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Abstract—For medium-voltage drives Model Predictive Direct switching losses and/or the current or torque Total Harmoni
Torque Control (MPDTC) significantly reduces the switching Distortions (THDs) are further lowered [7]. However, long
losses and/or the harmonic distortions of the torque and stator switching horizons lead to a combinatorial explosion of the

currents, when compared to standard schemes such as direct b f admissibl itchi o b lored
torque control or pulse width modulation. Extending the pre- NUMRer of admissible swilching sequences o be explored.

diction horizon in MPDTC further improves the performance. SO far, to find the optimal switching sequence, all admis-
At the same time the computational burden is greatly increased sible sequences were investigated by the MPDTC algorithm
due to the combinatorial explosion of the number of admissible using full enumeration. This brute-force concept becomes
switching sequences. Adopting techniques from mathematical computationally very expensive and thus prohibitive fargo

programming, most notably branch and bound, the number of itching hori A It it h v b ible t
switching sequences explored can be significantly reduced bySWILCNING Norizons. As a result, 1t has only been possible 1o

discarding suboptimal sequences. This reduces the computationimplement and run MPDTC on a control hardware platform
time by an order of magnitude thus enabling MPDTC with long when restricting oneself to very short switching horizo8p [

prediction horizons to be executed on today’s available hardware.  Thjs shortcoming motivates this paper, which presents-tech
Index Terms—Model predictive control, electrical drive con- niques to drastically reduce the numb?r of switching seqeen
trol, branch and bound, medium-voltage drive, medium-voltage €XPlored and thus to lessen MPDTC’s computational burden.
converter The first technique, branch and bound, uses upper and lower
bounds on the objective function to discard large parts ef th
I. INTRODUCTION search tree [9]. As a result, the optimal solution is found
Direct Torque Control (DTC) is ABB’s method of choiceqmc.ke.r and the;veragenumber of compu_tations Is reduged.
for controlling the motor’s torque and flux in medium voltag 0 limit the maximalnumber of computations, the optimiza-
drive applications, with a typical product example being th lon procedure can be_ stopped if the nu_mber Of comp_utatlonal
ACS 6000 drive [1]. Over the past decade DTC has demo teps exceeds a certain threshold. Despite leading totibgn

strated a high degree of reliability, robustness and a mel_subopglmaltlzesults% if the thTEShO'd" |SAI(;hosetn clarefuﬂye t
performance during transients. The switching losses, teme 'Tpa(.:f fhn € pertol;me:ncel Its' smail. ﬁ.e.rnatllve ?/ on? Tr?y
which represent a major part of the overall losses of theedriv> 0P "' € current best soiution 15 sufliciently close 1o the

can be substantial in DTC. OF’“T““““-. - .
As shown in [2], [3], the switching losses can be sig- Simulation results indicate that these techniques reduee t

nificantly reduced through Model Predictive Direct Torqugomputation time by an order of magnitude when compared

Control (MPDTC), which is based on the concept of Modé full enumeration. MPDTQ with long switching horizon; is
Predictive Control (MPC) [4], [5]. The initial version of thus expected to become implementable on today’s available

MPDTC is available in two forms with switching horizonsCONtrol hardware so as to take full advantage of MPDTC's

of one or two steps [2], [3] and prediction horizons in th@€rformance benefits. o

range of a few dozen steps. MPDTC was generalized in_The paper is struqtured as follows. After rewsm_ng the

[6] allowing for an extended switching horizon, which jdrive control problem in Sect. II,_Sect. 11 briefly recfapates

composed of multiple hinges (groups of switch transitiond)€ key concepts of MPDTC, introduces the notion of the

linked by several extrapolation or extension segmentss TKj€arch tree and presents a slightly modified MPDTC algorithm

enables prediction horizons of 100 steps and more, despligt IS solved using full enumeration. Sect. IV proposes a

relatively short switching horizons. computationally efficient version of MPDTC based on branch
The computational complexity of MPDTC is proportionaf"d bound and an upper bound on the number of computa-

to the number of admissible switching transitions at eveHPns. Computational results are presented in Sect. V befor

time-step to the power of the number of switching evenf®nclusions are drawn in the final Sect. VI.

considered in the prediction horizon. The former, the numbe

of switching transitions per time-step, is determined bg th Il. CONTROL PROBLEM

inverter topology — most prominently by the number of voitag

levels available. The latter, the number of switching esent,

is set by the switching horizon. Long switching horizon

greatly boost the performance of MPDTC, in the sense that t

The DTC control objectives are to keep the so called output
ariables, namely the electromagnetic torque, the length (
agnitude) of the stator flux vector and the neutral point
Stential(s), within given hysteresis bounds. In MPDT@&sth

T. Geyer is currently with the Department of Electrical andv®aiter Engi- ObjeCtiveS are inherited from DTC. In addition, the inverte
neering, The University of Auckland, New Zealand; e-mageyer@ieee.org l0sses are to be minimized. An indirect way of achieving ihis
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to minimize the (short-term) average switching frequerfly [ with Aw(¢) = u(¢) — u(¢ — 1). These constraints have to be
[3] or to directly minimize the switching losses [6], [L0].  met at every time-step within the prediction horizon.

The MPC controller is endowed with a discrete-time model
of the drive that enables it to anticipate the impact of its
decisions. The control objectives are mapped into an dabect To solve the closed-form optimization problem (1) is chal-
function that yields a scalar cost (here the short-termchiviy  |enging from a computationally point of view even for pre-
losses) that is to be minimized. At every time-step, the cofiiction horizons of modest length. Solving it for reasoyabl
troller computes a sequence of switch positions over aicertgong horizons appears to be impossfl&ince this is a
time-interval, the prediction horizon, that entails thenmmial combinatorial optimization problem, it is well-known thiat
switching losses over this interval. Out of this sequenody o the worst case all switching sequences need to be enumerated
the first gating signal is applied at the current samplingginis  and evaluated to find the optimum.
and the optimization step is repeated with new measurements
at the next sampling instant thus providing feedback. A. The Concept of the Switching Horizon

Writing the above control problem as a closed-form opti- one attractive solution is to consider switching transisio
mization problem leads to only when the outputs are close to their respective bourids
i.e. when switching is imminently required to keep the otsgpu

IIl. MPDTC WITH FULL ENUMERATION

J*(z(k)) = min Z Esw(a(f), u(f),u(¢ — 1)) (1a) Within their bounds. When the outputs are well within their
Ulk) Np = bounds the switch positions are frozen and switching is not
s.t.z(0+1) = Az(¢) + Bu(l) (1b) considered. This is in line with the control objective in (1)

and greatly reduces the number of switching sequences to be
y(l) = g(=(0)) (1) considered and thus the computational burden.
y() ey (1d)  To achieve this, three key concepts were introduced in [2],
u(f) €U, max|Au(f)| <1 (1e) [3], [6] that characterize Model Predictive Direct Torque
VO=k, ..., k+N,—1, (1) Control (MPDTC).

1) The formulation of the optimization problem in an

with J*(z(k)) denoting the minimum of the objective function
J as a function of the state vectark) at the current time-
instantk. Often, the stator and rotor flux vectors represented
in the i reference frame are used as state vectalong with

the neutral point potential(s). The motor speed is assumed t
be constant within the prediction horizon and is thus not par
of the state vector but rather a parameter of the model (1b).
The sequence of control input§ k) = [u(k),...,u(k+N,—

1)] over the prediction horizoiV, represents the sequence of
inverter switch positions the controller has to decide ufdre
objective function represents the sum of the switchingdess
over the prediction horizon divided by the horizon length —
it thus approximates the short-term average switchingelss
Note that the instantaneous switching (energy) légg at
time-instant? is a function of the stator currerit(¢), which

in turn linearly depends on the state vect¢f). The switching
loss Esw(¢) also depends on the inverter switching transitio
at time-step?. The latter can be deduced fromi¢) andw (¢ —
1). An indirect (and less effective) way of minimizing the
switching losses is to minimize the number of commutation
i.e. the device switching frequency.

The objective function is minimized subject to the dynam
cal evolution of the drive represented in state-space foitin w
the matricesA and B, which are of appropriate form [2],
[11]. The drive’s output vectoy represents the torque, stator

3)

flux magnitude and neutral point potential(s), which areeo b
kept within their respective bounds given by the 3&tThe
constraint (1e) limits the control input to the integer values
U available for the specific inverter topologySwitching in
a phase by more than one step up or down is typically not,
allowed and can be inhibited by the second constraint in (1g)

open form For every admissible switching sequence the
corresponding output trajectories are computed forward
in time.

2) Between the switching events the output trajectories are

computed using the model (1b) and (1c), to which we
refer as arextensiorstep, or they are extrapolated in an
approximate manner, which is a so calledrapolation
step. Typically, quadratic extrapolation is used, even
though linear extrapolation is often sufficiently accurate
The set of admissible switching sequences is controlled
by the so calledswitching horizonwhich is composed

of the elements 'S’ and 'E’ that stand for 'switch’ and
‘extrapolate’ (or more generally 'extend’), respectively

Is important to distinguish between thssvitching horizon
(the number of time-steps within the horizon when switching
Hansitions are considered, i.e. the degrees of freedothjren
prediction horizon(the number of time-steps MPDTC looks
into the future). Between the switching instants the switch
gositions are frozen and the drive behavior is extrapolateill
a’ hysteresis bound is hit. The concept of extrapolationsgive
IJr_ise to long prediction horizons (typically 50 to 100 time-
steps), while the switching horizon is very short (usualhe o
to four switching events are considered).

Example 1:As an example for a switching horizon consider
'SSESE’, which stands for switching at time-stépandk + 1
and subsequently extending the trajectories until one aemo
output trajectories cease to be feasible (i.e. within thenbs)
and/or pointing in the proper direction. Assume this hagpen

Using a three-level inverter as an example, for a given svptditionw(¢),
number of admissible future switch positiom& + 1) is on average 12

and thus less than 27 due to (1e). NeverthelessMpr= 75 for example,

IFor a three-level inverter we havel =

. {-1,0,1}3 and U =
{-2,-1,0,1,2}3 for a five-level inverter.
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the number of possible switching sequenéésamounts to12%V» = 1030,
which is equal to the estimated number of atoms in the observaiierse.
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which an output variable is not necessarily feasible, but
the degree of the bounds’ violations decreases at every
time-step. These conditions must hold componentwise for
all output variabled

o Associated with a switching sequence is the state se-
qguenceX = [z(k + 1),...,z(k + N)|, which is a se-
guence of state vectossthat fully describes the evolution

Te max

Temin N Ra10 F120 F30 Rad0 k150 of the drive from the initial stater(k) onwards when
_ o applying the input sequendéé. The state vector typically
(a) Predicted torque trajectories encompasses the four components of the machine fluxes
as well as the inverter’s neutral point potential(s).
W maxf « Similarly, the evolution of the drive’s outputs is descdbe

by the output sequencE = [y(k + 1),...,y(k + N)],
where y is composed of the torque, the stator flux
magnitude and the neutral point potential(s).

« The switching (energy) losseB = >V " ¢(¢) are
the sum of the individual switching losse$/) in the
switching sequencé/. Their unit is Ws. Dividing them

\I’s,min

k F+10 k+20 k+30 k+40 k150 by a time interval such as the length of the prediction
horizon, leads to the switching (power) lossBg, with
the unit W.

(b) Predicted stator flux trajectories

o N denotes the lengths of the predicted sequeriteX
At _ PN andY. It can be interpreted as the resulting prediction
, 80 m i ! » horizon of variable length that is induced by the switching
o o—o horizon.
o A denotes the sequence of actions to be performed on
the node with the elements of being in{'S’, 'E’ }.

) cAp— It follows that there is a direct correspondence between
switching sequences and nodes. Thus both terms will be
used interchangeably in the sequel. Nodes either refer to

(c) Predicted switching sequences incomplete or to complete solutions (switching sequenoés)

Fig. 1. Three candidate switching sequences for the swigchiorizon the optimization pr.Oblem' More specifically, we distinduis

'eSSESE' with the associated torque and stator flux trajiectdetween their Detween the following nodes.

respective upper and lower bounds. The neutral point pateatnot shown. « The root nodeis the initial node at time-steg. It

The prediction horizon here &7, = 45 time-steps is initialized with {@7 0.0,0,0, ’SSESE}, assuming the
switching horizon 'SSESE’ and) denoting an empty
sequence. In Fig. 2 it is depicted as a (blue) oval.

o Bud nodesreincomplete candidatswitching sequences

with actions left that induce child nodes. The correspond-

ing output sequences fulfill the candidacy requirement (so
far). They are also depicted as a (blue) ovals.

o There are two types déaf nodes(i) Complete candidate
switching sequence that have been fully computed with
The switching horizon induces a search tree as shown in no actions remaining and candidacy fulfilled at every

Fig. 2. Each node in the search tree is specified by the 6-tuple time-step. They are shown as a (green) stars.N@p-

{U,X,Y,E,N, A} defined as follows. candidate switching sequences, which are not further
« A switching sequencd/ is a sequence of three-phase  considered, and denoted by an inverted (red) T.

switch positionsu of length N starting at the current  pairs of nodes connected by switching transitions are shown
time-stepk, i.e. U = [u(k),...,u(k + N — 1)]. An  as thin (black) lines, while extrapolation or extensiorpstare
admissibleswitching sequence meets the constraint (1ekpicted as thick (blue) lines.

at every time-step, as well as other constraints, such as

additional switching constraints induced by the inverteé€. MPDTC Algorithm with Full Enumeration

topology. Only admissible switching sequences are con-y, jis pasic form stated above, the MPDTC algorithm

sidered in MPDTC. Acandidatesequence yields output e merates all admissible switching sequences that are can

trajectories that are at every time-step either feasible, §yate sequences and computes their corresponding output
point in the proper direction. Feasibility means that the

Ouj[pL.Jt Va!riables lie Within thgir corresponding bound.S; 3As an example, consider the case where the torque is featfiblestator
pointing in the proper direction refers to the case iflux points in the proper direction and the neutral point pit is feasible.

—okR Ror —oe
— —T T T
80
n

k+10 k+20 k+30 k+40 k+50

k

at time-stepk 4 ¢ thus triggering the third switching event that
is followed by another extension step. We use the task 'e’ to
add an optional extension leg to the switching horizon. gsin
'eSSESE’ as an example, three candidate switching segsience
are depicted in Fig. 1 along with their output trajectories.

B. Search Tree

July 2, 2010 ECCE 2010



IV. COMPUTATIONALLY EFFICIENTMPDTC

krlr The problem at hand is to devise a modified algorithm that

is computationally efficient thus allowing the implemerdat

of MPDTC with long switching horizons on today’s available
computational hardware. This implies that the worst-case
computational effort has to be reduced by at least an order of
magnitude. This can be achieved by using tailored optimiza-
tion techniques that reduce the number of nodes visiteden th
search tree. These techniques include the so called brawch a
bound methodology that is used in mathematical programming
to solve combinatorial and (mixed) integer programs [92][1

k+2+
k+31

k+dt

A. Bounds on the Cost

First of all, note that the evolution of the cost associatétl w
a switching sequence over time is neither smooth nor mono-
tonically increasing or decreasing. Instead, at timeaimist
R x when switching transitions occur the cost is increased tepxs
v like fashion. As the sequence is extended the cost decreases

smoothly.
Fig. 2: Example of a search tree induced by the switching bariSSESE’ . ; At ;
with (blue) ovals denoting the root and bud nodes, (greem$ &teing complete Example 2:As an example consider the SWItChIng horizon

candidate switching sequences, and inverted (red) Ts ngarion-candidate 'SESE’ and the cost evolution of the switching sequence 1
switching sequences. Switching transitions 'S’ are shosvthan (black) lines, over time, which is gi\/en by the straight (green) line in
while extrapolation / extension steps 'E’ are thick (bluekek. The discrete- e ; .
time axis is shown on the left along with the prediction honizy, Flg. 3'_ The |n|t.|5.1| cost is zero. At time stel:island. k+7
switching transitions occur that carry the switching eperg
. , ) ) lossese; andes, respectively. Between the switching events,
trajectories and their cost. Hence all nodes in the seargf trajectories are extended, which reduces the cosofsni
tree are visited that belong to candidate switching seq&nc,qer losses) by distributing the switching energy losses o
Specifically, at time-stepy with the sampling interval’s, the 5 |onger time-interval. In this example, sequence 1a is an
MPDTC algorithm computes(k) according to the following incomplete candidate switching sequence with the actiSgs ’
procedure, which was presented in [6] and is slightly modifigemaining. Atk + 7 more than one admissible switching
here to facilitate the addition of branch and bound techesqui ansition is feasible. Another transition with the enelgsses
in the next section. es leads to the dashed (blue) sequence 2. Sequences 1 and 2
1) Initialize the root node and push it onto the stack. ~are complete candidate switching sequences with no actions

2a) Take the top nodewith a non_emptyAi from the stack. remaining, Whose first pal’tS COinCide W|th Sequence la.
2b) Read out the first element from; and remove it. For ~ Before proceeding, some terminology has to be introduced.
'S’ branch on all admissible switching transitions andn this, the index refers to the-th switching sequence (node).

add the (incremental) switching lossés = E; + e(/) o ¢; = E;/(N;Ty) is the cost associated with a (complete)
caused by switching at the time-stépFor 'E’, extend candidate switching sequence, whéteis the sum of the
the trajectories either by extrapolation as detailed in [2]  switching energy losses.
or by using the internal controller model [6]. « c*is the optimal (minimal) cost of the complete candidate
2c) Keep only the nodes that are candidates and push them switching sequences.
onto the stack. « ¢ denotes the incumbent minimal cost, i.e. the smallest
2d) Stop if there are no more nodes with non-emgty cost found so far for all complete candidate switching
3) Compute for each (candidate) leaf nade Z, with 7 sequences. This cost constitutes an upper bound on the
being an index set, the associated agst E;/(N;Ty), optimal cost to be found, i.e > c*.
which targets the switching losses. e Nmax IS an upper bound to the (maximal) length of the
4) Choose the leaf node= arg min;c7 ¢; with the mini- prediction horizon, i.e. it is assumed thislt < Npyax for
mal cost and read out the associated switching sequence all i.
U* =U;(k). e ¢; = E;/(NmaxIs) is a lower bound on the cost of the
5) Apply (only) the first switch positiom(k) = u* of this i-th incomplete switching sequence, whéfgis the sum
sequence and execute the above procedure again at the of the switching energy losses incurred so far for this
next time-stepk + 1. sequence
o c refers to the minimum of all lower bounds. It holds

If the switching frequency is to be minimized, replaggby
the number of commutationS;, add the incremental number
of commutations in Step 2b when switching, and use in Step, _. . : . _— .

Since E; increases monotonically as theth switching sequence is

3 t_he POStCi = Si/(NiTs), which approximates.th_e aver_ageextended andV; < Nmax by definition, it holds that; < ¢;, i.e. ¢; always
switching frequency over the length of the prediction honiz underestimates the cost.

thatc < c*.

July 2, 2010 ECCE 2010



B. The Concept of Branch and Bound cost

The concept of branch and bound is introduced in an
intuitively accessible way by considering again Example 2.

Example 3:In Fig. 3 the cost associated with the complete
candidate sequence lds= (e; +e2)/(N:Ty), with N = 12
time-steps. The incumbent minimal costds= ¢,. Having
computed the second switching transition /at+ 7 with
the energy losseg;, one can try to find a proobefore _ |,
extending sequence 2 that this sequence, when completed, —
will only lead to a suboptimal solution that is inferior toeth k k+2
incumbent optimum. This proof can be found by computingg. 3: Cost evolution (W) of switching sequences over timerewthe e;
the lower bound on the cost for sequence 2, which is given ggnote switching energy losses (Ws). The incumbent minimalaces{e; +

. €3)/(12T's) refers to sequence 1, adnax = 14 denotes the upper bound
Co = _(el + 63)/_(Nmasz)' If ¢, is qual to or exceedsthe . 7ine expected length of the prediction horizon
remainder of this sequence can be discarded and removed from
the search tree. If this is not the case, however, the sequepgt also a proof (certificate) that the optimum has indeed bee
should be further considered and in this case extended. Fb@nd. Such a certificate is provided when no more bud nodes
same applies to the dash-dotted (red) sequence 3. Havégst with ¢, < & The optimal switching sequence is usually
computed the first switching transition with the lossas found a lot quicker. Note that we only require the first elemen
the whole subtree starting from this node can be discardgflthis sequence, i.e. the optimal, which is found even
if ¢, = eq/(Nmaxls) > ¢ quicker, as indicated by the arrows in Fig. 4(a).

More formally, the branch and bound algorithm tailored At every step during the optimization procedure the optimal
to the MPDTC problem setup is as follows. Compute theéost is upper and lower bounded hy < ¢* < & As
switching sequences and the associated output trajextamié the optimization proceeds, these bounds are tighteneds The
costs iteratively as the tree is explored from its root namle provide information on how close the incumbent minimal cost
the terminal nodes (leaves). Assume that the bud modich s to the optimum. This can be seen in Fig. 4(a), where the
corresponds to the incomplete candidate switching seguemper thick line refers ta, while the lower one corresponds to
U, has the minimum cost incurred so far. Discard the bud nogeBoth lines converge to the optimal cost given by the dashed
and prune the attached unexplored part of the tregif c. Ifa  (black) line.
candidate switching sequence is completed compute its:cost Branch and bound works best if the upper and lower bounds
and update the incumbent minimal cost if required by settirge tight. A tight upper bound is achieved by finding a close
¢ = min(¢, ¢;). The algorithm summarized in Sect. llI-C cano optimal leaf node with a low cost during an early stage of
be easily augmented by the branch and bound methodolagg optimization. To achieve this, depth-first search taphes
as will be shown in Sect. IV-D. can be employed and the optimal switching sequence from

Example 4:Consider one instance of the combinatoriathe previous time-step — 1 can be used to warm start the
optimization problem, arising for example from a threeelev optimization. A tight lower bound: is the result of a tight
inverter and a switching horizon of 'eSSESE'. The inducedpper bound on the maximal length of the prediction horizon.
search tree contains 730 nodes. Using full enumeration, Blliring the optimization process, branching heuristics loalp
730 nodes are explored. As shown in Fig. 4(a) the incumbebtidentify and to focus on the most promising nodes first.
minimal cost drops fairly quickly, but the minimal cost of o ) )
2.25kW is only found after having almost fully explored th&- Limiting the Maximal Number of Computations
search tree. The optimal*, which is the first element in the In a practical controller implementation only a certain
optimal switching sequendg™, is found already after having number of computations can be performed within the sam-
explored 221 nodes. To obtain a certificate that this is iddepling interval, which is typically of a fixed length in time.
the optimalu* the search tree has to be fully explored. Therefore, it might be necessary to limit the maximal number

In contrast to that, with branch and bound, promising node$ computational steps and/or to impose an upper bound on the
are explored first and clearly inferior parts of the searel tr computation time. Aborting the branch and bound optimarati
are removed. As a result, the optimal costand the optimal before a certificate of optimality is obtained might lead to
u* are found significantly earlier — in this example alreadguboptimal solutions, i.e. switching sequences that y&ld
after 61 steps. Some additional nodes need to be explotégher cost than the optimal sequence. Yet, as explained in
to prove that this is indeed the optimum. This certificate ihe last section, in most cases the optimum will have been
obtained after a total of 140 nodes visited. found already.

A few remarks about branch and bound. This algorithm Since long prediction horizons lead to a better performance
does not impact optimality, i.e. the same optimal switchin@.e. lower switching losses for the same distortion levels
sequence is found as with full enumeration. In general,diranand vice versa), MPDTC’s performance can be improved by
and bound drastically reduces thgeragecomputation time considering longer switching horizons, by imposing an uppe
when compared to full enumeration. Yet, in the worst casbound on the number of computations and by accepting that
despite branch and bound techniques, a full enumerationtbé result is in some cases (slightly) suboptimal. This is in
the search tree might be required to find not only the optimucentrast to the classic approach of using fairly short gvinig

k4 k+6
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a) Full enumeration (thin line) vs branch and bound )

gtrZick line) ( ) (b) Full enumeration (c) Branch and bound

Fig. 4: Evolution of the optimal cost (kW) when solving one arste of the MPDTC optimization problem. (a) shows the incumbenimal cost vs the
number of nodes visited, with the arrows indicating when thtneal «* is found. The thick cyan line refers to the minimunof the lower bounds:;. (b)
and (c) depict for every switching sequence the cost as gifumof the time-step within the prediction horizon. Completandidate switching sequences are
green, incomplete (i.e. pruned) candidate sequences ageahlli non-candidate sequences are red. Note the logaritealingsof the cost in (b) and (c)

horizons, and to ensure that the search tree can be fullgf) Push the remaining nodes onto the stack.
enumerated in the time available and that the optimal smiuti 2g) Stop if there are no more nodes with non-empgtyon

is thus found under all circumstances. the stack or ifj > jmax
More specifically, one of the following stopping criterianca  3) Compute for each (candidate) leaf node Z, with 7
be added to the MPDTC algorithm. being an index set, the associated egst E;/(N;Ts).

« An upper bound on the number of nodes to be explored4) Choose the leaf nodewith ¢; = ¢ and read out the
and/or the computation time available is imposed. The  associated switching sequendé = U, (k).
optimization is halted if this number or time is exceeded, 5) Apply (only) the first switch positiom(k) = v* of this
and the switching sequence with the incumbent minimal ~ sequence and execute the above procedure again at the
cost is accepted as the solution. next time-stepk + 1.

« Alternatively, one may run the optimization procedure for
as long as possible, e.g. until an interrupt is received to
stop it. This allows one to reduce idle processor time andAs a case study, consider a three-level voltage source in-
to rather spend this time on improving the incumberverter driving an electrical machine with a constant meaan
optimal solution. load. A 3.3kV and 50 Hz squirrel-cage induction motor rated

One might also stop with a guarantee of closeness #2MVA s used as an example for a commonly used medium-

optimality. Choose an acceptable distance to optimality ¥pltage machine. The detailed parameters of the drive can

terms of the cost, e.g. 5%, and stop the search whern.95c. e found in [6]. At 60% speed with a 100% torque setpoint
) . _ the steady-state performance of DTC was compared with the

D. Computationally Efficient MPDTC Algorithm one of computationally efficient MPDTC for short and long

In the sequel a computationally efficient version of thewitching horizons.

MPDTC algorithm is presented that is based on a tailoredFor this comparison, a very accurate and detailed Mat-
branch and bound technique to reduce the average compisg®/Simulink model of the drive was used, which was provided
tional burden. By adding the upper bougghx on the number by ABB to ensure a realistic simulation set-up. This model
of explored nodesj, the maximal computational burden isincludes an outer (speed) control loop that adjusts theutorq

limited, too. reference and the (time-varying) bounds on the torque decor

1) Initialize the root node and push it onto the stack. Setgly. The induction motor model includes the saturation of

c=o0andj=0. the machine’s magnetic material and the changes of the rotor
2a) Take the nodéwith a non-emptyA; from the stack that resistance due to the skin effect. To run MPDTC, the DTC
has the minimum cost;. look-up table was replaced by the computationally efficient
2b) Read out the first element from; and remove it. For version of the MPDTC algorithm. The significance of such
'S’, branch on all admissible switching transitions andimulations is underlined by the very close match between
add the (incremental) switching loss&s = F; + e(¢) the previous simulation results in [3], which were obtained
caused by switching at the time-stépFor 'E’, extend using the same model, and the experimental results in [8].
the trajectories either by extrapolation as detailed in [2] Using pu quantities, the comparisons are shown in Figs. 5

V. COMPUTATIONAL RESULTS

or by using the internal controller model [6]. to 7. For MPDTC the torque and flux bounds were widened by
2c) Setj = j+ #S for ’'S’, where #5 denotes the number 1.5% and 0.5%, respectively, to account for DTC’s imminent
of switching transitions, and sgt= j + 1 for 'E’. violations of the bounds. As a result, DTC and MPDTC yield
2d) Keep only the nodes that are candidates. similar current THDs, while for MPDTC with long horizons
2e) For leaf nodes: compute their costsand updatez = the torque THD is slightly lower than for DTC, see Table I.
min(¢, ¢;). For bud nodes: compute the lower bourgls  More importantly, with respect to DTC, MPDTC with the
on their costs and remove bud nodes with> ¢. fairly short switching horizon 'eSSE’ reduces the switchin
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Fig. 5: Standard DTC, corresponding to the first row in Table |
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Fig. 6: Computationally efficient MPDTC with the switchingrimon 'eSSE’, corresponding to the fifths row in Table |
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Fig. 8: Histogram of the computational burden (number of exgiianodes) for MPDTC with the switching horizon 'eSSESESE’
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Controller settings Pred. horizon| Nodes explored u* Performance

Scheme  Sw. horizon Nmax Jmax || avg. max. | avg. max. | found [%)] || Psw [%]  fsw [%]  Is7HD [%]  Te tHD [%]

DTC - - - - - - - - 100 100 100 100
MPDTC eSSE - - || 26.6 96 112 277 100 57.3 71.2 103 98.4
MPDTC eSSE 100 - || 25.7 92 86.9 275 100 57.3 71.2 103 98.4
MPDTC eSSE 50 - 25.6 96 64.3 249 97.4 57.7 73.4 103 102
MPDTC eSSE 50 50 || 22.0 97 43.6 50 92.2 58.3 74.1 104 103
MPDTC  eSSESESE - —1| 98.2 150 | 3246 7693 100 37.9 48.9 97.0 92.0
MPDTC  eSSESESE 150 —|| 95.2 150 | 1884 6806 100 37.9 48.9 97.0 92.0
MPDTC  eSSESESE 110 -1l 925 150 | 1102 4756 96.7 40.9 50.0 99.5 92.2
MPDTC eSSESESE 110 600 88.0 152 483 600 92.1 38.6 51.4 97.3 94.0

TABLE |: Comparison of DTC with MPDTC and computationally efént MPDTC with the upper bounddmax and jmax on the horizon length and the
number of nodes explored, respectively. The fifths and sigtthismns indicate the average and maximal lengths of the achignagliction horizon. Columns
seven and eight state the number of explored nodes in thehseae; followed by the probability that the optima{k) is found at every control cycle. The
last four columns relate to the switching loss@sg,, switching frequencyfsw, current THD I typ and torque THDI, typ using DTC as a baseline

losses by 40%. The standard MPDTC algorithm based on thdnitial simulation results suggest that the worst-case -com
full enumeration of the search tree requires the explamatiputational effort can be reduced by an order of magnitude.
of up to 277 nodes to achieve this result, as shown in the general, the longer the horizon the more significant is
second row in Table I. Using branch and bound techniques ahe percentage-wise reduction of the computational burden
tightening Nmax almost halves the average number of nodemd thus the saving. This makes this scheme particularly
visited. Yet, the maximal number of nodes explored remaimstractive for MPDTC with very long prediction horizons.&h
high. Limiting the number of computations by settijighx = techniques presented here are equally applicable to teatigc
50 leads to suboptimal results — in almost 8% of the casegpeoposed adaptation of MPDTC to the current control problem
suboptimalu(k) is computed, but this appears, at least in thislodel Predictive Direct Current Control (MPDCC) [11].
particular case, to barely affect the performance. As altresu It is expected that the branch and bound method will enable
the maximal computational burden is reduced by 82% frothe implementation of MPDTC with long switching horizons
277 to 50 nodes explored. on today’s available computational hardware thus allowing
For the long switching horizon 'eSSESESE’ the switchingne to take full advantage of MPDTC's performance benefits.
losses are reduced by another 35% with respect to MPDBInart branching heuristics are expected to further cut down
with 'eSSE’. This is achieved, as can be observed frothe computation time.
Fig. 7(c), by reducing the switching frequency by another
30% and by carefully redistributing the remaining switghin
transitions along the time-axis. As a result, about halfhaf t [1] I. Takahashi and T. Noguchi. A new quick response and kifjsiency
transitions occur when the respective phase current ancehen gg?ﬁ%;&f‘ggg?’Sf,zrp.t,rgct'lngggg?” MOtONEEE Trans. Ind. Applicaf.
the incurred switching losses are small. Note that the atirre[2] T. Geyer.Low Complexity Model Predictive Control in Power Electron-
and torque distortions are not increased by doing this -eaukt iZCS _a?]d ZPS(\;VSF SystemBhD thesis, Automatic Control Laboratory ETH
they tend to get smaller. . . [3] T.ugceyér, G. 'Papafotiou, and M. Morari. Model predictifieect torque
However, the computational burden for MPDTC with full control - part I: Concept, algorithm and analysi$EEE Trans. Ind.
enumeration is exorbitant with search trees featuring strap Electron, 56(6):1894-1905, Jun. 2009. o _
f0 8000 nodes. Branch and bound with a tighia cuts down ) G, & 0352, b 1, Pt ane M, Mo podelpcicenicl
the average computation time by two thirds, but a fairly $mal[5] J. B. Rawlings and D. Q. MayneModel predictive control: theory and
upper bound on the number of explored nodgsyx = 600, is design Nob Hill Publ., 2009. S
required to achieve an overall reduction of more than 90%. AST T S8 SEreialeel T B e e epine, [EEE
previously, the impact on the performance appears to bd.smal conf. on Decis. and ControBhanghai, China, Dec. 2009.
Figs. 8 and 9 show the histograms of the computational burddfi T. Geyer. A comparison of control and modulation schemesrfedium-
and the number of computational steps required to derive the Xg:ﬁ?r%? dm’gfégnl‘gg‘é”%ﬁg?g)'ft(';’gn%f"ggorlgfgcn%pté)zﬁ';@ftg'S’ét/‘i"j
optimal cost, respectively. The (blue) vertical lines deno Sep. 2010.
percentiles, with the straight, dash-dotted and dasheek lin[8] G. Papafotiou, J. Kley, K. G. Papadopoulos, P. Bohren, féin Morari.
referring 10 the 50%, 95% and 99% percentiles. The effect Model predicve dect orque convol - par It Implemettat and.
of branch and bound on the cost is particularly remarkable as Jjun. 2009.
shown in Fig. 9(b). [9] E. L. Lawler and D. E. Wood. Branch and bound methods: A eyrv
10 ”, Res.I}grgi):eé)g;;lg‘fciiucliﬁA;%d1266L.iakos Model mtack direct
VI. CoNcLUsIONS 1ol tsdrc:\fljgst:eontroly for M\? drives with LC filters. IrProc. Eur. Power
This paper proposed a modified version of the MPDTC  Electron. Conf. Barcelona, Spain, Sep. 2009. ,
algorithm based on branch and bound techniques adopted from LveGrggr mp'\r"oogel'EEEegﬁg‘r’gy %Lencvt. é‘éﬁg?taﬁgné%ﬂfggt;mﬁg
mathematical programming. Using upper and lower bounds on sep. 2010.
the optimal cost, suboptimal parts of the search tree can [b&d J- E. Mitchell. Branch-and-cut algorithms for combirnzboptimization
identified and pruned thus avoiding the full enumeratiorhef t problems.Handbook of Applied Optimization, Oxford University Press

. . . . N pages 65—77, Jan. 2002.
tree, as it was required with the previous MPDTC algorithm.
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