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Abstract

The performance of direct model predictive control (MPCYthnieference tracking and long prediction
horizons is evaluated through simulations, using the atircentrol problem of a variable speed drive system
with a voltage source inverter as an illustrative examplemAdified sphere decoding algorithm is used to
efficiently solve the optimization problem underlying MP@ fong horizons. For a horizon of five and a three-
level inverter, for example, the computational burden duced by four orders of magnitude, compared to the
standard exhaustive search approach. This work illustrdite performance gains that are achievable by using
prediction horizons larger than one. Specifically, for Igmgdiction horizons and a low switching frequency, the
total harmonic distortion of the current is significantlyvier than for space vector modulation, making direct
MPC with long horizons an attractive and computationallgbe control scheme.

Index Terms

Model predictive control, finite control set, sphere deogdibranch and bound, quantization, power elec-
tronics, drive systems

I. INTRODUCTION

The optimization problem underlying direct (also call@tite control set model predictive control (MPC)
with reference tracking is typically solved by enumerataiy possible solutions [2]. Since the number of
possible solutions increases exponentially as a functiothe length of the prediction horizon, when using
enumeration, enlarging the prediction horizon entails gpoeential increase in the computation time. For
direct MPC with reference tracking, this combinatorial kegon has to datein effect limited the length of
implementable prediction horizons to one [3], [4]. Conedyssolving the optimization problem of direct MPC
with long prediction horizons in agafficientmanner has been hitherto an unresolved problem.

A solution approach to this problem is proposed in [5], whadopts the notion of sphere decoding [6]
and tailors it to the problem at hand. As a result, tdptimization problem underlyin/PC problem with
long prediction horizons, such as ten, can be solved on geesia quickly as the horizoof one case using

enumeration.
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In this paper we start by summarizing the problem formulation aredkigy results obtained in [5]. Using a
three-level neutral point clamped (NPC) voltage sourceriter driving an induction machine as a case study,
we present a detailed performance evaluation that higtslighsential features of direct MPC with horizons
significantly longer than onby using the optimization algorithm presented in [5]. At steathte operating
conditions, the key performance metrics are the total harendistortion (THD) of the current and the device
switching frequencySeveralcomparisons with two commonly used modulation schemes arnmed, i.e.
space vector modulation (SVM) and optimized pulse patt@@#Ps) [7], [8]. Interestingly, in some cases MPC
with long horizons has the potential to achieve a perforraagimilar to that of OPPs, even ateady state
During transients, MPC with long horizons provides a transiresponse timas shortas MPC with short

horizons, often outperforming classic control arrangetsisnch as field oriented control.

Il. CONTROL PROBLEM AND SOLUTION METHOD

This section recapitulates the main subject matter of fpslbmmarizing the control problem, model predictive

control formulation and the efficient solution method basedsphere decoding.

A. Control Problem

In the stationaryxS coordinate system, we consider a discrete-time linear peleetronic system modelled

as per
x(k+1)=Az(k) + Bus(k) (1a)
y(k) = Cx(k) (1b)
with system matriceA, B andC, andk € N. We useu,3 = P u with
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to translate the three-phase switch positians [uq up ue]T into the orthogonal coordinate system. Note that
u € U3 is integer-valued. For a three-level inverter, for example havel/ = {—1,0,1}. For a drive system
with an induction machine, we choose as state VEetér [is, iss Vra ¥rs]T, Whereig £ [is, is5]” denotes
the stator current, and,., and,g are the rotor flux linkages. The system outputi®sen ag = ;.

The control problem is to regulate the stator current aldsgdference’;, by manipulating the three-phase

switch positionu. The switching effort, i.e., the switching frequency or #watching losses is to be kept small.

B. Model Predictive Control Formulation

The cost function
k+N—1

J= 3 lleast+ D3+ AullAu@)]3, 3)
{=k

is a suitable choice to penalize the predicted evolutionhef ¢urrent errors and the control effort over the

prediction horizorof N steps where

ieﬂﬁ (€ + 1) é i:,aﬁ(g + 1) - is,aﬂ(g + 1) (4&)

Au(l) 2 u(l) —u(l —1). (4b)



The scalar parametey, > 0 is a tuning parametehat adjusts the trade-off between the tracking accuracy and
the switching effort.
Introducing the switching sequent&k) = [u’ (k) ...u” (k+N—1)]7, the optimization problem underlying

direct MPC with current reference tracking is

Uopi(k) =arg gl(l}g J (5a)
subj. to U(k) € U (5b)
[Au(l)||loo <1, Vb =Fk,....k+N—1, (5¢)

whereU = U3V . The constraint (5c) is imposed since switching is only fidesby one step up or down in

each phase.

C. An Efficient Method for Calculating the Optimal Switch iBoas

Using algebraic manipulations, the optimization problé&ndan be rewritten as
Uop(k) = arg min [[Uunc(k) — HU (k)| 3 (62)
subj. to (5b) and (5¢) (6b)

H turns out to be an invertible lower-triangular matrix, s6g We useU ync(k) = HU yno(k), whereU ync(k)
is the switching sequence obtained from minimizing Bthout constraints, i.e., witfU = R3*" and ignoring
(5¢).

The MPC optimization problem in its form (6) is a (truncated®ger least-squargsroblem. As shown in [5],
the sphere decoding algorithm [6], [9] can be adapted toes(@y. The algorithm iteratively considers candidate
sequence®/ € U within a sphere of radiug(k) > 0 centered il ync(k), i.e., ||Uunc(k) — HU ||z < p(k), and
which satisfy the switching constraint (5¢). SinEkis triangular, finding candidate sequences is computdtiona
simple, in the sense that at each step only a one-dimensadsigpn needs to be solved. For more details, the

reader is referred to [5] and [6].

IIl. FRAMEWORK FORPERFORMANCEEVALUATION
A. Case Study

We consider a NPC voltage source inverter connected with diumevoltage induction machinand a
constant mechanical load, as shown in Fig. 13A8kV and 50 Hz squirrel-cage induction machine rated at
2 MVA with a total leakage inductance of 0.25 pu is used as amg@ka of a typical medium-voltage induction
machine. The dc-link voltage gy = 5.2kV and assumed to be constant. The potential of the neutrat po
is assumed to be fixed. The detailed parameters of the maahihénverter are summarized in Table I. The
per unit (pu) system is established using the base quaniitie= MVW = 2694V, I = 25 = 503.5A
and fp = frar = 50 Hz, with Via, Irar and fro referring to the rated voltage, current and frequency,aetiyely.

All simulations are performed in Matlab, using an idealizedupwith the semiconductors switching instan-
taneously As such, second order effects such as deadtimes, controleputation delays, measurement noise,

observer errors, saturation of the machine’s magneticnaftparameter variations, etc. are neglected, resulting
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Fig. 1: Three-level three-phase neutral point clampedageltsource inverter driving an induction motor with a fixedtra point potential

in a switched linear model for the drive systefhe significance of such simulations is underlined by the ver
close match between previous simulations and experimeggalts using a similar model. The simulation results
in [10] predicted the experimental results in [11] accusate within a few percentThroughout this paper,

if not otherwise stated, all simulations were done at nofhspaed and rated torque, implying a fundamental

frequency of 50 Hz and rated currents. All results are shawthé pu system.

B. Modulation Methods used for Benchmarking

To evaluate the steady-state performance of multi-steiaptirect MPC, we benchmark this strategy with
SVM and OPPs The SVM gating signals are obtained by using a three-lesgular sampled®WM with
two triangular carrier signals, which are in phase (phasedtition). By adding to the reference voltage an
appropriate common mode voltage, which is of the min/mass phodulo type, the modulator resembles a
SVM, as shown in [12]. Synchronous modulation is used, ilee,carrier frequency is an integer multiple of
the fundamental frequency.

The OPPs were calculated offline for pulse numbers (ratiwésent the switching frequency and the fundamen-
tal frequency) of up to 15. The switching angles were comgibitg minimizing the squared differential-mode
voltage harmonics divided by the order of the harmonic. Foinductive load such as a machine, this approach

is effectively equivalent to minimizing the curremtD [8].

Induction | Voltage 3300V rs 0.0108 pu
motor Current 356 A T 0.0091 pu
Real power 1.587MW | z;,  0.1493pu

Apparent power 2.035MVA| z;- 0.1104pu
Frequency 50 Hz Tm  2.3489pu
Rotational speed 596 rpm

Inverter Viae  1.930pu
Te 11.769 pu

TABLE [: Rated values (left) and parameters (right) of thevelr
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Fig. 2: Trade-off between the current THRHp and the switching frequencysw for synchronous space vector modulation (SVM) and

optimized pulse patterns (OPPSs)

C. Performance Criteria

The key criteria related to the control performance are tindcg switching frequencys, and the current
THD, Ityp. In addition, we will also investigate tha posteriori closed-loopcost. It is obtained after the
simulations, by evaluating the cost functidrfrom (3) over all simulated time-steps and dividing it by the total

number of time-stepsit:

krot—1
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In summary, the closed-loop cost (7) captures the square8 BMrent error plus the weighted averaged and

squared switching effort over the closed-loop simulation.

D. Trade-Off between Current THD and Switching Frequency

Unavoidably, with switching power converters, thésea trade-off between the current THRyp and the
switching frequencyfsw. It is convenient to plot these two quantities along two ogthnal axesFigure 2
illustrates this performance trade-off for SVM and OPPsthefigure, each square corresponds to a unique
simulation with synchronous SVM. The squares are approichasing a polynomial, indicated by the dash-
dotted line. Accordingly, the diamonds correspondteady-statsimulations with OPPs.

The switching frequency range between 200 and 350Hz is dicpéar importance for medium-voltage
power converters. As can be seen in Fig. 2the givenrange, there is scope for a significant reduction of the
current THD, while maintaining the same switching frequef®r example, afsy = 200 Hz the current THD
can be almost halved, when replacing SVM by OPPs. Convergelyswitching frequency can be drastically
reduced for the same current THD. Fatjp = 5%, for example, the switching frequency can be lowered from
350 to 200 Hz, when adopting OPPs instead of SVM. This is aatému of 42%. Both examples are indicated

by red arrows shown in Fig. 2.



At high switching frequencies, however, the performanceefie of OPPs compared to SVM tends to be
marginal. Forfsy, > 600Hz and pulse numbers greater than 12, the difference is vasafl.sMoreover, the
optimization process to compute OPPs with very high pulsabrrs becomes computationally demanding and
the memory space required to store such patterns is sigmiifiéa a result, we have computed OPPs only up
to pulse number 15, or equivalently, up to a switching fremyeof 750 Hz.

With the above as a background and recalling that OPPs éxtoba large extentoptimal steady-state
behaviour, we will quantify in the sequel thelative merits of MPC by normalizing the current THD to the

one obtained by OPPs. Specifically, we introduce

Ityp — I
Sthp = —HD2 — "THD.OPP (8)

Ithp,opp
which is therelative current THD degradation, normalized to the current THD ofP®Rind given in percent.
The normalization is done with regard to the polynomial agpnation of the OPPs shown in Fig. 2. For
switching frequencies beyond 750Hz, SVM is used as a ba&sedince OPPs were computed only up to this

frequency.

IV. STEADY-STATE PERFORMANCE

In this section, the performance of direct MPC with long pegdn horizons is investigated at steady-state
operating conditions, using the three-level inverter waih induction machine as a case study. We use the
modified sphere decoding algorithm described in [5] to stieeoptimization problem. To ensure that the drive
system has settled at steady-state operating conditibassytstem is first simulated over several fundamental

periods without recording the results.

A. Comparison at 250 Hz Switching Frequency

Consider direct MPC with the horizoof N = 1, sampling intervall’s = 125 us and cost function (3) with
the weighting factor\, = 8.4 - 10~3. This results in an average device switching frequencysgpf= 250 Hz,
which is typical for medium-voltage applications, and areat THD of Ityp = 5.96%.

Fig. 3(a) illustrates three-phase stator current wavesostong with their (dash-dotted) references over one
fundamental period. Theolors blue, green and red correspond to the phases and ¢, respectively. The
evolution of the stator current is simulated with a time tegon of 25 us, based on which the spectrum of the

stator current is computed with a Fourier transformatidme Tesulting current spectrum is shown in Fig. 3(b)

Control Control settings Istip Tetrp| fsw  Pow
scheme (%] (%] [Hz]  [kwW]
MPC N=1,\,=84-10"3 5.96 4.65 250 6.05
MPC N =10, )\, =83-1072 | 5.05 4.03 | 254 6.04
SVM fe = 450Hz 7.71 5.35 250 5.73
OPP d=5 4.12 340 | 252 5.88

TABLE II: Comparison of direct MPC with SVM and an OPP in terrof the current THDI, tHp, torque THD T¢ tHp, Switching
frequency fsw and switching lossessw. The penalty\,,, carrier frequencyf. and pulse numbed are chosen such that a switching
frequency of approximately 250 Hz results



=)

1
05 ; '
5 10 15 2

Time (ms)

0 0 500 1000 1500 2000 0 5 10 15 20

Frequency (Hz) Time (ms)

(a) Stator currents (b) Stator current spectrum (c) Switch positionsu

Fig. 3: Simulated waveforms for direct MPC with the horizohN = 1, sampling intervall’s = 125 us and weighting\,, = 8.4 - 1073,
at full speed and rated torque. The switching frequency amately 250 Hz
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= 125 us and weighting\,, = 8.3-10~3.

The operating point and the switching frequency are the sasna Fig. 3
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Fig. 5: Simulated waveforms for SVM with the equivalent @rfrequencyf. = 450 Hz. The operating point and the switching frequency
are the same as in Fig. 3

and the three-phase switching sequence is depicted in Ey. Bor direct MPC unlike PWM, a repetitive
switching pattern is not enforced. As a result, the curreetsum is predominately flat without characteristic
harmonics, despite a pronounced 11th harmonic.

Extending the prediction horizon t& = 10 reduces the current THD by about one percentage point, as
stated in Table Il. This first result indicates that long pegdn horizons do indeed reduce the current THD,
in this case by about 15%. The corresponding waveforms ferNth= 10 case are shown in Fig. 4. It can

be seen that the long horizon leads to a certain degree ofitregeess in the switching pattern. Accordingly,
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Fig. 6: Key performance criteria of MPC for the predictionrigons N = 1, 3, 5, 10 and sampling intervals = 25 us. The switching
frequency, current THD and closed-loop cost are shown ascifun of the tuning parametex,,, using a double logarithmic scaling. The
individual simulations are indicated using dots, theirralletrend is approximated using dash-dotted polynomials

non-triplen odd-order harmonics are clearly identifiabléhie current spectrum, such as the 11th, 13th and 19th
harmonics. Indeed, the degree of repetitiveness in theclsing pattern andcorrespondinglythe magnitude
of the discrete harmonics in the current spectrum are reahéek It can be observed that, in this case, long
prediction horizons foster a discrete current spectrumgdrycentrating the harmonic power in harmonads
odd order An analysis shows that the same applies to the triplen (cmmmmode) voltage harmonics. The shift
of some of the harmonic ripple power into common mode haro®is one of the reasons, why direct MPC
with long prediction horizons leads generalto a lower current THD than the horizar one caseMoreover,
longer horizons result in a shift of some of the differentimdel voltage harmonics from the low-frequency
range to higher frequencies, resulting in a lower currenDTH

To facilitate a comparison wittsVM, the corresponding waveforms of SVM are shown in Fig. 5. The
equivalent carrier frequencf = 450 Hz results in the same switching frequency as for MPC fig = 250 Hz.
The current THD is at 7.71% significantly higher than withedir MPC, see Table Il. As expected, due to the
symmetry and repetitiveness of the switching pattern, S¥mtudres a discrete current spectrum with distinctive
harmonics at non-triplen and odd multiples of the fundamleinequency. Note that the 17th current harmonic
has an amplitude of 0.066.

On the other hand, for the same switching frequency and thee puumberl = 5, an OPP leads to a current

THD of 4.12%, which is approximately one percentage pointelothan for direct MPC withV = 10.

B. Closed-Loop Cost

Next, the influence of\, on the switching frequency, the current THD and the closegyIcost in (7) is
investigated. For each of the horizons = 1, 3, 5 and 10 and for more than 1000 different values\gf
ranging betweefl and0.5, steady-state simulations were run. Focusing on switcheguencies between 100 Hz
and 1kHz, and current THDs below 20%, the results are showfign6, using a double logarithmic scale.
Each simulation corresponds to a single data point. Polyaditnctions are overlaid, which approximate the
individual data points. Figs. 6(a) and 6(b) suggest thatsfoall prediction horizons, the relationship between
A, and the performance variables is approximately linear éndbuble logarithmic scale; for larger values of

N, the relationship is more complicated, but still monotonic
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Fig. 7: Trade-off between theelative current THD and the switching frequency for MPC with the prédn horizonsN = 1, 3,10 and

sampling intervall’s = 25 us

When extending the horizon for a givey,, the switching frequency is increased, while the currenDTH
is significantly reduced. This waterbed effect makes it cliffi to assess from Figs. 6(a) and 6(b) the benefit
long prediction horizons might have on these two key perforoe metrics. A more suitable measure is the a
posteriori closed-loop cost, see (7), which is illustraitedrig. 6(c). As the prediction horizon is increased the
cost is clearly reduceduggesting the use of horizons larger than one. For examvjile A, = 0.01 andN =1,
we haveJ. ~ 0.05, whereas withthe horizonof N = 3, the closed-loop cost can be reduced/tp~ 0.003.
This is a reduction by a factor of 1¥Ve alsonote that, for this value ok,, the achievea posterioriclosed-
loop cost is almost optimallhe benefit of long horizons on the current THD and the switgHrequency is

investigated in the subsequent sections, see also Figs. Fet guidelines to tunga, please also refer to [13].

C. Relative Current THD for Sampling Interval = 25 us

Fig. 7 shows theelative current THDs of SVM and of MPC, as defined in (8). In this figutes simulations
referring to SVM are indicated by squares, those of OPPsratfiedted with diamonds. Using the sampling
interval 75 = 25 us, hundreds of individual simulations of MPC with predictiborizonsN = 1, 3, 5 and
10 were performed, using different weights. Specifically,\,, was varied between 0 and 1. Each simulation
corresponds to a dot in the figure. The individual simulatiegults were approximated by polynomials in a
least-squares sense, shown in Fig. 7 as colored and dotiesl [The trend lines for the different prediction
horizons are summarized in Fig. 9(a).

It can be clearly seen that using MPC with horizons largen thrae reduces the current THD. In fact, for high
switching frequencies above 600 Hz, the horizmfrone case resembles the performance of SVM. Increasing
the horizon to 10 steps reduces the current THD by about 15%paced to SVM. Interestingly enough, the
OPP with pulse numbei = 15 (and fsy = 750Hz) is outperformed by MPC withiv = 10, indicating that
the global minimum was not obtained when computing thisipaler OPP. In absolute terms, however, the
differences are small, being in the range of a fraction of iem@ (in terms of the absolute current THD).

For low switching frequencies between 100 and 250 Hz, thiopeance results are somewhat scattered. The
trend lines suggest that arourfg, = 200 Hz the current THD can be reduced by about 30%, when incrgasin
the prediction horizon fromV = 1 to 5. Longer horizons do not appear to carry any additionglopmance

benefit. Interestingly, for long horizons suchsis= 10 and low switching frequencies, the switching frequency
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Fig. 9: Trade-off between theelative current THD and the switching frequency for MPC with the pegdn horizonsN = 1, 3, 5, 10
and sampling interval’s = 25 pus and125 us, respectively

appears to lock into integer multiples of the fundamentadjfirency. This is apparent fgk, = 100, 150 and
200Hz. For these switching frequencies and for particuteniaes of)\,, MPC almost reproduces the steady-

state performance of OPPs, in terms of the current THD aellidor a given switching frequency.

D. Relative Current THD for Sampling Intervdl = 125 us

The simulations shown in the previous section are repeatee tor a five times longer sampling interval,
i.e., Ts = 125 us. Fig. 8 shows the resulting trade-off relations, analothtse in Fig. 7. The summary plot is
provided in Fig. 9(b). As in thd's = 25 us case, longer prediction horizons improve the performafddPC
by lowering the current THD for a given switching frequentiis becomes particularly evident for switching
frequencies between 150 and 450 Hz. In this range, MPC Witk 10 exhibits a relative current THD that is
approximately 20% lower than that for thé = 1 case. When comparing Figs. 9(a) and 9(b), we note that in
addition to the weigh#\,, the choice of sampling interval has a significant impacthenresulting closed-loop
performance. This somewhat complicates the tuning praeedudirect MPC.

All trade-off curves converge afs,, = 600 Hz, which corresponds to a zero penalty on the switchingreffo
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i.e., A, = 0. When not penalizing the switching transitions and thuy ganalizing the predicted deviation of
the current from its sinusoidal reference, MPC turns inteadibeat controller. Here, the current loop effectively
constitutes two first-order systems (one in theand another one in thg-axis) and the length of the prediction
horizon ceases to have an impact on the performance of MP@idrsituation, MPC withNV = 1 yields the

same control action as MPC witN > 1, compare this also to the results in [14], [15].

E. Relative Current THD for Monte Carlo Simulations

We have seen that, in addition to the tuning paramgteand the horizonV, the sampling interval’; has a
profound influence on the MPC performance. The reason ferishihat the MPC cost function in (3) evaluates
system predictions over a prediction horizon of lengiffs in time

To derive results that take into account a variety of sangglhitervals, we carried out Monte Carlo simulations
with random sampling intervals and random weights. Spedificthe sampling interval was randomly chosen
from the intervall € [5,200] us, and the weight was chosen from € [0, 5]. Moreover, the initial conditions

of the drive system are random, including random initiak@staurrents and rotor fluxes for the induction
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N =1, 3,10 and sampling interval’s = 25 us, when rounding the unconstrained solution

machine, and random initial switch positions for the ingertAs previously, to ensure the simulations to be
captured at steady-state, pre-simulations were run theg net recorded.

MPC with prediction horizonsV € {1,3,5,10} was considered and approximatdl§* simulations were
performed. The results are depicted in Fig. 10, where eatzpdant corresponds to one closed-loop simulation.
It is convenient to determine the trends, by fitting polynalisito the data points using a least-squares approach.
The resulting curves are shown as dashed lines in Fig. 10theydare summarized in Fig. 11.

It can be clearly observed that as the prediction horizoxtisreled, the performance of MPC is improved by
reducing the current THD for a given switching frequency: witching frequencies above 300 Hz, MPC with
horizonof N = 1 performs worse than SVM. When enlarging the horizon from wnthree, the performance
improvement is most significant, whereas the performanaesdavel off when further increasingy to five
and ten. MPC with the horizoaf N = 10, on average, always outperforms SVM and achieves a stdatdy-s
performance close to the one of OPPs. For high switchingufreqgies, such ag,, = 750 Hz, MPC might even
outperform the OPP, as discussed in Sect. IV-C.

Throughout the entire range of switching frequencies amrsid, MPC withN = 10 reduces the relative
current THD by more than 20%, when compared to the popMlaf 1 case. For very low switching frequencies,
the trade-off curves for different prediction horizons eerge, getting close to the point of six-step operation,

i.e., fundamental frequency modulation.

V. SUBOPTIMAL MPCVIA DIRECT ROUNDING

We had seen in [5] that, in general, direct rounding of theomstrained solution provides only suboptimal
solutions. However, in some cases, the generator mdifixs almost diagonal and its basis vectors are
almost orthogonal. This motivates the investigation of ppraximative solution, based on trivial quantization
(rounding). This approach yields suboptimal solutiond, iBuicomputationally very fast, since it requires only
basic matrix manipulations. Sphere decoding and brandkimgt required.

Specifically, instead of invoking Algorithm 1 in [5], the (soptimal) sequence of switch positions is obtained

by rounding (quantizing) the unconstrained solution congriwise to the nearest integer in the det

Usu(k) = round; (U ync(k)) - 9)
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Fig. 13: Trade-off between theslative current THD and the switching frequency feuboptimal MPC with the prediction horizons

N =1,3,5,10 and sampling interval’s = 25 us, when rounding the unconstrained solution

Recall that, as defined in Sect. II-C (k) denotes the unconstrained solution to the optimizatiomlero
(5) at time-stepk.

The simulations in Sect. IV-C for (optimal) direct MPC werpeated for this suboptimal design. Using the
sampling intervall’s = 25 us, the resulting trade-off curves for suboptimal MPC areicted in Fig. 12 for the
horizons one, three and ten. The trendlines were fitted awdahd are shown separately in Fig. 13.

For switching frequencies below 300 Hz, the weightis large and the diagonal terms dominate over the
other terms in the generator matr®f. As a result, the componentwise quantization in (9) yieldlsitions
close to the optimal one. This can be seen, when comparirgy Bi@) and 13 with each other. Fof = 1,
suboptimal MPC exhibits a performance that is very simitarthe one of optimal MPC. Longer horizons
improve the performance of suboptimal MPC (9), but to a ledsgree than for the optimal case (6).

High switching frequencies are the result of smagll and generator matrices that are correspondingly less
orthogonal. Using the trivial quantization in (9) for switng frequencies above 300 Hz leads to suboptimal
solutions that are clearly inferior, with th& = 1 case being about 15% worse than the optimal solution.
Moreover, extending the horizon appears to be of very litimefit, if at all. As), is decreased and the
switching frequency is increased, the relative deterionadf suboptimal MPC becomes more prominent. The

absolute performance loss, in terms of current THD for aryiswitching frequency, is, however, very small.

VI. PERFORMANCE DURINGTRANSIENTS

One of the major benefits of direct MPC is its very fast dynahileehavior during transients. Consider
MPC with a horizon of one, the sampling interval, = 25 s and the weighd,, = 2.55 - 10~2. At nominal
speed, reference torque steps of magnitude one are impsedhig. 14(a). The steps on the torque reference
are translated into steps in the current reference, showdasis-dotted lines in Fig. 14(b). The corresponding
switching pattern is shown in Fig. 14(c), with the switchifnggquency beingfs,, = 252 Hz.

When switching from rated to zero torque, the voltage apglethe machine is momentarily inverted, leading

to an extremely short settling time of 0.35ms. On the otherdhahe torque step from zero to one is with
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Fig. 14: Reference torque steps for MPC with the horipériV = 1 at nominal speed
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Fig. 15: Reference torque steps for MPC with the horipénV = 10 at nominal speed

4ms significantly slower. This is due to the small voltage giraavailable, which results from the machine
operating at nominal speed. Nevertheless, as can be seég. ibdfb), the currents are regulated as quickly as
possible to their new references. Note that, due to the @ns(5c), switching between 1 and1 is inhibited,
and switching is performed via an intermediate zero switokitpn, which is applied fof.

Fig. 15 shows the corresponding step responses for MPC witiladn of ten. The settling times are nearly
identical to the horizorof one case. The weight, = 120 - 10~3 was chosen, which results in the same
switching frequency as above, i.g,, = 250 Hz.

When operating at 50% speed and applying the same torque atepefore, the torque settling times are
0.5ms for the step down and 1.1 ms for the step up case, botMP& with horizonof one and for horizon
of ten. We conclude that during transients the dynamical padoce of direct MPC is effectively limited only
by the available voltage, regardless of the length of thelipten horizon. In particular, long horizons do not

slow down the dynamic response of MPC.

VII. COMPUTATIONAL BURDEN

Next, we analyze the computational burden of the proposetifiad sphere decoding algorithm and compare
it with the one of the exhaustive search algorithm descriibe8ect. 111-D in [5]. Through this section, the
sampling intervall’s = 25 us is used. Different prediction horizons are investigaféte weight),, is chosen
such that approximately the same switching frequencyspf= 300 Hz is obtained, regardless of the prediction

horizon. As a measure of the computational burden, the nuofl®vitching sequences, which are investigated
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Fig. 16: Histogram of the number of switching sequencessiiyated by the modified sphere decoding algorithm, whersidening the
horizonof N = 10
by the algorithm at each time-step when computing the optimis considered. Over multiple fundamental
periods, the average as well as the maximal number of segsésanonitored and summarized in Table IlI.

When using sphere decoding for the horizoinone case, the table shows that on average 1.18 switching
sequences need to be considered by the algorithm at evexystiep. The empirical upper bound on the number
of sequences is five. This implies that, by choosing theahitidius of the sphere based on an educated guess
(see (31) in [5]), the sphere is sufficiently tight. Specifican the vast majority of the cases, the sphere is
perfectly tight, in the sense that out of all the admissiMéching sequences onlgneis located within the
sphere.

This is in stark contrast to exhaustive search. Here, depgrmh the optimal switch position obtained at the
previous time-stepuopi(k — 1), and in accordance with the switching constraint, up to Ifusaces need to
be investigated, with the average being 11.8. We concludeftn N = 1 and the three-level inverter at hand,
sphere decoding is at least four times faster than exhauséarch; on average, it is 10 times faster. These
numbers are reinforced by the fact that, for each switchisguence to be examined, the modified sphere
decoding algorithm tends to require less computations éxéiaustive search, as described in Sect. V-B in [5].

As the prediction horizon is increased, the computatiomatién associated with sphere decoding initially

grows slowly, despite being exponential, whilst exhaestearch becomes computationally intractable for

Prediction || Sphere decoding| Exhaustive search
horizon N || avg. max. avg. max.
1 1.18 5 11.8 18
2 1.39 8 171 343
3 1.72 14 2350 4910
5 2.54 35 467'000  970°000
10 8.10 220

TABLE lII: Average and maximal nhumber of switching sequentieat need to be considered by the sphere decoding and &xbaearch
algorithms to obtain the optimal result, depending on tmgtle of the prediction horizon
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horizons of five or more. Using sphere decoding, the optitiimgproblem for direct MPC with long horizons
such agV = 10 can be solved relatively quickly, with the upper bound onrtheber of switching sequences to
be investigated being 220. Fig. 16 depicts the histogranm@faverage number of switching sequences, which
need to be explored at each time-step, when using a horiztendafteps. The histogram is highly concentrated
at one and exhibits a long, yet very flat tail. It can be seen thih sphere decoding, in 80% of the cases,
the optimization problem can be solved by exploring only eméching sequence. The 95 and 98 percentiles
are shown as straight and dashed lines, respectivelyatidgcthat in 95% of the cases, less than 45 switching

sequences need to be considered.

VIIl. Di1scussION ANDCONCLUSIONS

In this final section, the proposed MPC algorithm, its perfance during steady-state and transient operation,
the choice of the cost function and its computational coxipleare discussed and conclusions are provijded

focusing on the three-level inverter drive system used aase study.

A. Performance at Steady-State Operating Conditions

When assessing the steady-state performance of a curnanoler, the two key performance metrics are the
current THD and the switching effort. Since the switchingguency is easy to quantify, the latter is usually
used as a measure for the switching effort, rather than tliteleng losses, which might be more meaningful.
OPPs are typically considered to yield the lowest achievabirrent THD for a given switching frequency,
while SVM, particularly for low switching frequencigentails a significantly higher current THD.

When tracking the current reference in MPC and directlyirsgtthe converter switch positions without the
use of a modulator, a horizon éf = 1 is almost universally used [2]-[4]. Alas, the penalty on #dtching
effort is often omitted in the literature, resulting in a dbaat control scheme. Such schemes are well-known
to be highly sensitive to noise in the measurements and assinAdding a penalty on the switching effort not
only reduces the switching frequency, but also lessensehsitsvity to such noise. By enlarging the prediction
horizon, this sensitivity is further reduced, as shown fxaraple in the related MPC formulation in [16].

For the low switching frequencies typically used in mediuaftage applications, the horizasf one case
tends to improve on SVM, by reducing the current THD for a giwsvitching frequency or vice versa. For
higher switching frequencies, however, MPC with= 1 performs similarly to SVM or worse. The use of long
prediction horizons entails a significant reduction in tlherent THD. For a three-level inverter, for example,
direct MPC with the horizomf N = 10 leads to a 20% reduction, when compared to the hordfoone case
and the same switching frequency. Indeed, for long prefidtiorizons, the resulting steady-state performance
in terms of current THD per switching frequency gets closéhmone of OPPs. When considering multi-level
inverters with a higher number of voltage levels, the bersfitong horizons is expected to be even more
pronounced.

Not only the weight)\,, but also the sampling interval, has a profound impact on the closed-loop
characteristic of MPC. Even though this second degree @fdfssm complicates the tuning procedure, it can
be exploited to one’s advantage. Specifically, it is imputrta achieve a long predictiointerval in time. If a

low switching frequency is desired, it is beneficial to useialyf long sampling interval such 85, = 125 us,
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even though this reduces the granularity of switching. FHgh tswitching frequencies, a high granularity is

important, requiring a high sampling frequency and thus@tssampling interval, such &5, = 25 us.

B. Performance during Transients

During transients, MPC achieves an excellent dynamic pexdace, similar to the one of deadbeat control,
see also [2], [10], [17]. When applying torque steps, thdisgttime is limited in effect only by the available
voltage. If required, MPC temporarily inverts the voltagepked to the load, in order to achieve as short a
transient as possible. For the case investigated, thedmoléngth has no impact on the settling time, with long
horizons resulting in the same transient performance ag shes.

Moreover, the transient performance of direct MPC is by f#pesgior to the one typically achieved with
OPPs, since traditionally it has only been possible to usB<OR a modulator driven by a very slow control

loop, see e.g. [18], albeit some recent improvemeses [16], [19], [20] and the references therein.

C. Cost Function

Horizons longer than one significantly reduce the closegh-loost (7), when compared to thé = 1 case.
For very long prediction horizons, however, when further@asing the horizon, the incremental cost reduction
becomes very small and ceases at some point. This is a gertenalcteristic of MPC, see e.g. [21]-[25],
and can be seen in Fig. 6(c). The larger the weight on the lsingceffort, the later this levelling off occurs,
indicating that long horizons are particularly beneficidem switching is expensive and the switching frequency
is low.

The cost function consists of two terms. The first term is thdSRcurrent error, which corresponds to the
current THD, while the second term is represented by thersdusawitching effort. The latter is a direct measure
of the switching frequency. Both terms are penalized in thst éunction, and the trade-off between the two
is adjusted by the weight,,. When increasing the length of the prediction horizon foriaeg \,,, a drastic
reduction of the closed-loop cost can be observed, but oimpmeductions in the current THD and switching
frequency are achieved. In particular, long horizons dhié trade-off point along the trade-off curve, while
only marginally improving it.

As an alternative, in model predictive direct current cohtthis shift is avoided by fixing one of the
two quantities [26]. More specifically, the width of the cemt bounds determines the current THD, and the
cost function captures the switching effort, which is to bmimized [10], [27], [28]. Fixing one of the two
performance metrics, while minimizing the other pmather than aiming at minimizing bagtmerits further
investigations. Apart from that, the effect of final stateigiing is worth exploring, since it allows one to

approximate infinite horizon problems, see [22], [29].

D. Control Objectives

It is conceivable to directly minimize the switching lossasher than the switching frequency, as proposed
in [27] and [30]. To achieve this, one might replace the camisscalar weight\, by a time-varying and
diagonal 3x3 matrix, with each term corresponding to a pispseific weight. These weights are adjusted

online according to the phase current. Specifically, thespdavith high currents feature large weights, while
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phases with low currents have accordingly a small weighta Assult, it is expected that the switching transitions
are shifted from phases with high currents to phases witledawrrents, thus reducing the average switching

losses.

E. Computational Complexity

When considering multi-level converters with more tharethlevels, the computational complexity increases
in the worst caseexponentially with a large base. Nevertheless, our engiriesults for the modified sphere
decoding algorithm suggest that the average computatimunalen is effectively independent of the number
of inverter levels, since the search for the optimal switgh$equence is restricted to a sphere centered at the
unconstrained solution. The size of the sphere is indep#rafehe number of levels.

Therefore, this algorithm appears to be particularly sui® multi-level converter topologies with a very
large number of levels. Even for a three-level convertestasvn in this paper, the modified sphere decoding
algorithm provides significant computational savings, whempared to exhaustive search, which is commonly
used in the power electronics community. Notably, even lier iorizonof one case, an average reduction of
the computational burden by one order of magnitude can beredd, making sphere decoding an attractive
alternative to solve the optimization problem of direct MBISo in cases where long horizons are not strictly

required.
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