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Abstract— This paper presents a generalized Model Predic-
tive Direct Torque Control scheme with an extended horizon,
which is composed of multiple hinges (groups of switch transi-
tions) linked by several extrapolation segments. The controller’s
performance is further enhanced by minimizing the switching
losses in the inverter. Initial results suggest that with respect to
state of the art Direct Torque Control, the switching losses are
reduced by up to 60 %, while the Total Harmonic Distortion
of the torque is at the same time improved by 20 %. These
results are based on a medium-voltage three-phase Neutral
Point Clamped inverter driving an induction machine.

Index Terms— Direct Torque Control, Model Predictive Con-
trol, Variable Speed Drive, Switching Losses, Power Electronics

I. INTRODUCTION

Three-phase electrical drives in the medium-voltage range
with power ratings between one and several dozen megawatts
are widely used in industries such as oil and gas, pulp
and paper, mining and minerals, metals, power generation
and marine, where they drive compressors, pumps, fans,
blowers, conveyors, crushers and rolling mills, to name just
a few. To achieve variable speed operation, an inverter with
semiconductor switches is placed between the grid and the
electrical machine, which is typically an induction motor.

Direct Torque Control (DTC) is ABB’s method of choice
for controlling three-phase electrical drives. Since its in-
troduction in 1985 by Takahashi and Noguchi [1], DTC
has quickly matured to an industrial standard for drive
control [2]. The basic characteristic of DTC is that the
inverter’s switch positions are directly rather than indirectly
set, thus refraining from using modulation techniques such as
Pulse Width or Space Vector Modulation. In its generic form,
the control objective is to keep both the motor’s torque and
the amplitude of the stator flux within given bounds. Using
hysteresis controllers, the inverter is triggered to switch
whenever these bounds are violated using a pre-designed
look-up table. The main advantages of DTC are its superior
torque performance with very short response times, its simple
implementation and its inherent robustness. Significant effort
has been spent in the past on improving the look-up table
with the goal of reducing both the torque ripple and the
switching frequency.

Recently, predictive control schemes and particularly
Model Predictive Control (MPC) [3]–[5] have received
considerable attention in the power electronics and drives
community. Although MPC was originally developed for the
process industry with its very long sampling intervals of
minutes and more, the ever increasing computational power
available nowadays and the possibility to solve off-line the
online optimization problem [6] make MPC also applicable
to fast processes with short sampling intervals such as power
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electronics, where the sampling intervals are typically well
below 100µs.

Even though DTC itself is widely interpreted as a predic-
tive control strategy, it predicts only one step (one switch
transition) ahead, and it lacks an internal model, a cost
function and the notion of optimality, which are fundamental
elements of an MPC scheme. Some of these elements are
now present in the more recent approaches [7]–[13]. Yet,
these schemes differ in several significant aspects from the
control scheme proposed in this paper, for example by
restricting the prediction horizon to one, by formulating a
reference tracking problem, and by adding a modulator, to
name a few. A more detailed literature study is available
in [14] and [15].

With the aim of improving the performance of DTC by
reducing the switching frequency whilst maintaining the very
fast torque response, we started to work on MPC for power
electronics in mid 2002. Specifically, the hysteresis bounds
were inherited from standard DTC, whereas the DTC switch-
ing table was replaced by MPC. Starting with a closed-form
Mixed-Integer Linear Optimization problem that was solved
online [16], we subsequently pre-solved the optimization
problem off-line and computed a look-up table [17]. An
alternative open-form problem formulation that was also
solved off-line reduced the controller complexity by an order
of magnitude [18]. Model Predictive Direct Torque Control
(MPDTC) [14], [15], which relies on a tailored open-form
optimization problem solved online proved to be successful
in the sense that its modest computational burden enabled
ABB to implement it on its existing control platform. The
successful test runs on ABB’s ACS 6000 drive with power
levels exceeding one MW [19], [20] can be considered as a
milestone in the development of MPC for electrical drives.

In this paper, the previously proposed MPDTC algorithm
is generalized thus allowing longer prediction horizons that
include multiple hinges (groups of switch transitions) and
extrapolation segments. The resulting prediction horizons are
in the range of 50 to more than 100 time-steps. Moreover,
similar to [21], the inverter losses are minimized rather than
the switching frequency.

The paper is organized as follows. After describing the
drive system in the next section, the control problem is stated
in Section III. The generalized MPDTC scheme is detailed
in Section IV, whilst its performance is benchmarked against
standard DTC and the original MPDTC scheme in Section V.
Section VI provides concluding remarks.

II. DRIVE SYSTEM

Throughout this paper, we will use normalized quantities.
Extending this to the time scale t, one time unit corresponds
to 1/ωb seconds, where ωb is the base angular velocity.
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Fig. 1: Equivalent representation of a three-level Neutral Point Clamped
(NPC) voltage source inverter driving an induction motor (IM)

A. The αβ0 Reference Frame

All variables ξabc = [ξa ξb ξc]
T in the three-phase

system (abc) are transformed to ξαβ0 = [ξα ξβ ξ0]
T in the

orthogonal αβ0 stationary reference frame through

ξαβ0 = P ξabc . (1)

Using the αβ0 reference frame and aligning the α-axis with
the a-axis, the following transformation matrix is obtained
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B. Physical Model of the Drive System

The equivalent representation of a three-level Neutral Point
Clamped (NPC) voltage source inverter driving an induction
motor is shown in Fig. 1. In such a system, the dc-link is
fed from the grid either by a (passive) diode front end or an
(active) front end similar to the inverter. Here, the total dc-
link voltage Vdc over the two dc-link capacitors xc is assumed
to be constant, while the neutral point potential υn between
the two capacitors is floating. Each phase leg can produce the
three voltages −Vdc

2
, 0, Vdc

2
. Let the integer variables ua, ub,

uc ∈ {−1, 0, 1} denote the switch positions in each phase
leg – the so called phase states, where the values −1, 0, 1
correspond to the phase voltages −Vdc

2
, 0, Vdc

2
, respectively.

Note that 27 different switch combinations exist. The actual
voltage applied to the machine terminals is given by vαβ0 =
0.5Vdc P uabc with uabc = [ua ub uc]

T .
As can be seen in Fig. 1, the neutral point potential υn

depends on the state of charge of the two dc-link capacitors
and is only affected when current is drawn directly from it,
i.e. when one of the switch positions is zero. This yields

dυn

dt
= −

1

2xc

(

(1− |ua|)isa + (1− |ub|)isb + (1− |uc|)isc

)

(3)
with the stator phase currents isa, isb, isc and one of the two
symmetric capacitors xc of the dc-link.

To describe the induction motor, a very accurate and
detailed model is used. This model includes the saturation of
the machine’s magnetic material and the changes of the rotor
resistance due to the skin effect. The detailed mathematical
model is omitted here due to space limitations.

C. Constraints on the Switch Transitions

In the inverter considered here – due to the fact that only
one di/dt snubber is available in the upper and the lower
half, respectively – not all switch transitions are possible.

Polarity of the Switch Switching

phase current transition losses

iph > 0 0 → 1 Eon,1 + Err,5

1 → 0 Eoff,1

0 → −1 Eoff,2 + Err,5

−1 → 0 Eon,2 + Err,3 + Err,4

iph < 0 0 → 1 Eoff,3 + Err,6

1 → 0 Err,1 + Err,2 + Eon,3

0 → −1 Eon,4 + Err,6

−1 → 0 Eoff,4

TABLE I: Switching losses in a 3-level phase leg

Specifically, each phase leg can switch only by at most one
step, at most two phase legs can switch at the same time
and if so, switching needs to occur in the opposite halves of
the inverter. For example, from [1 1 1]T , switching is only
admissible to [0 1 1]T , [1 0 1]T or [1 1 0]T (and not to any
of the other 23 switch positions).

D. Switching Losses

The losses in the semiconductors can be divided into
switching losses (arising when the devices is switched on
or off) and conduction losses (due to the ohmic resistance).
These losses depend on the applied voltage, the commutated
current and the semiconductor characteristics. Considering
Integrated Gate Commutated Thyristors (IGCT), with the
GCT being the semiconductor switch, the switch-on and
switch-off losses can be well approximated to be linear in
the dc-link voltage and the phase current. Observing that in
a NPC inverter, the voltage seen by each semiconductor is
always half the total dc-link voltage leads to the GCT turn-on
(energy) loss

Eon = eon

1

2
Vdc iph , (4)

where eon is a coefficient and iph is the phase current. For the
GCT turn-off losses, a corresponding equation results with
the coefficient eoff. Typically, eoff is an order of magnitude
larger than eon.

For a diode, the switch-on losses are effectively zero. The
turn-off losses, however, which are reverse recovery losses,
are linear in the voltage, but nonlinear in the commutated
phase current.

Err = err

1

2
Vdc frr(iph) , (5)

where err is the coefficient for the reverse recovery losses,
and frr(·) is a nonlinear function between zero and one that
is typically concave and saturating at one. Usually, the value
of the coefficient err lies in the interval between eon and eoff.

Consider one three-level phase leg with the phase current
iph and the tree phase leg switch positions 1, 0 and -1. Then,
by inspecting the phase leg topology, the switching losses per
commutation can be derived. Since the commutation depends
on the polarity of the phase current, the cases with positive
and negative phase current need to be treated separately.
Table I summarizes the switching losses, where the indices
one to four refer to the GCT and freewheeling diodes, and
the indices five and six refer to the NPC diodes.

Similar to the switching losses, the conduction losses also
depend on the applied voltage and the phase current. The dc-
link voltage is constant despite the neutral point fluctuations.
The phase current is the sum of the current ripple and the
fundamental component, which in turn depends only on the
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operating point given by the torque and the speed, but not on
the switching pattern. Since the ripple is small compared to
the fundamental current (typically in the range of 10% for a
3-level inverter), the conduction losses can be considered to
be independent from the switching pattern. Hence, they are
not addressed in the objective function.

III. CONTROL PROBLEM

The DTC control objectives are to keep the three output
variables, namely the electromagnetic torque, the length (or
magnitude) of the stator flux and the neutral point potential,
within given (hysteresis) bounds. In MPDTC, these objec-
tives are inherited from DTC. In addition, we aim at mini-
mizing the inverter losses. An indirect way of doing that is to
minimize the (short-term) average switching frequency [15],
[16]. Here, we will directly target the switching losses so as
to further improve the performance (lower the losses).

Apart from that, the produced torque should be smooth
and have a little harmonic content only. A measure for this is
the Total Harmonic Distortion (THD) of the electromagnetic
torque. Obviously, the minimization of the torque and/or the
current THD on the one side, and the switching losses on
the other side is a conflicting objective.

IV. MODEL PREDICTIVE DIRECT TORQUE CONTROL

A. Model Predictive Control

In MPC [3], the current control input is obtained by solv-
ing at each sampling instant a constrained optimal control
problem based on the predictions provided by an internal
model of the controlled process. The optimal control problem
is formulated over a finite or infinite horizon using the
current state of the plant as initial state. The underlying
optimization procedure yields an optimal control sequence
that minimizes a given objective function. Only the first
control input of this sequence is applied in accordance with
the so called receding horizon policy. At the next sampling
instant, the control sequence is recomputed over a shifted
horizon, thus providing feedback. Hence, MPC combines
(open-loop) constrained optimal control with a receding
horizon policy.

B. Internal Controller Model

Hereafter, we derive a discrete-time model of the drive
that is suitable to serve as an internal prediction model for
MPDTC. The model’s purpose is to predict the trajectories
of the electromagnetic torque, the stator flux and the inverter
neutral point potential over several sampling intervals in an
open-loop fashion.

The squirrel-cage induction motor is modelled in the
αβ reference frame using the α and β-components of the
stator and the rotor flux linkages per second as state vector
ψ = [ψsα ψsβ ψrα ψrβ ]T . As the time-constant of the rotor
speed dynamic exceeds the length of the prediction interval
by several orders of magnitude, the rotor speed dynamics are
neglected and the rotor’s rotational speed ωr is assumed to
remain constant within the prediction horizon. This allows us
to treat the speed as a model parameter rather than as a state.
The other model parameters are the base angular velocity ωb,
the stator and rotor resistances rs and rr, and the stator, rotor
and mutual reactances xls, xlr and xm, respectively.

Recall that we are using normalized quantities and a
normalized time-axis. Referring the rotor quantities to the
stator circuit, the continuous-time state equation [22]

dψ

dt
=









−rs
xrr

D
0 rs

xm

D
0

0 −rs
xrr

D
0 rs

xm

D

rr
xm

D
0 −rr

xss

D
−ωr

0 rr
xm

D
ωr −rr

xss

D









ψ + v

(6)
results, with xss = xls+xm, xrr = xlr +xm, D = xssxrr−
x2

m and v = [vα vβ 0 0]T . The electromagnetic torque is
given by

Te =
xm

D
(ψsβψrα − ψsαψrβ) (7)

and the length of the stator flux vector is

Ψs =
√

ψ2
sα + ψ2

sβ . (8)

We define the overall state vector of the drive as x =
[ψsα ψsβ ψrα ψrβ υn]T , the switch positions as the input
vector u = uabc = [ua ub uc]

T ∈ {−1, 0, 1}3, and the
electromagnetic torque, the length of the stator flux and the
neutral point potential as the output vector y = [Te Ψs υn]T .

Combining the motor model (6)–(8) with the inverter
model (3), taking advantage of the fact that the α and β-
components of the stator current is,αβ0 are linear combina-
tions of the stator and rotor flux components (see e.g. [22]
for details), i.e.

is,αβ0 =
1

D

[

xrrψsα − xmψrα xrrψsβ − xmψrβ 0
]T

,

and using the Euler formula, a discrete-time model of the
drive can be derived. As in standard DTC, a sampling interval
of Ts = 25µs is used. The resulting state equation is bilinear
in the input variable due to (3), and the output equation is
quadratic. The discrete-time model is omitted here due to
space limitations, but it can be found in [14] or [15].

C. Generalized MPDTC Algorithm

The generalized MPDTC algorithm is based on a Last In
First Out stack model, commonly used in computer science.
Starting at the current time-step k, the algorithm iteratively
explores the tree of feasible switching sequences forward in
time. At each intermediate step, all switching sequences must
yield output trajectories that are either feasible, or pointing in
the proper direction. We refer to these switching sequences
as candidate sequences. Feasibility means that the output
variable lies within its corresponding bounds; pointing in the
proper direction refers to the case in which an output variable
is not necessarily feasible, but the degree of the bounds’
violation decreases at every time-step within the switching
horizon. The above conditions need to hold componentwise,
i.e. for all three output variables1.

The traversing through the tree is controlled by the so
called switching horizon composed of the elements ’S’ and
’E’, which stand for ’switch’ and ’extrapolate’ (or more
generally ’extend’), respectively. The switching horizon, with
its upper bound on the number of switch transitions and
extension steps, can be considered as an alternative to a
(fixed) prediction horizon in time. Note that for MPDTC,

1As an example, consider the case where the torque is feasible, the stator
flux points in the proper direction and the neutral point potential is feasible.
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Fig. 2: Three candidate switching sequences for the switching horizon
’eSSESE’ with the associated torque and stator flux trajectories between
their respective upper and lower bounds. The time-axis is given by the
sampling instants with the sampling interval Ts = 25 µs.

the resulting prediction horizon is of variable length in time.
As an example for a switching horizon, consider ’SSESE’,
which stands for switching at time-steps k and k + 1 and
subsequently extending the trajectories until one or more
output trajectory ceases to be feasible and/or pointing in the
proper direction. Assume this happens at time-step k + ℓ
thus triggering the third switching event that is followed by
another extension step. We use the task ’e’ to add an optional
extension leg to the switching horizon. Using ’eSSESE’ as an
example, three candidate switching sequences are depicted in
Fig. 2 along with their output trajectories.

At time-step k, the generalized MPDTC algorithm com-
putes u(k) according to the following procedure.

1) Initialize the root node with the current state vector
x(k), the last switch position u(k−1) and the switch-
ing horizon. Push the root node onto the stack.

2a) Take the top node with a non-empty switching horizon
from the stack.

2b) Read out the first element. For ’S’, branch on all
feasible switch transitions according to Section II-C.
For ’E’, extend the trajectories either by extrapolation
as detailed in [14] or by using the internal controller
model of Section IV-B.

Induction Motor

Voltage 3300 V rs 0.0108 p.u.

Current 356 A rr 0.0091 p.u.

Real power 1.587 MW xls 0.1493 p.u.

Apparent power 2.035 MVA xlr 0.1104 p.u.

Frequency 50 Hz xm 2.3489 p.u.

Rotational speed 596 rpm

Inverter

Dc-link voltage 4294 V Vdc 1.5937 p.u.

xc 11.769 p.u.

TABLE II: Rated values (left) and parameters (right) of the drive

2c) Keep only the switching sequences that are candidates.
2d) Push these sequences onto the stack.
2e) Stop if there are no more nodes with non-empty

switching horizons. The result of this are the pre-
dicted (candidate) switching sequences U i(k) =
[ui(k), . . . , ui(k + ni − 1)] over the variable-length
horizons ni, where i ∈ I and I is an index set.

3) Compute for each (candidate) sequence i ∈ I the
associated cost. If the switching frequency is to be
minimized, consider ci = si/ni, which approxi-
mates the average switching frequency, where si =
∑k+ni−1

ℓ=k ||ui(ℓ) − ui(ℓ− 1)||1 is the total number of
switch transitions in the switching sequence U i(k), and
ni is the corresponding sequence length. Conversely,
if the losses are targeted, the cost function ci = Ei/ni

is used, where Ei are the switching losses according
to Section II-D. Note that, to compute the losses, the
phase currents need to be derived, which are linear
combinations of the flux components, thus making this
a simple operation.

4) Choose the switching sequence U∗ = U i(k) with the
minimal cost, where i = arg mini∈I ci.

5) Apply (only) the first switch position u(k) = u∗ of
this sequence and execute the above procedure at the
next time-step k + 1.

The main differences to the MPDTC algorithm reported
previously in [14], [15] are that, unlike before, a candidate
switching sequence must yield output trajectories that are
feasible or pointing in the proper direction at every time
step. This ensures that the bounds are respected at all times
during steady-state operation. Secondly, the algorithm runs
iteratively, i.e. instead of first enumerating the switching
sequences and then computing the associated output trajecto-
ries, the switching sequences are built step-wise by branching
on the feasible switch transitions. One advantage of this is
that it is straightforward to extend the switching horizon by
considering multiple switchings and multiple extrapolation
steps. Moreover, branch and bound techniques can be added
to reduce the computational burden.

V. PERFORMANCE EVALUATION

This section benchmarks the generalized MPDTC scheme
with respect to standard DTC. The comparison is made
based on the ACS 6000 drive system [23] with a 3.3 kV
and 50 Hz squirrel-cage induction machine rated at 2.5 MVA.
The detailed parameters can be found in Table II. For this
comparison, a very accurate and detailed Matlab/Simulink
model of the drive is used, which was provided by ABB
to ensure as realistic a simulation set-up as possible. This
model includes a state estimator for the motor fluxes, and an
outer (speed) control loop that adjusts the torque reference
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Fig. 3: Standard DTC: Steady-state operation at 60 % speed and 60 % torque. All quantities are given in p.u.
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Fig. 4: MPDTC with the switching horizon ’eSSESSE’ and a penalty on the switching frequency: Steady-state operation at 60 % speed and 60 % torque.
All quantities are given in p.u.
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Fig. 5: MPDTC with the switching horizon ’eSSESSE’ and a penalty on the switching losses: Steady-state operation at 60 % speed and 60 % torque. All
quantities are given in p.u.

and the (time-varying) bounds on the torque accordingly.
The induction motor model includes the saturation of the
machine’s magnetic material and the changes of the rotor
resistance due to the skin effect. For MPDTC, the look-
up table with the standard DTC strategy is replaced by
a function that runs the generalized MPDTC algorithm at
each sampling-instant. The significance of such simulations
is underlined by the very close match between previous
simulations and experimental results using the same model.
The simulation results in [15] predicted the experimental
results in [20] accurately to within a few percent.

A. Transient Performance

For torque steps, standard DTC has a very fast dynamic
response, which is typically a few ms. In MPDTC, the
rapid dynamic torque control is preserved, while the bounds
imposed on the torque, stator flux and neutral point potential
are slightly better respected by MPDTC (than DTC). The
interested reader is referred to [14] and [15] for a detailed
comparison based on step responses.

B. Steady-State Performance

Figs. 3-5 compare the steady state behavior of DTC and
MPDTC penalizing the switching frequency and the losses,
respectively, at 60 % speed with a 60 % torque setpoint. The
same torque bounds are used for both control schemes, while
for MPDTC the flux bounds are widened by ±0.01 p.u.
to account for DTC’s violations of the flux bounds. For
the neutral point potential the bounds are chosen so as to
reflect the behavior of the standard DTC control scheme,
thus ensuring that the comparison is meaningful. The figures
show the torque and the stator flux magnitude in p.u. together
with their respective bounds. The figures showing the neutral
point, which is kept well within its bounds, are omitted here.
The switch positions ua, ub, uc of the three phase legs are
plotted along with the respective phase currents isa, isb, isc.
These three figures show one half period of the fundamental
current waveform.

As can be seen in Fig. 3, standard DTC tends to switch
when the phase currents are high and when the effect on
the torque and flux is thus large. The torque, flux and neu-
tral point potential are considered independently from each
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Control Horizon Minimization Te,THD fsw Ploss

scheme of [%] [%] [%]

Standard DTC – – 100 100 100

MPDTC N = 1 fsw 80.4 71.2 72.6

MPDTC N = 2 fsw 88.5 59.1 61.0

MPDTC eSSE fsw 81.2 70.4 67.5

MPDTC eSSESE fsw 79.7 56.8 56.8

MPDTC eSSESSE fsw 78.7 54.9 54.5

MPDTC eSSE Ploss 82.3 70.4 52.5

MPDTC eSSESE Ploss 81.2 68.5 50.0

MPDTC eSSESSE Ploss 81.0 57.2 39.6

TABLE III: Comparison of standard DTC with MPDTC with various
horizons and penalties. The comparison is done in terms of the torque THD
Te,THD, the switching frequency fsw and the switching losses Ploss using
standard DTC as the baseline. The operating point is at 60 % speed and
60 % torque.

other. In contrast to that, MPDTC considers all three output
variables simultaneously in a Multiple Input Multiple Output
(MIMO) control approach. As a result, c.f. Fig. 4, less switch
transitions are required (particularly for the stator flux) thus
reducing the switching frequency and also the switching
losses. Yet, as in DTC, most of the switch transitions occur
when the current is high. Penalizing the switching losses
rather than the switching frequency, as shown in Fig. 5,
centers 50% of the switch transitions around the phase
currents’ zero crossing, while the other 50% is centered
around the current peak. Each of these groups of switching
events covers 30 degrees of the fundamental. Taking into
account that in a three-phase system the phases are shifted
by 120 degrees, continuous switching is provided to keep the
torque, flux and neutral point potential under control, while
reducing the switching losses to a minimum.

Based on simulations run over 1 s, Table III compares
various MPDTC schemes to DTC in terms of the torque
THD, the switching frequency and the switching losses.
These simulations refer to 60 % speed with a 60 % torque
setpoint. As can be seen, with respect to DTC, MPDTC
with the switching horizon ’eSSE’ penalizing the switching
frequency reduces the switching losses by 32%, while the
switching frequency is reduced by 30%. As mentioned ear-
lier, this algorithm is very similar to MPDTC with N = 2 as
reported in [14], [15]. Penalizing the switching losses instead
maintains the switching frequency improvement, whilst the
switching losses are reduced by another 15%. Doubling the
length of the horizon from ’eSSE’ to ’eSSESSE’ cuts down
the losses by another 13%. At the same time, the torque THD
is slightly reduced as the switching horizon is increased.

VI. CONCLUSIONS

At the chosen operating point, as indicated by Table III, the
generalized MPDTC scheme with the long switching horizon
’eSSESSE’ is expected to reduce the switching losses by
60%, while reducing the switching frequency by 43% when
compared to DTC. At the same time, the torque THD is
lowered by 19%, thus reducing both the inverter and the
machine losses at the same time. This result can be used
either to increase the current rating of the inverter, or to
further reduce the torque THD (by narrowing the torque
bounds and increasing the inverter losses). Currently, efforts
are made to reduce the control scheme’s computational
complexity to make it suitable for an implementation.
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