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Abstract— This paper presents an algorithm that, given a
piecewise affine (PWA) model, derives an equivalent PWA
model that is minimal in the number of regions. The algorithm
is based on the cells of the hyperplane arrangement that
are already given when the PWA model is the result of the
mode enumeration algorithm [9]. In particular, the algorithm
executes a branch and bound search on the markings of the
cells of the hyperplane arrangement assuring optimality. As we
refrain from solving additional LPs, the algorithm is not only
optimal but also computationally attractive. The applicability
of the algorithm can be extended to derive minimal PWA
representations of general PWA models by first computing the
hyperplane arrangement. An example illustrates the algorithm
and shows its computational effectiveness.

I. INTRODUCTION

This paper focuses on the problem of finding a minimal
representation of piecewise affine (PWA) models [12]. More
specifically, for a given PWA model, we solve the problem
of deriving a PWA model that is both equivalent to the
former and minimal in the number of regions.

PWA models represent a universal modelling framework
to describe hybrid systems. As shown in [11], they are
equivalent under mild assumptions to various other hybrid
systems frameworks. In general, hybrid systems feature
thresholds or guardlines defined on states, inputs and in-
ternal variables. Associated logic signals are either true
or false according to the fulfillment of these thresholds.
Additionally, hybrid systems often encompass logic states
that are part of a finite state machine or an automaton. A
(feasible) combination of logic signals and logic states is
usually called a mode. Assuming that the thresholds are
linear, the set of states and inputs corresponding to the
same mode forms a (convex) polyhedron whose facets are
a subset of the thresholds. The collection of thresholds is
a collection of hyperplanes, and if all hyperplanes solely
depend on states and inputs, is equivalent to a hyperplane
arrangement [9]. Computing all cells (or polyhedra) of the
hyperplane arrangement is equivalent to enumerating the
set of feasible modes. For each mode, a hybrid system
features an associated dynamic. Here, we restrict ourselves
to discrete-time and PWA dynamics. Furthermore, as the
modes are defined such that the logic signals are constant
for a given mode, these logic signals are included in the
affine expression of the PWA dynamics by using binary
instead of logic variables.
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Describing complex hybrid systems directly through
PWA models is a tedious and non-trivial task in general.
To facilitate the modelling, the HYbrid Systems DEscription
Language (HYSDEL) [13] has been developed, that allows
the designer to describe a hybrid system on a textual basis.
A hybrid system described in HYSDEL can be regarded as a
composition of discrete hybrid automata (DHA) [13] which
are a mathematical abstraction of the features provided
by other computation oriented and domain specific hybrid
system frameworks.

In [9], we have formulated an algorithm that efficiently
enumerates the feasible modes of a composition of DHAs.
This allows the model designer not only to determine the
real complexity of the compound model, but it also enables
him to transform the compound model into an equivalent
PWA model. Every mode corresponds to a polyhedron with
an associated affine dynamic. Consequently, the PWA model
is given by a set of polyhedra that form – if the PWA system
is well-posed – a polyhedral partition with associated affine
dynamics.

However, different modes often correspond to the same
affine dynamic. If some or all of the associated polyhedra
form a convex union, those polyhedra should be merged
in order to reduce the complexity of the model. A model
minimal in the number of polyhedra not only allows for
a more compact representation, but the online computation
time is also reduced significantly when the model is used
in connection with Model Predictive Control (MPC). Simi-
larly, when computing the explicit MPC feedback law [2],
[4], it is of major importance to have a representation with
as few regions as possible as the complexity of the algo-
rithms depends exponentially on the number of polyhedra.
The same holds for the number of resulting regions that
represent the feedback law.

If the number of polyhedra with the same affine dynamic
is large, the number of possible polyhedral combinations for
merging explodes. As most of these unions are not convex
or not even connected and thus cannot be merged, trying
all combinations using standard techniques based on linear
programming (LP) [3] is prohibitive. Furthermore, our ob-
jective here is not only to reduce the number of polyhedra
but rather to find the minimal and thus optimal number
of disjoint polyhedra. The mode enumeration algorithm [9]
not only derives the polyhedral partition, but also the
corresponding set of markings of the associated hyperplane
arrangement. Using the markings enables us to determine a
priori – i.e. without solving any LP – if a given combination
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Fig. 1. Arrangement of four hyperplanes (lines) in R = R
2 with the

markings m ∈ M(R).

of polyhedra is convex. Exploiting this fact, we propose
in this paper a branch and bound algorithm that yields
the minimal number of polyhedra without solving LPs.
Additional heuristics on the branching strategy allow us to
reduce the computation time. Furthermore, the algorithm
presented here can be extended to related cases lacking the
hyperplane arrangement.

II. PRELIMINARIES

A. Cell Enumeration in Hyperplane Arrangement

Let A be a collection of n distinct hyperplanes
{Hi}i=1,...,n in the d-dimensional Euclidian space R

d,
where each hyperplane is given by a linear equality Hi =
{x ∈ R

d | aix = bi}. We say that the hyperplanes of A
are in general position, if there exists no pair of parallel
hyperplanes, and if any point of R

d belongs at most to d

hyperplanes. Let SV : R
d → {−, +}n be the simplified sign

vector defined as

SVi(x) =

{

− if aix ≤ bi,

+ if aix > bi
for i ∈ {1, 2, . . . , n} . (1)

Consider the set Pm = {x ∈ R
d | SV(x) = m} for a given

sign vector m. This set is called a cell of the arrangement
and is a polyhedron as it is defined by linear inequalities. We
will refer to m as the marking of the polyhedron (or cell)
Pm in the hyperplane arrangement A (see Fig. 1) [14]. Let
M(R) be the image of the function SV(x) for x ∈ R ⊆ R

d,
namely the collection of all the possible markings of all the
points in R.

Let the ’∗’ element extend the sign vector in the sense
that it denotes the union of cells, where the associated
hyperplane is not a facet of the associated polyhedron Pm.
As an example, consider in Fig. 1 the two polyhedra with
the markings m1 = −−−− and m2 = +−−−. Then, m =
∗−−− is equivalent to {m1,m2} and refers to Pm1

∪Pm2
.

The cell enumeration problem in a hyperplane arrange-
ment amounts to enumerate all the elements of the set
M(R). Let #M(R) be the number of cells identified by
M(R). Buck’s formula [5] sets the upper bound #M ≤
∑d

i=0 ( n
i ) = O(nd) with the equality satisfied if the

hyperplanes are in general position and R = R
d.

The cell enumeration problem admits an optimal solution
with time and space complexity O(nd) [6]. An alternative
approach based on reverse search was presented in [1],
improved in [8] and implemented in [7], that runs in
O(n lp(n, d) #M) time and O(n, d) space, where lp(n, d)
denotes the complexity of solving a linear program (LP)
with n constraints in d variables [8, Theorem 4.1]. Note
that in many cases of interest, the hyperplanes are not in
general position and #M can be considerably smaller than
the theoretical upper bound.

From the definition of Pm and (1) follows directly that
the collection of polyhedral sets {Pm}m∈M(R) satisfies
⋃

m∈M(R) Pm = R and Pi∩Pj = ∅, ∀i, j ∈ M(R), i 6= j.
A collection of polyhedral sets with these two properties is
a polyhedral partition of the polyhedral set R [14].

B. Piecewise Affine Systems

Piecewise affine systems [11], [12] are defined by parti-
tioning the state-input space into polyhedra and associating
with each polyhedron an affine state-update and output
function, i.e.

x(k + 1) = Aj(k)x(k) + Bj(k)u(k) + fj(k) (2a)
y(k) = Cj(k)x(k) + Dj(k)u(k) + gj(k) (2b)

with j(k) such that
[

x(k)
u(k)

]

∈ Pj(k), (2c)

where x(k) ∈ X , u(k) ∈ U , y(k) ∈ Y denote at time k the
real and binary states, inputs and outputs, respectively, the
polyhedra Pj(k) define a set of polyhedra {Pj}j∈J on X ×
U , and the real matrices Aj(k), Bj(k), Cj(k), Dj(k) and real
vectors fj(k), gj(k) with j(k) ∈ J , J finite, are constant
and have suitable dimensions. In particular, J denotes the
set of feasible modes. Throughout this paper, we assume
that the PWA model is well-posed, i.e. the set of polyhedra
{Pj}j∈J is a polyhedral partition of the state-input space
X × U .

C. Mode Enumeration Algorithm

Given a hybrid system modelled as a composition of
DHAs in HYSDEL, the mode enumeration algorithm [9]
derives the set of feasible modes J , the set of polyhedra
{Pj}j∈J defined on the state-input space X × U and the
corresponding affine dynamics {Sj}j∈J , where Sj = {Aj ,
Bj , fj , Cj , Dj , gj}. Details about compositions of DHAs
and the mode enumeration algorithm are not relevant here
and can be found in [9]. However, most important is the fact,
that the algorithm also yields the hyperplane arrangement
A and the set of markings M(R) which are both defined on
R, with R ⊆ X × U . These markings will form the basis
for the optimal complexity reduction in the next section.
Next, we define global and local hyperplane arrangements.

If all the thresholds are defined only on states and inputs,
the hyperplane arrangement and the markings are defined
obviously on the state-input space, too, and consequently
R = X × U . We refer to such a hyperplane arrangement
as a global (or globally valid) hyperplane arrangement.



Furthermore, because of the equivalence of DHAs and PWA
models [11], [13], the modes j ∈ J are formally equivalent
to the markings m ∈ M(R), and we may write {Pj}j∈J

= {Pm}m∈M(R) and {Sj}j∈J = {Sm}m∈M(R).
If, however, some of the thresholds also depend on auxil-

iary variables that on their part depend on other thresholds,
the mode enumeration algorithm yields a collection of hy-
perplane arrangements that are sequentially defined within
each other. Hence, R is not the whole state-input space but
rather a polytopic subset of it. We say that the hyperplane
arrangement is local (or locally valid). This is generally the
case for compositions of DHAs that sequentially depend
on each other, where each DHA defines a hyperplane
arrangement within a cell of the hyperplane arrangement
of the preceding DHA. Consequently, the (global) modes
of the PWA model do not correspond to the markings of
the (local) hyperplane arrangements. For further details –
particularly on compositions of DHAs containing loops –
the reader is referred to [9] and references therein.

III. OPTIMAL MERGING

For a given PWA representation the aim of the optimal
merging algorithm is to find an equivalent representation
that is minimal in the number of polyhedra by merging as
many polyhedra with the same affine dynamic as possible.
For clarity of exposition, we associate with each affine
dynamic a different color, and we collect the polyhedra with
the same color. Then, for a given color, we want to solve
the following problem.

Problem 1 (Optimal Merging Problem): Given an initial
set of polyhedra {Pi}i=1,...,p with the same color, the
optimal merging problem amounts to derive a new set of
polyhedra {Qi}i=1,...,q with the following properties: (i)
the union of the new polyhedra is equal to the union of
the original ones, i.e. (

⋃q

i=1 Qi) = (
⋃p

i=1 Pi), (ii) the
new polyhedra are mutually disjoint, i.e. Qi 6= Qj for
all i, j ∈ {1, . . . , q}, i 6= j, (iii) the new polyhedra are
formed as unions of the old ones, i.e. for each Qj , j ∈
{1, . . . , q}, there exists an index set I ⊆ {1, . . . , p}, such
that Qj =

⋃

i∈I Pi, and (iv) q is minimal, i.e. there exists
no set {Qi}i=1,...,q with a smaller number of polyhedra.
Hence the problem can be considered as an optimal set
partitioning problem. This task is non-trivial, as the union
of polyhedra with the same color is in general non-convex,
and because we do not allow for overlapping polyhedra.

In this section, we assume that besides the PWA repre-
sentation a corresponding global hyperplane arrangement
A is available together with the markings M(R). In the
next section, we will relax this assumption and extend the
merging algorithm to general PWA system.

A. Preliminaries

The proof of the following lemma follows directly from
the definition of the markings.

Lemma 1 (Separating Hyperplane): Given the hyper-
plane arrangement {Hi}i=1,...,n consisting of n distinct

hyperplanes, the set of markings M(R), and the two
polyhedra P1 and P2 with the corresponding markings
m1,m2 ∈ M(R) which differ in the j-th component, Hj

is a separating hyperplane for P1 and P2 [14].
Definition 1 (Envelope, [3] p. 144): Given two polyhe-

dra P1 and P2, the envelope env(P1,P2) of the two
polyhedra is defined as the intersection of halfspaces that
contain both polyhedra, where the halfspaces are given by
the facets of the two polyhedra.

Lemma 2 (Envelope): Given the hyperplane arrangement
{Hi}i=1,...,n consisting of n distinct hyperplanes, the set
of markings M(R), and the two polyhedra P1 and P2

with the corresponding markings m1,m2 ∈ M(R), where
m1(i) = m2(i) for i ∈ I and m1(i) 6= m2(i) for i ∈ I ′ with
I ′ = {1, . . . , n}\I , we construct the marking m as follows.
m(i) = m1(i) for i ∈ I and m(i) =’∗’ for i ∈ I ′. Then
the envelope env(P1,P2) of the two polyhedra is given by
the marking m.

Proof: As all the facets of P1 and P2 are subsets of
the hyperplanes in the arrangement, and as the hyperplanes
with indices I ′ are separating hyperplanes for P1 and P2

according to Lemma 1, the proof follows from the definition
of the envelope.
The proof can be easily generalized to envelopes of more
than two polyhedra.

Theorem 1 (Convexity, [3] Theorem 3): Given the two
polyhedra P1 and P2, their union P1 ∪ P2 is convex if
and only if P1 ∪ P2 = env(P1,P2).

The following lemma allows us to determine the convex-
ity of two polyhedra by only evaluating their corresponding
markings. This lemma constitutes the basis for the optimal
merging algorithm.

Lemma 3 (Convexity): Given the collection of markings
M(R), the union of the two polyhedra P1 and P2 with the
markings m1,m2 ∈ M(R), m1 6= m2, is convex, if and
only if the markings differ in exactly one component.

Proof: As we have Theorem 1 at our disposal, we
only need to prove, that P1∪P2 = env(P1,P2) if and only
if m1 and m2 differ in exactly one component. The ”⇐”
part follows directly from Lemma 2. The ”⇒” part follows
by contradiction. Recall, that P1 ∪ P2 ⊆ env(P1,P2), and
assume that P1 ∪ P2 6= env(P1,P2), i.e. there are points
x ∈ env(P1,P2) \ (P1 ∪ P2). Then there exists at least
one hyperplane that is separating x from P1 or x from P2

besides the one that is separating P1 from P2. Thus m1

and m2 differ in at least two components.
The concept of markings in a hyperplane arrangement

allows us to evaluate the convexity of polyhedra by ap-
plying Lemma 3 to its associated set of markings. The
algorithm refrains from solving LPs – in fact, it extracts
the information from the markings that in turn summarize
the result of the LPs solved to compute the cells of the
hyperplane arrangement. Although we will use branch and
bound techniques to assure optimality, the computation time
to solve the optimal merging problem is rather small making
the algorithm applicable to problems of meaningful size.



B. Precomputation

Definition 2 (Connectivity): Two polyhedra are called
neighboring polyhedra if they share a common facet. A set
of polyhedra {Pi}i∈I is connected if for each Pi, i ∈ I ,
there exists a Pj , i 6= j, j ∈ I such that Pi and Pj are
neighboring polyhedra.

Obviously, a necessary condition for the convexity of a
union of a set of polyhedra is that the set of polyhedra is
connected. The connectivity can be easily determined using
the markings. In order to reduce the computation time, we
exploit this fact by further partitioning the set of polyhedra
with the same color into connected subsets.

C. Branch and Bound Algorithm

Let the set Mw denote the markings of a connected
subset with the same color. We refer to the corresponding
polyhedra as white polyhedra. As the color of the remaining
polyhedra is not relevant at this stage, we assume that
the remaining markings M ′

b = M(R)\Mw correspond to
black polyhedra. The basic concept of the algorithm is to
derive a minimal representation of the white polyhedra by
dividing their envelope sequentially into polyhedra using
the hyperplanes of the hyperplane arrangement.

Let the envelope of the white polyhedra with markings
Mw be denoted by Pm. It is given by the marking m,
which is constructed as in Lemma 2. Slightly abusing
the notation we will write m = env(Mw). As all the
white polyhedra are contained in their envelope, we can
formulate an equivalent problem with reduced complexity
that considers only the black polyhedra contained in this
envelope, i.e. Mb = {mb ∈ M ′

b | Pmb
⊆ Pm}, where Pmb

denotes the polyhedron with marking mb.
Let I denote the index set of hyperplanes in A that are

separating hyperplanes for polyhedra in the envelope Pm.
According to Lemma 1, I is simply the collection of indices
i with m(i) =’∗’. Then, we can choose any hyperplane Hi,
i ∈ I , to divide Pm into two polyhedra. Hi also divides
the sets of white and black markings respectively into two
subsets. We denote the subset of Mw that holds those
markings whose i-th element is a ’−’ with Mw|m(i)=−,
i.e. Mw|m(i)=− , {m ∈ Mw | m(i) =’−’}. Mw|m(i)=+

and the partition of Mb are defined accordingly. Clearly, the
unions of each pair of subset equal the original sets Mw and
Mb, respectively.

Next, the algorithm branches on the i-th hyperplane by
calling itself twice – first with the arguments Mw and Mb

restricted to possessing a ’−’ as i-th element, and then
correspondingly with the arguments restricted to a ’+’. Both
function calls return sets of markings Mm corresponding
to merged white polyhedra. This is repeated for all the
remaining hyperplanes with indices i ∈ I .

A merging branch terminates if one of the following two
cases occurs. First, if the set of markings corresponding to
black polyhedra is empty, i.e. Mb = ∅. This implies, that
at this point the envelope contains only white polyhedra.
Hence, the envelope represents the union of the set of
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Fig. 2. Example for optimal merging with four hyperplanes in R = R
2

and the corresponding markings. The polyhedra corresponding to Mw are
white and the polyhedra corresponding to M ′

b
are grey shaded, respectively.

white polyhedra with markings in Mw, and it is convex
by construction. We will refer to this convex set as a
merged white polyhedron. Second, if the set of markings
corresponding to white polyhedra is empty, i.e. Mw = ∅,
as this implies, that no more white polyhedra are available
for merging.

The algorithm uses standard bound techniques to cut off
suboptimal branches by using the two variables z and z̄. z

denotes the current number of merged white polyhedra and
z̄ is the local upper bound on z, where initially z = 0 and
z̄ = ∞. Branching is only performed if z < z̄, as branches
with z > z̄ are either equivalent to or worse than the current
optimum.

The branch and bound algorithm for deriving the minimal
number of merged polyhedra is summarized in the follow-
ing. With #M we denote the cardinality of the set M .

Algorithm 1:
function Mm = Merge( Mw, M ′

b
, z, z̄ )

m = env(Mw)

Mb = {mb ∈ M ′

b
| Pmb

⊆ Pm}

if Mw = ∅ then Mm = ∅

elseif Mb = ∅ then Mm = m

else
I = {i | m(i) = ’∗’}
Mm = ∅

for i ∈ I

if z < z̄ then
Mm1

= Merge ( Mw|m(i)=−
, Mb|m(i)=−

, z, z̄ )
Mm2

= Merge ( Mw|m(i)=+ , Mb|m(i)=+ , z + #Mm1
, z̄ )

if Mm = ∅ or #Mm1
+ #Mm2

< #Mm then
Mm = Mm1

∪ Mm2

z̄ = min(z̄, z + #Mm)

return Mm

Example 1: As an example with four hyperplanes in a
two-dimensional space consider Fig. 2. The envelope of the
white polyhedra is given by the positive halfspace of H4

and the marking m = ∗∗∗+. Thus, only the black polyhedra
with markings Mb = {+−−+, ++−+} are considered, and
branching is only performed on the hyperplanes in I =
{1, 2, 3}. Branching on H1 leads in one step to the two
merged (white) polyhedra with Mm = {−∗∗+, ++++}. This
is already the optimal solution. Nevertheless, the algorithm
also branches on the two remaining hyperplanes in I and



finds two additional solutions that are equivalent to the first
one in terms of the number of polyhedra.

Lemma 4: Algorithm 1 solves the optimal merging prob-
lem stated in Problem 1.

Proof: The proof follows in a constructive way from
the algorithm. More specifically, when branching on the i-
th hyperplane Hi, the set of white markings is divided into
the two sets Mw|m(i)=− and Mw|m(i)=+ according to the
two halfspaces defined by Hi. This operation assures that
the merged polyhedra are mutually disjoint. In particular, as
no white polyhedra are discarded during the operation and
since Mw = (Mw|m(i)=−)∪(Mw|m(i)=+), the union of the
merged polyhedra equals the union of the white polyhedra.
The minimality of the number of merged polyhedra is
ensured by branching on all hyperplanes.

Remark 1: According to the property (iii) of Problem 1,
the merged polyhedra are unions of the original white ones.
This implies, that the facets of the merged polyhedra are
a subset of the facets of the white polyhedra. Algorithm 1
derives a solution which is minimal in the number of merged
polyhedra. However, by introducing additional facets, the
number of polyhedra might be further reduced. Thus, in
general, the merged polyhedra constitute only a suboptimal
solution to the (more general) covering problem which is
not addressed here. Nevertheless, even though such cases
can be constructed, they are very rare and have not been
encountered in applications so far.

D. Derivation of Global Hyperplane Arrangement

Algorithm 1 in the proposed form is only applicable to
problems with a globally valid hyperplane arrangement. In
this section, we propose two extensions that will allow us
to employ the algorithm also for problems with local hy-
perplane arrangements, or even more general, for problems
that altogether lack a hyperplane arrangement.

As mentioned before, local hyperplane arrangements are
defined in a polyhedron R which is a subset of the state-
input space, i.e. R ⊆ X ×U . For a given R, the hyperplane
arrangement is readily available together with the markings.
Thus, optimal merging can be performed for each subset R.
The overall solution is then the union of the local solutions.
Even though the results are locally optimal, the overall
solution is in general suboptimal. As an example, consider
two local hyperplane arrangements which each encompass
one white polyhedron and a number of black polyhedra,
and assume that the union of these two white polyhedra is
convex. Using Algorithm 1 twice (for each local hyperplane
arrangement) fails to merge the two white polyhedra, and
is thus clearly suboptimal. Nevertheless, this approach is
meaningful if we are interested only in reducing the number
of polyhedra but not necessarily in finding the minimal
number, and have limited time and computational power
at our disposal.

If the aim is to derive the optimal solution, we need to
compute the global hyperplane arrangement by extending
the facets of the polyhedra. Due to the lack of space, we

give here only a brief outline of such an algorithm which
consists of three major steps. First, we collect the facets of
all polyhedra. By removing duplicates, we obtain the hyper-
plane arrangement. Next, we determine the relative position
of each polyhedron with respect to each hyperplane. This
yields a preliminary set of markings where we use an addi-
tional symbol to denote polyhedra whose interior intersects
with a hyperplane. The algorithm resolves these markings
in a last step by dividing the corresponding polyhedra into
two. As this operation involves solving LPs and increases
the number of polyhedra significantly, such an algorithm
is computational tractable only for problems with a limited
complexity. However, a number of enhancements, namely
the exploitation of parallel hyperplanes and the removal
of redundant hyperplanes reduces the computation time
remarkably. We will refer to this approach as Algorithm 2.

IV. EXAMPLE

In this final section we show how the complexity re-
duction algorithm can be extended to cases for which the
hyperplane arrangement and thus the markings are missing.
These problems include the computation of the feedback
law of MPC controllers for linear or hybrid systems. Apart
from the case of hybrid systems with quadratic performance
indices in the cost function, the resulting feedback laws are
again PWA expressions defined on polyhedral partitions.
When implementing the controller online, we require a
feedback law whose corresponding number of polyhedra
is as low as possible in order to reduce the memory re-
quirements and the computational burden for the controller
hardware. Thus we are interested in deriving an equivalent
PWA feedback law minimal in the number of polyhedra by
merging polyhedra associated with the same feedback law.
In order to tackle this problem, we first need to compute
the global hyperplane arrangement by extending the facets
defining the polyhedra.

As an example, consider a simple PWA model with two
real states and two modes for which the authors in [2]
have formulated a constrained infinite time optimal control
problem. The resulting polyhedral partition of the state
space is shown in Fig. 3(a), where the affine control laws are
indicated by different colors. Note that there exist 19 dif-
ferent control laws and 252 polyhedra. Algorithm 2 derives
a hyperplane arrangement with 135 hyperplanes containing
5200 polyhedra. The optimal merging approach leads to
39 polyhedra which are shown in Fig. 3(b). Compared to
the initial 252 polyhedra, this is a reduction of 84 percent.
The total computation time amounts to 4.5 min running
MATLAB 6.5 on a Pentium IV 2.8 GHz machine, where
deriving the hyperplane arrangement requires 2.5 min and
merging takes roughly 2 min.

As the rather large computation time indicates, the op-
timal complexity reduction algorithm as proposed here is
only applicable to PWA feedback laws with a limited
number of polyhedra defined in a low-dimensional space.
The main problem is the major increase in the number
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(b) The merged 39 polyhedra.

Fig. 3. Polyhedral partitions of the PWA feedback law, where each color relates to a different affine feedback law (19 laws in total).

of polyhedra when deriving the hyperplane arrangement
(here from 252 to 5200 polyhedra). However, we would
like to stress that Algorithm 1 is capable of deriving
successfully the minimal representation of thousands of
polyhedra. In this example, it reduces 5200 polyhedra to
39 within approximately 2 min.

Another example concerning a PWA model resulting
from the mode enumeration algorithm can be found in [10].

V. CONCLUSIONS

Based on the results of the mode enumeration algo-
rithm [9] that transforms a hybrid system into a PWA
system, and exploiting the associated markings of the
hyperplane arrangement allows us to build an equivalent
PWA system minimal in the number of polyhedra of the
partition by using branch and bound techniques. As we
refrain from solving LPs, the algorithm is both optimal
and computationally tractable. By computing the (global)
hyperplane arrangement, the applicability of the algorithm
can be extended to derive minimal PWA representations of
general PWA models and control laws. Future research will
be devoted to develop fast and suboptimal algorithms.

The MATLAB code is available upon request from the
authors. An extended version of this paper with additional
examples, remarks and definitions can be found in [10].
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