
Performance of Multistep Finite Control Set

Model Predictive Control for Power

Electronics
Tobias Geyer,Senior Member, IEEEand Daniel E. Quevedo,Senior Member, IEEE

Abstract

The performance of direct model predictive control (MPC) with reference tracking and long prediction

horizons is evaluated through simulations, using the current control problem of a variable speed drive system

with a voltage source inverter as an illustrative example. Amodified sphere decoding algorithm is used to

efficiently solve the optimization problem underlying MPC for long horizons. For a horizon of five and a three-

level inverter, for example, the computational burden is reduced by four orders of magnitude, compared to the

standard exhaustive search approach. This work illustrates the performance gains that are achievable by using

prediction horizons larger than one. Specifically, for longprediction horizons and a low switching frequency, the

total harmonic distortion of the current is significantly lower than for space vector modulation, making direct

MPC with long horizons an attractive and computationally viable control scheme.

Index Terms

Model predictive control, finite control set, sphere decoding, branch and bound, quantization, power elec-

tronics, drive systems

I. I NTRODUCTION

The optimization problem underlying direct (also calledfinite control set) model predictive control (MPC)

with reference tracking is typically solved by enumeratingall possible solutions [2]. Since the number of

possible solutions increases exponentially as a function of the length of the prediction horizon, when using

enumeration, enlarging the prediction horizon entails an exponential increase in the computation time. For

direct MPC with reference tracking, this combinatorial explosion has to date, in effect, limited the length of

implementable prediction horizons to one [3], [4]. Conversely, solving the optimization problem of direct MPC

with long prediction horizons in anefficientmanner has been hitherto an unresolved problem.

A solution approach to this problem is proposed in [5], whichadopts the notion of sphere decoding [6]

and tailors it to the problem at hand. As a result, theoptimization problem underlyingMPC problem with

long prediction horizons, such as ten, can be solved on average as quickly as the horizonof one case using

enumeration.
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In this paper we start by summarizing the problem formulation and the key results obtained in [5]. Using a

three-level neutral point clamped (NPC) voltage source inverter driving an induction machine as a case study,

we present a detailed performance evaluation that highlights essential features of direct MPC with horizons

significantly longer than oneby using the optimization algorithm presented in [5]. At steady-state operating

conditions, the key performance metrics are the total harmonic distortion (THD) of the current and the device

switching frequency.Severalcomparisons with two commonly used modulation schemes are performed, i.e.

space vector modulation (SVM) and optimized pulse patterns(OPPs) [7], [8]. Interestingly, in some cases MPC

with long horizons has the potential to achieve a performance similar to that of OPPs, even atsteady state.

During transients, MPC with long horizons provides a transient response timeas shortas MPC with short

horizons, often outperforming classic control arrangements such as field oriented control.

II. CONTROL PROBLEM AND SOLUTION METHOD

This section recapitulates the main subject matter of [5], by summarizing the control problem, model predictive

control formulation and the efficient solution method basedon sphere decoding.

A. Control Problem

In the stationaryαβ coordinate system, we consider a discrete-time linear power electronic system modelled

as per

x(k + 1) = Ax(k) +Buαβ(k) (1a)

y(k) = C x(k) (1b)

with system matricesA, B andC, andk ∈ N. We useuαβ = P u with
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to translate the three-phase switch positionsu , [ua ub uc]
T into the orthogonal coordinate system. Note that

u ∈ U3 is integer-valued. For a three-level inverter, for example, we haveU = {−1, 0, 1}. For a drive system

with an induction machine, we choose as state vectorx , [isα isβ ψrα ψrβ]
T , whereis , [isα isβ ]

T denotes

the stator current, andψrα andψrβ are the rotor flux linkages. The system output ischosen asy = is.

The control problem is to regulate the stator current along its referencei∗s , by manipulating the three-phase

switch positionu. The switching effort, i.e., the switching frequency or theswitching losses is to be kept small.

B. Model Predictive Control Formulation

The cost function

J =

k+N−1
∑

ℓ=k

||ie,αβ(ℓ+ 1)||22 + λu||∆u(ℓ)||22 , (3)

is a suitable choice to penalize the predicted evolution of the current errors and the control effort over the

prediction horizonof N steps, where

ie,αβ(ℓ+ 1) , i∗s,αβ(ℓ + 1)− is,αβ(ℓ + 1) (4a)

∆u(ℓ) , u(ℓ)− u(ℓ − 1) . (4b)
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The scalar parameterλu ≥ 0 is a tuning parameterthat adjusts the trade-off between the tracking accuracy and

the switching effort.

Introducing the switching sequenceU(k) = [uT (k) . . .uT (k+N−1)]T , the optimization problem underlying

direct MPC with current reference tracking is

Uopt(k) = arg min
U(k)

J (5a)

subj. to U(k) ∈ U (5b)

||∆u(ℓ)||∞ ≤ 1, ∀ℓ = k, . . . , k +N − 1 , (5c)

whereU = U3N . The constraint (5c) is imposed since switching is only possible by one step up or down in

each phase.

C. An Efficient Method for Calculating the Optimal Switch Positions

Using algebraic manipulations, the optimization problem (5) can be rewritten as

Uopt(k) = arg min
U(k)

||Ūunc(k)−HU(k)||22 (6a)

subj. to (5b) and (5c). (6b)

H turns out to be an invertible lower-triangular matrix, see [5]. We useŪunc(k) , HUunc(k), whereUunc(k)

is the switching sequence obtained from minimizing (5)without constraints, i.e., withU = R
3N and ignoring

(5c).

The MPC optimization problem in its form (6) is a (truncated)integer least-squaresproblem. As shown in [5],

the sphere decoding algorithm [6], [9] can be adapted to solve (6). The algorithm iteratively considers candidate

sequencesU ∈ U within a sphere of radiusρ(k) > 0 centered inŪunc(k), i.e.,‖Ūunc(k)−HU‖2 ≤ ρ(k), and

which satisfy the switching constraint (5c). SinceH is triangular, finding candidate sequences is computationally

simple, in the sense that at each step only a one-dimension problem needs to be solved. For more details, the

reader is referred to [5] and [6].

III. F RAMEWORK FORPERFORMANCEEVALUATION

A. Case Study

We consider a NPC voltage source inverter connected with a medium-voltage induction machineand a

constant mechanical load, as shown in Fig. 1. A3.3 kV and 50Hz squirrel-cage induction machine rated at

2MVA with a total leakage inductance of 0.25 pu is used as an example of a typical medium-voltage induction

machine. The dc-link voltage isVdc = 5.2 kV and assumed to be constant. The potential of the neutral point N

is assumed to be fixed. The detailed parameters of the machineand inverter are summarized in Table I. The

per unit (pu) system is established using the base quantities VB =
√

2/3Vrat = 2694V, IB =
√
2Irat = 503.5A

andfB = frat = 50Hz, with Vrat, Irat andfrat referring to the rated voltage, current and frequency, respectively.

All simulations are performed in Matlab, using an idealizedsetupwith the semiconductors switching instan-

taneously. As such, second order effects such as deadtimes, controller computation delays, measurement noise,

observer errors, saturation of the machine’s magnetic material, parameter variations, etc. are neglected, resulting
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Fig. 1: Three-level three-phase neutral point clamped voltage source inverter driving an induction motor with a fixed neutral point potential

in a switched linear model for the drive system.The significance of such simulations is underlined by the very

close match between previous simulations and experimentalresults using a similar model. The simulation results

in [10] predicted the experimental results in [11] accurately to within a few percent.Throughout this paper,

if not otherwise stated, all simulations were done at nominal speed and rated torque, implying a fundamental

frequency of 50 Hz and rated currents. All results are shown in the pu system.

B. Modulation Methods used for Benchmarking

To evaluate the steady-state performance of multi-step optimal direct MPC, we benchmark this strategy with

SVM and OPPs. The SVM gating signals are obtained by using a three-level regular sampledPWM with

two triangular carrier signals, which are in phase (phase disposition). By adding to the reference voltage an

appropriate common mode voltage, which is of the min/max plus modulo type, the modulator resembles a

SVM, as shown in [12]. Synchronous modulation is used, i.e.,the carrier frequency is an integer multiple of

the fundamental frequency.

The OPPs were calculated offline for pulse numbers (ratio between the switching frequency and the fundamen-

tal frequency) of up to 15. The switching angles were computed by minimizing the squared differential-mode

voltage harmonics divided by the order of the harmonic. For an inductive load such as a machine, this approach

is effectively equivalent to minimizing the currentTHD [8].

Induction Voltage 3300 V rs 0.0108 pu

motor Current 356 A rr 0.0091 pu

Real power 1.587 MW xls 0.1493 pu

Apparent power 2.035 MVA xlr 0.1104 pu

Frequency 50 Hz xm 2.3489 pu

Rotational speed 596 rpm

Inverter Vdc 1.930 pu

xc 11.769 pu

TABLE I: Rated values (left) and parameters (right) of the drive
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Fig. 2: Trade-off between the current THDITHD and the switching frequencyfsw for synchronous space vector modulation (SVM) and

optimized pulse patterns (OPPs)

C. Performance Criteria

The key criteria related to the control performance are the device switching frequencyfsw and the current

THD, ITHD. In addition, we will also investigate thea posteriori closed-loopcost. It is obtained after the

simulations, by evaluating the cost functionJ from (3) over all simulated time-steps and dividing it by the total

number of time-stepsktot:

Jcl =
1

ktot

ktot−1
∑

ℓ=0

||ie,αβ(ℓ + 1)||22 + λu||∆u(ℓ)||22 . (7)

In summary, the closed-loop cost (7) captures the squared RMS current error plus the weighted averaged and

squared switching effort over the closed-loop simulation.

D. Trade-Off between Current THD and Switching Frequency

Unavoidably, with switching power converters, thereis a trade-off between the current THDITHD and the

switching frequencyfsw. It is convenient to plot these two quantities along two orthogonal axes.Figure 2

illustrates this performance trade-off for SVM and OPPs. Inthe figure, each square corresponds to a unique

simulation with synchronous SVM. The squares are approximated using a polynomial, indicated by the dash-

dotted line. Accordingly, the diamonds correspond tosteady-statesimulations with OPPs.

The switching frequency range between 200 and 350 Hz is of particular importance for medium-voltage

power converters. As can be seen in Fig. 2, inthe givenrange, there is scope for a significant reduction of the

current THD, while maintaining the same switching frequency. For example, atfsw = 200Hz the current THD

can be almost halved, when replacing SVM by OPPs. Conversely, the switching frequency can be drastically

reduced for the same current THD. ForITHD = 5%, for example, the switching frequency can be lowered from

350 to 200 Hz, when adopting OPPs instead of SVM. This is a reduction of 42%. Both examples are indicated

by red arrows shown in Fig. 2.
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At high switching frequencies, however, the performance benefit of OPPs compared to SVM tends to be

marginal. Forfsw > 600Hz and pulse numbers greater than 12, the difference is very small. Moreover, the

optimization process to compute OPPs with very high pulse numbers becomes computationally demanding and

the memory space required to store such patterns is significant. As a result, we have computed OPPs only up

to pulse number 15, or equivalently, up to a switching frequency of 750 Hz.

With the above as a background and recalling that OPPs exhibit, to a large extent, optimal steady-state

behaviour, we will quantify in the sequel therelative merits of MPC by normalizing the current THD to the

one obtained by OPPs. Specifically, we introduce

δTHD =
ITHD − ITHD,OPP

ITHD,OPP
, (8)

which is therelative current THD degradation, normalized to the current THD of OPPs and given in percent.

The normalization is done with regard to the polynomial approximation of the OPPs shown in Fig. 2. For

switching frequencies beyond 750 Hz, SVM is used as a baseline, since OPPs were computed only up to this

frequency.

IV. STEADY-STATE PERFORMANCE

In this section, the performance of direct MPC with long prediction horizons is investigated at steady-state

operating conditions, using the three-level inverter withan induction machine as a case study. We use the

modified sphere decoding algorithm described in [5] to solvethe optimization problem. To ensure that the drive

system has settled at steady-state operating conditions, the system is first simulated over several fundamental

periods without recording the results.

A. Comparison at 250 Hz Switching Frequency

Consider direct MPC with the horizonof N = 1, sampling intervalTs = 125µs and cost function (3) with

the weighting factorλu = 8.4 · 10−3. This results in an average device switching frequency offsw = 250Hz,

which is typical for medium-voltage applications, and a current THD of ITHD = 5.96%.

Fig. 3(a) illustrates three-phase stator current waveforms along with their (dash-dotted) references over one

fundamental period. Thecolors blue, green and red correspond to the phasesa, b and c, respectively. The

evolution of the stator current is simulated with a time resolution of 25µs, based on which the spectrum of the

stator current is computed with a Fourier transformation. The resulting current spectrum is shown in Fig. 3(b)

Control Control settings Is,THD Te,THD fsw Psw

scheme [%] [%] [Hz] [kW]

MPC N = 1, λu = 8.4 · 10−3 5.96 4.65 250 6.05

MPC N = 10, λu = 8.3 · 10−3 5.05 4.03 254 6.04

SVM fc = 450Hz 7.71 5.35 250 5.73

OPP d = 5 4.12 3.40 252 5.88

TABLE II: Comparison of direct MPC with SVM and an OPP in termsof the current THDIs,THD, torque THDTe,THD, switching

frequencyfsw and switching lossesPsw. The penaltyλu, carrier frequencyfc and pulse numberd are chosen such that a switching

frequency of approximately 250 Hz results
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Fig. 3: Simulated waveforms for direct MPC with the horizonof N = 1, sampling intervalTs = 125 µs and weightingλu = 8.4 · 10−3,

at full speed and rated torque. The switching frequency is approximately 250 Hz
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Fig. 4: Simulated waveforms for direct MPC with the horizonof N = 10, sampling intervalTs = 125 µs and weightingλu = 8.3 ·10−3.

The operating point and the switching frequency are the sameas in Fig. 3

0 5 10 15 20

−1

−0.5

0

0.5

1

Time (ms)

(a) Stator currentsis

0 500 1000 1500 2000
0

0.01

0.02

0.03

0.04

Frequency (Hz)

(b) Stator current spectrum

0 5 10 15 20

−1

0

1

−1

0

1

−1

0

1

Time (ms)

(c) Switch positionsu

Fig. 5: Simulated waveforms for SVM with the equivalent carrier frequencyfc = 450Hz. The operating point and the switching frequency

are the same as in Fig. 3

and the three-phase switching sequence is depicted in Fig. 3(c). For direct MPC, unlike PWM, a repetitive

switching pattern is not enforced. As a result, the current spectrum is predominately flat without characteristic

harmonics, despite a pronounced 11th harmonic.

Extending the prediction horizon toN = 10 reduces the current THD by about one percentage point, as

stated in Table II. This first result indicates that long prediction horizons do indeed reduce the current THD,

in this case by about 15%. The corresponding waveforms for the N = 10 case are shown in Fig. 4. It can

be seen that the long horizon leads to a certain degree of repetitiveness in the switching pattern. Accordingly,
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Fig. 6: Key performance criteria of MPC for the prediction horizonsN = 1, 3, 5, 10 and sampling intervalTs = 25 µs. The switching

frequency, current THD and closed-loop cost are shown as a function of the tuning parameterλu, using a double logarithmic scaling. The

individual simulations are indicated using dots, their overall trend is approximated using dash-dotted polynomials

non-triplen odd-order harmonics are clearly identifiable in the current spectrum, such as the 11th, 13th and 19th

harmonics. Indeed, the degree of repetitiveness in the switching pattern and, correspondingly, the magnitude

of the discrete harmonics in the current spectrum are remarkable. It can be observed that, in this case, long

prediction horizons foster a discrete current spectrum, byconcentrating the harmonic power in harmonicsof

odd order. An analysis shows that the same applies to the triplen (common mode) voltage harmonics. The shift

of some of the harmonic ripple power into common mode harmonics is one of the reasons, why direct MPC

with long prediction horizons leads, in general, to a lower current THD than the horizonof one case.Moreover,

longer horizons result in a shift of some of the differential-model voltage harmonics from the low-frequency

range to higher frequencies, resulting in a lower current THD.

To facilitate a comparison withSVM, the corresponding waveforms of SVM are shown in Fig. 5. The

equivalent carrier frequencyfc = 450Hz results in the same switching frequency as for MPC, i.e.fsw = 250Hz.

The current THD is at 7.71% significantly higher than with direct MPC, see Table II. As expected, due to the

symmetry and repetitiveness of the switching pattern, SVM features a discrete current spectrum with distinctive

harmonics at non-triplen and odd multiples of the fundamental frequency. Note that the 17th current harmonic

has an amplitude of 0.066.

On the other hand, for the same switching frequency and the pulse numberd = 5, an OPP leads to a current

THD of 4.12%, which is approximately one percentage point lower than for direct MPC withN = 10.

B. Closed-Loop Cost

Next, the influence ofλu on the switching frequency, the current THD and the closed-loop cost in (7) is

investigated. For each of the horizonsN = 1, 3, 5 and 10 and for more than 1000 different values ofλu,

ranging between0 and0.5, steady-state simulations were run. Focusing on switchingfrequencies between 100 Hz

and 1 kHz, and current THDs below 20%, the results are shown inFig. 6, using a double logarithmic scale.

Each simulation corresponds to a single data point. Polynomial functions are overlaid, which approximate the

individual data points. Figs. 6(a) and 6(b) suggest that, for small prediction horizons, the relationship between

λu and the performance variables is approximately linear in the double logarithmic scale; for larger values of

N , the relationship is more complicated, but still monotonic.
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Fig. 7: Trade-off between therelative current THD and the switching frequency for MPC with the prediction horizonsN = 1, 3, 10 and

sampling intervalTs = 25µs

When extending the horizon for a givenλu, the switching frequency is increased, while the current THD

is significantly reduced. This waterbed effect makes it difficult to assess from Figs. 6(a) and 6(b) the benefit

long prediction horizons might have on these two key performance metrics. A more suitable measure is the a

posteriori closed-loop cost, see (7), which is illustratedin Fig. 6(c). As the prediction horizon is increased the

cost is clearly reduced,suggesting the use of horizons larger than one. For example,with λu = 0.01 andN = 1,

we haveJcl ≈ 0.05, whereas withthe horizonof N = 3, the closed-loop cost can be reduced toJcl ≈ 0.003.

This is a reduction by a factor of 17!We alsonote that, for this value ofλu, the achieveda posterioriclosed-

loop cost is almost optimal.The benefit of long horizons on the current THD and the switching frequency is

investigated in the subsequent sections, see also Figs. 7–11. For guidelines to tuneλu please also refer to [13].

C. Relative Current THD for Sampling IntervalTs = 25µs

Fig. 7 shows therelativecurrent THDs of SVM and of MPC, as defined in (8). In this figure,the simulations

referring to SVM are indicated by squares, those of OPPs are indicated with diamonds. Using the sampling

interval Ts = 25µs, hundreds of individual simulations of MPC with prediction horizonsN = 1, 3, 5 and

10 were performed, using different weightsλu. Specifically,λu was varied between 0 and 1. Each simulation

corresponds to a dot in the figure. The individual simulationresults were approximated by polynomials in a

least-squares sense, shown in Fig. 7 as colored and dotted lines. The trend lines for the different prediction

horizons are summarized in Fig. 9(a).

It can be clearly seen that using MPC with horizons larger than one reduces the current THD. In fact, for high

switching frequencies above 600 Hz, the horizonof one case resembles the performance of SVM. Increasing

the horizon to 10 steps reduces the current THD by about 15% compared to SVM. Interestingly enough, the

OPP with pulse numberd = 15 (and fsw = 750Hz) is outperformed by MPC withN = 10, indicating that

the global minimum was not obtained when computing this particular OPP. In absolute terms, however, the

differences are small, being in the range of a fraction of a percent (in terms of the absolute current THD).

For low switching frequencies between 100 and 250 Hz, the performance results are somewhat scattered. The

trend lines suggest that aroundfsw = 200Hz the current THD can be reduced by about 30%, when increasing

the prediction horizon fromN = 1 to 5. Longer horizons do not appear to carry any additional performance

benefit. Interestingly, for long horizons such asN = 10 and low switching frequencies, the switching frequency
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Fig. 8: Trade-off between therelative current THD and the switching frequency for MPC with the prediction horizonsN = 1, 3, 10 and

sampling intervalTs = 125µs
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Fig. 9: Trade-off between therelative current THD and the switching frequency for MPC with the prediction horizonsN = 1, 3, 5, 10

and sampling intervalTs = 25µs and125µs, respectively

appears to lock into integer multiples of the fundamental frequency. This is apparent forfsw = 100, 150 and

200 Hz. For these switching frequencies and for particular choices ofλu, MPC almost reproduces the steady-

state performance of OPPs, in terms of the current THD achieved for a given switching frequency.

D. Relative Current THD for Sampling IntervalTs = 125µs

The simulations shown in the previous section are repeated here for a five times longer sampling interval,

i.e., Ts = 125µs. Fig. 8 shows the resulting trade-off relations, analog tothose in Fig. 7. The summary plot is

provided in Fig. 9(b). As in theTs = 25µs case, longer prediction horizons improve the performanceof MPC

by lowering the current THD for a given switching frequency.This becomes particularly evident for switching

frequencies between 150 and 450 Hz. In this range, MPC withN = 10 exhibits a relative current THD that is

approximately 20% lower than that for theN = 1 case. When comparing Figs. 9(a) and 9(b), we note that in

addition to the weightλu, the choice of sampling interval has a significant impact on the resulting closed-loop

performance. This somewhat complicates the tuning procedure of direct MPC.

All trade-off curves converge atfsw = 600Hz, which corresponds to a zero penalty on the switching effort,
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Fig. 10: Trade-off between therelative current THD and the switching frequency for MPC with the prediction horizonsN = 1, 3, 10,

using Monte Carlo simulations
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Fig. 11: Trade-off between therelative current THD and the switching frequency for MPC with the prediction horizonsN = 1, 3, 5, 10,

using Monte Carlo simulations

i.e., λu = 0. When not penalizing the switching transitions and thus only penalizing the predicted deviation of

the current from its sinusoidal reference, MPC turns into a deadbeat controller. Here, the current loop effectively

constitutes two first-order systems (one in theα- and another one in theβ-axis) and the length of the prediction

horizon ceases to have an impact on the performance of MPC. Inthis situation, MPC withN = 1 yields the

same control action as MPC withN > 1, compare this also to the results in [14], [15].

E. Relative Current THD for Monte Carlo Simulations

We have seen that, in addition to the tuning parameterλu and the horizonN , the sampling intervalTs has a

profound influence on the MPC performance. The reason for this is that the MPC cost function in (3) evaluates

system predictions over a prediction horizon of lengthNTs in time.

To derive results that take into account a variety of sampling intervals, we carried out Monte Carlo simulations

with random sampling intervals and random weights. Specifically, the sampling interval was randomly chosen

from the intervalTs ∈ [5, 200]µs, and the weight was chosen fromλu ∈ [0, 5]. Moreover, the initial conditions

of the drive system are random, including random initial stator currents and rotor fluxes for the induction
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Fig. 12: Trade-off between therelative current THD and the switching frequency forsuboptimalMPC with the prediction horizons

N = 1, 3, 10 and sampling intervalTs = 25µs, when rounding the unconstrained solution

machine, and random initial switch positions for the inverter. As previously, to ensure the simulations to be

captured at steady-state, pre-simulations were run that were not recorded.

MPC with prediction horizonsN ∈ {1, 3, 5, 10} was considered and approximately104 simulations were

performed. The results are depicted in Fig. 10, where each datapoint corresponds to one closed-loop simulation.

It is convenient to determine the trends, by fitting polynomials to the data points using a least-squares approach.

The resulting curves are shown as dashed lines in Fig. 10, andthey are summarized in Fig. 11.

It can be clearly observed that as the prediction horizon is extended, the performance of MPC is improved by

reducing the current THD for a given switching frequency. For switching frequencies above 300 Hz, MPC with

horizonof N = 1 performs worse than SVM. When enlarging the horizon from oneto three, the performance

improvement is most significant, whereas the performance gains level off when further increasingN to five

and ten. MPC with the horizonof N = 10, on average, always outperforms SVM and achieves a steady-state

performance close to the one of OPPs. For high switching frequencies, such asfsw = 750Hz, MPC might even

outperform the OPP, as discussed in Sect. IV-C.

Throughout the entire range of switching frequencies considered, MPC withN = 10 reduces the relative

current THD by more than 20%, when compared to the popularN = 1 case. For very low switching frequencies,

the trade-off curves for different prediction horizons converge, getting close to the point of six-step operation,

i.e., fundamental frequency modulation.

V. SUBOPTIMAL MPC VIA DIRECT ROUNDING

We had seen in [5] that, in general, direct rounding of the unconstrained solution provides only suboptimal

solutions. However, in some cases, the generator matrixH is almost diagonal and its basis vectors are

almost orthogonal. This motivates the investigation of an approximative solution, based on trivial quantization

(rounding). This approach yields suboptimal solutions, but is computationally very fast, since it requires only

basic matrix manipulations. Sphere decoding and branchingis not required.

Specifically, instead of invoking Algorithm 1 in [5], the (suboptimal) sequence of switch positions is obtained

by rounding (quantizing) the unconstrained solution componentwise to the nearest integer in the setU :

U sub(k) = roundU (Uunc(k)) . (9)
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Fig. 13: Trade-off between therelative current THD and the switching frequency forsuboptimalMPC with the prediction horizons

N = 1, 3, 5, 10 and sampling intervalTs = 25µs, when rounding the unconstrained solution

Recall that, as defined in Sect. II-C,Uunc(k) denotes the unconstrained solution to the optimization problem

(5) at time-stepk.

The simulations in Sect. IV-C for (optimal) direct MPC were repeated for this suboptimal design. Using the

sampling intervalTs = 25µs, the resulting trade-off curves for suboptimal MPC are depicted in Fig. 12 for the

horizons one, three and ten. The trendlines were fitted as before and are shown separately in Fig. 13.

For switching frequencies below 300 Hz, the weightλu is large and the diagonal terms dominate over the

other terms in the generator matrixH . As a result, the componentwise quantization in (9) yields solutions

close to the optimal one. This can be seen, when comparing Figs. 9(a) and 13 with each other. ForN = 1,

suboptimal MPC exhibits a performance that is very similar to the one of optimal MPC. Longer horizons

improve the performance of suboptimal MPC (9), but to a lesser degree than for the optimal case (6).

High switching frequencies are the result of smallλu and generator matrices that are correspondingly less

orthogonal. Using the trivial quantization in (9) for switching frequencies above 300 Hz leads to suboptimal

solutions that are clearly inferior, with theN = 1 case being about 15% worse than the optimal solution.

Moreover, extending the horizon appears to be of very littlebenefit, if at all. Asλu is decreased and the

switching frequency is increased, the relative deterioration of suboptimal MPC becomes more prominent. The

absolute performance loss, in terms of current THD for a given switching frequency, is, however, very small.

VI. PERFORMANCE DURINGTRANSIENTS

One of the major benefits of direct MPC is its very fast dynamical behavior during transients. Consider

MPC with a horizon of one, the sampling intervalTs = 25µs and the weightλu = 2.55 · 10−3. At nominal

speed, reference torque steps of magnitude one are imposed,see Fig. 14(a). The steps on the torque reference

are translated into steps in the current reference, shown asdash-dotted lines in Fig. 14(b). The corresponding

switching pattern is shown in Fig. 14(c), with the switchingfrequency beingfsw = 252Hz.

When switching from rated to zero torque, the voltage applied to the machine is momentarily inverted, leading

to an extremely short settling time of 0.35 ms. On the other hand, the torque step from zero to one is with
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Fig. 14: Reference torque steps for MPC with the horizonof N = 1 at nominal speed
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Fig. 15: Reference torque steps for MPC with the horizonof N = 10 at nominal speed

4 ms significantly slower. This is due to the small voltage margin available, which results from the machine

operating at nominal speed. Nevertheless, as can be seen in Fig. 14(b), the currents are regulated as quickly as

possible to their new references. Note that, due to the constraint (5c), switching between−1 and1 is inhibited,

and switching is performed via an intermediate zero switch position, which is applied forTs.

Fig. 15 shows the corresponding step responses for MPC with horizon of ten. The settling times are nearly

identical to the horizonof one case. The weightλu = 120 · 10−3 was chosen, which results in the same

switching frequency as above, i.e.fsw = 250Hz.

When operating at 50% speed and applying the same torque steps as before, the torque settling times are

0.5 ms for the step down and 1.1 ms for the step up case, both forMPC with horizonof one and for horizon

of ten. We conclude that during transients the dynamical performance of direct MPC is effectively limited only

by the available voltage, regardless of the length of the prediction horizon. In particular, long horizons do not

slow down the dynamic response of MPC.

VII. C OMPUTATIONAL BURDEN

Next, we analyze the computational burden of the proposed modified sphere decoding algorithm and compare

it with the one of the exhaustive search algorithm describedin Sect. III-D in [5]. Through this section, the

sampling intervalTs = 25µs is used. Different prediction horizons are investigated.The weightλu is chosen

such that approximately the same switching frequency offsw = 300Hz is obtained, regardless of the prediction

horizon. As a measure of the computational burden, the number of switching sequences, which are investigated
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Fig. 16: Histogram of the number of switching sequences investigated by the modified sphere decoding algorithm, when considering the

horizon of N = 10

by the algorithm at each time-step when computing the optimum, is considered. Over multiple fundamental

periods, the average as well as the maximal number of sequences is monitored and summarized in Table III.

When using sphere decoding for the horizonof one case, the table shows that on average 1.18 switching

sequences need to be considered by the algorithm at every time-step. The empirical upper bound on the number

of sequences is five. This implies that, by choosing the initial radius of the sphere based on an educated guess

(see (31) in [5]), the sphere is sufficiently tight. Specifically, in the vast majority of the cases, the sphere is

perfectly tight, in the sense that out of all the admissible switching sequences onlyone is located within the

sphere.

This is in stark contrast to exhaustive search. Here, depending on the optimal switch position obtained at the

previous time-step,uopt(k − 1), and in accordance with the switching constraint, up to 18 sequences need to

be investigated, with the average being 11.8. We conclude that forN = 1 and the three-level inverter at hand,

sphere decoding is at least four times faster than exhaustive search; on average, it is 10 times faster. These

numbers are reinforced by the fact that, for each switching sequence to be examined, the modified sphere

decoding algorithm tends to require less computations thanexhaustive search, as described in Sect. V-B in [5].

As the prediction horizon is increased, the computational burden associated with sphere decoding initially

grows slowly, despite being exponential, whilst exhaustive search becomes computationally intractable for

Prediction Sphere decoding Exhaustive search

horizonN avg. max. avg. max.

1 1.18 5 11.8 18

2 1.39 8 171 343

3 1.72 14 2350 4910

5 2.54 35 467’000 970’000

10 8.10 220

TABLE III: Average and maximal number of switching sequences that need to be considered by the sphere decoding and exhaustive search

algorithms to obtain the optimal result, depending on the length of the prediction horizon
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horizons of five or more. Using sphere decoding, the optimization problem for direct MPC with long horizons

such asN = 10 can be solved relatively quickly, with the upper bound on thenumber of switching sequences to

be investigated being 220. Fig. 16 depicts the histogram of the average number of switching sequences, which

need to be explored at each time-step, when using a horizon often steps. The histogram is highly concentrated

at one and exhibits a long, yet very flat tail. It can be seen that, with sphere decoding, in 80% of the cases,

the optimization problem can be solved by exploring only oneswitching sequence. The 95 and 98 percentiles

are shown as straight and dashed lines, respectively, indicating that in 95% of the cases, less than 45 switching

sequences need to be considered.

VIII. D ISCUSSION ANDCONCLUSIONS

In this final section, the proposed MPC algorithm, its performance during steady-state and transient operation,

the choice of the cost function and its computational complexity are discussed and conclusions are provided,

focusing on the three-level inverter drive system used as a case study.

A. Performance at Steady-State Operating Conditions

When assessing the steady-state performance of a current controller, the two key performance metrics are the

current THD and the switching effort. Since the switching frequency is easy to quantify, the latter is usually

used as a measure for the switching effort, rather than the switching losses, which might be more meaningful.

OPPs are typically considered to yield the lowest achievable current THD for a given switching frequency,

while SVM, particularly for low switching frequencies, entails a significantly higher current THD.

When tracking the current reference in MPC and directly setting the converter switch positions without the

use of a modulator, a horizon ofN = 1 is almost universally used [2]–[4]. Alas, the penalty on theswitching

effort is often omitted in the literature, resulting in a deadbeat control scheme. Such schemes are well-known

to be highly sensitive to noise in the measurements and estimates. Adding a penalty on the switching effort not

only reduces the switching frequency, but also lessens the sensitivity to such noise. By enlarging the prediction

horizon, this sensitivity is further reduced, as shown for example in the related MPC formulation in [16].

For the low switching frequencies typically used in medium-voltage applications, the horizonof one case

tends to improve on SVM, by reducing the current THD for a given switching frequency or vice versa. For

higher switching frequencies, however, MPC withN = 1 performs similarly to SVM or worse. The use of long

prediction horizons entails a significant reduction in the current THD. For a three-level inverter, for example,

direct MPC with the horizonof N = 10 leads to a 20% reduction, when compared to the horizonof one case

and the same switching frequency. Indeed, for long prediction horizons, the resulting steady-state performance

in terms of current THD per switching frequency gets close tothe one of OPPs. When considering multi-level

inverters with a higher number of voltage levels, the benefitof long horizons is expected to be even more

pronounced.

Not only the weightλu, but also the sampling intervalTs has a profound impact on the closed-loop

characteristic of MPC. Even though this second degree of freedom complicates the tuning procedure, it can

be exploited to one’s advantage. Specifically, it is important to achieve a long predictioninterval in time. If a

low switching frequency is desired, it is beneficial to use a fairly long sampling interval such asTs = 125µs,
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even though this reduces the granularity of switching. For high switching frequencies, a high granularity is

important, requiring a high sampling frequency and thus a short sampling interval, such asTs = 25µs.

B. Performance during Transients

During transients, MPC achieves an excellent dynamic performance, similar to the one of deadbeat control,

see also [2], [10], [17]. When applying torque steps, the settling time is limited in effect only by the available

voltage. If required, MPC temporarily inverts the voltage applied to the load, in order to achieve as short a

transient as possible. For the case investigated, the horizon length has no impact on the settling time, with long

horizons resulting in the same transient performance as short ones.

Moreover, the transient performance of direct MPC is by far superior to the one typically achieved with

OPPs, since traditionally it has only been possible to use OPPs in a modulator driven by a very slow control

loop, see e.g. [18], albeit some recent improvements, see [16], [19], [20] and the references therein.

C. Cost Function

Horizons longer than one significantly reduce the closed-loop cost (7), when compared to theN = 1 case.

For very long prediction horizons, however, when further increasing the horizon, the incremental cost reduction

becomes very small and ceases at some point. This is a generalcharacteristic of MPC, see e.g. [21]–[25],

and can be seen in Fig. 6(c). The larger the weight on the switching effort, the later this levelling off occurs,

indicating that long horizons are particularly beneficial when switching is expensive and the switching frequency

is low.

The cost function consists of two terms. The first term is the RMS current error, which corresponds to the

current THD, while the second term is represented by the squared switching effort. The latter is a direct measure

of the switching frequency. Both terms are penalized in the cost function, and the trade-off between the two

is adjusted by the weightλu. When increasing the length of the prediction horizon for a given λu, a drastic

reduction of the closed-loop cost can be observed, but only minor reductions in the current THD and switching

frequency are achieved. In particular, long horizons shiftthe trade-off point along the trade-off curve, while

only marginally improving it.

As an alternative, in model predictive direct current control, this shift is avoided by fixing one of the

two quantities [26]. More specifically, the width of the current bounds determines the current THD, and the

cost function captures the switching effort, which is to be minimized [10], [27], [28]. Fixing one of the two

performance metrics, while minimizing the other one, rather than aiming at minimizing both, merits further

investigations. Apart from that, the effect of final state weighting is worth exploring, since it allows one to

approximate infinite horizon problems, see [22], [29].

D. Control Objectives

It is conceivable to directly minimize the switching lossesrather than the switching frequency, as proposed

in [27] and [30]. To achieve this, one might replace the constant scalar weightλu by a time-varying and

diagonal 3x3 matrix, with each term corresponding to a phase-specific weight. These weights are adjusted

online according to the phase current. Specifically, the phases with high currents feature large weights, while
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phases with low currents have accordingly a small weight. Asa result, it is expected that the switching transitions

are shifted from phases with high currents to phases with lower currents, thus reducing the average switching

losses.

E. Computational Complexity

When considering multi-level converters with more than three levels, the computational complexity increases,

in the worst case, exponentially with a large base. Nevertheless, our empirical results for the modified sphere

decoding algorithm suggest that the average computationalburden is effectively independent of the number

of inverter levels, since the search for the optimal switching sequence is restricted to a sphere centered at the

unconstrained solution. The size of the sphere is independent of the number of levels.

Therefore, this algorithm appears to be particularly suited to multi-level converter topologies with a very

large number of levels. Even for a three-level converter, asshown in this paper, the modified sphere decoding

algorithm provides significant computational savings, when compared to exhaustive search, which is commonly

used in the power electronics community. Notably, even for the horizonof one case, an average reduction of

the computational burden by one order of magnitude can be observed, making sphere decoding an attractive

alternative to solve the optimization problem of direct MPCalso in cases where long horizons are not strictly

required.
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