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Computationally Efficient
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Abstract—For medium-voltage drives Model Predictive Direct
Torque Control (MPDTC) significantly reduces the switching
losses and/or the harmonic distortions of the torque and stator
currents, when compared to standard schemes such as direct
torque control or pulse width modulation. Extending the pre-
diction horizon in MPDTC further improves the performance.
At the same time the computational burden is greatly increased
due to the combinatorial explosion of the number of admissible
switching sequences. Adopting techniques from mathematical
programming, most notably branch and bound, the number of
switching sequences explored can be significantly reduced by
discarding suboptimal sequences. This reduces the computation
time by an order of magnitude thus enabling MPDTC with long
prediction horizons to be executed on today’s available hardware.

Index Terms—Model predictive control, electrical drive con-
trol, branch and bound, medium-voltage drive, medium-voltage
converter

I. I NTRODUCTION

Direct Torque Control (DTC) is ABB’s method of choice
for controlling the motor’s torque and flux in medium voltage
drive applications, with a typical product example being the
ACS 6000 drive [1]. Over the past decade DTC has demon-
strated a high degree of reliability, robustness and a superior
performance during transients. The switching losses, however,
which represent a major part of the overall losses of the drive,
can be substantial in DTC.

As shown in [2], [3], the switching losses can be sig-
nificantly reduced through Model Predictive Direct Torque
Control (MPDTC), which is based on the concept of Model
Predictive Control (MPC) [4], [5]. The initial version of
MPDTC is available in two forms with switching horizons
of one or two steps [2], [3] and prediction horizons in the
range of a few dozen steps. MPDTC was generalized in
[6] allowing for an extended switching horizon, which is
composed of multiple hinges (groups of switch transitions)
linked by several extrapolation or extension segments. This
enables prediction horizons of 100 steps and more, despite
relatively short switching horizons.

The computational complexity of MPDTC is proportional
to the number of admissible switching transitions at every
time-step to the power of the number of switching events
considered in the prediction horizon. The former, the number
of switching transitions per time-step, is determined by the
inverter topology – most prominently by the number of voltage
levels available. The latter, the number of switching events,
is set by the switching horizon. Long switching horizons
greatly boost the performance of MPDTC, in the sense that the
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switching losses and/or the current or torque Total Harmonic
Distortions (THDs) are further lowered [7]. However, long
switching horizons lead to a combinatorial explosion of the
number of admissible switching sequences to be explored.
So far, to find the optimal switching sequence, all admis-
sible sequences were investigated by the MPDTC algorithm
using full enumeration. This brute-force concept becomes
computationally very expensive and thus prohibitive for long
switching horizons. As a result, it has only been possible to
implement and run MPDTC on a control hardware platform
when restricting oneself to very short switching horizons [8].

This shortcoming motivates this paper, which presents tech-
niques to drastically reduce the number of switching sequences
explored and thus to lessen MPDTC’s computational burden.
The first technique, branch and bound, uses upper and lower
bounds on the objective function to discard large parts of the
search tree [9]. As a result, the optimal solution is found
quicker and theaveragenumber of computations is reduced.
To limit the maximalnumber of computations, the optimiza-
tion procedure can be stopped if the number of computational
steps exceeds a certain threshold. Despite leading to potentially
suboptimal results, if the threshold is chosen carefully, the
impact on the performance is small. Alternatively, one may
stop if the current best solution is sufficiently close to the
optimum.

Simulation results indicate that these techniques reduce the
computation time by an order of magnitude when compared
to full enumeration. MPDTC with long switching horizons is
thus expected to become implementable on today’s available
control hardware so as to take full advantage of MPDTC’s
performance benefits.

The paper is structured as follows. After revisiting the
drive control problem in Sect. II, Sect. III briefly recapitulates
the key concepts of MPDTC, introduces the notion of the
search tree and presents a slightly modified MPDTC algorithm
that is solved using full enumeration. Sect. IV proposes a
computationally efficient version of MPDTC based on branch
and bound and an upper bound on the number of computa-
tions. Computational results are presented in Sect. V before
conclusions are drawn in the final Sect. VI.

II. CONTROL PROBLEM

The DTC control objectives are to keep the so called output
variables, namely the electromagnetic torque, the length (or
magnitude) of the stator flux vector and the neutral point
potential(s), within given hysteresis bounds. In MPDTC, these
objectives are inherited from DTC. In addition, the inverter
losses are to be minimized. An indirect way of achieving thisis
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to minimize the (short-term) average switching frequency [2],
[3] or to directly minimize the switching losses [6], [10].

The MPC controller is endowed with a discrete-time model
of the drive that enables it to anticipate the impact of its
decisions. The control objectives are mapped into an objective
function that yields a scalar cost (here the short-term switching
losses) that is to be minimized. At every time-step, the con-
troller computes a sequence of switch positions over a certain
time-interval, the prediction horizon, that entails the minimal
switching losses over this interval. Out of this sequence, only
the first gating signal is applied at the current sampling instant,
and the optimization step is repeated with new measurements
at the next sampling instant thus providing feedback.

Writing the above control problem as a closed-form opti-
mization problem leads to

J∗(x(k)) = min
U(k)

1

Np

k+Np−1∑

ℓ=k

Esw(x(ℓ), u(ℓ), u(ℓ − 1)) (1a)

s. t. x(ℓ + 1) = Ax(ℓ) + Bu(ℓ) (1b)

y(ℓ) = g(x(ℓ)) (1c)

y(ℓ) ∈ Y (1d)

u(ℓ) ∈ U , max |∆u(ℓ)| ≤ 1 (1e)

∀ℓ = k, . . . , k + Np − 1 , (1f)

with J∗(x(k)) denoting the minimum of the objective function
J as a function of the state vectorx(k) at the current time-
instantk. Often, the stator and rotor flux vectors represented
in theαβ reference frame are used as state vectorx along with
the neutral point potential(s). The motor speed is assumed to
be constant within the prediction horizon and is thus not part
of the state vector but rather a parameter of the model (1b).
The sequence of control inputsU(k) = [u(k), . . . , u(k+Np−
1)] over the prediction horizonNp represents the sequence of
inverter switch positions the controller has to decide upon. The
objective function represents the sum of the switching losses
over the prediction horizon divided by the horizon length —
it thus approximates the short-term average switching losses.
Note that the instantaneous switching (energy) lossEsw at
time-instantℓ is a function of the stator currentis(ℓ), which
in turn linearly depends on the state vectorx(ℓ). The switching
loss Esw(ℓ) also depends on the inverter switching transition
at time-stepℓ. The latter can be deduced fromu(ℓ) andu(ℓ−
1). An indirect (and less effective) way of minimizing the
switching losses is to minimize the number of commutations,
i.e. the device switching frequency.

The objective function is minimized subject to the dynami-
cal evolution of the drive represented in state-space form with
the matricesA and B, which are of appropriate form [2],
[11]. The drive’s output vectory represents the torque, stator
flux magnitude and neutral point potential(s), which are to be
kept within their respective bounds given by the setY. The
constraint (1e) limits the control inputu to the integer values
U available for the specific inverter topology1. Switching in
a phase by more than one step up or down is typically not
allowed and can be inhibited by the second constraint in (1e)

1For a three-level inverter we haveU = {−1, 0, 1}3 and U =
{−2,−1, 0, 1, 2}3 for a five-level inverter.

with ∆u(ℓ) = u(ℓ) − u(ℓ − 1). These constraints have to be
met at every time-step within the prediction horizon.

III. MPDTC WITH FULL ENUMERATION

To solve the closed-form optimization problem (1) is chal-
lenging from a computationally point of view even for pre-
diction horizons of modest length. Solving it for reasonably
long horizons appears to be impossible2. Since this is a
combinatorial optimization problem, it is well-known thatin
the worst case all switching sequences need to be enumerated
and evaluated to find the optimum.

A. The Concept of the Switching Horizon

One attractive solution is to consider switching transitions
only when the outputsy are close to their respective boundsY,
i.e. when switching is imminently required to keep the outputs
within their bounds. When the outputs are well within their
bounds the switch positions are frozen and switching is not
considered. This is in line with the control objective in (1)
and greatly reduces the number of switching sequences to be
considered and thus the computational burden.

To achieve this, three key concepts were introduced in [2],
[3], [6] that characterize Model Predictive Direct Torque
Control (MPDTC).

1) The formulation of the optimization problem in an
open form. For every admissible switching sequence the
corresponding output trajectories are computed forward
in time.

2) Between the switching events the output trajectories are
computed using the model (1b) and (1c), to which we
refer as anextensionstep, or they are extrapolated in an
approximate manner, which is a so calledextrapolation
step. Typically, quadratic extrapolation is used, even
though linear extrapolation is often sufficiently accurate.

3) The set of admissible switching sequences is controlled
by the so calledswitching horizon, which is composed
of the elements ’S’ and ’E’ that stand for ’switch’ and
’extrapolate’ (or more generally ’extend’), respectively.

Is important to distinguish between theswitching horizon
(the number of time-steps within the horizon when switching
transitions are considered, i.e. the degrees of freedom) and the
prediction horizon(the number of time-steps MPDTC looks
into the future). Between the switching instants the switch
positions are frozen and the drive behavior is extrapolateduntil
a hysteresis bound is hit. The concept of extrapolation gives
rise to long prediction horizons (typically 50 to 100 time-
steps), while the switching horizon is very short (usually one
to four switching events are considered).

Example 1:As an example for a switching horizon consider
’SSESE’, which stands for switching at time-stepsk andk+1
and subsequently extending the trajectories until one or more
output trajectories cease to be feasible (i.e. within the bounds)
and/or pointing in the proper direction. Assume this happens

2Using a three-level inverter as an example, for a given switchpositionu(ℓ),
the number of admissible future switch positionsu(ℓ + 1) is on average 12
and thus less than 27 due to (1e). Nevertheless, forNp = 75 for example,
the number of possible switching sequencesU amounts to12Np = 1080,
which is equal to the estimated number of atoms in the observableuniverse.
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Fig. 1: Three candidate switching sequences for the switching horizon
’eSSESE’ with the associated torque and stator flux trajectories between their
respective upper and lower bounds. The neutral point potential is not shown.
The prediction horizon here isNp = 45 time-steps

at time-stepk+ℓ thus triggering the third switching event that
is followed by another extension step. We use the task ’e’ to
add an optional extension leg to the switching horizon. Using
’eSSESE’ as an example, three candidate switching sequences
are depicted in Fig. 1 along with their output trajectories.

B. Search Tree

The switching horizon induces a search tree as shown in
Fig. 2. Each node in the search tree is specified by the 6-tuple
{U,X, Y,E,N,A} defined as follows.

• A switching sequenceU is a sequence of three-phase
switch positionsu of length N starting at the current
time-stepk, i.e. U = [u(k), . . . , u(k + N − 1)]. An
admissibleswitching sequence meets the constraint (1e)
at every time-step, as well as other constraints, such as
additional switching constraints induced by the inverter
topology. Only admissible switching sequences are con-
sidered in MPDTC. Acandidatesequence yields output
trajectories that are at every time-step either feasible, or
point in the proper direction. Feasibility means that the
output variables lie within their corresponding bounds;
pointing in the proper direction refers to the case in

which an output variable is not necessarily feasible, but
the degree of the bounds’ violations decreases at every
time-step. These conditions must hold componentwise for
all output variables3.

• Associated with a switching sequence is the state se-
quenceX = [x(k + 1), . . . , x(k + N)], which is a se-
quence of state vectorsx that fully describes the evolution
of the drive from the initial statex(k) onwards when
applying the input sequenceU . The state vector typically
encompasses the four components of the machine fluxes
as well as the inverter’s neutral point potential(s).

• Similarly, the evolution of the drive’s outputs is described
by the output sequenceY = [y(k + 1), . . . , y(k + N)],
where y is composed of the torque, the stator flux
magnitude and the neutral point potential(s).

• The switching (energy) lossesE =
∑k+N−1

ℓ=k e(ℓ) are
the sum of the individual switching lossese(ℓ) in the
switching sequenceU . Their unit is Ws. Dividing them
by a time interval such as the length of the prediction
horizon, leads to the switching (power) lossesPsw with
the unit W.

• N denotes the lengths of the predicted sequencesU , X
and Y . It can be interpreted as the resulting prediction
horizon of variable length that is induced by the switching
horizon.

• A denotes the sequence of actions to be performed on
the node with the elements ofA being in{’S’, ’E’ }.

It follows that there is a direct correspondence between
switching sequences and nodes. Thus both terms will be
used interchangeably in the sequel. Nodes either refer to
incomplete or to complete solutions (switching sequences)of
the optimization problem. More specifically, we distinguish
between the following nodes.

• The root node is the initial node at time-stepk. It
is initialized with {∅, ∅, ∅, 0, 0, ’SSESE’}, assuming the
switching horizon ’SSESE’ and∅ denoting an empty
sequence. In Fig. 2 it is depicted as a (blue) oval.

• Bud nodesare incomplete candidateswitching sequences
with actions left that induce child nodes. The correspond-
ing output sequences fulfill the candidacy requirement (so
far). They are also depicted as a (blue) ovals.

• There are two types ofleaf nodes. (i) Complete candidate
switching sequence that have been fully computed with
no actions remaining and candidacy fulfilled at every
time-step. They are shown as a (green) stars. (ii)Non-
candidate switching sequences, which are not further
considered, and denoted by an inverted (red) T.

Pairs of nodes connected by switching transitions are shown
as thin (black) lines, while extrapolation or extension steps are
depicted as thick (blue) lines.

C. MPDTC Algorithm with Full Enumeration

In its basic form stated above, the MPDTC algorithm
enumerates all admissible switching sequences that are can-
didate sequences and computes their corresponding output

3As an example, consider the case where the torque is feasible,the stator
flux points in the proper direction and the neutral point potential is feasible.
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Fig. 2: Example of a search tree induced by the switching horizon ’SSESE’
with (blue) ovals denoting the root and bud nodes, (green) stars being complete
candidate switching sequences, and inverted (red) Ts marking non-candidate
switching sequences. Switching transitions ’S’ are shown as thin (black) lines,
while extrapolation / extension steps ’E’ are thick (blue) lines. The discrete-
time axis is shown on the left along with the prediction horizon Np

trajectories and their cost. Hence all nodes in the search
tree are visited that belong to candidate switching sequences.
Specifically, at time-stepk with the sampling intervalTs, the
MPDTC algorithm computesu(k) according to the following
procedure, which was presented in [6] and is slightly modified
here to facilitate the addition of branch and bound techniques
in the next section.

1) Initialize the root node and push it onto the stack.
2a) Take the top nodei with a non-emptyAi from the stack.
2b) Read out the first element fromAi and remove it. For

’S’, branch on all admissible switching transitions and
add the (incremental) switching lossesEi = Ei + e(ℓ)
caused by switching at the time-stepℓ. For ’E’, extend
the trajectories either by extrapolation as detailed in [2]
or by using the internal controller model [6].

2c) Keep only the nodes that are candidates and push them
onto the stack.

2d) Stop if there are no more nodes with non-emptyAi.
3) Compute for each (candidate) leaf nodei ∈ I, with I

being an index set, the associated costci = Ei/(NiTs),
which targets the switching losses.

4) Choose the leaf nodei = arg mini∈I ci with the mini-
mal cost and read out the associated switching sequence
U∗ = Ui(k).

5) Apply (only) the first switch positionu(k) = u∗ of this
sequence and execute the above procedure again at the
next time-stepk + 1.

If the switching frequency is to be minimized, replaceEi by
the number of commutationsSi, add the incremental number
of commutations in Step 2b when switching, and use in Step
3 the costci = Si/(NiTs), which approximates the average
switching frequency over the length of the prediction horizon.

IV. COMPUTATIONALLY EFFICIENT MPDTC

The problem at hand is to devise a modified algorithm that
is computationally efficient thus allowing the implementation
of MPDTC with long switching horizons on today’s available
computational hardware. This implies that the worst-case
computational effort has to be reduced by at least an order of
magnitude. This can be achieved by using tailored optimiza-
tion techniques that reduce the number of nodes visited in the
search tree. These techniques include the so called branch and
bound methodology that is used in mathematical programming
to solve combinatorial and (mixed) integer programs [9], [12].

A. Bounds on the Cost

First of all, note that the evolution of the cost associated with
a switching sequence over time is neither smooth nor mono-
tonically increasing or decreasing. Instead, at time-instants
when switching transitions occur the cost is increased in a step-
like fashion. As the sequence is extended the cost decreases
smoothly.

Example 2:As an example consider the switching horizon
’SESE’ and the cost evolution of the switching sequence 1
over time, which is given by the straight (green) line in
Fig. 3. The initial cost is zero. At time-stepsk and k + 7
switching transitions occur that carry the switching energy
lossese1 and e2, respectively. Between the switching events,
the trajectories are extended, which reduces the cost (switching
power losses) by distributing the switching energy losses over
a longer time-interval. In this example, sequence 1a is an
incomplete candidate switching sequence with the actions ’SE’
remaining. At k + 7 more than one admissible switching
transition is feasible. Another transition with the energylosses
e3 leads to the dashed (blue) sequence 2. Sequences 1 and 2
are complete candidate switching sequences with no actions
remaining, whose first parts coincide with sequence 1a.

Before proceeding, some terminology has to be introduced.
In this, the indexi refers to thei-th switching sequence (node).

• ci = Ei/(NiTs) is the cost associated with a (complete)
candidate switching sequence, whereEi is the sum of the
switching energy losses.

• c∗ is the optimal (minimal) cost of the complete candidate
switching sequences.

• c̄ denotes the incumbent minimal cost, i.e. the smallest
cost found so far for all complete candidate switching
sequences. This cost constitutes an upper bound on the
optimal cost to be found, i.e.̄c ≥ c∗.

• Nmax is an upper bound to the (maximal) length of the
prediction horizon, i.e. it is assumed thatNi ≤ Nmax for
all i.

• ci = Ei/(NmaxTs) is a lower bound on the cost of the
i-th incomplete switching sequence, whereEi is the sum
of the switching energy losses incurred so far for this
sequence4.

• c refers to the minimum of all lower boundsci. It holds
that c ≤ c∗.

4Since Ei increases monotonically as thei-th switching sequence is
extended andNi ≤ Nmax by definition, it holds thatci ≤ ci, i.e. ci always
underestimates the costci.

July 2, 2010 ECCE 2010



5

B. The Concept of Branch and Bound

The concept of branch and bound is introduced in an
intuitively accessible way by considering again Example 2.

Example 3: In Fig. 3 the cost associated with the complete
candidate sequence 1 isc1 = (e1+e2)/(N1Ts), with N1 = 12
time-steps. The incumbent minimal cost isc̄ = c1. Having
computed the second switching transition atk + 7 with
the energy lossese3, one can try to find a proofbefore
extending sequence 2 that this sequence, when completed,
will only lead to a suboptimal solution that is inferior to the
incumbent optimum. This proof can be found by computing
the lower bound on the cost for sequence 2, which is given by
c2 = (e1 + e3)/(NmaxTs). If c2 is equal to or exceeds̄c the
remainder of this sequence can be discarded and removed from
the search tree. If this is not the case, however, the sequence
should be further considered and in this case extended. The
same applies to the dash-dotted (red) sequence 3. Having
computed the first switching transition with the lossese4,
the whole subtree starting from this node can be discarded
if c4 = e4/(NmaxTs) ≥ c̄.

More formally, the branch and bound algorithm tailored
to the MPDTC problem setup is as follows. Compute the
switching sequences and the associated output trajectories and
costs iteratively as the tree is explored from its root node to
the terminal nodes (leaves). Assume that the bud nodei, which
corresponds to the incomplete candidate switching sequence
Ui, has the minimum cost incurred so far. Discard the bud node
and prune the attached unexplored part of the tree ifci ≥ c̄. If a
candidate switching sequence is completed compute its costci

and update the incumbent minimal cost if required by setting
c̄ = min(c̄, ci). The algorithm summarized in Sect. III-C can
be easily augmented by the branch and bound methodology
as will be shown in Sect. IV-D.

Example 4:Consider one instance of the combinatorial
optimization problem, arising for example from a three-level
inverter and a switching horizon of ’eSSESE’. The induced
search tree contains 730 nodes. Using full enumeration, all
730 nodes are explored. As shown in Fig. 4(a) the incumbent
minimal cost drops fairly quickly, but the minimal cost of
2.25 kW is only found after having almost fully explored the
search tree. The optimalu∗, which is the first element in the
optimal switching sequenceU∗, is found already after having
explored 221 nodes. To obtain a certificate that this is indeed
the optimalu∗ the search tree has to be fully explored.

In contrast to that, with branch and bound, promising nodes
are explored first and clearly inferior parts of the search tree
are removed. As a result, the optimal costc∗ and the optimal
u∗ are found significantly earlier – in this example already
after 61 steps. Some additional nodes need to be explored
to prove that this is indeed the optimum. This certificate is
obtained after a total of 140 nodes visited.

A few remarks about branch and bound. This algorithm
does not impact optimality, i.e. the same optimal switching
sequence is found as with full enumeration. In general, branch
and bound drastically reduces theaveragecomputation time
when compared to full enumeration. Yet, in the worst case,
despite branch and bound techniques, a full enumeration of
the search tree might be required to find not only the optimum

1a
1
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3a

3

4

k k+2 k+4 k+6 k+8 k+10 k+12 k+Nmax

e1 e2

e3

e4
e5

e6

time

cost

c̄

Fig. 3: Cost evolution (W) of switching sequences over time, were the ei

denote switching energy losses (Ws). The incumbent minimal costc̄ = (e1 +
e2)/(12Ts) refers to sequence 1, andNmax = 14 denotes the upper bound
on the expected length of the prediction horizon

but also a proof (certificate) that the optimum has indeed been
found. Such a certificate is provided when no more bud nodes
exist with ci < c̄. The optimal switching sequence is usually
found a lot quicker. Note that we only require the first element
of this sequence, i.e. the optimalu∗, which is found even
quicker, as indicated by the arrows in Fig. 4(a).

At every step during the optimization procedure the optimal
cost is upper and lower bounded byc ≤ c∗ ≤ c̄. As
the optimization proceeds, these bounds are tightened. They
provide information on how close the incumbent minimal cost
is to the optimum. This can be seen in Fig. 4(a), where the
upper thick line refers tōc, while the lower one corresponds to
c. Both lines converge to the optimal cost given by the dashed
(black) line.

Branch and bound works best if the upper and lower bounds
are tight. A tight upper bound̄c is achieved by finding a close
to optimal leaf node with a low cost during an early stage of
the optimization. To achieve this, depth-first search techniques
can be employed and the optimal switching sequence from
the previous time-stepk − 1 can be used to warm start the
optimization. A tight lower boundc is the result of a tight
upper bound on the maximal length of the prediction horizon.
During the optimization process, branching heuristics canhelp
to identify and to focus on the most promising nodes first.

C. Limiting the Maximal Number of Computations

In a practical controller implementation only a certain
number of computations can be performed within the sam-
pling interval, which is typically of a fixed length in time.
Therefore, it might be necessary to limit the maximal number
of computational steps and/or to impose an upper bound on the
computation time. Aborting the branch and bound optimization
before a certificate of optimality is obtained might lead to
suboptimal solutions, i.e. switching sequences that yielda
higher cost than the optimal sequence. Yet, as explained in
the last section, in most cases the optimum will have been
found already.

Since long prediction horizons lead to a better performance
(i.e. lower switching losses for the same distortion levels
and vice versa), MPDTC’s performance can be improved by
considering longer switching horizons, by imposing an upper
bound on the number of computations and by accepting that
the result is in some cases (slightly) suboptimal. This is in
contrast to the classic approach of using fairly short switching
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Fig. 4: Evolution of the optimal cost (kW) when solving one instance of the MPDTC optimization problem. (a) shows the incumbentminimal cost vs the
number of nodes visited, with the arrows indicating when the optimal u∗ is found. The thick cyan line refers to the minimumc of the lower boundsci. (b)
and (c) depict for every switching sequence the cost as a function of the time-step within the prediction horizon. Completecandidate switching sequences are
green, incomplete (i.e. pruned) candidate sequences are blue and non-candidate sequences are red. Note the logarithmic scaling of the cost in (b) and (c)

horizons, and to ensure that the search tree can be fully
enumerated in the time available and that the optimal solution
is thus found under all circumstances.

More specifically, one of the following stopping criteria can
be added to the MPDTC algorithm.

• An upper bound on the number of nodes to be explored
and/or the computation time available is imposed. The
optimization is halted if this number or time is exceeded,
and the switching sequence with the incumbent minimal
cost is accepted as the solution.

• Alternatively, one may run the optimization procedure for
as long as possible, e.g. until an interrupt is received to
stop it. This allows one to reduce idle processor time and
to rather spend this time on improving the incumbent
optimal solution.

One might also stop with a guarantee of closeness to
optimality. Choose an acceptable distance to optimality in
terms of the cost, e.g. 5%, and stop the search whenc ≥ 0.95c̄.

D. Computationally Efficient MPDTC Algorithm

In the sequel a computationally efficient version of the
MPDTC algorithm is presented that is based on a tailored
branch and bound technique to reduce the average computa-
tional burden. By adding the upper boundjmax on the number
of explored nodesj, the maximal computational burden is
limited, too.

1) Initialize the root node and push it onto the stack. Set
c̄ = ∞ and j = 0.

2a) Take the nodei with a non-emptyAi from the stack that
has the minimum costci.

2b) Read out the first element fromAi and remove it. For
’S’, branch on all admissible switching transitions and
add the (incremental) switching lossesEi = Ei + e(ℓ)
caused by switching at the time-stepℓ. For ’E’, extend
the trajectories either by extrapolation as detailed in [2]
or by using the internal controller model [6].

2c) Setj = j + #S for ’S’, where#S denotes the number
of switching transitions, and setj = j + 1 for ’E’.

2d) Keep only the nodes that are candidates.
2e) For leaf nodes: compute their costsci and updatēc =

min(c̄, ci). For bud nodes: compute the lower boundsci

on their costs and remove bud nodes withci ≥ c̄.

2f) Push the remaining nodes onto the stack.
2g) Stop if there are no more nodes with non-emptyAi on

the stack or ifj > jmax.
3) Compute for each (candidate) leaf nodei ∈ I, with I

being an index set, the associated costci = Ei/(NiTs).
4) Choose the leaf nodei with ci = c̄ and read out the

associated switching sequenceU∗ = Ui(k).
5) Apply (only) the first switch positionu(k) = u∗ of this

sequence and execute the above procedure again at the
next time-stepk + 1.

V. COMPUTATIONAL RESULTS

As a case study, consider a three-level voltage source in-
verter driving an electrical machine with a constant mechanical
load. A 3.3 kV and 50 Hz squirrel-cage induction motor rated
at2 MVA is used as an example for a commonly used medium-
voltage machine. The detailed parameters of the drive can
be found in [6]. At 60% speed with a 100% torque setpoint
the steady-state performance of DTC was compared with the
one of computationally efficient MPDTC for short and long
switching horizons.

For this comparison, a very accurate and detailed Mat-
lab/Simulink model of the drive was used, which was provided
by ABB to ensure a realistic simulation set-up. This model
includes an outer (speed) control loop that adjusts the torque
reference and the (time-varying) bounds on the torque accord-
ingly. The induction motor model includes the saturation of
the machine’s magnetic material and the changes of the rotor
resistance due to the skin effect. To run MPDTC, the DTC
look-up table was replaced by the computationally efficient
version of the MPDTC algorithm. The significance of such
simulations is underlined by the very close match between
the previous simulation results in [3], which were obtained
using the same model, and the experimental results in [8].

Using pu quantities, the comparisons are shown in Figs. 5
to 7. For MPDTC the torque and flux bounds were widened by
1.5% and 0.5%, respectively, to account for DTC’s imminent
violations of the bounds. As a result, DTC and MPDTC yield
similar current THDs, while for MPDTC with long horizons
the torque THD is slightly lower than for DTC, see Table I.

More importantly, with respect to DTC, MPDTC with the
fairly short switching horizon ’eSSE’ reduces the switching
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Fig. 5: Standard DTC, corresponding to the first row in Table I
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Fig. 6: Computationally efficient MPDTC with the switching horizon ’eSSE’, corresponding to the fifths row in Table I
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Fig. 7: Computationally efficient MPDTC with the switching horizon ’eSSESESE’, corresponding to the last row in Table I
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Fig. 8: Histogram of the computational burden (number of explored nodes) for MPDTC with the switching horizon ’eSSESESE’
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Fig. 9: Histogram of the number of nodes required to be explored to obtain the optimal costc∗ for MPDTC with the switching horizon ’eSSESESE’
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Controller settings Pred. horizon Nodes explored u∗ Performance
Scheme Sw. horizon Nmax jmax avg. max. avg. max. found [%] Psw [%] fsw [%] Is,THD [%] Te,THD [%]

DTC – – – – – – – – 100 100 100 100
MPDTC eSSE – – 26.6 96 112 277 100 57.3 71.2 103 98.4
MPDTC eSSE 100 – 25.7 92 86.9 275 100 57.3 71.2 103 98.4
MPDTC eSSE 50 – 25.6 96 64.3 249 97.4 57.7 73.4 103 102
MPDTC eSSE 50 50 22.0 97 43.6 50 92.2 58.3 74.1 104 103
MPDTC eSSESESE – – 98.2 150 3246 7693 100 37.9 48.9 97.0 92.0
MPDTC eSSESESE 150 – 95.2 150 1884 6806 100 37.9 48.9 97.0 92.0
MPDTC eSSESESE 110 – 92.5 150 1102 4756 96.7 40.9 50.0 99.5 92.2
MPDTC eSSESESE 110 600 88.0 152 483 600 92.1 38.6 51.4 97.3 94.0

TABLE I: Comparison of DTC with MPDTC and computationally efficient MPDTC with the upper boundsNmax and jmax on the horizon length and the
number of nodes explored, respectively. The fifths and sixthscolumns indicate the average and maximal lengths of the achieved prediction horizon. Columns
seven and eight state the number of explored nodes in the search tree, followed by the probability that the optimalu(k) is found at every control cycle. The
last four columns relate to the switching lossesPsw, switching frequencyfsw, current THDIs,THD and torque THDTe,THD using DTC as a baseline

losses by 40%. The standard MPDTC algorithm based on the
full enumeration of the search tree requires the exploration
of up to 277 nodes to achieve this result, as shown in the
second row in Table I. Using branch and bound techniques and
tighteningNmax almost halves the average number of nodes
visited. Yet, the maximal number of nodes explored remains
high. Limiting the number of computations by settingjmax =
50 leads to suboptimal results – in almost 8% of the cases a
suboptimalu(k) is computed, but this appears, at least in this
particular case, to barely affect the performance. As a result,
the maximal computational burden is reduced by 82% from
277 to 50 nodes explored.

For the long switching horizon ’eSSESESE’ the switching
losses are reduced by another 35% with respect to MPDTC
with ’eSSE’. This is achieved, as can be observed from
Fig. 7(c), by reducing the switching frequency by another
30% and by carefully redistributing the remaining switching
transitions along the time-axis. As a result, about half of the
transitions occur when the respective phase current and hence
the incurred switching losses are small. Note that the current
and torque distortions are not increased by doing this – instead,
they tend to get smaller.

However, the computational burden for MPDTC with full
enumeration is exorbitant with search trees featuring almost up
to 8000 nodes. Branch and bound with a tightNmax cuts down
the average computation time by two thirds, but a fairly small
upper bound on the number of explored nodes,jmax = 600, is
required to achieve an overall reduction of more than 90%. As
previously, the impact on the performance appears to be small.
Figs. 8 and 9 show the histograms of the computational burden
and the number of computational steps required to derive the
optimal cost, respectively. The (blue) vertical lines denote
percentiles, with the straight, dash-dotted and dashed lines
referring to the 50%, 95% and 99% percentiles. The effect
of branch and bound on the cost is particularly remarkable as
shown in Fig. 9(b).

VI. CONCLUSIONS

This paper proposed a modified version of the MPDTC
algorithm based on branch and bound techniques adopted from
mathematical programming. Using upper and lower bounds on
the optimal cost, suboptimal parts of the search tree can be
identified and pruned thus avoiding the full enumeration of the
tree, as it was required with the previous MPDTC algorithm.

Initial simulation results suggest that the worst-case com-
putational effort can be reduced by an order of magnitude.
In general, the longer the horizon the more significant is
the percentage-wise reduction of the computational burden
and thus the saving. This makes this scheme particularly
attractive for MPDTC with very long prediction horizons. The
techniques presented here are equally applicable to the recently
proposed adaptation of MPDTC to the current control problem,
Model Predictive Direct Current Control (MPDCC) [11].

It is expected that the branch and bound method will enable
the implementation of MPDTC with long switching horizons
on today’s available computational hardware thus allowing
one to take full advantage of MPDTC’s performance benefits.
Smart branching heuristics are expected to further cut down
the computation time.
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