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Abstract. A hyperplane arrangement is a polyhedral cell complex where
the relative position of each cell of the arrangement and the composing
hyperplanes are summarized by a sign vector computable in polynomial
time. This tool from computational geometry enables the development
of a fast and efficient algorithm that translates the composition of hybrid
systems into a piecewise affine model. The tool provides also informa-
tion on the real combinatorial degree of the system which can be used to
reduce the size of the search tree and the computation time of the opti-
mization algorithms underlying optimal and model predictive control.

1 Introduction

A hybrid system is a collection of digital programs interacting among each other
and with an analog environment. Each logic state of the digital part of the hy-
brid system acts on the analog part inducing a different operational mode. On
the other hand, the evolution of the analog part triggers switches in the states
of the digital part. The practical relevance of hybrid systems is twofold. Digital
controllers embedded in a continuous environment demand for adequate mod-
elling, analysis and design tools. Moreover, many physical phenomena admit a
natural hybrid description, like circuits integrating relays or diodes, biomolecular
networks and TCP/IP networks.

Hybrid systems can be composed to form compositional hybrid systems [2,
21, 22, 24]. The resulting system is in general very complex, as the number of
different operational modes depends exponentially on the number of component
systems. The explosion of the size of the logic state leads to computational
difficulties as the time and space complexity of many algorithms depends on the
number of operational modes.

In some cases, the composition induces a structure that can be exploited, like
in hierarchical hybrid systems [1]. This allows one to break the problem down
into pieces and to apply the assume-guarantee approach [2, 19]. Recognizing that
a system can be modelled as a hierarchical hybrid system is part of the “art” of
model building. In many cases it may not be possible at all, because the cross in-
teractions among the components are too tight. However, tight interactions often
render many modes infeasible and the complexity of the system can be reduced
by explicitly computing and taking into account only the feasible modes. This
paper presents an efficient technique to enumerate the modes of a compositional
hybrid system.
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We will focus on discrete hybrid automata (DHA) [28]. DHA models are a
mathematical abstraction of the features provided by other computation oriented
and domain specific hybrid system frameworks: Mixed logical dynamical (MLD)
models [7], piecewise affine (PWA) systems [25], linear complementarity (LC)
systems [29], extended linear complementarity (ELC) systems [18], and max-
min-plus-scaling (MMPS) systems [10, 18]. In particular, as shown first in [26]
and then, with different arguments, in [18, 28] all those modelling frameworks
are equivalent and it is possible to represent the same system using any of these
frameworks.

DHAs are formulated in the discrete-time domain. They generalize many
computation oriented models for hybrid systems and therefore represent a uni-
versal starting point for solving complex analysis and synthesis problems for hy-
brid systems. In particular, the enumeration of feasible modes is easily solvable
for DHA systems by using algorithms that compute the cells of an arrangement
of hyperplanes [16]. This is a classical problem in computational geometry [9]
and admits optimal [14] and efficient [3, 15, 16] algorithms.

The impact of those techniques on applications is threefold. First, at the
modelling stage, the enumeration of modes allows the designer to understand
the real complexity of the compound model. This is mandatory for performing
model reduction by merging modes.

Second, after the modelling stage, the model can be efficiently translated into
a PWA model. This operation is trivial once all modes have been enumerated.
In this respect, this paper solves a problem similar to [4] where the author
computes the PWA model equivalent to an MLD system. The main difference is
that the approach in [4] is based on multi-parametric programming and mixed
integer linear programming and deals directly with the MLD model, while the
approach presented here relies on the computation of the cells of the hyperplane
arrangement and is applicable to DHAs. Note that, as shown in [28], DHAs can
be automatically translated into MLD models using the tool HYSDEL and most
of the MLD models that have been presented in the literature were derived from
DHA descriptions using HYSDEL [5, 8, 13].

Third, during the computational stage (i.e. analysis and control), the explicit
computation of the set of feasible modes of the compound system allows to prune
unnecessary modes from the resulting system and to reduce the combinatorial
explosion of related algorithms. This is of particular importance for model pre-
dictive control (MPC) of hybrid models [7], where the aim is to compute the
next N inputs that optimize a performance index defined on the variables of
a hybrid prediction model. The prediction model is the series-connection of N
identical single-step prediction models where each model uses the state predicted
by the previous model. The mode enumeration allows one to introduce cuts on
the modes of the complete prediction model.

The paper is organized as follows: In Sect. 2, we introduce the class of DHA.
Section 3 presents the problem of cell enumeration in hyperplane arrangements
and in Sect. 4, the equivalence between the class of DHA and PWA systems is
proved. Section 5 details how these results can be applied in the hybrid domain.
Finally, Sect. 6 contains experimental results where we enumerate the modes of a
hybrid model built using the HYSDEL [28] modelling language. The information
collected during this mode enumeration allows one to either build efficiently
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Fig. 1. A discrete hybrid automaton (DHA) is the connection of a finite state machine
(FSM) and a switched affine system (SAS) through a mode selector (MS) and an event
generator (EG). The output signals are omitted for clarity.

an equivalent PWA model or to speed up the computation of the hybrid MPC
feedback law by automatically adding cuts to the optimization problem. Section 7
summarizes the results and points out directions for future research.

2 Discrete Hybrid Automata

Discrete hybrid automata [28] are the interconnection of a finite state machine
and a switched affine system through a mode selector and an event generator
(see Fig. 1).

Switched Affine System (SAS). A switched affine system is a collection
of affine systems:

xr(k + 1) = Ai(k)xr(k) + Bi(k)ur(k) + fi(k) (1a)

yr(k) = Ci(k)xr(k) + Di(k)ur(k) + gi(k), (1b)

where k ∈ N is the time indicator, xr ∈ Xr ⊆ R
nr is the continuous state vector,

ur ∈ Ur ⊆ R
mr is the exogenous continuous input vector, yr ∈ Yr ⊆ R

pr is the
continuous output vector, {Ai, Bi, fi, Ci, Di, gi}i∈I is a collection of matrices of
appropriate dimensions and the mode i(k) ∈ I ⊂ N is an input signal selecting
the affine state-update dynamics and the affine output function1.

Event Generator (EG). An event generator is a mathematical object that
generates a logic signal according to the fulfillment of a constraint:

δe(k) = fH(xr(k), ur(k)), (2)

where fH : R
nr × R

mr → D ⊆ {0, 1}ne is a vector of descriptive functions
of a set of linear constraints. In particular, threshold events are modelled as

1 A SAS of the form (1) preserves the value of the state when a switch occurs, however
it is possible to implement reset maps on a DHA as shown in [28, Proposition 1].
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[δi
e(k) = 1] ↔ [f i

H(xr(k), ur(k)) ≤ 0], and time events are modelled by adding a
clock variable t(k) in the switched affine system with dynamics t(k+1) = t(k)+Ts

and setting [δi
e(k) = 1] ↔ [t(k) ≥ t0], where the superscript i denotes the i-th

component of a vector and Ts is the sampling time.
Finite State Machine (FSM). A finite state machine (or automaton) is a

discrete dynamic process that evolves according to a logic state-update function:

xb(k + 1) = fB(xb(k), ub(k), δe(k)) (3a)

yb(k) = gB(xb(k), ub(k), δe(k)), (3b)

where xb ∈ Xb ⊆ {0, 1}nb is the binary state, ub ∈ Ub ⊆ {0, 1}mb the exogenous
binary input, yb ∈ Yb ⊆ {0, 1}pb the output, δe(k) the logic signal defined by the
EG and fB : Xb × Ub ×D → Xb, gB : Xb × Ub ×D → Yb are deterministic logic
functions.

Mode Selector (MS). The logic state xb(k), the binary input ub(k), and
the event δe(k) select the dynamic mode i(k) of the SAS through a Boolean
function fM : Xb × Ub × D → I, which is therefore called mode selector. The
output of this function

i(k) = fM(xb(k), ub(k), δe(k)) (4)

is called active mode. We say that a mode switch occurs at time k if i(k−1) 6= i(k).
Note that one may associate with a state xb(k) of the FSM more than one mode
i(k) according to the event δe(k).

Definition 1. A DHA is well-posed on Xr × Xb, Ur × Ub, Yr × Yb, if for all

initial conditions x(0) =
[

xr(0)
xb(0)

]

∈ Xr ×Xb and for all inputs u(k) =
[

ur(k)
ub(k)

]

∈

Ur ×Ub, for all k ∈ N, the state trajectory x(k) ∈ Xr ×Xb and output trajectory

y(k) =
[

yr(k)
yb(k)

]

∈ Yr × Yb are uniquely defined.

3 Cell Enumeration in Hyperplane Arrangement

In this section, we recall the notation and the solution approach to the problem
of enumerating the cells of a hyperplane arrangement using reverse search [3].

Let A be a collection of n distinct hyperplanes {Hi}i=1,...,n in R
d, where each

hyperplane is given by a linear equality Hi = {x : aix = bi}. Let SV : R
d →

{−, 0, +}n be the sign vector defined as

SVi(x) =







− if aix < bi

0 if aix = bi

+ if aix > bi

i ∈ {1, 2, . . . , n} (5)

Consider the set Pm = {x : SV (x) = m} for a given sign vector m. This set
is called cell of the arrangement and is a polyhedron as it is defined by equalities
and inequalities. Note, that each 0 element of m is associated with an equality
constraint in (5) and reduces the dimension of Pm by one. We will refer to m
as the marking of the polyhedron or the cell Pm in the hyperplane arrangement
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Fig. 2. Arrangement of four hyperplanes (lines) in R
2 with the markings.

A (see Fig. 2). Let M(R) be the image of the function SV (x) for x ∈ R ⊆ R
d,

namely the collection of all the possible markings of all the points in R.
The problem of enumerating the cells of an arrangement amounts to enumer-

ate all the elements of the set M(R). Clearly, it is enough to enumerate the sign
vectors that have all nonzero entries, as any lower dimensional cell is a face of a
full dimensional cell [30, Theorem 7.16].

We say that n hyperplanes {Hi}i=1,...,n in R
d are in general position, if there

are no two parallel hyperplanes and if any point of R
d belongs at most to d

hyperplanes. Let #M(R) be the number of full dimensional cells identified by

M(R). Buck’s formula defines the following upper bound: #M ≤
∑d

i=0 ( n
i ) =

O(nd) [9], with the equality satisfied when the hyperplanes are in general position
and R = R

d.
The cell enumeration problem admits an optimal solution with time and

space complexity O(nd) [14]. An alternative approach based on reverse search
was presented in [3], improved in [16] and implemented in [15]. Reverse search
is an exhaustive search technique which can be considered as a special graph
search. This search technique has been used to design efficient algorithms for
various enumeration problems such as enumeration of all spanning trees and cells
in hyperplane arrangements. Before evaluating the complexity of the algorithm
based on reverse search, let lp(n, d) denote the complexity of solving a linear
program (LP) with n constraints in d variables.

Proposition 1. [16, Theorem 4.1] There is a reverse search algorithm for enu-
meration of hyperplane arrangements that runs in O(nlp(n, d)#M) time and
O(n, d) space.

Note that in many cases of interest, the hyperplanes are not in general position
and #M can be considerably smaller than the theoretical upper bound.

The following proposition follows directly from the definition of Pm and (5).

Proposition 2. The collection of polyhedral sets {Pm}m∈M(R) satisfies:

(i)
⋃

m∈M(R) Pm = R, (ii) (Pi) ∩ (Pj) = ∅, ∀i 6= j.

A collection of polyhedral sets that satisfies points (i) and (ii) in Proposition 2
is a polyhedral partition of a polyhedral set R.
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4 Discrete Hybrid Automata and Piecewise Affine
Systems

PWA systems [18, 25] are defined by partitioning the state space into polyhedral
regions and associating with each region a different linear state-update function

x(k + 1) = Aj(k)x(k) + Bj(k)u(k) + fj(k) (6a)

y(k) = Cj(k)x(k) + Dj(k)u(k) + gj(k) (6b)

j(k) such that Hj(k)x(k) + Jj(k)u(k) ≤ Kj(k) (6c)

H̃j(k)x(k) + J̃j(k)u(k) < K̃j(k), (6d)

where x ∈ X ⊆ R
n, u ∈ U ⊆ R

m, y ∈ Y ⊆ R
p, the matrices Aj(k), Bj(k), fj(k),

Cj(k), Dj(k), gj(k), Hj(k), Jj(k), Kj(k), H̃j(k), J̃j(k), K̃j(k), j(k) ∈ J , J finite,
are constant and have suitable dimensions, the inequalities in (6c) and (6d)
should be interpreted componentwise and the constraints (6c) and (6d) define a
polyhedral partition {Pj}j∈J of the set X × U .2

Definition 2. Let Σ1, Σ2 be hybrid models with inputs u1(k), u2(k) ∈ U , states
x1(k), x2(k) ∈ X and outputs y1(k), y2(k) ∈ Y, k ∈ N. The hybrid models Σ1

and Σ2 are equivalent on X ,U ,Y if for all u1(k) = u2(k) = u(k) ∈ U the output
trajectories y1(k) and y2(k) coincide and x1(k) = x2(k) for all time-instants
k ∈ N.

Lemma 1. [28, Lemma 1] Let ΣPWA be a well-posed3 PWA model defined on
a set of states X ⊆ R

n, a set of inputs U ⊆ R
m and a set of outputs Y ⊆ R

p.
Then there exists a well-posed DHA model ΣDHA such that ΣDHA and ΣPWA

are equivalent.

The equivalence of the previous lemma allows us to call J modes of the PWA
system (6a)-(6d).

Lemma 2. Let ΣDHA be a well-posed DHA model defined on a set of states
X ⊆ R

n, a set of inputs U ⊆ R
m and a set of outputs Y ⊆ R

p. Then there exists
a well-posed PWA model ΣPWA such that ΣPWA and ΣDHA are equivalent.

Proof. Consider the arrangement of a set of hyperplanes defining the linear con-
straints of the EG. By Proposition 2 this defines a polyhedral partition. Let Pm

be a polyhedron of that partition. By construction, δe = δ̄e(m) = fH(xr , ur) for
any point [xT

r , uT
r ]T ∈ Pm, namely all the points in Pm trigger the same event

vector δ̄e(m). Given a marking m, the associated event δ̄e(m), a binary state
x̄b ∈ Xb and a binary input ūb ∈ Ub, the MS determines the mode ī using the
Boolean function (4). The ī-th dynamic in the SAS given by (1a) and (1b) is the
corresponding affine dynamic. The FSM yields the binary state-update xb(k+1)

2 Note that (6d) ensures the single definition of the functions (6a) and (6b) on borders
of the cells of the partition.

3 For PWA systems, well-posedness is defined similarly to Definition 1.
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as well as the binary output yb(k) according to (3a) and (3b). Therefore, for
each m ∈ M , x̄b ∈ Xb and ūb ∈ Ub, the system

xr(k + 1) = AfM(x̄b,ūb,δ̄e(m))
xr(k) + BfM(x̄b,ūb,δ̄e(m))

ur(k) + ffM(x̄b,ūb,δ̄e(m))
, (7a)

xb(k + 1) = fB(x̄b, ūb, δ̄e(m)), (7b)

yr(k) = CfM(x̄b,ūb,δ̄e(m))
xr(k) + DfM(x̄b,ūb,δ̄e(m))

ur(k) + gfM(x̄b,ūb,δ̄e(m))
, (7c)

yb(k) = gB(x̄b, ūb, δ̄e(m)), (7d)

if xb(k) = x̄b, ub(k) = ūb, [xT
r (k), uT

r (k)]T ∈ Pm, (7e)

defines a PWA system. In fact, by collecting x = [ xr

xb
] and y = [ yr

yb
], (7a)–(7d) are

formally equivalent to (6a)–(6b) and (7e) is formally equivalent to (6c)–(6d). ut

5 Algorithm

The following section presents an algorithm based on the cell enumeration sum-
marized in Sect. 3 that efficiently enumerates the feasible modes of a composition
of DHAs and derives an equivalent PWA model.

5.1 Single DHA

Consider the DHA Σ as in Sect. 2 and let Ur×Ub×Xr×Xb denote the input-state
space of the DHA, for which we want to solve the following problem. Find the
set of feasible modes J ⊆ I4, the polyhedral partition {Pj}j∈J and the corre-
sponding PWA dynamics {Sj}j∈J , where Sj = {Aj , Bj , fj , Cj , Dj , gj}.As this is
the same problem as in Lemma 2, we derive an algorithm from the constructive
proof of the lemma. Note, that I is the image of the MS and can be computed
once the set M(Ur ×Xr) has been enumerated.

Algorithm 1

function SingleDHA(Σ, Ur, Xr, ub(k), xb(k))

for m ∈ M(Ur ×Xr)

get Pm defined by m and A, get δe(k) based on m

i(k) = fM(xb(k), ub(k), δe(k))

xr(k +1) = Ai(k)xr(k) + Bi(k)ur(k) + fi(k), xb(k +1) = fB(xb(k), ub(k), δe(k))

yr(k) = Ci(k)xr(k) + Di(k)ur(k) + gi(k), yb(k) = gB(xb(k), ub(k), δe(k))

push { Pm, Si(k), ub(k), xb(k), xb(k + 1), yb(k) } on STACK

Algorithm 1 enumerates the feasible modes and leads to a set of PWA models
defined on Ur×Xr, where each model is associated with a feasible combination of
binary states and inputs xb ∈ Xb, ub ∈ Ub. This representation is advantageous
if determining the state-update and the outputs for a given state and input is
the main purpose, as choosing the respective PWA model can be done by binary
search. The model can be transformed easily into a PWA model defined over
Ur ×Ub ×Xr ×Xb by associating additional hyperplanes with the binary inputs
and states.
4 J = I holds, if all the modes I of the SAS are feasible.
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5.2 Composition of DHAs

The algorithm proposed above can be extended in a natural way to deal with
a composition of DHAs. Consider s DHAs denoted as Σi, i = 1, . . . , s with

inputs ui =
[

ui

r

ui

b

]

∈ U i
r × U i

b , states xi =
[

xi

r

xi

b

]

∈ X i
r × X i

b , and outputs

yi =
[

yi

r

yi

b

]

∈ Y i
r × Y i

b, i = 1, . . . , s. Let Ii be the set of feasible modes of

the DHA Σi. The composition has the exogenous input ue =
[

ue

r

ue

b

]

∈ Ue
r × Ue

b

and the exogenous output ye =
[

ye

r

ye

b

]

∈ Ye
r × Ye

b . Let the compound vector

xb = [(x1
b)

T , . . . , (xs
b)

T ]T ∈ X 1
b × . . .×X s

b be the sorted aggregation of the binary
states of the s DHAs. The time index k has been omitted for brevity.

Before describing the algorithm, we recall some definitions and results from
graph theory [11] to describe the topology of the composition.

Definition 3. A directed graph or digraph is an ordered pair of sets G =
(V, E), where V is a set of vertices and E is a set of ordered pairs of vertices
of V called edges. A directed closed walk is defined as an alternating sequence
of vertices and edges, beginning and ending with the same vertex, such that each
edge is oriented from the vertex preceding it to the vertex following it. If addition-
ally, no vertices except the initial and terminal one appear more than once, the
directed closed walk is called a directed circuit. A digraph, that has no directed
circuits is called acyclic.

The definitions above can be applied directly to the composition of DHAs by
defining DHA Σi, i = 1, . . . , s as vertex vi and the connections from outputs to
inputs as directed edges. In general one edge can represent several connections.
Note that directed circuits correspond to loops and the lack of loops is equivalent
to having an acyclic directed graph. We define the connections among the DHAs
by an adjacency matrix.

Definition 4. Let G be a digraph with s vertices containing no parallel edges.
Then the adjacency matrix W = [wij ] of the digraph G is a s × s (0, 1)-matrix
with wij = 1 if there is an edge directed from the i-th vertex to the j-th vertex
and wij = 0 otherwise.

Given a composition of DHAs, the adjacency matrix W can be easily deter-
mined based on the connections.

Theorem 1. [11, Theorem 9.17] Digraph G is acyclic if and only if det(I −W )
is not equal to zero, where I is the identity matrix of the same size as W .

Theorem 2. [11, Theorem 9.16] If digraph G is acyclic, then its vertices can
be ordered such that the adjacency matrix W is an upper (or lower) triangular
matrix.

Definition 5. Given an acyclic graph, the computational order O is the se-
quence of indices of W .
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Fig. 3. Example composition of DHAs.

Example 1. Figure 3 depicts four DHAs and the connections among them. DHA
2 has an exogenous input, DHA 3 and 4 have exogenous outputs. The adjacency
matrix W follows to

W =







0 0 1 1
1 0 0 1
0 0 0 0
0 0 1 0







1
2
3
4,

where the indices of the corresponding DHAs are shown on the right side. As
the condition det(I − W ) 6= 0 holds, the digraph is acyclic and we can reorder
W as

W ′ =







0 1 1 0
0 0 1 1
0 0 0 1
0 0 0 0







2
1
4
3,

where the rows refer to Σ2, Σ1, Σ4, Σ3 and the associated sequence of indices
is {2, 1, 4, 3} which is also the computational order. This implies for example,
that the inputs of Σ1 do not depend on the outputs of Σ4 because O(1) = 2 <
O(4) = 3.

Compositions Without Loops. In a first step, we assume that the con-
nections do not form loops and that the digraph is therefore acyclic. This can
be easily determined by Theorem 1. From Theorem 2 follows, that W can be
transformed into an upper triangular matrix employing for example topological
sorting [11]. The computational order O follows from Definition 5.

According to the single DHA case, our aim is to determine for the composition
of DHAs {Σi}i=1,...,s with the corresponding adjacency matrix W the set of
feasible modes J ⊆ I1 × . . . × Is, the polyhedral partition {Pj}j∈J and the
corresponding PWA dynamics {Sj}j∈J , where Sj = {Aj , Bj , fj , Cj , Dj , gj}. For
a given binary compound state xb ∈ Xb and a given exogenous binary input
ue

b ∈ Ue
b , the Algorithm 2 is the following.

Let ΣO(1) denote the DHA with computational order 1. Its real input-state

space is given by RO(1) = U
O(1)
r × X

O(1)
r , where U

O(1)
r ⊆ Ue

r and X
O(1)
r is a

property of ΣO(1). Therefore, Algorithm 1 can be used to determine the polyhe-
dral partition {Pj}j∈JO(1)

and the corresponding PWA dynamics {Sj}j∈JO(1)
of

ΣO(1). Every polyhedron Pj , j ∈ JO(1) defines via the connections a real input

set U
O(2)
r for the DHA ΣO(2) with computational order 2. Thus, for a given

j ∈ JO(1), Algorithm 1 can be used again to compute the polyhedral partition
{Pj}j∈JO(2)

and the corresponding PWA dynamics {Sj}j∈JO(2)
of ΣO(2). This

is repeated for all the remaining j ∈ JO(1).
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(a) {Pj}j∈JO(1)
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0
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(b) {Pj}j∈JO(2)

Fig. 4. Polyhedral partitions for the first two DHAs of Example 2.

The algorithm introduced above is repeated until the DHA ΣO(k) with the
highest computational order is reached. The polyhedral partition of this DHA is
part of the overall polyhedral partition {Pj}j∈J of the compound DHA system
and is therefore added to it. Stepping recursively through the composition of
DHAs according to their computational order leads to the polyhedral partition
{Pj}j∈J and the corresponding PWA dynamics {Sj}j∈J .

Example 2. We want to derive the polyhedral partitions for the DHAs Σ1 and
Σ2 of Example 1. Assume that the DHA Σ1 yields as output the 1-norm of its
input and that Σ2 is given by5

EG:

{

δ1(k) = [x2(k) ≥ −3],
δ2(k) = [x2(k) ≥ 3]

SAS: y2(k) =







x2(k) − u2(k) + 12 if i2(k) = 1,
u2(k) − 5 if i2(k) = 2,
x2(k) + u2(k) − 8 if i2(k) = 3.

MS: i2(k) =







1 if δ̄1(k) ∧ δ̄2(k),
2 if δ1(k) ∧ δ̄2(k),
3 if δ1(k) ∧ δ2(k)

Let the input-state space of Σ2 be R2 = U2
r ×X 2

r = {0, 10}×{−10, 10}. Remem-
bering that Σ2 has computational order 1 and using Algorithm 2 leads to the
polyhedral partition {Pj}j∈JO(1)

shown in Fig. 4(a). The PWA dynamics are
defined on the polyhedral partition and are omitted due to space limitations.
DHA Σ1 with computational order 2 further divides the polyhedral partition
{Pj}j∈JO(1)

depending on the PWA dynamics of its predecessor Σ2 as shown in

Fig. 4(b).

Compositions With Loops. The algorithm is now generalized to compositions
of DHAs {Σi}i=1,...,s containing loops. Having identified the adjacency matrix
W and verified that the digraph is not acyclic, we first have to find the feedback
arc set.

Definition 6. Let G = (V, E) be a digraph. A set F ⊆ E is a feedback arc
set (FAS) for G, if G′ = (V, E − F ) is acyclic. The set F is a minimum FAS if
the number of edges in F is minimum.

5 In general, the state-update function does not influence the polyhedral partition and
is therefore omitted for brevity.
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Finding the minimum FAS is NP-hard. However, for a given digraph G =
(V, E) a fast and effective heuristic exist [12] yielding an FAS F with upper
bounded cardinality #F ≤ #E/2 − #V/6 and time complexity O(#E). This
algorithm yields a vertex sequence inducing a rearranged adjacency matrix W ′

and an FAS. Letting the feedback arc be a directed edge from vertex vi to ver-
tex vj , every feedback arc f ∈ F is replaced by a directed edge vi from a newly
created auxiliary input vertex vu to vj . The auxiliary input is real if vi corre-
sponds to a real variable and binary if vi relates to a binary variable. This yields
a composition of DHAs with an acyclic digraph and an augmented exogenous
input space Ue

r × Ūe
r × Ue

b × Ūe
b , where Ūe

r and Ūe
b denote the auxiliary real and

binary input spaces, respectively. As connections between DHAs are equivalent
to equality constraints of the respective inputs and outputs, the removed connec-
tions corresponding to the FAS are added as equality constraints to a separate
constraint list C.

Using the computational order given by the sequence of indices of W ′ allows
us to use Algorithm 2 to derive the set of feasible modes J , the polyhedral
partition {Pj}j∈J and the corresponding PWA dynamics {Sj}j∈J . Adding the
equality constraints in C removes the auxiliary inputs as well as infeasible modes
together with the corresponding polyhedra and PWA dynamics.

For further details and examples on loops in compositions of DHAs, refer to
the extended version of this paper [17].

6 Examples and Applications

This final section presents two examples showing how the mode enumeration
algorithm can be used to efficiently derive the PWA representation of a given
hybrid system and in which way it can be exploited to speed up MPC.

Car Example. In [27], the authors proposed a hybrid model of a car with
robotized gear shift. This example was adopted in [4] where the author computes
the MLD model using HYSDEL and the PWA system equivalent to the MLD
model using multi-parametric programming. As the model is given in HYSDEL,
the algorithm in Sect. 5 starts from this description to translate the car example
into a PWA model. The resulting PWA model encompasses 30 polyhedra and 6
modes and is computed in 7.5 s in Matlab 5.3 on a Pentium III 650MHz machine.
This is ten times faster than the algorithm reported in [4] on a similar machine.

The reason for this is twofold. First, the algorithm presented here exploits
the structure of the DHA models, while the algorithm presented in [4] deals
with MLD models concealing that structural information. Second, the approach
in [4] needs to remove redundant inequalities at each iteration of the exploration
algorithm. This operation may dominate the total computation time in [4].

Paperboy Example. A paperboy delivers by bike two heavy and bulky mail
items to two different houses within a neighborhood consisting of four properties
and one road. The properties and the road have different slopes and different
friction coefficients.
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PSfrag replacements

Fb(k)

F (k)

d1(k), d2(k)

d1(k), d2(k) n(k)

x(k)
x(k), v(k)

Σ1: Topology

Σ2: Status of Mail

Σ3: Dynamics

Fig. 5. Paperboy example consisting of three DHAs with the respective states.

The input of the system at time instant k is given by the force Fb(k) ∈
U ⊂ R

2, U = {−Fmax, Fmax}2, Fmax = 162N that the paperboy applies to
his bike in order to accelerate and brake. Driven by Fb, the paperboy cycles in
the 2-dimensional neighborhood X = {−sn, sn}2 with sn = 1000m. His position
is given by x(k) = [x1(k), x2(k)]T ∈ X ⊂ R

2 and his speed v(k) ∈ V ⊂ R
2

is limited by V = {−vmax, vmax}2, where vmax = 15m/s = 54km/h. Two
binary states d1(k), d2(k) ∈ {0, 1} denote the status of the mail delivery. The
outputs of the model are the position x(k) and the number of delivered mail
items n(k) ∈ {0, 1, 2}.

As depicted in Fig. 5, the paperboy problem can be decomposed in three
DHAs. Each DHA is described in the following.

Topology of Neighborhood. A road of width wr = 4m divides the neighborhood
into two parts which are further partitioned into two properties yielding a total
of four properties and one road. These five regions are each characterized by
different slopes and friction coefficients. Given the force Fb(k) ∈ R

2 that the
paperboy applies, the effective force F (k) ∈ R

2 acting on the bike thus depends
on the partition i(k) ∈ {1, . . . , 5}: F (k) = Fb(k)−µi(k)−νi(k)v(k), where µi(k) is
the grade resistance corresponding to the slope and νi(k) is a friction coefficient.

The parameters are given by µ1 = [ 2
0 ], µ2 = [ 1.5

0 ], µ3 =
[

−0.5
0

]

, µ4 =
[

−1
0

]

,
µ5 = [ 0

0 ] and ν1 = [ 2 0
0 2 ], ν2 = [ 0.5 0

0 0.5 ], ν3 = [ 1 0
0 1 ], ν4 = [ 1.5 0

0 1.5 ], ν5 = [ 0.05 0
0 0.05 ].

Therefore, the first DHA is static and has the real inputs x(k), v(k) and
Fb(k). The real output is F (k).

EG1:







δx1(k) = [x1(k) ≤ −0.5wr],
δx2(k) = [x1(k) ≥ 0.5wr ],
δy(k) = [x2(k) ≥ 0]

SAS1: F (k) = Fb(k) − µi(k) − νi(k)v(k),
i(k) = 1, . . . , 5

MS1: i(k) =



















1 if δx1(k) ∧ δy(k),
2 if δx2(k) ∧ δy(k),
3 if δx1(k) ∧ δ̄y(k),
4 if δx2(k) ∧ δ̄y(k),
5 if δx1(k) ∧ δ̄x2(k)

Status of Mail Delivery. The houses are squares of size sh = 10m centered at
xh1 = [−ph,−ph] and xh2 = [ph, ph], ph = 40m. The four walls of a house can be
modelled by four hyperplanes with corresponding binary variables equal to 1, if
the paperboy is ’within’ the respective wall. The respective flag δhi(k), i = 1, 2
denoting that the paperboy has reached House i and delivered the mail, is the
logic and of these four binary variables. Finally, a FSM stores the mail delivery
status using the binary states d1(k), d2(k).
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This leads to the following DHA with the real input x(k), the binary states
d1(k) and d2(k), which are also outputs and a third output n(k) = d1(k)+d2(k)
denoting the number of delivered mail items.

EG2:







δh1(k) =
∣

∣

∣
x(k) − xh1

∣

∣

∣

∞

≤ 0.5sh,

δh2(k) =
∣

∣

∣
x(k) − xh2

∣

∣

∣

∞

≤ 0.5sh

FSM2:

{

d1(k + 1) = d1(k) ∨ δh1(k),
d2(k + 1) = d2(k) ∨ δh2(k)

Dynamics of Paperboy. The weight m(k) is the weight of the paperboy and
his bike (Mb = 90kg) plus the weight of the undelivered mail items (each mail
item weighs Mm = 10kg). Therefore, the total weight is time-dependent and
decreasing as the paperboy delivers the mail. By Newton’s law, the effective
force F (k) divided by the total weight is the acceleration and by integrating
this, the velocity and the position of the paperboy are obtained. The integral
is approximated by two discrete-time dynamical systems with sampling time
Ts = 1 s.

The third DHA has the real input F (k) ∈ R
2, the two binary inputs d1(k),

d2(k) denoting the status of the mail delivery and the real states x(k) and v(k)
characterizing the position and the velocity, respectively. The outputs are the
position x(k) and the velocity v(k).

MS3: i(k) =







1 if d̄1(k) ∧ d̄2(k),
2 if (d1(k) ∧ d̄2(k)) ∨ (d̄1(k) ∧ d2(k)),
3 if d1(k) ∧ d2(k)

SAS3:
[

v(k+1)
x(k+1)

]

=
[

v(k)
x(k)

]

+
[

F (k)/m(k)
v(k)

]

Ts, where m(k) =







Mb + 2Mm if i(k) = 1,
Mb + Mm if i(k) = 2,
Mb if i(k) = 3

The paperboy starts the mail delivery at a random position x(0) with speed
v(0) = 0. His objective is to first deliver one mail item to House 1 centered
around xh1 and then to move on to House 2 at position xh2 to deliver the second
mail item. This can be expressed by the objective function

J(t) =

N−1
∑

k=0

‖x(t + k|t) − xref (t)‖1 (8)

defined over the horizon N using the 1-norm. The reference xref (t) is switched
from xh1 to xh2 once the paperboy has reached House 1.

In the next section, we will use the paperboy example to evaluate the po-
tential of the mode enumeration algorithm to reduce the computation time of
MPC. The MPC control problem amounts to minimizing the objective function
(8) subject to the evolution of the paperboy model over the prediction horizon
and subject to constraints on Fb, x and v as given above. The solution of this
optimization problem which is a Mixed-Integer Linear Program (MILP) yields
the force Fb.

6.1 Model Predictive Control

When translating a composition of DHAs into an MLD model, information about
the structure of the hybrid model is lost. However, the explicit computation of
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x( )t x( +1)t

u( )t u( +1)t

x( +2)t

u( +2)t

S S S

Mux
z( )t

Fig. 6. Conceptual scheme of the 3-steps ahead prediction model.

the set of feasible modes of the composition of DHAs allows one to add structural
information and to prune infeasible modes from the resulting system. This is of
particular importance for MPC of hybrid models [7], where MPC computes the
next N inputs optimizing a performance index which is defined on the variables
of a hybrid prediction model. The prediction model (see Fig. 6) is the series-
connection of N identical single-step prediction models, where each model uses
the state predicted by the previous one as initial state. The mode enumeration
allows to introduce cuts on the modes of the complete prediction model.

This information can be formulated in terms of additional logic constraints.
According to [23], two methods can be used to transform logic constraints into
mixed integer inequalities which can be added to the MLD model. The Sym-
bolical Method converts the constraints into a canonical normal form, which is
then translated into integer inequalities, whereas the Geometrical Method com-
putes the convex hull of the integer points for which the constraints are fulfilled.
In general, the second method is superior to the first one because the convex
hull is the smallest set containing all the integer feasible points and because it
introduces less additional inequalities.

We used HYSDEL to transform the paperboy example of the previous section
into an MLD model. The algorithm in Sect. 5 computed the set of feasible
modes which were added as additional constraints to the MLD model using the
symbolical method as well as the geometrical method. We solved MPC with the
objective function (8) and various prediction horizons. Using CPLEX [20] as
MILP solver, Fig. 7 reports the average computation times for MPC on the two
improved models normalized to the plain model produced by HYSDEL.

Note that both methods add non-trivial cuts reducing the computation time
of CPLEX up to a factor of 2. This improvement is more evident when using
less advanced solvers like [6], where for a prediction horizon of 3 for example,
the additional information reduces the computation time by a factor of 210.
Figure 7 shows clearly, that the cuts introduced by the geometrical method are
more effective than the ones of the symbolical method. This is mainly due to
the fact that the symbolical method needs much more constraints to define the
feasible modes. For the paperboy example, the symbolical method introduces
239 additional constraints, whereas the geometrical method only adds 42. The
third conclusion is, that both methods become more effective as the prediction
horizon is increased, as the benefit of additional cuts grows with the number of
binary variables.
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1.2

Fig. 7. Normalized average computation time vs. prediction horizon N , N = 8, . . . , 26,
when using prediction models with additional constraints generated by either the sym-
bolical method (dash-dotted line) or the geometrical method (straight line).

7 Conclusions

We have presented an effective method to enumerate the set of feasible modes
for a given composition of DHAs. The same procedure transforms the compound
model into a PWA model. The mode enumeration can be exploited in order to
reduce the computation time of MPC by adding additional cuts. We have also
an optimal algorithm to build an equivalent PWA model minimal in the number
of polyhedra of the partition that has been omitted for space limitations. Future
research will be devoted to develop fast and suboptimal algorithms.
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