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A hyperplane arrangement is a polyhedral cell complex where the relative position of each cell of the arrange-
ment and the composing hyperplanes are summarized by a sign vector computable in polynomial time. This
tool from computational geometry enables the development of a fast and efficient algorithm to translate the
composition of discrete-time linear hybrid systems into an equivalent piecewise affine model and to determine
if the composition is well-posed. The tool provides also information on the real combinatorial degree of the
system which can be used to reduce the size of the search tree and the computation time of the optimization
algorithms underlying optimal and model predictive control. Examples are presented illustrating the algorithm
and showing its computational effectiveness.
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1 Introduction

A hybrid system is a collection of digital finite state machines interacting among each other and
with an analog environment. Each logic state of the digital part of the hybrid system acts on
the analog part inducing a different operational mode. On the other hand, the evolution of the
analog part triggers switches in the states of the digital part. A mode in a hybrid system, which
is sometimes also referred to as a discrete state or location, is characterized by a combination of
logic states, events and logic inputs. A mode is feasible, if and only if its associated set of analog
(continuous-valued) states is non-empty, else it is infeasible.

The practical relevance of hybrid systems is twofold. Digital controllers embedded in a con-
tinuous environment require adequate modelling, analysis and design tools for instance in the
automotive industry (Balluchi, Benvenuti, Di Benedetto, Pinello, and Sangiovanni-Vincentelli
2000). Moreover, many physical phenomena admit a natural hybrid description, like power elec-
tronics integrating switched semiconductors and diodes, biomolecular networks and TCP/IP
networks (Hespanha, Bohacek, Obraczka, and Lee 2001).

Hybrid systems can be composed to form compositional hybrid systems (Alur and Henzinger
1997, Rashid and Lygeros 1999, Benvenuti, Ferrari, Mazzi, and Sangiovanni-Vincentelli 2008).
In general, the resulting system is very complex, as the number of possible modes depends
exponentially on the number of component systems. The explosion of the size of the logic state
leads to computational difficulties as the time and space complexity of many algorithms depends
on the number of possible modes.

In some cases, the composition induces a structure that can be exploited, like in hierarchical
hybrid systems (Alur et al. 2001). This allows one to break down the problem into pieces and to
apply the assume-guarantee approach (Alur and Henzinger 1997, Henzinger, Minea, and Prabhu
2001). Recognizing that a system can be modelled as a hierarchical hybrid system is part of the
“art” of model building. In many cases this may not be possible at all, because the ties between
the components are too tight. On the other hand, tight interactions — which are effectively
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constraints — often render many modes infeasible (as will be shown later in an example) and
the complexity of the system can be reduced by explicitly computing and taking into account
only the feasible modes.

This paper focuses on Discrete Hybrid Automata (DHA) (Torrisi and Bemporad 2004), a
discrete-time linear hybrid system framework where the analog environment evolves according
to affine (linear plus offset) difference equations (affine dynamics), while affine threshold condi-
tions on the analog variables drive the digital part (a finite state machine). DHAs are a mathe-
matical abstraction of the features provided by other computation oriented and domain specific
discrete-time linear hybrid system frameworks including Mixed Logical Dynamical (MLD) sys-
tems (Bemporad and Morari 1999), polyhedral Piecewise Affine (PWA) systems (Sontag 1981),
Linear Complementarity (LC) systems (van der Schaft and Schumacher 1998), Extended Linear
Complementarity (ELC) systems (Heemels, De Schutter, and Bemporad 2001), and Max-Min-
Plus-Scaling (MMPS) systems (Heemels et al. 2001). As shown first in Sontag (1996) for PWA
and a class of hybrid systems and then — with different arguments — in Heemels et al. (2001)
and Torrisi and Bemporad (2004) all those modelling frameworks are equivalent and it is possible
to represent the same system using any of these frameworks. Thus DHAs generalize many com-
putation oriented discrete-time models for hybrid systems and therefore represent a universal
starting point for solving complex analysis and synthesis problems for hybrid systems.

DHAs can be connected in an arbitrary way to form compositions of hybrid systems. Specifi-
cally, parallel, cascaded and (nested) feedback structures with algebraic loops are addressed in
this paper. Connections encompass both real as well as binary variables. Since the thresholds (or
guards) in a DHA are defined by hyperplanes, the enumeration of the DHA’s feasible modes is
easily solvable by using algorithms that compute the cells of a hyperplane arrangement (Ferrez,
Fukuda, and Liebling 2001). This is a classical problem in computational geometry (Buck 1943)
and admits optimal (Edelsbrunner 1987) and efficient (Avis and Fukuda 1996, Ferrez et al. 2001)
algorithms.

With regards to compositions, an algorithm is proposed to sequentially enumerate the modes
of a compositional hybrid system according to the interactions and dependencies of the DHAs
in the composition. This algorithm is efficient for two reasons. First, to enumerate the modes
of one DHA, the notion of cells in a hyperplane arrangement and reverse search are used, which
scales polynomially rather than exponentially with the number of possible modes. Second, when
considering multiple DHAs forming a composition, the mode enumeration is run sequentially
according to a computational order in which the DHAs are arranged. This is in contrast to a
brute-force approach, where every possible mode in a composition is investigated, out of which
the majority is infeasible due to the interactions amongst the DHAs and additional constraints.
Exploiting the structure of the composition, the sequential enumeration greatly reduces the
number of modes considered by pruning branches with infeasible modes from the search tree.

The impact of the mode enumeration on applications is threefold. First, at the modelling
stage, the enumeration of modes allows the designer to understand the real complexity of the
compound model. Second, after the modelling stage, the model can be efficiently translated
into a PWA representation. This operation is trivial once all modes have been enumerated.
Furthermore, the PWA representation of the compound DHA model allows one to determine
if the model is well-posed, i.e. if for all initial conditions and all inputs, the state and output
trajectories are uniquely defined for all time-steps. In fact, a composition of well-posed DHAs is
not necessarily well-posed as a whole. Third, during the computational stage (i.e. analysis and
control), the explicit computation of the set of feasible modes of the compound system allows one
to prune unnecessary modes from the resulting system and to reduce the combinatorial explosion
of the underlying (optimization) algorithms. This is of particular importance for Model Predictive
Control (MPC) of hybrid models (Bemporad and Morari 1999), where the aim is to compute
the next N control inputs that optimize a given performance index defined on the variables of
a hybrid prediction model. The prediction model is the series connection of N identical single-
step prediction models, where each model uses the state predicted by the previous model as
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initial state. Using the mode enumeration technique, cuts in the form of integer constraints can
be added to the prediction model. In general, these cuts greatly reduce the size of the integer
search tree of the underlying optimization problem.

With regards to translating hybrid systems into an equivalent PWA form, two related ap-
proaches (Bemporad 2002) and (Villa, Duque, Gauthier, and Rakoto-Ravalontsalama 2004) are
available in the literature. Both algorithms transform MLD models into equivalent PWA de-
scriptions, while the approach presented here is applicable to DHAs. Yet, as shown in Torrisi
and Bemporad (2004), DHAs can be automatically translated into MLD models using the tool
Hysdel (Torrisi and Bemporad 2004) and most of the MLD models presented in the literature
were derived from DHA descriptions using Hysdel (Borrelli, Bemporad, Fodor, and Hrovat
2001, Earl and D’Andrea 2002). The main difference is that the approach in Bemporad (2002) is
based on multi-parametric programming and mixed integer linear programming. Similarly, the
technique described in Villa et al. (2004) relies on linear programming. In contrast to that, the
approach presented in this paper computes the cells of a hyperplane arrangement and is appli-
cable to DHAs rather than MLD models. Most importantly, using the structural information
only available in the Hysdel code (and not in the corresponding MLD model) allowed us to
design a conversion tool that is faster by at least an order of magnitude compared with its two
counterparts (Bemporad 2002, Villa et al. 2004).

Neither of the two papers above nor this one here aim to derive PWA models of minimal
complexity, i.e. with the minimal number of polyhedra. Since this problem is NP-hard, such an
algorithm would not be efficient. Yet, as shown in Geyer, Torrisi, and Morari (2008), optimal
complexity reduction algorithms can be designed based on cells in an hyperplane arrangement.

This paper extends preliminary results that appeared in Geyer, Torrisi, and Morari (2003) by
presenting the algorithms in greater detail and elaborating on algebraic loops in compositions
of DHAs. Also Potocnik et al. (2004) re-state the results of Geyer et al. (2003) claiming some
minor improvements in the way the initial algorithm was implemented without adding new or
original insight.

The paper is organized as follows: Section 2 presents the notion of cell enumeration in hy-
perplane arrangements. In Section 3, the classes of DHAs and PWA systems are recapitulated
and the equivalence of both representations is shown in a constructive way by leveraging the
tools presented in Section 2. Based on this, Section 4 presents an algorithm that enumerates
the modes of a composition of DHAs, transforms it into an equivalent PWA representation
and checks its well-posedness. In Section 5, this mode enumeration algorithm is applied to two
examples described in Hysdel. It is shown that the information collected during the mode enu-
meration step allows one to either build efficiently an equivalent PWA model or to shorten the
computation time for solving optimal control problems by adding cuts (integer constraints) to
the optimization problem. Section 6 summarizes the results and points out some future research
directions.

The mode enumeration algorithm is implemented in Matlab and assumes that the composi-
tion of DHAs is given as Hysdel code. The latest version is integrated in the Multi-Parametric
Toolbox (Kvasnica, Grieder, Baotić, and Morari 2004), while an older version of the code can
also be downloaded from http://control.ethz.ch/~hybrid/hysdel.

2 Cell Enumeration in Hyperplane Arrangements

Let A be a collection of n distinct hyperplanes {Hi}i=1,...,n in the d-dimensional Euclidian space
R

d, where each hyperplane is given by the linear equality Hi = {z ∈ R
d | aT

i z = bi}. We say that
the hyperplanes of A are in general position, if there exists no pair of parallel hyperplanes, and
if any point of R

d belongs at most to d hyperplanes. Let SV : R
d → {−, +}n be the simplified
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Figure 1. Arrangement of four hyperplanes (lines) in R = R
2 with markings m ∈ M(R)

sign vector1 defined as

SVi(z) =

{

− if aT
i z ≤ bi,

+ if aT
i z > bi

for i ∈ {1, 2, . . . , n} . (1)

Consider the set Pm = {z ∈ R
d | SV(z) = m} for a given sign vector m. This set is called a cell

of the arrangement and is a polyhedron as it is defined by linear inequalities. We will refer to
m as the marking of the polyhedron (or cell) Pm in the hyperplane arrangement A (see Fig. 1).
Let M(R) be the image of the function SV(z) for z ∈ R ⊆ R

d, namely the collection of all the
possible markings of all the points in R.

The cell enumeration problem in a hyperplane arrangement amounts to enumerating all the
elements of the set M(R). Let #M(R) denote the number of cells identified by M(R). Buck’s
formula (Buck 1943) defines the upper bound

#M(R) ≤
d

∑

i=0

( n
i ) = O(nd), (2)

with the equality satisfied if the hyperplanes are in general position and R = R
d.

The cell enumeration problem admits an optimal solution with time and space complexity
O(nd) (Edelsbrunner 1987). An alternative approach based on reverse search was presented
in Avis and Fukuda (1996) and improved in Ferrez et al. (2001). Reverse search is an exhaustive
search technique that can be considered as a special graph search.

Proposition 2.1: (Ferrez et al. 2001, Theorem 4.1) There exists a reverse search algorithm
for enumerating hyperplane arrangements that runs in O(n lp(n, d)#M(R)) time and O(n, d)
space, where lp(n, d) denotes the complexity of solving a Linear Program (LP) with n constraints
and d variables.

Note that in many cases of interest, the hyperplanes are not in general position and #M(R)
is considerably smaller than the theoretical upper bound.

The following proposition follows directly from the definition of Pm and (1).

1Note that in general, the sign vector is defined such that its image is {−, 0,+}, where the ’0’ element corresponds to
aT

i z = bi. Cells with ’0’ markings are lower-dimensional and not meaningful in the context of PWA systems.
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Figure 2. A Discrete Hybrid Automaton (DHA) is the connection of a Finite State Machine (FSM) and a Switched Affine
System (SAS) through a Mode Selector (MS) and an Event Generator (EG)

Proposition 2.2: The collection of polyhedral sets {Pm}m∈M(R) satisfies:

(i)
⋃

m∈M(R) Pm = R, (ii) Pi ∩ Pj = ∅, ∀i, j ∈ M(R), i 6= j

Definition 2.3: A collection of polyhedral sets that satisfies points (i) and (ii) in Proposi-
tion 2.2 is a polyhedral partition of the polyhedral set R.

3 Discrete-Time Linear Hybrid Models

3.1 Discrete Hybrid Automata

As depicted in Fig. 2 and shown in Torrisi and Bemporad (2004), Discrete Hybrid Automata
(DHA) result from the interconnection of a Finite State Machine (FSM), which provides the
discrete part of the hybrid system, with a Switched Affine System (SAS) providing the continuous
part of the system. The interaction between the two is based on two connecting elements: The
Event Generator (EG) and the Mode Selector (MS). The EG extracts binary signals from the
continuous part. Those binary events and the binary inputs trigger switches of the FSM states.
The MS combines all binary variables (states, inputs and events) to choose the mode and thus
the corresponding continuous dynamic of the SAS. Next, we define each of the four components.
Switched Affine System (SAS). A Switched Affine System is a collection of affine systems

xr(k + 1) = Ai(k)xr(k) + Bi(k)ur(k) + fi(k) (3a)

yr(k) = Ci(k)xr(k) + Di(k)ur(k) + gi(k) , (3b)

where k ∈ N0 is the discrete time-instant, xr ∈ Xr ⊆ R
nr is the real state, ur ∈ Ur ⊆ R

mr is the
real input, yr ∈ Yr ⊆ R

pr is the real output, {Ai, Bi, fi, Ci,Di, gi}i∈I is a collection of matrices
of appropriate dimensions, and the mode i ∈ I ⊂ N selects the affine state-update and output
function.
Event Generator (EG). An Event Generator generates the binary event signal δe according
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to the fulfillment of affine constraints or thresholds

δe(k) = fH(xr(k), ur(k)) , (4)

where fH : R
nr × R

mr → D ⊆ {0, 1}ne is a vector of descriptive functions of a set of affine
constraints.
Finite State Machine (FSM). A Finite State Machine (or automaton) is a discrete dynamic
process that evolves according to the binary state-update function

xb(k + 1) = fB(xb(k), ub(k), δe(k)) (5a)

yb(k) = gB(xb(k), ub(k), δe(k)) , (5b)

where xb ∈ Xb ⊆ {0, 1}nb is the binary state, ub ∈ Ub ⊆ {0, 1}mb the binary input, yb ∈ Yb ⊆
{0, 1}pb the binary output, δe the event and fB : Xb × Ub ×D → Xb, gB : Xb × Ub ×D → Yb are
deterministic binary functions.
Mode Selector (MS). The binary state xb, the binary input ub and the event δe select the
mode i of the SAS through a deterministic binary function fM : Xb × Ub × D → I, which is
therefore called Mode Selector. The output of the function

i(k) = fM(xb(k), ub(k), δe(k)) (6)

is called active mode. We say that a mode switch occurs at time-instant k if i(k−1) 6= i(k). Note
that one may associate with a state xb of the FSM more than one mode i according to the event
δe. Moreover, in the above definitions, I denotes the set of (feasible) modes, while the infeasible
modes are given by the complement of I in the set of binary state-input-event combinations, i.e.
2(nb+mb+ne) \ I.

To shorten the notation, we will use the definitions x , [ xr

xb
], u , [ ur

ub
], y , [ yr

yb
], X , Xr ×Xb,

U , Ur × Ub and Y , Yr × Yb throughout the rest of the paper.

Definition 3.1: A DHA is well-posed on X , U , Y, if for all initial conditions x(0) ∈ X and
for all inputs u(k) ∈ U the state trajectory x(k) ∈ X and the output trajectory y(k) ∈ Y are
uniquely defined for all k ∈ N0.

3.2 Piecewise Affine Systems

Polyhedral piecewise affine (PWA) systems (Sontag 1981, Heemels et al. 2001) are defined by
partitioning the state-input space into polyhedra and associating with each polyhedron an affine
state-update and output function

x(k + 1) = Aj(k)x(k) + Bj(k)u(k) + fj(k) (7a)

y(k) = Cj(k)x(k) + Dj(k)u(k) + gj(k) (7b)

with j(k) such that
[

x(k)
u(k)

]

∈ Qj(k), (7c)

where k ∈ N0 is the discrete time-instant, and x ∈ X denotes the states, u ∈ U the inputs and
y ∈ Y the outputs, with both real and binary components as defined in the previous section.
The polyhedra Qj(k) define a set of polyhedra {Qj}j∈J on the state-input space X × U . The
real matrices Aj(k), Bj(k), Cj(k), Dj(k) and real vectors fj(k), gj(k) with j(k) ∈ J , J finite, are
constant and of suitable dimensions. We refer to j(k) as the mode of the system and to #J as
the number of modes.

For PWA models, we define well-posedness as in Definition 3.1. The following lemma follows
directly from Definition 2.3.
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Lemma 3.2: Let ΣPWA be a PWA system as in (7). If {Qj}j∈J is a polyhedral partition of
X × U , then ΣPWA is well-posed.

Note however, that the converse statement does not hold in general as a well-posed PWA
system may be defined on an overlapping set of polyhedra.

3.3 Equivalence of DHAs and PWA Systems

This section states that any well-posed DHA can be transformed into an equivalent PWA repre-
sentation. The constructive proof serves as a basis for the mode enumeration algorithm proposed
in the next section.

Definition 3.3: Let Σ1, Σ2 be well-posed hybrid models with states x1, x2 ∈ X , inputs u1,
u2 ∈ U and outputs y1, y2 ∈ Y. The hybrid models Σ1 and Σ2 are equivalent on X , U , Y, if
for all initial conditions x1(0) = x2(0) ∈ X and for all u1(k) = u2(k) ∈ U the state and output
trajectories coincide, i.e. x1(k) = x2(k) and y1(k) = y2(k) for all discrete time steps k ∈ N0.

Lemma 3.4: (Torrisi and Bemporad 2004, Lemma 1) Let ΣPWA be a well-posed PWA system
with states x ∈ X , inputs u ∈ U and outputs y ∈ Y. Then there exists a well-posed DHA ΣDHA

equivalent to ΣPWA on X , U , Y.

Lemma 3.5: Let ΣDHA be a well-posed DHA with states x ∈ X , inputs u ∈ U and outputs
y ∈ Y. Then there exists a well-posed PWA system ΣPWA equivalent to ΣDHA on X , U , Y.

Proof Consider the affine thresholds of the Event Generator (4) that define a hyperplane ar-
rangement, which forms by Proposition 2.2 a polyhedral partition. Let Pm be a polyhedron of
this partition. By construction, δ̄e(m) = fH(xr, ur) holds for any point [ xr

ur
] ∈ Pm, namely all

points in Pm trigger the same event δ̄e(m). Given a marking m, the associated event δ̄e(m),
a binary state x̄b ∈ Xb and a binary input ūb ∈ Ub, the Mode Selector determines the mode
ı̄ = fM(x̄b, ūb, δ̄e(m)) using the binary function (6). The ı̄-th dynamic in the Switched Affine
System given by (3) is the corresponding affine dynamic. The Finite State Machine yields the
binary state-update as well as the binary output according to (5). Therefore, for each m ∈ M ,
x̄b ∈ Xb and ūb ∈ Ub, the system

xr(k + 1) = Aı̄xr(k) + Bı̄ur(k) + fı̄, (8a)

xb(k + 1) = fB(x̄b, ūb, δ̄e(m)), (8b)

yr(k) = Cı̄xr(k) + Dı̄ur(k) + gı̄, (8c)

yb(k) = gB(x̄b, ūb, δ̄e(m)), (8d)

if
[

xr(k)
ur(k)

]

∈ Pm, xb(k) = x̄b, ub(k) = ūb, (8e)

defines a PWA system. In fact, by collecting x = [ xr

xb
], u = [ ur

ub
] and y = [ yr

yb
], by performing the

substitutions Aj =
[

Aı̄ 0
0 0

]

, Bj =
[

Bı̄ 0
0 0

]

, fj =
[

fı̄

fB(·)

]

and similarly for Cj , Dj and gj , and by

defining Qj , Pm × x̄b × ūb ∈ X ×U , (8a)–(8d) are formally equivalent to (7a)–(7b) and (8e) is
formally equivalent to (7c). The well-posedness of the PWA system follows from Proposition 2.2
and Lemma 3.2. �

4 Mode Enumeration Algorithm

Based on the cell enumeration in hyperplane arrangements summarized in Section 2 and the
equivalence of DHAs and PWA models shown in Section 3.3, we present in this section an
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algorithm that enumerates efficiently the feasible modes of a composition of DHAs and derives
an equivalent PWA system.

4.1 Single DHA

Consider the DHA Σ as in Section 3.1 and let X×U denote the state-input space of the DHA, for
which we want to solve the following problem. Given a binary state xb ∈ Xb and a binary input
ub ∈ Ub find the set of feasible modes J ⊆ I1, the set of polyhedra {Pj}j∈J ∈ R, R = Xr × Ur,
and the corresponding PWA dynamics {Sj}j∈J , where Sj = {Aj , Bj , fj, Cj ,Dj , gj}. As this is
the same problem as in Lemma 3.5, we derive an algorithm from its constructive proof. Note
that I is the image of the Mode Selector and can be computed once the set M(R) has been
enumerated.

Algorithm 4.1

function [ {Pj}j∈J , {Sj}j∈J ] = SingleDHA ( Σ, R, xb, ub )

j = 0, J = ∅

for m ∈ M(R)

j = j + 1, J = J ∪ {j}

Pj = Pm = {z ∈ R : SV(z) = m}

get δe based on m

i = fM(xb, ub, δe)

Sj =
{

[

Ai 0
0 0

]

,
[

Bi 0
0 0

]

,
[

fi

fB(xb,ub,δe)

]

,
[

Ci 0
0 0

]

,
[

Di 0
0 0

]

,
[

gi

gB(xb,ub,δe)

] }

return [ {Pj}j∈J , {Sj}j∈J ]

For a given binary state xb ∈ Xb and binary input ub ∈ Ub Algorithm 4.1 enumerates the feasible
modes of the DHA on the real state-input space R = Xr ×Ur. With regards to Proposition 2.1,
n is equal to the number of hyperplanes generated by the Event Generator, i.e. n = ne, and d
is the dimension of the real state-input space nr + mr. If the binary state-input combination
entails no feasible modes, or if the corresponding Xr ×Ur = ∅, the algorithm returns empty sets
of polyhedra and dynamics. Repeated calls of Algorithm 4.1 lead to a set of PWA models defined
on Xr ×Ur, where each model is associated with a feasible binary state-input combination. This
representation is advantageous if determining the state-update and the outputs for a given state
and input is the main purpose, as choosing the respective PWA model can be done by binary
search. However, the model can be transformed easily into a PWA model defined on X × U as
shown in the proof of Lemma 3.5.

Remark 1 : If the DHA Σ is well-posed, the resulting PWA model is well-posed, too, as shown
in Lemma 3.5. Furthermore, by Proposition 2.2, the set of polyhedra {Pj}j∈J forms a polyhedral
partition of Xr × Ur.

4.2 Composition of DHAs

The algorithm proposed above can be extended in a natural way to deal with composition of
DHAs. Consider s DHAs denoted as Σi, i ∈ {1, 2, . . . , s} with states xi ∈ Xi, inputs ui ∈ Ui

and outputs yi ∈ Yi
2. Let Ii be the set of (feasible) modes of the DHA Σi. The composition

has the exogenous input u ∈ U and the exogenous output y ∈ Y, where exogenous inputs are
signals coming from outside the composition. Accordingly, exogenous outputs are outputs of the
composition. We define the real and binary state spaces of the composition Xr , X 1

r ×. . .×X s
r and

1J = I holds, if all modes I of the Switched Affine System are feasible.
2As in the last section xi, ui and yi encompass both real and binary components. Furthermore, Xi , X i

r×X i
b

and accordingly
for Ui and Yi.
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Xb , X 1
b × . . .×X s

b , respectively. Accordingly, the compound vectors xr , [(x1
r)

T , . . . , (xs
r)

T ]T ∈

Xr and xb , [(x1
b)

T , . . . , (xs
b)

T ]T ∈ Xb are the sorted aggregation of the real and binary states
of the s DHAs. Summing up, the compound system has the compound state vector x = [ xr

xb
] ∈

Xr ×Xb, the exogenous input u and the exogenous output y.
The connections between the DHAs are equivalent to linear equality constraints between the

DHA outputs and inputs. The input of the i-th DHA Σi is a linear combination of the DHA
outputs and the exogenous input

ui =

s
∑

l=1

Lli yl + Li u , (9)

where Lli and Li are (0,1)-matrices of appropriate dimension and i, l ∈ {1, 2, . . . , s}. Specifically,
the Lli have dimension (pl

r + pl
b) × (mi

r + mi
b). Note that, in general, the inputs and outputs

are vectors that include both real and binary components. Since each component of an input
(vector) is connected either with an DHA output or an exogenous input, the sum of each row of
the matrix [L1i L2i . . . Lsi Li] is equal to one.

Before describing the algorithm, we recall some definitions and results from graph theory (Deo
1974) to describe the topology of the composition. A directed graph or digraph G = (V ,E )
consists of a set of vertices V , a set of edges E and a mapping that maps every edge onto some
ordered pair of vertices. A directed closed walk is an alternating sequence of vertices and edges,
beginning and ending with the same vertex, such that each edge is oriented from the vertex
preceding it to the vertex following it. If additionally, no vertices except the initial and terminal
one appear more than once, the directed closed walk is called a directed circuit. If a digraph has
no directed circuits, it is called acyclic, otherwise it is cyclic.

The definitions above can be applied directly to the composition of DHAs by defining the
DHAs as vertices and the connections from outputs to inputs as directed edges. In general, one
edge can represent several connections between two DHAs.

Note that directed circuits in G correspond to (algebraic) loops in the composition. Conversely,
an acyclic directed graph implies the lack of such loops. Besides that, since the DHAs are
functions of the compound state x(k) and exogenous input u(k) at time-instant k, the state-
update functions providing x(k + 1) cannot be part of loops, since the integrating feature of the
state-update (difference) equation breaks algebraic loops.

We define the topology of the connections among the DHAs by an adjacency matrix, which
can be easily determined based on the connections.

Definition 4.2: Let G be a digraph with s vertices containing at most one edge per pair of
vertices (no parallel edges). Then the adjacency matrix W = [wij ] of the digraph G is a s × s
(0, 1)-matrix with wij = 1 if there is an edge directed from the i-th vertex to the j-th vertex and
wij = 0 otherwise. The sequence of indices of W is given by {1, 2, . . . , s}.

Theorem 4.3 : (Deo 1974, Theorem 9.17) The digraph G is acyclic iff det(I −W ) 6= 0, where
I is the identity matrix.

Theorem 4.4 : (Deo 1974, Theorem 9.16) If the digraph G is acyclic, then its vertices can be
ordered such that the adjacency matrix of the reordered graph is an upper (or lower) triangular
matrix.

As defined in Geyer et al. (2003), the sequence of indices of the reordered adjacency matrix
implies a computational order along which the algorithm will proceed.

Example 4.5
Figure 3 depicts four DHAs (s = 4) after reordering the corresponding graph. The computa-

tional order is given by {1, 2, 3, 4}. DHAs Σ1 and Σ4 have exogenous inputs, while Σ3 and Σ4
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Σ1

Σ2

Σ3

Σ4

Figure 3. Composition of DHAs of Example 4.5 after reordering

have exogenous outputs. The connection matrices for the input of Σ3, for example, are given by

L13 =





1 0 0
0 1 0
0 0 0



 , L23 =





0
0
1



 , L33 = L43 = L3 =





0 0
0 0
0 0



 .

4.2.1 Compositions Without Loops

In a first step, we assume that the connections do not form loops. This can be easily determined
by Theorem 4.3. From Theorem 4.4 follows, that the adjacency matrix can be transformed into
an upper triangular matrix employing for example topological sorting (Deo 1974) or matrix
permutation. Furthermore, we assume that the indices of the DHAs are such that the adjacency
matrix is upper triangular. This implies that the computational order is given by {1, 2, . . . , s}.
Consequently, Σi depends only on exogenous inputs and on outputs of Σj , j < i with i, j ∈
{1, . . . , s}.

Similar to the single DHA case, our aim is the following. For the composition of DHAs
{Σi}i=1,...,s defined on X ×U , the compound state exogenous input space, and for a given binary
compound state xb ∈ Xb and a given exogenous binary input ub ∈ Ub determine the set of (fea-
sible) modes J ⊆ I1 × . . . × Is, the set of polyhedra {Pj}j∈J ∈ Xr × Ur and the corresponding
PWA dynamics {Sj}j∈J . The hereafter described Algorithm 4.6 partitions the real compound
state exogenous input space Xr × Ur sequentially (for a given combination of xb and ub).

Consider the first DHA Σl, l = 1. As mentioned before, its input vector is a subset of the
exogenous input vector (and independent from other DHAs). Therefore, since the sets of real
states and inputs are available together with the binary states and inputs, Algorithm 4.1 can be
used to determine the modes Jl, the polyhedra {Pj}j∈Jl

and the corresponding PWA dynamics
{Sj}j∈Jl

of Σl. Clearly, the polyhedra {Pj}j∈Jl
partition the Xr × Ur space.

For each mode j ∈ Jl, the tuple Sj defines the output vector of Σl as an affine function of the
compound state vector x and the exogenous input vector u. According to the connections in the
compound model (9) these output functions define the inputs of DHAs with higher computational
order, namely Σi, i ∈ {l + 1, . . . , s}. Thus before proceeding, the algorithm replaces their inputs
by the affine output function of Σl using the function Subst(). More specifically, for mode j ∈ Jl,
the function Subst() cycles through all DHAs {Σi}i=l+1,...,s. If the adjacency matrix indicates a
connection from an output of Σl to an input of Σi, i ∈ {l + 1, . . . , s}, i.e. wli = 1, the input ui is
replaced by ui,j = Lli yl,j +Li u, where yl,j = Cj x+Dj u+ gj . Note that Cj, Dj , gj are elements
of Sj of the DHA Σl. The index j underlines the fact that the input equation is specific to the
mode j ∈ Jl. The substitution operation assures that Σl+1 solely depends on compound states
and exogenous inputs.

Next, for a given mode j ∈ Jl, l is increased by one and the algorithm is called again to
partition the polyhedron Pj into a set of polyhedra using the hyperplanes of the DHAs with
computational order greater than l. This is repeated for all the remaining j ∈ Jl. If l reaches
its maximum s, the current branch terminates and the set of polyhedra of Σs, which are part of
the overall set of polyhedra {Pj}j∈J of the compound DHA system, are added to it. Stepping
sequentially through the composition of DHAs according to their computational order leads to
the set of polyhedra {Pj}j∈J and the corresponding PWA dynamic {Sj}j∈J .
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Σ1 Σ2u1

u2y1
y2

Figure 4. Composition of DHAs of Example 4.8

Remark 2 : During the execution of the algorithm, the set of polyhedra is always defined on
the complete state-input space — or more precisely, on the real compound state and exogenous
input space — Xr×Ur. In particular, the dimensionality of the problem (i.e. the number of inputs,
states and outputs) is always the same. As the algorithm proceeds, additional hyperplanes are
added cutting the existing polyhedra into smaller ones.

Recapitulating the above and given the binary compound state vector xb ∈ Xb and the binary
exogenous binary input vector ub ∈ Ub, Algorithm 4.6 is summarized as follows. The matrices
W , Lli and Li are omitted in the argument to simplify the exposition.

Algorithm 4.6

reorder {Σi}i=1,...,s such that W is upper triangular

[ {Pj}j∈J , {Sj}j∈J ] = CompDHA ( {Σi}i=1,...,s, Xr × Ur, xb, ub, 1 )

function [ {Pj}j∈J , {Sj}j∈J ] = CompDHA ( {Σi}i=l,...,s, R, xb, ub, l )

[ {Pj}j∈Jl
, {Sj}j∈Jl

] = SingleDHA ( Σl, R, xb, ub )

if l ≤ s then

P = ∅, S = ∅, J = ∅

for j ∈ Jl

[ {Pj}j∈Jnew
, {Sj}j∈Jnew

] = CompDHA ( Subst ( {Σi}i=l+1,...,s, Sj, l ), Pj , xb, ub,

l + 1 )

{Pj}j∈J = { {Pj}j∈J , {Pj}j∈Jnew
}

{Sj}j∈J = { {Sj}j∈J , {Sj}j∈Jnew
}

J = J ∪ Jnew

return [ {Pj}j∈J , {Sj}j∈J ]

else

return [ {Pj}j∈Jl
, {Sj}j∈Jl

]

function {Σi}i=l+1,...,s = Subst ( {Σi}i=l+1,...,s, Sj , l )

for i ∈ {l + 1, . . . , s}

if wli = 1 then

substitute ui in Σi by Lli (Cjx + Dju + gj) + Li u

return {Σi}i=l+1,...,s

As for the single DHA case, the algorithm yields a PWA model defined on Xr × Ur for every
feasible combination of xb ∈ Xb and ub ∈ Ub. The following corollary extends Remark 1. It
follows in a constructive way from Algorithm 4.6, Proposition 2.2 and Lemma 3.5.

Corollary 4.7: Given a composition of DHAs {Σi}i=1,...,s without loops, where each Σi is well-
posed, the resulting PWA model is well-posed, too, and its set of polyhedra forms a polyhedral
partition.

Example 4.8
Consider now the composition of DHAs shown in Fig. 4 with the state x1 ∈ X = [0, 10], the
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(b) PWA output functions given in {Sj}j∈J1
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(c) Polyhedral partition {Pj}j∈J2
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(d) PWA output functions given in {Sj}j∈J2

Figure 5. Polyhedral partitions and PWA output functions of the composition of DHAs of Example 4.8

exogenous input u1 ∈ U = [0, 7], the exogenous output y2 ∈ R and the connection u2 = y1. The
DHA Σ1 is given by1

EG1 :

{

δ1 = [x1 ≥ 4],
δ2 = [x1 ≥ 8]

SAS1 : y1 =







2u1 − 6 if i1 = 1,
x1 + u1 − 7 if i1 = 2,
u1 + 1 if i1 = 3

MS1 : i1 =







1 if δ̄1 ∧ δ̄2,
2 if δ1 ∧ δ̄2,
3 if δ1 ∧ δ2

and Σ2 yields as output the 1-norm of its input which amounts to

EG2 : δ3 = [u2 ≥ 0] SAS2 : y2 =

{

−u2 if i2 = 1,
u2 if i2 = 2

MS2 : i2 =

{

1 if δ̄3,
2 if δ3

Clearly, the state-input space is given by X ×U , the corresponding digraph is acyclic and the
indices of the DHAs are already ordered such that the adjacency matrix is upper triangular.

1Since the state-update functions do not influence the polyhedral partition they are omitted here for brevity.
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In a first step, the algorithm determines the hyperplane arrangement of Σ1, which contains
the hyperplanes of the EG1, namely {[ x1

u1
] ∈ X × U |x1 = 4} and {[ x1

u1
] ∈ X × U |x1 = 8}. The

enumeration of the cells in the arrangement leads to the markings and the polyhedral partition
{Pj}j∈J1

, J1 = {1, 2, 3}, as shown in Fig. 5(a). The corresponding PWA output functions are
depicted in Fig. 5(b).

In a second step, {Pj}j∈J1
is further partitioned by the hyperplane defined in the EG2. Starting

with mode j = 1 ∈ J1 this is done in the following way. The function Subst() replaces the
expressions for u2 in the EG2 and in the SAS2 by 2u1 − 6. Thus, for this particular mode, the
hyperplane arrangement of Σ2 is defined within the polyhedron {[ x1

u1
] ∈ X ×U | 0 ≤ x1 ≤ 4} and

holds the single hyperplane {[ x1
u1

] ∈ X × U |u1 = 3}. The corresponding markings are shown in
Fig. 5(c). As both modes of the EG2 are feasible, J2 contains two modes and the polyhedron
{[ x1

u1
] ∈ X × U | 0 ≤ x1 ≤ 4} is partitioned into two. Accordingly, the mode j = 2 ∈ J1 leads to

the hyperplane arrangement {[ x1
u1

] ∈ X × U |x1 + u1 = 7} and also to two modes, whereas the
hyperplane arrangement corresponding to j = 3 ∈ J1 is empty and thus no additional mode is
added.

The final polyhedral partition {Pj}j∈J = {Pj}j∈J2
and the PWA dynamics {Sj}j∈J =

{Sj}j∈J2
are shown in Fig. 5(c) and 5(d), respectively.

4.2.2 Compositions With Loops

The algorithm is now generalized to compositions of DHAs containing algebraic loops. Having
determined the adjacency matrix W and verified that the digraph is cyclic, one has to identify
the connections whose removal breaks all loops and renders the corresponding digraph acyclic.
These connections correspond to the feedback arc set.

Definition 4.9: Let G = (V ,E ) be a digraph. A set F ⊆ E is a feedback arc set (FAS) for
G , if G ′ = (V ,E − F ) is acyclic. The set F is a minimum FAS if the number of edges in F is
minimum.

Finding the minimum FAS is NP-hard. However, our algorithm does not require the FAS to
be minimal. For a given digraph G = (V ,E ) fast and effective heuristics exist (Eades, Lin, and
Smyth 1993) with time complexity O(#E ) that yield an FAS F with upper bounded cardinality
#F ≤ #E /2 − #V /6.

Removing the loops in the composition of DHAs is equivalent to replacing the connections
corresponding to feedback arcs by newly created auxiliary inputs. In general, a feedback arc
f corresponds to more than one connection between two DHAs and encompasses therefore
real as well as binary variables. Thus, we add a real auxiliary input for every connection from
a real output to a real input and accordingly a binary auxiliary input for every connection
corresponding to binary variables. We denote the vector of auxiliary real and binary inputs by
vr ∈ Vr and vb ∈ Vb, respectively, and define v , [ vr

vb
]. The removed connections are kept as

equality constraints in

vi =
s

∑

l=1

Λli yl , (10)

where Λli are (0,1)-matrices of appropriate dimension and i, l ∈ {1, 2, . . . , s}. Specifically, to
remove a connection, the corresponding entries in the connection matrices Lli in (9) are set to
zero, while the corresponding entry in Λli is set to one. Repeating this for all f ∈ F yields a
composition of DHAs without loops defined on the augmented exogenous input space Ur ×Vr ×
Ub × Vb.

Assume again that the indices of the DHAs are ordered such that the adjacency matrix is
upper triangular. Given a binary state xb ∈ Xb and an augmented binary input [ ub

vb
] ∈ Ub × Vb,

this assumption allows us to use Algorithm 4.6 to derive the set of feasible modes J ′, the set of
polyhedra {P ′

j}j∈J ′ and the corresponding PWA dynamics {S ′
j}j∈J ′ defined on the augmented
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real state-input space Xr × Ur × Vr. As the algorithm proceeds, the outputs of the DHAs are
replaced step by step by affine combinations of states and exogenous inputs. Therefore, the
constraints (10) storing the removed connections must be updated simultaneously by replacing
outputs by affine combinations of states and exogenous inputs according to the respective PWA
output function. This yields the set of constraints {C′

j}j∈J ′ , where C′
j denotes the updated

constraints corresponding to the mode j ∈ J ′. Specifically, C′
j is of the form

[Hj
xr

Hj
xb

]

[

xr

xb

]

+ [Hj
ur

Hj
ub

]

[

ur

ub

]

+ [Hj
vr

Hj
vb

]

[

vr

vb

]

= Kj , (11)

where Hj
xr

, Hj
xb

, Hj
ur

, Hj
ub

, Hj
vr

and Hj
vb

are matrices with #F rows and an appropriate number
of columns, and Kj is a column vector with #F components.

In a last step, the algorithm cycles through all modes j ∈ J ′ and imposes the updated
constraints C′

j to remove the auxiliary inputs. This yields the set of modes J of the original
composition containing loops and the set of polyhedra {Pj}j∈J with the corresponding PWA
dynamics {Sj}j∈J defined on the original space Xr × Ur. In general, some of the modes in the
set J ′ will prove to be infeasible and thus J ⊆ J ′.

Summing up, after identifying and removing the algebraic loops, the above algorithm trans-
lates the mode enumeration problem into a higher-dimensional space, while the constraints (10)
preserve the information about the loops. In a last step, the algorithm imposes these constraints
and projects the problem back into the original state-input space. Note that a non-minimal FAS
does not increase the number of modes. This is due to the fact that a non-minimal FAS leads to
the removal of some surplus connections and thus to an auxiliary space of higher dimension than
strictly necessary. When imposing the constraints and projecting the problem down onto the
original space, the same number of modes results regardless of whether the FAS was minimal or
not. However, the higher dimensionality of the auxiliary space tends to lead to a slight increase
of the overall computation time.

Consider now the mode j ∈ J ′ with the associated polyhedron P ′
j and the constraint C′

j . The
following three cases may occur when imposing the constraint.

(i) If det(Hj
vr

) 6= 0, one can express the auxiliary real input as a function of the real state and the
real exogenous input, and we substitute vr in P ′

j. This is the same as intersecting P ′
j with the

(hyperplane defined by the) constraint C′
j and projecting the result on the original state-input

space Xr × Ur. The associated PWA dynamic Sj is derived by substituting vr in S ′
j . If the

polyhedron Pj is non-empty, the auxiliary input has been removed successfully and Pj is now
solely defined on Xr ×Ur. Therefore, we add the mode j to J , the polyhedron Pj to {Pj}j∈J

and the PWA dynamic Sj to {Sj}j∈J . If Pj is empty, the corresponding mode j is infeasible
and thus discarded.

(ii) However, if det(Hj
vr

) = 0, there exists either no or an infinite number of solutions for vr.
This is the case when the intersection of P ′

j with the (hyperplane defined by the) constraint

C′
j is lower-dimensional or empty. In both cases, the corresponding mode and polyhedron are

infeasible and thus removed.
(iii) In the presence of auxiliary binary inputs vb, the algorithm is called for all combinations of

binary states, exogenous binary inputs and auxiliary binary inputs. In general, based on the
constraints (10), which include binary variables, some of these combinations will prove to be
infeasible and the algorithm needs to discard the associated modes and polyhedra.

The first two cases, in which loops have either zero, one or an infinite number of solutions are
well-known from linear systems theory with the only difference, that in our case, det(Hj

vr
) is a

local property that holds only for a given polyhedron and not for the whole state-input space.
However, when dealing with loops in hybrid systems, additional difficulties may arise. As the
next example will show, even if for all modes det(Hj

vr
) 6= 0 holds, the resulting polyhedra do

not necessarily form a polyhedral partition of Xr ×Ur and the composition of DHAs is thus not
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v1 y1 u2
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Figure 6. Composition of DHAs of Example 4.10 containing a feedback loop
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(d) PWA output functions given in {Sj}j∈J and defined on
the original state-space X

Figure 7. Set of polyhedra and PWA output functions of the composition of DHAs in Example 4.10

well-posed in general.

Example 4.10 Reconsider the composition of DHAs in Example 4.8 to which we add a feedback
loop as shown in Fig. 6. This removes the exogenous input u1 and reduces the state-input space
to X = [0, 10]. The corresponding digraph is cyclic and contains the feedback arc f = (Σ2,Σ1).
Introducing the auxiliary real variable v1 ∈ V = R and storing the removed connection v1 = y2

in the form of Λ11 = 0, Λ21 = 1 allows one to break the loop. As a result, the composition is
defined on the augmented state-input space X×V, and Algorithm 4.6 leads to the set of polyhedra
{P ′

j}j∈J ′ and the PWA dynamics {S ′
j}j∈J ′ shown in Fig. 7(a) and Fig. 7(b), respectively1.

Next we impose the constraint v1 = y2. Consider the mode j = 1 ∈ J ′ with the polyhedron
P ′

1 = {[ x1
v1

] ∈ X × V |
[

1 0
0 −1

]

[ x1
v1

] ≤
[

4
−3

]

}, the output function y2 = 2v1 − 6 and the updated
constraint v1 = 6. The fact, that det(H1

vr
) is different from zero allows us to derive P1 = {x1 ∈

1Note that the v1-axis has been artificially restricted to −2 ≤ v1 ≤ 7 to facilitate the plotting.
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Fb(k)

F (k)

d1(k), d2(k)

d1(k), d2(k) n(k)

x(k)
x(k), v(k)

Σ1: Topology

Σ2: Status of Mail

Σ3: Dynamics

Figure 8. Paperboy example consisting of three DHAs with the respective states

X |x1 ≤ 4}. As P1 is non-empty, the mode j = 1 is feasible. The corresponding output function
is given by y2 = 6. The modes j = 2 and j = 4 are handled in a similar way. For the modes j = 3
and j = 5, the updated constraints are x1 = 7 and 0 = 1, respectively. In both cases, det(Hj

vr
) is

zero. For j = 3, this leads to an infinite number of solutions and a lower dimensional polyhedron
containing only the single point x1 = 7, whereas for j = 5 no solution exists. This can be also
seen from Fig. 7(b), where the intersection of the hyperplane v1 = y2 (not depicted) with S3

projected on the X space leads to x1 = 7. On the other hand, the hyperplanes v1 = y2 and
S5 are parallel. Both modes together with the associated polyhedra and dynamics are therefore
infeasible and thus removed.

The resulting set of polyhedra {Pj}j∈J , J = {1, 2, 4}, and the PWA output functions {Sj}j∈J ,
which are defined on the one-dimensional state-space X , are shown in Fig. 7(c) and 7(d), respec-
tively. Observe that P1 = P2 and that two different output functions are associated to them.
Because of that and as a part of the state-space, namely {x1 ∈ X |x1 ≥ 7}, is not covered,
{Pj}j∈J does not form a polyhedral partition of X = [0, 10]. Therefore, the resulting PWA
system and consequently also the corresponding composition of DHAs is not well-posed.

This example demonstrates how tight interactions render modes infeasible. When compared to
Example 4.8, the additional algebraic loop (”tight interaction”) in Example 4.10 renders three
out of the six modes infeasible. Moreover, this example shows that in the presence of loops the
polyhedra of the resulting PWA system do not necessarily form a polyhedral partition. The
reason for this is twofold. First, modes might be infeasible either because the intersection of
the associated polyhedron with the updated constraint is empty or because det(Hj

vr
) of the

constraint is zero. In general, infeasible modes result in gaps in the state-input space. Second,
polyhedra (associated with different dynamics) may overlap.

As a result, using well-posed DHAs to form a composition of DHAs with loops does not guar-
anty well-posedness of the overall composition. However, as well-posedness of the composition
of DHAs relates directly to well-posedness of the corresponding PWA model, we can conclude
that the composition of DHAs is well-posed if and only if the corresponding PWA system is
well-posed. Based on the polyhedra and the dynamics, one can easily evaluate well-posedness of
the PWA model. If the set of polyhedra {Pj}j∈J of the PWA model forms a polyhedral partition,
well-posedness is assured by Lemma 3.2. On the other hand, if the union of {Pj}j∈J covers the
state-input space completely, and if all pairs of overlapping polyhedra are associated to the same
PWA dynamic, the PWA model is well-posed, too.

5 Examples and Applications

This final section presents two examples showing how the mode enumeration algorithm can
be used to efficiently derive the PWA representation of a given hybrid system. Moreover, it is
demonstrated how the knowledge about the set of (feasible) modes can be exploited to reduce
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Figure 9. Topology of the neighborhood in the paperboy example as defined by DHA Σ1. The four properties are associated
with the modes i = 1, ...,4. The road has the mode i = 5. The road and the properties are separated by three thresholds,
while the two houses are defined by two thresholds

the computation time of Model Predictive Control.

5.1 Car Example

In Torrisi and Bemporad (2001), the authors proposed a hybrid model of a car with a robotized
gear shift. This example was adopted in Bemporad (2002), where the author computes the MLD
model using Hysdel and the PWA model equivalent to the MLD model using multi-parametric
and mixed integer linear programming. As the model is given in Hysdel, the algorithm in
Section 4 starts from this description to translate the car example into a PWA model. The
resulting PWA model encompasses 30 polyhedra and six different modes. Using Matlab 5.3 on
a Pentium III 650 MHz machine, the model is computed in 1.9 s. This is 40 times faster than the
algorithm reported in Bemporad (2002) on a similar machine and 50 faster than the conversion
approach of Villa et al. (2004).

The reason for the shorter computation time of our algorithm is twofold. First, the algorithm
presented here exploits the structure of the composition of DHAs, while the algorithms presented
in Bemporad (2002) and Villa et al. (2004) deal with MLD models concealing that structural
information. Second, the approach in Bemporad (2002) needs to remove redundant inequalities at
each iteration of the exploration algorithm. This operation may dominate the total computation
time in Bemporad (2002).

Apart from this, both Bemporad (2002) and Villa et al. (2004) lack the compositional capability
and can only handle the transformation from a single MLD to a single PWA model. In particular,
models with loops cannot be tackled.

5.2 Paperboy Example

A paperboy delivers by bike two heavy and bulky mail items to two different houses within
a neighborhood consisting of four properties and one road. The properties and the road have
different slopes and different friction coefficients.

The (exogenous) system input at time-instant k is given by the force Fb(k) ∈ U ⊂ R
2, U =

[−Fmax, Fmax]
2, Fmax = 162 N that the paperboy applies to his bike in order to accelerate and

brake. Driven by Fb, the paperboy cycles in the two-dimensional neighborhood X1 = [−sn, sn]2

with sn = 1000 m. His position is given by x(k) = [x1(k), x2(k)]T ∈ X1 ⊂ R
2 and his speed

v(k) ∈ X2 ⊂ R
2 is limited by X2 = [−vmax, vmax]

2, where vmax = 15 m/s. Two binary states
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x(k) x(k + 1) x(k + N − 1) x(k + N)

u(k) u(k + 1) u(k + N − 1)

Σ Σ Σ

Figure 10. Conceptual scheme of the N-step prediction model

d1(k), d2(k) ∈ {0, 1} denote the status of the mail delivery. The (exogenous) outputs of the
model are the position x(k) and the number of delivered mail items n(k) ∈ {0, 1, 2}.

As depicted in Fig. 8, the paperboy problem can be decomposed into three DHAs, which are
described in detail in Geyer et al. (2003). The corresponding Hysdel code can be found in Geyer
(2005, Appendix A.1). As shown in Geyer et al. (2003), the paperboy example is defined on an
eight-dimensional state-input space. The composition contains no algebraic loops, since the third
DHA’s state-update function for x(k) introduces a delay of one sampling interval that breaks
the loop. Algorithm 4.6 yields the equivalent PWA model within 6.5 s on a 2.8 GHz Pentium IV
PC. It encompasses 168 feasible modes and polyhedra, what is by far below the upper bound of
7099 given by Buck’s formula (2).

The paperboy starts the mail delivery at a random position x(0) with speed v(0) = 0. His
objective is to first deliver one mail item to House 1 centered around xh1 and then to move on
to House 2 at position xh2 to deliver the second mail item. Using the force that the paperboy
applies as manipulated variable, namely u(k) = Fb(k), this control objective can be expressed
by the cost function

J(x(k), v(k), U(k)) =
N−1
∑

ℓ=0

‖x(k + ℓ|k) − xref (k + ℓ|k)‖1 + ǫ‖u(k + ℓ|k)‖1 , (12)

which penalizes the predicted deviation of the position from its reference over the horizon N using
the 1-norm for the sequence of manipulated variables U(k) = [(u(k))T , . . . , (u(k + N − 1))T ]T .
The reference xref is switched from xh1 to xh2 when the paperboy reaches House 1. Additionally,
the very small penalty term ǫ = 10−6 is imposed on the manipulated variable.

In the next section, we will use the paperboy example to evaluate the potential of the mode
enumeration algorithm to reduce the computation time of Model Predictive Control (MPC), see
e.g. Maciejowski (2002). The MPC control problem amounts to minimizing the cost function (12)
subject to the evolution of the paperboy model over the prediction horizon and subject to
constraints on Fb, x and v as given above. The solution of this optimization problem, which is
a Mixed-Integer Linear Program (MILP), yields the control input, namely the force Fb.

5.3 Cuts for Model Predictive Control

MPC of discrete-time linear hybrid systems uses an internal hybrid model, which is usually in
Mixed Logical Dynamical (MLD) form (Bemporad and Morari 1999). In the great majority of
cases, the MLD model is derived starting from a composition of DHAs described textually in
Hysdel. When translating a composition of DHAs into an MLD model, information about the
structure of the hybrid model is lost. However, the explicit computation of the set of feasible
modes of the composition of DHAs allows one to add this structural information to the MLD
model in the form of cuts. These cuts, which are formulated as integer inequality constraints
on the binary inputs, binary states and binary variables in the MLD model, prune infeasible
combinations of these binary variables, or equivalently modes, from the MLD model by restricting
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δ1 δ2 δ3 i feasible
0 0 1 1 yes
0 0 0 2 yes
1 0 1 3 no
1 0 0 4 yes
1 1 1 5 no
1 1 0 6 no
0 1 1 7 no
0 1 0 8 no

(a) Truth table for the binary vari-
ables

(0,0,0) (1,0,0)

(1,1,0)

(1,1,1)

δ1

δ2

δ3

(b) Representation of the binary variables in
R

3

Figure 11. Revisited Example 4.10 with the truth table for the example’s binary variables indicating whether a mode is
feasible or not along with the mode number i. Furthermore, the rows of the truth table are shown in R

3, where the black
(white) nodes refer to feasible (infeasible) modes. The intersections of the unit cube with the hyperplane defined by the cut
are indicated by dash dotted lines

the solver to only consider combinations of binary variables (modes) that are feasible. Infeasible
modes are thus removed explicitly from the solver’s search tree.

Example 5.1
Consider again Example 4.10, whose binary variables are the three event variables δ1, δ2 and

δ3. Thus, eight possible modes exist, out of which three are feasible. As shown in Table 11(a),
a truth table can be easily built that indicates whether a given combination of binary variables
corresponds to a feasible mode or not. Figure 11(b) provides a pictorial description of the truth
table’s rows in R

3, where the feasible (infeasible) modes are indicate by black (white) nodes.
A cut removing the infeasible modes is for example δ1 + 2δ2 + δ3 ≤ 1. To visualize this cut,
the binary variables δ are relaxed to the real variables ρ. This leads to the cutting hyperplane
ρ1 +2ρ2 +ρ3 = 1, whose intersection with the unit cube is indicated in Fig. 11(b) by dash dotted
lines.

Given the current state and the input, the internal MLD model computes the state at the
next time-instant and the output. One might refer to such a model as a single-step prediction
model defined on the state-input space X ×U . When building the optimization problem for MPC
with the horizon N , this model is repeated N times. More specifically, the series connection of
N identical single-step models is built as shown in Fig. 10, where each model uses the state
predicted by the previous model as initial state. We might consider these N models as one single
model defined on the state-input space X×UN . Given the initial state x(k) ∈ X and the sequence
of inputs U(k) = [(u(k))T , . . . , (u(k +N − 1))T ]T ∈ UN , this models provides the state evolution
over N time steps. We thus refer to it as the N -step prediction model. The mode enumeration
technique allows us to introduce cuts not only on the modes of the single-step, but also on the
N -step prediction model. As a result, additional cuts on the X ×UN space can be added taking
into account the interactions between the single-step models.

Cuts can be formulated in terms of additional logic constraints. According to Mignone (2002),
two methods can be used to transform logic constraints into mixed integer inequalities, which
can be directly added to the MLD model. The Symbolical Method converts the constraints into a
canonical normal form, which is then translated into integer inequalities, whereas the Geometrical
Method computes the convex hull of the integer points for which the constraints are fulfilled. In
general, the second method is superior to the first one because the convex hull is the smallest set
containing all the feasible integer points, and because it introduces fewer additional inequalities.

Example 5.2
As an example for adding cuts to the single-step prediction model, reconsider the paperboy
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Figure 12. Normalized average computation time versus prediction horizon N , N = 8, . . . , 26, when using single-step
prediction models with cuts generated by either the symbolical method (dash-dotted line) or the geometrical method (solid
line)

example of the previous section. We used the compiler Hysdel to transform the paperboy
composition of DHAs into an MLD model. The mode enumeration algorithm in Section 4 was
used to compute the set of (feasible) modes, which were added as additional constraints to the
MLD model using the symbolical method as well as the geometrical method. We solved MPC
with the cost function (12) and various prediction horizons. Using Cplex (ILOG, Inc. 2002)
as MILP solver, Fig. 12 reports the average computation times for MPC on the two improved
models normalized to the plain model produced by the Hysdel compiler.

As can be seen, both methods add non-trivial cuts to the model reducing the computation time
of Cplex by a factor of up to two. This improvement is more evident when using less advanced
solvers like the one described in Bemporad and Mignone (2000), where for a prediction horizon
of three for example, the additional information reduces the computation time by a factor of 210.
Figure 12 shows clearly that the cuts introduced by the geometrical method are more effective
than the ones of the symbolical method. This is mainly due to the fact that the symbolical
method needs much more constraints and consequently memory space to define the feasible
modes thus delaying the calling of Cplex. For the paperboy example, the symbolical method
introduces 239 additional constraints, whereas the geometrical method only adds 42. The third
conclusion is that both methods become more effective as the prediction horizon is increased, as
the benefit of additional cuts grows with the number of binary variables.

6 Conclusions and Future Research

We have presented an effective method to enumerate the set of feasible modes for a given
composition of DHAs. The same procedure transforms the compound model into a PWA model.
The algorithm is capable of handling algebraic feedback loops in such a composition — in
contrast to Hysdel that is not able to transform compositions containing loops into equivalent
MLD models. As a byproduct, the algorithm can also determine whether a composition is well-
posed or not. Improving the way data is handled and by storing hyperplane arrangements already
computed, led to a reduction of the computation time by a factor of up to 30 when compared
to the original code presented in Geyer et al. (2003).

In general, some neighboring polyhedra have the same PWA dynamic and should thus be
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joined in order to reduce the model complexity. This problem is addressed in Geyer, Torrisi, and
Morari (2008), where optimal complexity reduction algorithms are proposed to derive — based
on the markings of a corresponding hyperplane arrangement — an equivalent PWA model that
is minimal in the number of polyhedra.

With respect to optimal control, the mode enumeration technique can be exploited to reduce
the computation time of MPC by adding integer constraints. Here, we have added such cuts
only to the single-step prediction model. Extending this idea to the N -step prediction model
should further increase the benefits in terms of a reduction of the on-line computation time.
Another promising alternative is to transform the N -step prediction model into an equivalent
PWA model, to derive a minimal representation using the optimal complexity reduction scheme
of Geyer et al. (2008), and to translate the minimal representation then into a very compact
MLD model to be used for MPC.
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