum on- and off-times and fluctuations of the dc-
found in Table I. At 60% speed with a 100% torque setpoinfNK voltage are modelledlo run MPDTC, the DTC look-up
the steady-state performance of DTC was compared with fi@@!e was replaced by the computationally efficient versibn
On? Of_ compl_JtationaIIy efficient MPDTC for short and long 5This model of the physical drive system is not to be confusetth wie
switching horizons. controller’s internal model used for the predictions.
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the MPDTC algorithm. The significance of such simulation80% and by carefully redistributing the remaining switghin
is underlined by the very close match between the previotransitions along the time-axis. As a result, about halfhaf t
simulation results in [17], which were obtained using thexea transitions occur when the respective phase current, amcehe
model, and the experimental results in [26]. the incurred switching losses, are small. Note that theectirr
Using pu quantities, the comparisons are shown in Figs_aﬁd torque distortions are not increased by doing this—éuaste
to 8. For MPDTC, the torque and flux bounds were widened tey tend to get smaller.
1.5% and 0.5%, respectively, to account for DTC’s imminent However, the computational burden for MPDTC with full
violations of the bounds. As a result, DTC and MPDTC yiel@numeration is exorbitant, with search trees featuringoatm
similar current THDs, while for MPDTC with long horizonsup to 8000 nodes. Branch and bound with a tigf{ax cuts
the torque THD is slightly lower than for DTC, see Table lldown the average computation time by two thirds, but a
More importantly, with respect to DTC, MPDTC with thefairly small upper bound on the number of explored nodes,
fairly short switching horizon 'eSSE’ reduces the switghinmax = 600, is required to achieve an overall reduction of
losses by 40%. The standard MPDTC algorithm based on th@re than 90%. As previously, the impact on the performance
full enumeration of the search tree requires the explanati@PpPears to be small. Figs. 9 and 10 show the histograms of
of up to 277 nodes to achieve this result, as shown in tHee computational burden and the number of computational
second row in Table II. Using branch and bound techniqu&tePs required to derive the optimal cost, respectivelye Th
and tighteningNmax almost halves the average number ofblue) vertical lines denote percentiles, with the straigash-
nodes visited. Yet, the maximal number of nodes explorétptted and dashed lines referring to the 50%, 95% and 99%
remains high. Limiting the number of computations by Sgttinpercentiles. The effect of branch and bound on the cost is
jmax = 50 leads to suboptimal results—in almost 8% of th@articularly remarkable, as shown in Fig. 10(b).
cases a suboptimal(k) is computed, but this appears, at least
in this particular case, to barely affect the performance.aA
result, the maximal computational burden is reduced by 82%, Minimization of the Switching Frequency versus Minimiza-
from 277 to 50 nodes explored. tion of the Switching Losses

For the long switching horizon 'eSSESESE’, the switching In general, as evidenced in Table II, MPDTC achieves a
losses are reduced by another 35%, with respect to MPDTG&ater reduction in the switching losses than in the switch
with ’eSSE’. This is achieved, as can be observed frofrequency. At a first glance, this might appear to be counter—
Fig. 8(c), by reducing the switching frequency by anothéntuitive. Recall that the control objective in Sect. Il was

VI. DISCUSSION

February 24, 2011 Accepted for publication in the IEEE Trans. Power Electron.



10

Controller settings Pred. horizon| Nodes explored u* Performance [%)]

Scheme  Sw. horizon Nmax  Jmax avg. max. | avg. max. | found [%] Psw fow  IstHp  Te,THD

DTC — - - - - - - - 100 100 100 100
MPDTC eSSE - - || 26.6 96 112 277 100 57.3 71.2 103 98.4
MPDTC eSSE 100 — || 25.7 92 86.9 275 100 573 71.2 103 98.4
MPDTC eSSE 50 - || 25.6 96 64.3 249 97.4 57.7 73.4 103 102
MPDTC eSSE 50 50 || 22.0 97 43.6 50 92.2 58.3 74.1 104 103
MPDTC  eSSESESE - -1 98.2 150 | 3246 7693 100 37.9 48.9 97.0 92.0
MPDTC  eSSESESE 150 - 95.2 150 | 1884 6806 100 37.9 48.9 97.0 92.0
MPDTC  eSSESESE 110 - 92.5 150 | 1102 4756 96.7 40.9 50.0 99.5 92.2
MPDTC  eSSESESE 110 600 88.0 152 | 483 600 92.1 38.6 51.4 97.3 94.0

TABLE II: Comparison of DTC with MPDTC and computationally efént MPDTC with the upper bound¥max and jmax on the horizon length and the
number of nodes explored, respectively. The fifths and sigtthismns indicate the average and maximal lengths of the achignegliction horizon. Columns
seven and eight state the number of explored nodes in thehseae; followed by the probability that the optima{k) is found at every control cycle. The
last four columns relate to the switching loss@sg,, switching frequencyfsw, current THD I typ and torque THDT, tHp, using DTC as a baseline

to minimize the switching losses rather than the switchin@ the range of 1%). This implies that the proposed MPDTC
frequency. Accordingly, the cost function (1a) captures thlscheme with 'eSSE’ can be implemented on today’s commonly
switching losses. This is also reflected in Step 3 of the MPDTi&ed drive control hardware.
algorithms in Sects. IlI-C and IV-F. As shown in Table Il, MPDTC with the switching horizon
As a result, MPDTC arranges the switching pattern such tHeaSSE’ reduces the switching losses by 40% with respect to
a significant number of the switch transitions takes placerwhDTC, while the distortion levels remain effectively uncigad.
the corresponding phase current is small. This can be obderin the medium-voltage arena, the switching losses typicall
in Fig. 8(c) and to a lesser extent in Fig. 7(c). In contrast wominate over the conduction losses. When the thermal cool-
this, as shown in Fig. 6(c), DTC switches regardless of tlieg capability is the limiting factor, lower switching loss
phase current, similar to PWM and SVM. enable one to increase the current accordingly. As a rehelt,
Therefore, MPDTC not only switches less often—thugower rating of the inverter hardware can be increasedai.e.
reducing the switching frequency—but it also aims at placintd MVA inverter, for example, can be uprated to 12 MVA and
the switch transitions at times when the phase current isl,smaold accordingly at a higher price. The standard drive obntr
thus further reducing the switching losses. This is a kefufea hardware, augmented with an FPGA, appears to suffice for
of MPDTC that was also highlighted in [12]. Alternativelipet this.
switching frequencymay be targeted in (1a) and in Step 3 of The switching losses can be reduced by another 35% and the
the algorithms, as proposed in [11], [17]. This tends to lead inverter can be uprated by another 15 to 20%, when extending
slightly lower switching frequencies at the expense of bighthe switching horizon from 'eSSE’ to 'eSSESESE’, see Ta-
switching losses, as shown in [12]. ble II. At the same time, however, the computational burden
) L . is increased by a factor of 12, necessitating a significantly
B. Practical Implications of the Proposed Algorithm more powerful control platform. In light of the high pricegta
Recall that the computational burden of MPDTC is propobf medium-voltage drive equipment, this might be an ativact
tional to the number of nodes explored. Therefore, by redcioption—particularly in view of the ever increasing procaegsi

this number by an order of magnitude, the computationgbwer of the computational hardware available.
burden—and thus the computation time—can be reduced

accordingly by an order of magnitude, when compared to the
original algorithm based on full enumeration of the seareb.t ~ Another important aspect is the memory required to store
So far, MPDTC has only been implemented and expdhe search tree. The memory requirement is equal to the
imentally verified on a medium-voltage drive setup with gaximal number of nodes considered at any time during the
very short switching horizon, using the so calldéd = 1 branch and bound optimization multiplied with the memory
approach [26]. To facilitate this, an additional FPGA wakequirement of each node. Recall that each node in the search
added to the DSP to perform the bulk of the MPDTC computél€e is given by the 6-tupl¢U, X, Y, £, N, A}. The memory
tions. With respect to this, MPDTC based on full enumeratidgquirement of this 6-tuple is estimated to be 19 bytes.(B)
and the SWItCh_mg_ horizon "eSSE IMproves the. pe.rformar?ceﬁhe estimated 19 B result from the following reasoning. Outhefswitch-
(lowers the switching losses) by about 10%, whilst inCre@si jng sequence’, only the first and the last switch positienc {—1,0, 1}
the computational burden fiveféld Table Il shows that the need to be stored, requiring 1 byte (B). It suffices to stoeestates and outputs
computationally efficient version of MPDTC can mitigatesthiat the end of the switching sequence rather than the competgencesX

. . . . . and Y. Assume that the five states (four components of the machinesfluxe
fivefold increase, with very little impact on the performancang the neutral point potential) and the two outputs (torgné stator flux

magnitude) are stored with 16-bit accuracy. Thus 14 B areimediuThe sum
6MPDTC with the switching horizon 'eSSE’ is conceptually yesimilar  of the switching energy lossés is also stored with 16-bit accuracy and hence
to the N = 2 approach, despite it minimizing the switching frequency.hWit requires 2 B. The length of the switching sequei¢és shorter than 256 and
respect toV = 1, N = 2 reduces the switching frequency by another 10%thus requires 1 B. The sequence of actighto be performed can be captured
but its computational effort is five times higher. For more dstaefer to the by 1B, if the switching horizon has at most eight elements. &loee, each
analysis of the algorithms and the simulation results in [{17] and [26]. node requires 19B.

Memory Requirement of the Search Tree
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The number of nodes considered by the algorithm at amy € {—1,0,1} denote the switch positions in each phase
time is upper bounded by the total number of nodes explorddg. The voltage applied to the machine terminals is given
Jmax. For the long switching horizon 'eSSESESE’ ajdx= by vago = 0.5Vae P uape, With vap0 = [ve vg vo]T and
600, the memory required to store the search tree is thus uppgs. = [, up u.)”.
bounded by600-19 B, which is equal to 11.1 kB and thus very The neutral point potential,, depends on the state of charge
low. of the two dc-link capacitors and is only affected when cotrre
is drawn directly from it, i.e. when one of the switch pogiiso

VIl. CoNcLusioN is zero. This yields

This paper proposed a modified version of the MPDTCdU 1
algorithm based on branch and bound techniques adopted from™* = — _— ((1—\ual)isa+(1—|ub|)isb+(1—IUCI)Z'SC) 4)
mathematical programming. Using upper and lower bounds o 2z
the optimal cost, suboptimal parts of the search tree can Wwih the stator phase currents,, i, 75 and one of the two
identified and pruned thus avoiding the full enumeratiorhef t symmetric capacitors. of the dc-link.
tree, as it was required with the previous MPDTC algorithm. In the inverter considered here—due to the fact that only

Initial simulation results suggest that the worst-case -corane di/dt snubber is available in the upper and the lower
putational effort can be reduced by an order of magnitudealf, respectively—not all switch transitions are possible
MPDTC with the switching horizon 'eSSE’ can thus beSpecifically, each phase leg can switch only by at most one
implemented on today’s standard drive control hardwéme. step, at most two phase legs can switch at the same time,
general, the longer the horizon the more significant is tlend if so, switching needs to occur in the opposite halves of
percentage-wise reduction of the computational burden ath@ inverter. For example, frorfi 1 1]7, switching is only
thus the saving. This makes this scheme particularly aitteac admissible to[0 1 1]7, [1 0 1]T or [1 1 0]7, and not to any
for MPDTC with very long prediction horizonsoffering of the other 23 switch positions.
the opportunity to implement MPDTC with such very long The switching losses depend on the applied voltage, the
horizons, so as to alloane to take full advantage of MPDTC’scommutated current and the semiconductor characteristics
performance benefits. Smart branching heuristics are egbeaConsidering Integrated Gate Commutated Thyristors (IQCTs
to further cut down the computation time. with the GCT being the semiconductor switch, the switch-on

The techniques presented here are equally applicableatsd switch-off losses can be well approximated to be linear
the recently proposed adaptation of MPDTC to the curreint the dc-link voltage and the phase current. For a diode,
control problem, Model Predictive Direct Current Controthe switch-on losses are effectively zero, while the tufifn-o
(MPDCC) [14], as well as to other inverter topologiesich |osses—the reverse recovery losses—are again linear in the
as five-level topologie§l6] and synchronousnachines [15]. voltage, but nonlinear in the commutated phase current. For

a derivation of the switching losses, the reader is refetoed
APPENDIXA: INTERNAL PREDICTION MODEL [12]

This appendix outlines the derivation of MPDTC's internal
prediction model. Starting with the continuous-time modé. Continuous-Time Machine Model
of the inverter's neutral point potential and of the ele@tti  The squirrel-cage induction motor is modelled in thg
machine, a discrete-time state-space model is deriveds Thiference frame using the- and 3-components of the stator
was previously shown in [11], [17] and [12]. and the rotor flux linkages per second,,, ©ss, Vo and

We use normalized quantities and a normalized time-axig. ; respectively, as state variables. The rotor speed dynamic
All variables . = [€a & &7 in the three-phase systemjs neglected and the rotor’s rotational spegdis assumed to
(abc) are transformed @50 = [£a &s )" in the orthogonal remain constant within the prediction horizon. This allaves

a0 stationary reference frame through to treat the speed as a model parameter rather than as a state.
€apo = P Eape @) The other model parameters are the base angular velogity
the stator and rotor resistancesandr,, and the stator, rotor
with ) . and mutual reactances, x;,- andzx,,, respectively. The state
9 L =3 =3 equations are [19]
P=Z|0 ¥ _¥ ()
3 1 % 12 dipsq Ly T
2 2 2 dt - *T‘Sfr@bsa + 7y 31/)7’04 + Vo (53)
s Ty S 4o (5b)
A. Continuous-Time Inverter Model dt S D P ep ATl
Consider a neutral point clamped (three-level) inverter-co Wra _ e 2 s — T2ty — wWrthyg (5¢)
nected to a three-phase induction machine. The total #c-lin ddt D D
voltage V. over the two dc-link capacitors, is assumed Z;ﬁ = Tr%ﬂ)sﬁ + Wrthra — Tr%l/)rﬁ (5d)

to be constant, while the neutral point potentigl between
the two capacitors floats. Let the integer variables w,, With x.s = 215 + Zpm, Trr = 21 + T, ANAD = 2452, — 22

m*
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The electromagnetic torque is given by

e — %(wsﬁwr(x - '(/}S(ﬂ/jrﬁ) (6)

and the length of the stator flux vector is

WgZ\/i/)fa—Fi/)gﬁ. @) QL UQy =0
Ql N QQ = @
For more details, the reader is referred to [11], [17] and.[12
C. Discrete-Time Inverter and Machine Model
Combining the motor model (5)-(7) with the inverter Q11 UQp =M

model (4), taking advantage of the fact that the and (-
components of the stator current, s, are linear combinations

jg. 11: Branch and bound concept. The set of feasible solsit{) is
of the stator and rotor flux components (See €.9. [19] f§ef?:ursively split into disjoint subsets. Upper and loweuitds on the objective

details), i.e. function are applied to identify and to remove subproblems ¢batain only
1 T suboptimal solutions.

5 [l'rrwsa — T Yra xrr"/}sﬁ - xm¢rﬁ O] )
and using the Euler formula, a discrete-time model of theedri 1) Branching: The optimization problem is recursively spli
can be derived. As in standard DTC, a sampling interval of  into subproblems by dividing the set of feasible solutions
T, = 25 us is used. The discrete-time model is omitted here £ into two or more disjoint subsets, e.g. iftg and(2,,
due to space limitations, but it can be found in [11] and [17].  Such that; UQs =@ andQ; NQy = 0.

In summary, the internal prediction model includes the 2) Bounding: An upper bound is kept, which is the best

Q1N =0

Z's,t)z,(i() =

inverter switching behavior, restrictions on the switchtran- solution found so far, i.e. the solution that yields the
sitions, the switching losses, the dynamics of the neutsitp smallest value of the objective function. Lower bounds
potential, and the standard dynamical model of an induction ~ On the subsets’ optimal solutions are usually provided
machine with four states, where the saturation of the mahin by relaxations to ensure that they are quick to compute.

magnetic material, the changes of the rotor resistance due !f the upper bound is smaller than the lower bound for
to the skin effect, and the temperature changes of the stator @ subset, then the optimal solution cannot be part of
resistance are neglected. Moreover, the inverter deagl-6m this subset and the corresponding subproblem can be
neglected. If required, variations on the dc-link voltaga ¢ removed from further consideration.

be taken into account as well as changes of the machine’8ranch and bound is a universal concept that is highlighted
rotational speed. in Fig. 11, which was reproduced from [2]. A good intro-
duction and summary of the branch and bound methodology
is provided in [2] and [5, Chaps. 12 and 13]. A more
mathematical account is presented in [24] and [9, Chap. 8],

The branch and bound concept was developed in the 196@Qile [21] provides a survey on branch and bound methods.
It has since become paramount in solving discrete optinoizat

problems, such as optimization problems with boolean or ACKNOWLEDGMENT
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